(19)
(11)EP 1 949 137 B1

(12)EUROPEAN PATENT SPECIFICATION

(45)Mention of the grant of the patent:
10.07.2019 Bulletin 2019/28

(21)Application number: 06812789.3

(22)Date of filing:  26.10.2006
(51)International Patent Classification (IPC): 
G01V 3/08(2006.01)
(86)International application number:
PCT/NO2006/000372
(87)International publication number:
WO 2007/053025 (10.05.2007 Gazette  2007/19)

(54)

A METHOD FOR HYDROCARBON RESERVOIR MAPPING AND APPARATUS FOR USE WHEN PERFORMING THE METHOD

VERFAHREN ZUR KOHLENWASSERSTOFFRESERVOIRABBILDUNG UND VORRICHTUNG ZUR VERWENDUNG BEI DER AUSFÜHRUNG DES VERFAHRENS

PROCEDE DE CARTOGRAPHIE D'UN RESERVOIR D'HYDROCARBURE ET APPAREIL A UTILISER LORS DE LA MISE EN OEUVRE DU PROCEDE


(84)Designated Contracting States:
AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LI LT LU LV MC NL PL PT RO SE SI SK TR

(30)Priority: 03.11.2005 NO 20055168

(43)Date of publication of application:
30.07.2008 Bulletin 2008/31

(73)Proprietor: Advanced Hydrocarbon Mapping AS
4029 Stavanger (NO)

(72)Inventors:
  • BARSUKOV, Pavel
    NL-3824 PD Amersfoort (NL)
  • FAINBERG, Eduard, B.
    NL-3824 PD Amersfoort (NL)
  • SINGER, Bension, Sh.
    4045 Hafrsfjord (NO)

(74)Representative: Håmsø Patentbyrå AS 
P.O. Box 171
4301 Sandnes
4301 Sandnes (NO)


(56)References cited: : 
WO-A1-02/14906
WO-A1-2004/053528
WO-A2-2004/008183
US-B1- 6 603 313
WO-A1-03/104844
WO-A1-2006/003360
WO-A2-2004/008183
US-B1- 6 603 313
  
      
    Note: Within nine months from the publication of the mention of the grant of the European patent, any person may give notice to the European Patent Office of opposition to the European patent granted. Notice of opposition shall be filed in a written reasoned statement. It shall not be deemed to have been filed until the opposition fee has been paid. (Art. 99(1) European Patent Convention).


    Description


    [0001] The invention relates to a method and apparatus for an electromagnetic survey of electrically resistive targets that potentially contain hydrocarbons, e.g. for mapping subsea hydrocarbon reservoirs, more particularly by using a transverse magnetic mode (TM mode) of an electromagnetic field source to register a TM response which is measured by one or more receivers submerged in water, by the essentially vertically oriented submerged transmitter generating intermittent electric current pulses with sharply defined terminations, and where an electromagnetic field generated by these pulses is measured by the submerged and essentially vertically oriented receiver, in the interval when the current in the electromagnetic field source is switched off. The distance between the antenna of the electromagnetic field source and the receiver antenna is smaller than the depth of the target object.

    [0002] Seismology is a technique commonly used when mapping potential areas for oil prospecting. Seismic data provides information on the existence, location and shape of a hydrocarbon structure located in sediments in the ground. However, a seismic survey provides information on the structure through registering the velocity of elastic waves responsive to the mechanical properties of the subsurface rocks, but the seismic data does not reveal much about the nature of the pore fluids present in the structure.

    [0003] As for references, please refer to the complete bibliography that follows the description of the invention.

    [0004] Marine prospecting wells are drilled to determine whether there are hydrocarbons present in the form of oil or gas, but the costs associated with this are very high and there are no guarantees of finding hydrocarbons in the structures drilled. In this situation, essential additional information about the contents of the reservoir may be obtained by electromagnetic (EM) methods.

    [0005] The typical and simplest geoelectric model of an offshore sedimentary structure containing a reservoir of hydrocarbons can be represented as conductive half-spaces having a typical resistivity of 1-2 Ωm, where an encapsulated thin resistive oil or gas containing layer with a thickness of 10-100 m has a resistivity of 20-100 Ωm. The typical depth of the resistive layer is approximately 500-5000 m. The sediments are covered by more conductive seawater having a resistivity of 0.25-0.3 Ωm, as well as non-conductive air. The greater resistivity of the hydrocarbon bearing reservoirs is used in all electromagnetic methods of prospecting for hydrocarbons as the principal indicator of the presence of oil and gas.

    [0006] Magnetotelluric (MT) survey is a well known method used extensively in EM applications on shore. Sometimes the MT method is used for marine applications. The MT method uses the natural geomagnetic variations excited through interaction between solar wind and the main geomagnetic field.

    [0007] The low sensitivity of the MT method with respect to resistive hydrocarbon layers is explained by the properties of the MT field. A magnetotelluric field is a flat wave that falls from the atmosphere and propagates vertically through the earth as TE fields (TE = transverse electric). It is well known that the TE field is insensitive to a thin horizontal resistive layer encapsulated in a more conductive structure. This is illustrated below. Thus the MT method is of limited use in marine EM prospecting for hydrocarbons.

    [0008] Unlike the MT method, CSEM based methods (Controlled Source Electromagnetic Method) use both TE fields (occasionally called inductive mode) and TM (transverse magnetic) fields (occasionally called galvanic mode). CSEM methods are the most frequently used in marine EM prospecting, as they are more sensitive to a thin encapsulated resistive layer. Different forms (set-ups) of CSEM methods are used, depending on the types of transmitter and receiver. In the following, the term transmitter and receiver specifies the source and detector of electromagnetic fields. Some of the existing set-ups are illustrated in the following.

    [0009] The most common CSEM systems in use consist of a horizontal cable that receives a heavy electric current (transmitter), the cable being disposed on or by the seabed, and horizontal electric receivers installed on or by the seabed at different distances from the transmitter. Such systems can either be permanently installed on the seabed over a measuring period, or they can be towed behind a vessel. In some set-ups they are accompanied by measurements of magnetic components of the EM field. These systems consist of a transmitter that sets up a strong alternating current in a subsea cable, and a set of receivers that perform measurements of electromagnetic fields in the frequency or time domain.

    [0010] The most important characteristic of such systems is the requirement for a great offset between the transmitter and the receivers, 5-10 times the depth of a target, i.e. 5-10 km. Only under these conditions can the shielding effect of the seawater be suppressed and a suitable signal measured.

    [0011] Existing CSEM methods are presented for instance in the patent publication WO2004/008183, where a method and apparatus for underwater EM resistivity surveying is disclosed, using submerged vertical transmitter antennae, with two electrodes, to generate EM field and vertical receiver antennae to detect the induced response.

    [0012] Furthermore, as will be illustrated below, in practice none of the existing set-ups that employ the above CSEM set-ups can provide the resolution required to uncover and examine the hydrocarbon bearing target areas encapsulated at depths of more than 3000 m, nor the resolution required in those cases where the thickness and resistivity of the hydrocarbon layer is insufficient. This limitation is the main drawback of all existing inventions based on a CSEM set-up.

    [0013] The object of the invention is to remedy or reduce at least one of the drawbacks of prior art.

    [0014] The object is achieved through features stated in the description below and in the following claims.

    [0015] The invention is defined by the claims. According to a first aspect of the invention there is provided a method as set out in claim 1. The first aspect may have further features as set out according to any of claims 2 to 9. According to a second aspect of the invention there is provided apparatus as set out in claim 10. The second aspect may have further features as set out according to any of claims 11 to 16.

    [0016] The invention can be employed for electromagnetic prospecting for the purpose of locating a reservoir, examining its geometry and determining whether there are hydrocarbons or water in the reservoir. The method can also be employed if the area and its geometry are known from seismic or other data.

    [0017] The aim of the proposed invention is to register reservoirs, also at depths exceeding 3000 m, increase the resolution of the results produced by an electromagnetic method of prospecting for hydrocarbon bearing targets, and to increase the efficiency of the survey. To achieve success it is suggested that electromagnetic fields are used only in the galvanic mode (TM mode), which has the maximum sensitivity with respect to resistive targets encapsulated in a more conductive stratum. The examples below illustrate the advantage of the proposed invention.

    [0018] In a first example there is provided a novel method of uncovering a reservoir and its nature. This method consists in exciting and measuring electromagnetic fields solely in TM mode induced in subsea strata, data processing and analysis for the purpose of determining the electric properties of the section and the resistance of the layer containing the reservoir, and thereby its nature.

    [0019] In a second example an apparatus is arranged to uncover a reservoir and its nature, which consists in generating and measuring electromagnetic fields solely in the TM mode in the subsea strata and subsequent data processing for the purpose of determining the electric properties of the section and the resistance of the layer containing the reservoir, and thereby its nature.

    [0020] A third example proposes the use of an elongated, essentially vertically oriented electromagnetic field source, also termed a transmitter, to excite electromagnetic fields solely in the TM mode, at least one pair of transmitter electrodes arranged above each other being supplied with heavy current from a power source, via insulated cables, the transmitter electrodes allowing current to pass to the surrounding seawater. Such a transmitter excites electromagnetic fields solely in the TM mode, in horizontally uniform, stratified structures.

    [0021] In a fourth example the transmitter generates electromagnetic field pulses with sharply defined terminations and with intervals where the power is switched off, the transmitter pulse displaying the shortest possible rise time from a base value to a required maximum value, a maximum stability near the maximum value and then the shortest possible fall time back to the base value. Thus, a reference is provided for a signal intercepted by the receiver, the transmitter pulses forming the basis for processing and interpretation of signals returning from the surveyed structure. The receiver carries out response measurements of the electromagnetic field in the absence of the primary field.

    [0022] In a fifth example use is made of one or more submerged, essentially vertically oriented, elongated receivers comprising means arranged to register a field potential difference across the length of the receiver, for measuring a secondary field in the TM mode. Advantageously the receiver is provided with at least one pair of receiver electrodes arranged above each other.

    [0023] In an additional example the essentially vertical transmitter antenna of the transmitter is arranged to register the vertical electromagnetic field during intervals between the intermittent current pulses.

    [0024] In a sixth aspect example a distance R (offset) between the transmitter and the receiver is small enough to produce an induction zone condition. An induction zone is characterized in that the condition 0R ≤ (α(t) /µ0) 1/2 applies. Here, t is the time lag from the moment the power is switched off in the transmitter, µ0= 4π10-7 H/m is magnetic permeability of vacuum, ρα is the average (apparent) resistivity of a substratum which at time t exhibits the same response as the surveyed cross section, R is the horizontal distance (offset) .

    [0025] In a seventh example, several receivers may be used for the measurements, optionally synchronous measurements, in order to increase the efficiency of the survey.

    [0026] In an eighth example, the transmitter generates a special sequence of square pulses to suppress external noise, the pulse sequence being incoherent with the noise. The measured responses are then accumulated and the mean value calculated. In a ninth example, one or more fixed marine autonomous bottom stations monitor the variations of the magnetotelluric field in order to reduce the MT noise in the CSEM measurements.

    [0027] In a tenth example, pressure sensors are used in combination with electrodes to reduce the wave and swell noise in the CSEM measurements.

    [0028] In a further example, which is not part of the claimed invention, the response functions undergo a series of transforms and inversions with subsequent construction of 1D, 2D, 2½D and 3D images, T (x,y) and σ (x,y,z) of the stratum.

    [0029] In a further example, which is not part of the claimed invention, all other available geological and geophysical information is used during the planning stage and the data transformation and data inversion stage of the analysis and interpretation, in order to increase the resolution and unambiguousness of the structure of a section.

    [0030] In a further example, which is not part of the claimed invention, all steps of the survey, i.e. survey planning, data analysis, analysis and influence of the shore line, terrain reliefs on the seabed, the heterogeneity of the sediments and oil reservoirs etc., will to a large extent include the use of 1D, 2D, 2½D and 3D modelling.

    [0031] The principal ideas of the present invention, its advantages and the drawbacks of prior art used in marine electromagnetic prospecting for hydrocarbons, will become apparent from the following description of the invention, which refers to the appended drawings, in which:
    Fig. 1
    depicts the MT curves for the apparent resistivity at the surface of the sea, for a typical model of the strata with and without a resistive, thin target layer;
    Fig. 2
    depicts the phase-MT curves at the surface of the sea, for a typical model of the strata with and without a resistive, thin target layer;
    Fig. 3
    depicts the MT curves for the apparent resistivity on the seabed, for a typical model of the strata with and without a resistive, thin target layer;
    Fig. 4
    depicts the phase-MT curves on the seabed, for a typical model of the strata with and without a resistive, target thin layer;
    Fig. 5
    depicts the typical CSEM designs used for marine EM prospecting;
    Fig. 6
    depicts the resolution of voltage curves for PxEx(f)- and PxEx(t) set-ups in frequency (f=0,1 Hz) and time domains;
    Fig. 7
    depicts the resolution of curves for apparent resistivity for PxEx(f)- and PxEx(t) set-ups in the frequency (f=0,1 Hz) and time domains;
    Fig. 8
    depicts a diagram of shapes of current waves present in different places in the system according to the invention;
    Fig. 9
    depicts the resolution of curves for apparent resistivity for a system according to the present invention for electromagnetic offshore surveys;
    Fig. 10
    depicts the resolution of the voltage curves for a system according to the present invention for electromagnetic offshore surveys;
    Fig. 11
    depicts a schematic side view of an arrangement of transmitter and receivers in a system according to the present invention for electromagnetic offshore surveys;
    Fig. 12
    depicts a schematic block diagram of a power supply unit;
    Fig. 13
    depicts a schematic block diagram of a receiver unit; and
    Fig. 14
    depicts a schematic plan view of an arrangement of transmitter and receivers in a system according to the present invention for electromagnetic offshore surveys.


    [0032] The well known magnetotelluric (MT) survey method is used extensively in electromagnetic surveys on shore, and sometimes offshore. The results of an MT survey are normally presented in the form of apparent resistivity ρα and impedance phase.

    [0033] Figures 1-4 in the accompanying drawings, which illustrate the resolution of the magnetotelluric method, show curves both for apparent resistivity and impedance phase for two basic models of the strata:
    1. 1) h1= 1 km, ρ1= 0.3 Qm, h2 = 1km, ρ2 = 1 Ωm, h3 = 40 m, ρ3 = 1 Ωm, ρ4 = 1 Ωm
      and
    2. 2) h1= 1 km, ρ1= 0.3 Ωm, h2 = 1km, ρ2 = 1 Ωm, h3 = 40 m, ρ3 = 50 Ωm, ρ4 = 1 Ωm.


    [0034] The first and second models describe the section without a resistive target layer (so-called "reference model") and with a thin, resistive layer (h3 = 40 m, ρ3 = 50 Ωm) and emulated hydrocarbon target, respectively. The resistivity of seawater and sediments are accepted as equal to 0.3 Ωm and 1 Ωm, respectively. The dashed and solid curves correspond to sections without and with hydrocarbon bearing layers, respectively.

    [0035] Figures 1 and 2 show curves representing the apparent resistivity and impedance phase at the surface of the sea, for the above described models. As can be seen, the effect of the hydrocarbon layer is so small (less than 1%) as to barely be detectable against the background noise. The resolution of MT curves may be improved by performing the MT measurements at the seabed. Figures 3 and 4 show curves representing the apparent resistivity and impedance phase at the seabed, for the same models. Indeed, the MT curves on the seabed are more sensitive to a resistive target (in the order of 3%), but their resolution is still rather low. Furthermore, the primary EM field will in this case be shielded by conductive seawater, such that the accuracy when determining MT test curves is much lower on the seabed, as compared with the surface of the sea.

    [0036] Over several decades, various systems have been presented, which have been based on methods that include electromagnetic sources (CSEM) for marine applications. The most popular systems that can be used for marine surveys are shown in Figure 5 (Cheesman et al., 1987). Here, the Tx and Rx columns indicate transmitter and receiver. The first and second letters, E or H, on the lines indicate electric or magnetic field component excited by a transmitter, and the third and fourth letters of the lines indicate electric or magnetic field component measured by a receiver. Occasionally, the EzHϕ set-up (Edwards et al., 1985) is also used. (Here, z and ϕ indicate the vertical component and the azimuth component of the horizontal magnetic field, respectively. This system is not suited for surveys at great depths). A complete overview of CSEM methods as well as MT can be found in Chave et al., 1991.

    [0037] Figure 6 and 7 show the resolution of the most popular ExEx set-up (Eidesmo et al., 2002); MacGregor et al., 2004; Johansen et al., 2005 and others) for a CSEM method in frequency and in time domains. The cross sectional models used for the calculations are the same models 1 and 2 as used for the MT modelling. Evidently , this CSEM method has a higher resolution compared with the MT method: 25% and 15% for the frequency and time domains, respectively. However, as can be seen from Figure 6, the measured signal is very small, and it may be less than fractions of microvolts, even in cases were the current in the transmitter line is as much as 1000 A and the transmitter antenna is several hundred meters. With such small signals, noise generated by natural and artificial sources cause problems in the analysis and interpretation of the survey data. In the case when the transverse resistance of the hydrocarbon layer is not high enough, existing CSEM methods can not produce any results, they may produce ambiguous results or they may produce erroneous results.

    [0038] A novel method proposed in the current invention differs from all known methods in that it exhibits a higher sensitivity and resolution with respect to a resistive, thin layer which is a direct indicator of the presence of hydrocarbon targets. Beyond this, this method, in combination with the proposed apparatus, provides higher survey efficiency.

    [0039] Firstly, only the TM mode is used, both for excitation of the primary electromagnetic field, generated by the transmitter, and for measurements by the receiver. This is achieved by using a long, submerged, essentially vertically arranged electromagnetic field source antenna or transmitter antenna, e.g. two vertically spaced transmitter electrodes 1108 arranged above each other, hereinafter also termed transmitter cable, which is connected to a power source via cables, one transmitter electrode acting as an anode and the other as a cathode, and the transmitter antenna receiving square pulses for excitation of EM fields in strata, and a submerged, long, essentially vertically oriented receiver antenna, hereinafter also termed receiver cable, e.g. two vertically spaced receiver electrodes arranged above each other, for the receiver's measurements of potential differences in a vertical component of the electric field. The transmitter field strength will be given by the amplitude of the current pulse (Ampere) and the spacing between the transmitting electrodes. In a horizontally uniform section such a source will only excite EM fields in the TM mode. TM modes that are insensitive to thin, resistive layers in sections are completely absent, and will not reduce an appropriate signal level.

    [0040] Secondly, the transmitter cable is supplied with pulsed current as shown in Figure 8, curve 81. Note that a real signal (curve 82) deviates from the ideal shape described by curve 81 due to the influence of technical limitations of the real system. The response measurements are displayed by the receiver cable in the time domain after the current in the transmitter has been switched off. This type of arrangement will provide measurements of the EM field only, induced into the strata by the diminishing currents from the background when the transmitter current is absent, i.e. only an acceptable signal not masked by a primary field.

    [0041] Thirdly, the distance R (offset) between the transmitter and receiver is selected to be less than the survey depth, i.e. when the condition 0 ≤ R ≤ (tpα(t) /µ0)1/2 applies. This distance, known as the "induction zone", improves the characteristics of the method considerably, as it makes it possible to measure the transfer function with small distances where the signal is strong enough to provide an acceptable signal/noise ratio.

    [0042] For simplicity, the method and apparatus according to the invention is called "TEMP-VEL" (Transient ElectroMagnetic Marine Prospecting with Vertical Electric Lines).

    [0043] Figure 9 (which shows apparent resistivity) and Figure 10 (which shows voltage) illustrate the resolution of the TEMP-VEL method with respect to the above determined reference model, and contains no resistive hydrocarbon layer (curves 96 in the figures). Calculations have been carried out for various depths of the resistive hydrocarbon layer: 1, 2, 3, 4, 5, and ∞ km - curves 91, 92, 93, 94, 95 and 96, respectively. The offset for all curves is 500 m. The voltage in Figure 10 has been normalised in both cable lengths, to apply to a length of 1 m and a current value of 1A.

    [0044] As can be seen, the position of the left branch 90 of the curves is determined by the thickness and resistivity of seawater, as well as by the length and geometry of the power cable. The target is resolved even at a depth of 5000 m.

    [0045] The challenge is how to arrange the signal measurements, as the signal may be weak in situations where the target is located at a great depth and has insufficient resistivity. The TEMP-VEL set-up exhibits four parameters to enhance the signal amplitude; Length of transmitter line, transmitter current amplitude, length of receiver line and offset value. In real situations a manipulation of these parameters will provide the signal value in the range from hundreds of nanovolts to tens of microvolts.

    [0046] The measured response is then converted into resistivity relative to depth through various methods which will be discussed below.

    [0047] The TEMP-VEL method described in the previous section is realized through the TEMP-VEL apparatus.

    [0048] Figure 11 shows a schematic cross section through seawater 1102. Reference numbers 1101 and 1103 denote a surface of the sea and a seabed. A vessel 1104 is provided with an electromagnetic field source 1113, also termed a transmitter. One or more receivers 1109 are arranged at defined distance(s) from the vessel 1104.

    [0049] For a measuring period the vessel 1104 and the receiver/receivers 1109 are stationary for the time it takes to collect the data at the quality that provides the required signal/noise ratio. After checking that the quality of the data is suitable for further processing, the vessel 1104 changes its position with all the sets of receivers 1109. This is the primary survey method.

    [0050] Occasionally, when a survey is performed along profiles and there is no need to accumulate data (if the depth of the hydrocarbon layer is sufficiently small), this method can be changed to a slow constant movement of the vessel 1104 with. the transmitter 1113 and tow-behind receivers 1109.

    [0051] The vessel 1104 is provided with an antenna 1105 for communication as well as a power supply unit, also termed generator 121 (see Figure 12). Heavy current is generated by the power supply unit 121 and passed through cables 1107 and transmitter electrodes 1108a, 1108b which are arranged at different depths in the sea 1102 and form a transmitter antenna 1108. The power moment Pz of a transmitter 1113 is equal to LTr x I, where LTr is the vertical distance between the transmitter electrodes 1108a, 1108b and I is the amperage. The greater Pz is, the better, as this moment is of great importance to the registered signal value.

    [0052] The same condition applies to the receivers 1109. The vertical component of electromagnetic fields induced in strata by current in the transmitter 1113 is measured by one or more essentially vertical receiver antennas 1111, each of which is made up of at least one pair of receiver electrodes 1111a, 1111b connected to the receiver 1109 by cables 1110, and where the vertical distance between the receiver electrodes 1111a, 1111b is equal to LRc. The value of a received signal Vz is equal to LRc x Ez, where Ez is equal to the electrical component of the received signal in the z-direction. The voltage of the measured signal is proportional to L4 if both the transmitter line and the receiver line have the same length L equal to the depth of the sea. Thus the general conditions for the TEMP-VEL system are highly favourable when the reservoir depth is great and LTr and LRc exhibit a length of 500-1000 m and the amperage I = 1-5 kA. There is provided acoustic units at the electrodes 1108a, 1108b, 1111a, 1111b for exact determination of the position of the electrodes 1108a, 1108b, 1111a, 1111b, and also pressure sensors (not shown). Obviously, it is not possible to install the transmitter electrodes 1108a, 1108b and 1111a, 1111b, respectively, absolutely vertically above each other. Moreover, the vessel 1104 moves slightly during the measurements due to wind and currents. The real positions of the transmitter electrodes 1108a, 1108b are registered, and the required correctional data is calculated and taken into account in the data processing and interpretation. The data from the pressure sensors is used to reduce the EM noise caused by waves on the surface of the sea.

    [0053] Communication between the vessel 1104 and all the receivers 1109 takes place via the antennas 1105, 1112 and communication units described below.

    [0054] Figure 12 shows a block diagram of the transmitter 1113. A powerful power generator 121 generates an alternative current which is converted by a pulse generator 122 into series of square current pulses like that drawn in Figure 8. The duration of the on and off stages of the pulses covers the range 0.01-100 seconds.

    [0055] In practice, the pulse series are formulated by the controller 123 in a way that suppresses noise. Incoherence between pulses and noise is determined in the wait state when the transmitter current is switched off. A transmitter controller 123 controls the power generator 121, the pulse generator 122, the process of delivering power to the transmitter electrodes 1108a, 1108b, the calibration of the system, the data acquisition process, real time control of the entire system etc. The cables 1107 are terminated in the transmitter electrodes 1108a, 1108b, which have the ability to efficiently transfer the current pulses to seawater and remain in a stable position submerged in the water 1102.

    [0056] The principal arrangement for the TEMP-VEL surveys is "stationary registration", the vessel 1104 and the receivers 1109 being stationary for the time required to provide the necessary quality of measurement data. The communication block 124 takes care of the communication processes between the transmitter 1113 and all the receivers 1109 via an antenna 1105, and participates in the data acquisition process throughout the survey.

    [0057] Calibration of the system is performed periodically during the registration process. From time to time, the operator will, based on a data check, determine the left branch of the apparent resistivity curve 90 (with a small time lag), then compare this with the theoretically calculated response for a real TEMP-VEL set-up geometry and the seawater conductivity, and compare it with the actual value of the seawater conductivity determined at the actual conditions in consideration of temperature, salinity and pressure.

    [0058] Figure 13 shows a block diagram of the receiver 1109 in Figure 1. The induced electric field is measured by means of the receiver antenna formed by the receiver cables 1110 that terminate in the non-polarised receiver electrodes 1111a, 1111b. After amplification through a low-noise amplifier 132 the signal is digitized through an analogue/digital converter (ADC) 133 and transferred through a receiver control unit 134, a communication block 136 and the antenna 1112 to the vessel 1104 for full processing and subsequent analysis. The receiver control unit 134 changes the data acquisition arrangement in accordance with commands from the vessel 1104, which houses the primary centre for the survey. The signals may also be transferred to a shore based control centre where these decisions can be made.

    [0059] The strategy of the field work has been developed based on information about the area being surveyed, received from geological and geophysical data. 1D, 2D, 2½D or 3D modelling of the electromagnetic situation is produced, and the expected signals from the TEMP-VEL system are evaluated. Both the optimum arrangement for the system installation and the measurement arrangement are planned on the basis of these signals and the required resolution in the vertical and horizontal directions.

    [0060] One of the possible survey arrangements is shown in Figure 14. The entire survey area is divided into subareas. The vessel 1104 carrying the transmitter 1113 is stationed at the centre of each subarea. The receiver sets 1109 are deployed around the vessel 1004 at the distance that satisfies the induction zone requirement. Furthermore, a network of autonomous magnetotelluric stations 141 is deployed in the area. These stations 141 are used to reduce any noise produced by geomagnetic variations. The duration of the measurements in each subarea is determined by many factors, including the characteristics of the section, amperage, ocean depth, the length of the transmitter and receiver antennas 1108, 1111, noise etc. The synchronous or asynchronous accumulation of data is carried out during these measurements. After checking the quality of the data, the vessel 1104 and all receiver sets 1109 are positioned in a new location.

    [0061] Following preprocessing and analysis, the collected data is either converted into voltage profiles or to apparent resistivity vs. time or depth in the category of gradient sections, or it is inverted into resistivity vs. depth in the category of stratified structures. In those cases where the influences on the electromagnetic field structure from lateral non-homogeneities are not substantial, the inversion is performed in models in the 1D category. In other instances, data inversion and interpretation are performed in models in the 2D, 2½D or 3D category.

    Bibliography


    US patents



    [0062] 
    Publication no.PublishedApplicant
    4 644 892 10/1985 Kaufman et al.
    4 617 518 10/1986 Srnka
    5 563 513 10/1996 Tasci
    6 320 386 11/2001 Balashov et al.
    0 052 685 A1 03/2003 Ellingsrud et al.
    0 048 105 A1 03/2003 Ellingsrud et al.
    6 603 313 B1 08/2003 Srnka
    6 628 119 B1 10/2003 Eidesmo et al.

    Other patent publications



    [0063] 
    Publication no.PublishedApplicant
    WO 01/57555 A1 09/2001 Ellingsrud et al.
    WO 02/14906 A1 02/2002 Ellingsrud et al.
    WO 03/025803 A1 03/2003 Srnka et al.
    WO 03/034096 A1 04/2003 Sinha et al.
    WO 03/048812 A1 06/2003 MacGregor et al.
    WO 03/104844 A1 12/2003 Constable
    WO 2004/008183 A2 01/2004 MacGregor & Rust
    WO 2004/053528 A1 06/2004 Constable

    Other publications



    [0064] 

    Amundsen H.E.F., Fanavoll S., Loseth L., Simonsen I., Skogen E.; 2003: Svanen Sea Bed Logging (SBL) Survey Report

    Amundsen H.E.F., Johansen S. Rǿsten T.; 2004: A Sea Bed Logging (SBL) calibration survey over the Troll Gas Field. 66th EAGE Conference & Exhibition, Paris, France, 6-10 June 2004.

    Chave A.D. and Cox C.S.; 1982: Controlled Electromagnetic Sources for Measuring Electrical conductivity Beneath the Oceans 1. Forward Problem and Model Study. Journal of geophysical Research, 87, B7, p. 5327-5338.

    Chave A. D., Constable S.C., Edwards R.N.; 1991: Electrical Exploration Methods for the Seafloor. Chapter 12. Ed. by Nabighian, Applied Geophysics, v.2, Soc. Explor. Geophysics, Tusla, Okla. p. 931-966

    Cheesman S.J., Edwards R.N., Chave A.D.; 1987: On the theory of sea floor conductivity mapping using transient electromagnetic systems. Geophysics, V. 52, N2, p. 204-217

    Chew W.C. and Weedon W.H., 1994; A 3D perfectly matched medium from modified Maxwell's equations with stretched coordinates. IEEE Microwave and Guided Wave letters, 4, p. 268-270.

    Cox C.S., Constable S.C., Chave A.D., Webb S.C.; 1986: Controlled source electromagnetic sounding of the oceanic lithosphere. Nature, 320, p. 52-54.

    Constable S.C., Orange A.S., Hoversten G.M., Morrison H.F.; 1998: Marine magnetotellurics for petroleum exploration. Part 1: A sea floor equipment system. Geophysics, V. 63, No. 3, p. 816-825.

    Coggon J. H., Morrison. H. F.; 1970: Electromagnetic investigation of the sea floor: Geophysics, V. 35, p. 476-489.

    Edwards R. N., Law, L. K., Delaurier, J. M.; 1981: On measuring the electrical conductivity of the oceanic crust by a modified magnetometric resistivity method: J. Geophys. Res., V. 68, p. 11609-11615.

    Edwards R.N., Nobes D.C., Gomez-Trevino E.; 1984: Offshore electrical exploration of sedimentary basins: The effects of anisotropy in horizontally isotropic, layered media. Geophysics, V. 49, No. 5, p. 566-576.

    Edwards R.N., Law L.K., Wolfgram P. A., Nobes D.C., Bone M.N., Trigg D.F., DeLaurier J.M.; 1985: First results of the MOSES experiment: Sea sediment conductivity and thickness determination. Bute Inlet, British Columbia, by magnetometric off-shore electrical sounding. Geophysics, V. 450, No. 1, p. 153-160.

    Edwards R. N. and Chave A. D.; 1986: On the theory of a transient electric dipole-dipole method for mapping the conductivity of the sea floor. Geophysics, V. 51, p. 984-987.

    Edwards R.; 1997: On the resource evaluation of marine gas hydrate deposits using sea-floor transient dipole-dipole method. Geophysics, V. 62, No. 1, p. 63-74.

    Edwards R.N.; 1998: Two-dimensional modeling of a towed inline electric dipole-dipole sea-floor electromagnetic system: The optimum time delay or frequency for target resolution. Geophysics, V. 53, No. 6, p. 846-853.

    Eidesmo T., Ellingsrud S., MacGregor L.M., Constable S., Sinha M.C., Johansen S.E., Kong N. and Westerdahl, H.; 2002: Sea Bed Logging (SBL), a new method for remote and direct identification of hydrocarbon filled layers in deepwater areas. First Break, V. 20, March, p. 144 - 152.

    Ellingsrud S., Sinha M.C., Constable S., MacGregor L.M., Eidesmo T. and Johansen S.E.; 2002: Remote sensing of hydrocarbon layers by Sea Bed Logging (SBL): results from a cruise offshore Angola. The Leading Edge, 21, p. 972 - 982.

    Farelly B., Ringstad C., Johnstad C.E., Ellingsrud S.; 2004: Remote Characterization of hydrocarbon filled reservoirs at the Troll field by Sea Bed Logging. EAGE Fall Research Workshop Rhodes, Greece, 19th-23rd September 2004.

    Greer A.A., MacGregor L.M. and Weaver R.; 2004: Remote mapping of hydrocarbon extent using marine Active Source EM sounding. 66th EAGE Conference & Exhibition, Paris, France, 6-10 June 2004.

    Haber E., Ascher U. and Oldenburg D. W.; 2002: Inversion of 3D time domain electromagnetic data using an all-at-once approach: submitted for presentation at the 72nd Ann. Internat. Mtg: Soc. of Expl. Geophys.

    Howards R. N., Law L. K., Delaurier J. M.; 1981: On measuring the electrical conductivity of the oceanic crust by a modified magnetometric resistivity method: J. Geophys. Res., 86, p. 11609-11615.

    Johansen S.E., Amundsen H.E.F., Røsten T., Ellinsgrud S., Eidesmo T., Bhuyian A.H.; 2005: Subsurface hydrocarbon detected by electromagnetic sounding. First Break, V. 23, p. 31-36.

    Kaufman A. A., and Keller G. V.; 1983: Frequency and transient soundings. Amsterdam, Elsevier Science Publ. Co., p. 411-454.

    Kong F. N., Westerdahl H, Ellingsrud, S., Eidesmo T. and Johansen S.; 2002: 'Seabed logging': A possible direct hydrocarbon indicator for deep sea prospects using EM energy: Oil and Gas Journal, May 13, 2002, p. 30-38.

    MacGregor L., Sinha M.; 2000: Use of marine controlled-source electromagnetic sounding for sub-basalt exploration. Geophysical prospecting, V. 48, p. 1091-1106.

    MacGregor L., Sinha M., Constable S.; 2001: Electrical resistivity of the Valu Fa Ridge, Lau Basin, from marine controlled-source electromagnetic sounding. Geoph. J. Intern. V. 146, p. 217-236.

    MacGregor L., Tompkins M., Weaver R., Barker N.; 2004: Marine active source EM sounding for hydrocarbon detection. 66th EAGE Conference & Exhibition, Paris, France, 6-10 June 2004.

    Marine MT in China with Phoenix equipment.; 2004: Published by Phoenix Geophysics Ltd., issue 34, p. 1-2, December 2004.

    Singer B.Sh., Fainberg E.B.; 1985: Electromagnetic induction in non-uniform thin layers, IZMIRAN, p. 234.

    Singer B. Sh.; 1995: Method for solution of Maxwell's equations in non-uniform media. Geophysical Journ. Intern. 120, p. 590-598.

    Tompkins M., Weaver R., MacGregor L.; 2004: Sensitivity to hydrocarbon targets using marine active source EM sounding: Diffusive EM mapping methods. 66th EAGE Conference & Exhibition, Paris, France, 6-10 June 2004.

    Wright D. A., Ziolkowski A., and Hobbs B. A.; 2001: Hydrocarbon detection with a multichannel transient electromagnetic survey. 70th Ann. Internat. Mtg,, Soc. of Expl. Geophys.

    Wicklund T.A., Fanavoll S.; 2004: Norwegian Sea: SBL case study. 66th EAGE Conference & Exhibition, Paris, France, 6-10 June 2004.

    Wolfgram P. A., Edwards R.N., Law L.K., Bone M.N.; 1986: Polymetallic sulfide exploration on the deep sea floor: The feasibility of the MINI-MOSES experiment. Geophysics, V. 51, No. 9, p. 1808-1818.

    Yuan J., Edward R.N.; 2001: Towed seafloor electromagnetics and assessment of gas hydrate deposits. Geophys. Res. Lett. V. 27, No. 6, p. 2397-2400.

    Yuan J., Edward R.N.; 2004: The assessment of marine gas hydrates through electrical remote sounding: Hydrate without BSR? Geophys. Res. Lett., V. 27, No. 16, p. 2397-2400.

    Ziolkovsky A., Hobbs B., Wright D.; 2002: First direct hydrocarbon detection and reservoir monitoring using transient electromagnetics. First Break, V. 20, No. 4, p. 224-225




    Claims

    1. A method for an electromagnetic survey of electrically resistive target objects that potentially contain hydrocarbons, the method comprises:

    - determination of electrical characteristics of a stratum being surveyed by use of the transverse magnetic mode of at least one electromagnetic field source (1113) and registration of the transverse magnetic response; characterised in that

    - intermittent source current pulses (81, 82) with a sharply defined termination are generated in the at least one electromagnetic field source (1113);

    - the intermittent source current pulses (81, 82) are transferred to a submerged, essentially vertical transmitter antenna (1108) and transmitted into the strata,

    - medium responses are intercepted by at least one receiver (1109) provided with at least one submerged, essentially vertical receiver antenna (1111), in the time between the consecutive current pulses; as

    - the at least one electromagnetic field source (1113) and the at least one receiver (1109) are submerged in a body of water (1102); wherein

    - the at least one receiver (1109) is deployed in an induction zone, which corresponds to an area where the horizontal distance between the at least one transmitter antenna (1108) and the at least one receiver (1109) is equal to R, and R ≤ (α(t)/µ0)1/2, where t is the time lag counted from the instant after the electromagnetic field source (1113) has been switched off, µ0 = 4π10-7 H/m, and ρα(t) is the apparent resistivity of a substratum in the period t;

    - measurements of the response of the strata are carried out in said induction zone.


     
    2. A method for an electromagnetic survey in accordance with claim 1, wherein the current pulses (81, 82) succeed each other in a special sequence which is incoherent with a present signal noise, and responses measured by the at least one receiver (1109) are stacked to provide a signal/noise ratio which is sufficient for detection of the target.
     
    3. A method for an electromagnetic survey in accordance with claim 1 or claim 2, wherein a further suppression of signal noise is achieved by processing time coded geomagnetic data and time coded source pulse data (81, 82).
     
    4. A method for an electromagnetic survey in accordance with any preceding claim, wherein a further suppression of signal noise is achieved by processing time coded water pressure recordings, which are collected in the immediate vicinity of the receiver antenna (1111) of the at least one receiver (1109) and compared with the time coded source pulses (81, 82).
     
    5. A method for an electromagnetic survey in accordance with any preceding claim, wherein a decision to continue the measurements, change the operating mode, change measurement sites or retrieve one or more of the means of signal generation (141, 1108a, 1108b, 1109, 1111a, 1111b, 1113) is made following an evaluation and/or full or partial interpretation of the acquired data.
     
    6. A method for an electromagnetic survey in accordance with any preceding claim, wherein at least some of the collected data is transferred to a central processor and analysed in real time.
     
    7. A method for an electromagnetic survey in accordance with any preceding claim, wherein the at least one electromagnetic field source (1113) and the at least one receiver (1109) are stationary during a registration interval and are then relocated to another position in the survey area to repeat the method according to Claim 1.
     
    8. A method for an electromagnetic survey in accordance with any of claims 1 to 6, wherein the at least one electromagnetic field source (1113) and the at least one receiver (1109) are in constant motion in the survey area during the registration.
     
    9. A method for an electromagnetic survey in accordance with any preceding claim wherein two or more receivers (1109) register the vertical component of the electromagnetic field induced by one and the same electromagnetic field source (1113), simultaneously and in different locations within the induction zone.
     
    10. Apparatus for an electromagnetic survey of electrically resistive targets that potentially contain hydrocarbons, wherein the apparatus comprises:

    - a submerged, essentially vertical transmitter antenna (1108) that acts as a source (1113) of a transverse magnetic mode of an electromagnetic field, said antenna (1108) comprising transmitter electrodes (1108a, 1108b) ; characterised in that the apparatus further comprises:

    - a power source (121) arranged to deliver electric power, and a controllable pulse, CSEM, generator (122) arranged to deliver series of intermittent square pulses (81, 82) with a duration of 0.01-100 seconds, an amplitude of 0.1-10000 A and a sharply defined termination to the transmitter electrodes (1108a, 1108b) of the electromagnetic field source (1113);

    - at least one receiver (1109) provided with at least one submerged, essentially vertical receiver antenna (1111), the at least one receiver (1109) being arranged to register a vertical electromagnetic field during intervals between the intermittent current pulses (81, 82);

    wherein:

    - the at least one receiver (1109) is deployed in an induction zone, which corresponds to an area where the horizontal distance between the transmitter antenna (1108) and the at least one receiver (1109) is equal to R, and R(tρα(t)/µ0)1/2, where t is the time lag counted from the instant after the electromagnetic field source (1113) has been switched off, µ0 = 4π10-7 H/m, and ρα(t) is the apparent resistivity of a substratum in the period t.


     
    11. Apparatus in accordance with claim 10, wherein the essentially vertical transmitter antenna (1108) of the transmitter (1113) is arranged to register the vertical electromagnetic field during intervals between the intermittent current pulses (81, 82).
     
    12. Apparatus in accordance with claim 10 or 11, wherein acoustic sensors are provided in the immediate vicinity of upper and lower end portions (1111a, 1111b) of the receiver antenna (1111).
     
    13. Apparatus in accordance with any of claims 10 to 12, wherein pressure sensors are provided in the immediate vicinity of upper and lower end portions (1111a, 1111b) of the receiver antenna (1111).
     
    14. Apparatus in accordance with any of claims 10 to 13, characterized in that the at least one electromagnetic field source (1113) of the apparatus and at least one of the at least one receiver (1109) are arranged to move under control or autonomously during or between the measurements, the measurements being performed continuously or sequentially.
     
    15. Apparatus in accordance with any of claims 10 to 14, wherein the electromagnetic field source (1113) and/or at least one of the at least one receiver (1109) is/are provided with means (1105, 1112) of real time transfer of at least a selection of the collected data to a central processor.
     
    16. Apparatus in accordance with any of claims 10 to 15, wherein further sensors (141) for measuring the three-component electrical field and/or the three-component magnetic field in geomagnetic variations are arranged at one or more locations on the seabed (1103).
     


    Ansprüche

    1. Verfahren zur elektromagnetischen Vermessung von elektrisch resistiven Zielobjekten, welche möglicherweise Kohlenwasserstoffe enthalten, wobei das Verfahren umfasst:

    - Bestimmen von elektrischen Eigenschaften von einer zu vermessenden Schicht unter Verwendung des transversalen magnetischen Modus von mindestens einer elektromagnetischen Feldquelle (1113) und Registrierung der transversalen magnetischen Antwort, dadurch gekennzeichnet, dass

    - intermittierende Quellenstrompulse (81, 82) mit einem scharf definierten Abschluss in der mindestens einen elektromagnetischen Feldquelle (1113) erzeugt werden;

    - die intermittierenden Quellenstrompulse (81, 82) an eine eingetauchte, im Wesentlichen vertikale Sendeantenne (1108) übertragen und in die Schichten übertragen werden,

    - Antworten vom Medium von mindestens einem Empfänger (1109), welcher mit mindestens einer eingetauchten, im Wesentlichen vertikalen Empfängerantenne (1111) vorgesehen ist, in der Zeit zwischen aufeinanderfolgenden Stromimpulsen abgefangen werden; als

    - die mindestens eine elektromagnetische Feldquelle (1113) und der mindestens eine Empfänger (1109) in einem Wasserkörper (1102) eingetaucht sind;
    wobei der mindestens eine Empfänger (1109) in einer Induktionszone eingesetzt ist, welche einem Bereich entspricht, wo die horizontale Distanz zwischen der mindestens einen Sendeantenne (1108) und dem mindestens einen Empfänger (1109) gleich R ist, und R ≤ (tρα(t) /µ0)1/2, wobei t die Zeitverzögerung ist, welche vom Zeitpunkt nach dem Abschalten der elektromagnetischen Feldquelle (1113) gezählt wird, µ0 = 4π10-7 H/m, und ρα(t) ist der scheinbare Widerstand von einer Unterschicht in der Periode t;

    - Messungen der Antwort der Schichten werden in der Induktionszone durchgeführt.


     
    2. Verfahren zur elektromagnetischen Vermessung gemäss Anspruch 1, wobei die Stromimpulse (81, 82) in einer speziellen Sequenz aufeinander folgen, welche mit einem vorliegenden Signalrauschen inkohärent ist, und Antworten, welche durch den mindestens einen Empfänger (1109) gemessen werden, werden gestapelt, um ein Signalzu-Rausch-Verhältnis zu ergeben, welches für eine Detektion des Ziels genügend ist.
     
    3. Verfahren zur elektromagnetischen Vermessung gemäss Anspruch 1 oder Anspruch 2, wobei eine weitere Unterdrückung von Signalrauschen durch Verarbeiten von zeitkodierten geomagnetischen Daten und zeitkodierten Quellpulsdaten (81, 82) erreicht wird.
     
    4. Verfahren zur elektromagnetischen Vermessung gemäss einem der vorhergehenden Ansprüche, wobei eine weitere Unterdrückung von Signalrauschen durch Verarbeiten von zeitkodierten Wasserdruckaufzeichnungen, welche in unmittelbarer Nähe der Empfängerantenne (1111) des mindestens einen Empfängers (1109) erfasst und mit den zeitkodierten Quellpulsen (81, 82) verglichen werden, erreicht wird.
     
    5. Verfahren zur elektromagnetischen Vermessung gemäss einem der vorhergehenden Ansprüche, wobei eine Entscheidung getroffen wird, die Messungen fortzusetzen, den Betriebsmodus zu ändern, Messorte zu ändern oder eines oder mehrere der Mittel zur Signalerzeugung (141, 1108a, 1108b, 1109, 1111a, 1111b, 1113) abzurufen, nach einer Auswertung und/oder vollen oder teilweisen Interpretation der erfassten Daten erfolgt.
     
    6. Verfahren zur elektromagnetischen Vermessung gemäss einem der vorhergehenden Ansprüche, wobei mindestens einige der erfassten Daten in einen zentralen Prozessor übertragen und in Echtzeit analysiert werden.
     
    7. Verfahren zur elektromagnetischen Vermessung gemäss einem der vorhergehenden Ansprüche, wobei die mindestens eine elektromagnetische Feldquelle (1113) und der mindestens eine Empfänger (1109) während eines Registrierungsintervals stationär sind und dann an eine andere Position im Vermessungsbereich versetzt werden, um das Verfahren gemäss Anspruch 1 zu wiederholen.
     
    8. Verfahren zur elektromagnetischen Vermessung gemäss einem der vorhergehenden Ansprüche 1 bis 6, wobei die mindestens eine elektromagnetische Feldquelle (1113) und der mindestens eine Empfänger (1109) während der Registrierung im Vermessungsbereich in konstanter Bewegung sind.
     
    9. Verfahren zur elektromagnetischen Vermessung gemäss einem der vorhergehenden Ansprüche, wobei zwei oder mehr Empfänger (1109) die vertikale Komponente des elektromagnetischen Feldes registrieren, das von ein und derselben elektromagnetischen Feldquelle (1113) gleichzeitig und an verschiedenen Orten innerhalb der Induktionszone induziert wird.
     
    10. Gerät für eine elektromagnetische Vermessung von elektrisch resistiven Zielen, welche möglicherweise Kohlenwasserstoffe enthalten, wobei das Gerät umfasst:

    - eine eingetauchte, im Wesentlichen vertikale Sendeantenne (1108), welche als eine Quelle (1113) von einem transversalen magnetischen Modus von einem elektromagnetischen Feld wirkt, wobei die Antenne (1108) Sendeelektroden (1108a, 1108b) umfasst; dadurch gekennzeichnet, dass das Gerät weiter umfasst:

    - eine Energiequelle (121), welche angeordnet ist, um elektrische Energie zu liefern, und einen steuerbaren Puls-, CSEM, -Generator (122), welcher angeordnet ist, Serien von intermittierenden Rechteckpulsen (81, 82) mit einer Dauer von 0.01-100 Sekunden, einer Amplitude von 0.1-10000 A und einem scharf definierten Abschluss an die Sendeelektroden (1108a, 1108b) der elektromagnetischen Feldquelle (1113) zu liefern;

    - mindestens einen Empfänger (1109), welcher mit mindestens einer eingetauchten, im Wesentlichen vertikalen Empfängerantenne (1111) vorgesehen ist, wobei der mindestens eine Empfänger (1109) angeordnet ist, um ein vertikales elektromagnetisches Feld während Intervallen zwischen den intermittierenden Stromimpulsen (81, 82) zu registrieren;
    wobei:

    der mindestens eine Empfänger (1109) ist in einer Induktionszone eingesetzt, welche einem Bereich entspricht, wo die horizontale Distanz zwischen der mindestens einen Sendeantenne (1108) und dem mindestens einen Empfänger (1109) gleich R ist, und

    R ≤ (tρα(t) /µ0)1/2, wobei t die Zeitverzögerung ist, welche vom Zeitpunkt nach dem Abschalten der elektromagnetischen Feldquelle (1113) gezählt wird, µ0 = 4π10-7 H/m, und ρα (t) ist der scheinbare Widerstand von einer Unterschicht in der Periode t.


     
    11. Gerät gemäss Anspruch 10, wobei die im Wesentlichen vertikale Sendeantenne (1108) des Senders (1113) angeordnet ist, das vertikale elektromagnetische Feld während Intervallen zwischen den intermittierenden Stromimpulsen (81, 82) zu registrieren.
     
    12. Gerät gemäss Anspruch 10 oder 11, wobei akustische Sensoren in unmittelbarer Nähe von oberen und unteren Endbereichen (1111a, 1111b) der Empfängerantenne (1111) vorgesehen sind.
     
    13. Gerät gemäss einem der Ansprüche 10 bis 12, wobei Drucksensoren in unmittelbarer Nähe der oberen und unteren Endbereiche (1111a, 1111b) der Empfängerantenne (1111) vorgesehen sind.
     
    14. Gerät gemäss einem der Ansprüche 10 bis 13, dadurch gekennzeichnet, dass die mindestens eine elektromagnetische Feldquelle (1113) des Geräts und mindestens einer des mindestens einen Empfängers (1109) angeordnet sind, um sich während oder zwischen Messungen unter Steuerung oder autonom zu bewegen, wobei die Messungen kontinuierlich oder sequentiell durchgeführt werden.
     
    15. Gerät gemäss einem der Ansprüche 10 bis 14, wobei die elektromagnetische Feldquelle (1113) und/oder mindestens einer des mindestens einen Empfängers (1109) mit Mitteln (1105, 1112) einer Echtzeitübertragung von mindestens einer Auswahl der gesammelten Daten an einen zentralen Prozessor vorgesehen ist / sind.
     
    16. Gerät gemäss einem der Ansprüche 10 bis 15, wobei weitere Sensoren (141) zum Messen des dreikomponentigen elektrischen Feldes und/oder dreikomponentigen magnetischen Feldes in geomagnetischen Variationen an einer oder mehreren Stellen auf dem Meeresgrund (1103) angeordnet sind.
     


    Revendications

    1. Un procédé de sondage électromagnétique d'objets électriquement résistif qui contiennent potentiellement des hydrocarbures, le procédé comprenant:

    - détermination des caractéristiques électriques d'une strate étant sondée par utilisation du mode TM d'au moins une source de champ électromagnétique (1113) et enregistrement de la réponse TM; caractérisé en ce que

    - des impulsions de courant source intermittentes (81, 82) présentant une terminaison nettement définie sont générées dans l'au moins une source de champ électromagnétique (1113);

    - les impulsions de courant source intermittentes (81, 82) sont transférées à une antenne émettrice (1108) submergée sensiblement verticale et transmises dans les strates,

    - les réponses moyennes sont interceptées par au moins un récepteur (1109) muni d'au moins une antenne réceptrice (1111) submergée sensiblement verticale, dans le temps entre les impulsions de courant consécutives;

    - l'au moins une source de champ électromagnétique (1113) et l'au moins un récepteur (1109) sont submergés dans un corps d'eau (1102); dans lequel

    - l'au moins un récepteur (1109) est mobilisé dans une zone d'induction, qui correspond à une surface où la distance horizontale entre l'au moins une antenne émettrice (1108) et l'au moins un récepteur (1109) est égale à R ≤ (tρα(t)/µ0)1/2, où t est le retard temporel compté à partir de l'instant après que la source de champ électromagnétique (1113) a été éteinte, µ0 =4π10-7H/m, et ρα (t) est la résistivité apparente d'une sous-strate dans la période t;

    - des mesures de réponse des strates sont effectuées dans la dite zone d'induction.


     
    2. Un procédé de sondage électromagnétique selon la revendication 1, dans lequel les impulsions de courant (81, 82) se succèdent l'une à l'autre dans une séquence spéciale qui est incohérente avec un bruit de signal présent, et les réponses mesurées par l'au moins un récepteur (1109) sont empilées pour fournir un rapport signal/bruit qui est suffisant pour la détection de la cible.
     
    3. Un procédé de sondage électromagnétique selon la revendication 1 ou 2, dans lequel une suppression supplémentaire de bruit de signal est obtenue par traitement de données géomagnétiques à codage temporel et de données d'impulsion de source (81, 82) à codage temporel.
     
    4. Un procédé de sondage électromagnétique selon une quelconque des revendications précédentes, dans lequel une suppression supplémentaire de bruit de signal est obtenue par traitement d'enregistrements de pression d'eau à codage temporel, qui sont collectés dans le voisinage immédiat de l'antenne réceptrice (1111) de l'au moins un récepteur (1109) et est comparée aux impulsions de source à codage temporel (81, 82).
     
    5. Un procédé de sondage électromagnétique selon une quelconque des revendications précédentes, dans lequel une décision de poursuivre les mesures, changer le mode de fonctionnement, changer les sites de mesure ou de récupérer un ou plusieurs des moyens de génération de signal (141, 1108a, 1108b, 1109, 1111a, 1111b, 1113) est effectuée à la suite d'une évaluation et/ou d'une interprétation intégrale ou partielle des données acquises.
     
    6. Un procédé de sondage électromagnétique selon une quelconque des revendications précédentes, dans lequel au moins une partie des données collectées est transférée vers un processeur central et analysée en temps réel.
     
    7. Un procédé de sondage électromagnétique selon une quelconque des revendications précédentes, dans lequel au moins une source de champ électromagnétique (1113) et l'au moins un récepteur (1109) sont stationnaires pendant un intervalle d'enregistrement et sont ensuite repositionnés vers une autre position dans la zone de sondage pour répéter le procédé selon la revendication 1.
     
    8. Un procédé de sondage électromagnétique selon l'une quelconque des revendications 1 à 6, dans lequel l'au moins une source de champ électromagnétique (1113) et l'au moins un récepteur (1109) sont en mouvement constant dans la zone de sondage pendant l'enregistrement.
     
    9. Un procédé de sondage électromagnétique selon une quelconque des revendications précédentes, dans lequel deux ou plusieurs récepteurs (1109) enregistrent la composante verticale du champ électromagnétique induit par une et une même source de champ électromagnétique (1113), simultanément et dans différents emplacements à l'intérieur de la zone d'induction.
     
    10. Un appareil pour un sondage électromagnétique d'objets électriquement résistif qui contiennent potentiellement des hydrocarbures, dans lequel l' appareil comprend :

    - une antenne émettrice (1108) submergée sensiblement verticale qui fonctionne en tant que source (1113) d'un mode TM d'un champ électromagnétique, la dite antenne (1108) comprenant des électrodes de transmission (1108a, 1108b), caractérisé en ce que l'appareil comprend en outre :

    - une source d'alimentation en énergie (121) agencée pour fournir de l'énergie électrique,et une impulsion contrôlable, CSEM, générateur (122) agencé pour fournir une série d'impulsions intermittentes carrées (81, 82) d'une durée de 0,01 à 100 secondes, d'une amplitude de 0,1 à 10 000 A et une terminaison nettement définie aux électrodes de transmission (1108a, 1108b) de la source de champ électromagnétique (1113);

    - au moins un récepteur (1109) muni d'au moins une antenne réceptrice (1111) submergée sensiblement verticale, l'au moins un récepteur (1109) étant agencé pour enregistrer un champ électromagnétique vertical dans les intervalles entre les impulsions de courant intermittentes (81, 82); dans lequel

    - l'au moins un récepteur (1109) est mobilisé dans une zone d'induction, qui correspond à une surface où la distance horizontale entre l'antenne émettrice (1108) et l'au moins un récepteur (1109) est égale à R ≤ (tρα(t)/µ0) 1/2, où t est le retard temporel compté à partir de l'instant après que la source de champ électromagnétique (1113) a été éteinte, µ0 =4π10-7H/m, et ρα (t) est la résistivité apparente d'une sous-strate dans la période t;


     
    11. L'appareil selon la revendication 10, dans lequel l'antenne émettrice (1108) submergée sensiblement verticale de l'émetteur (1113) est agencée pour enregistrer un champ électromagnétique vertical dans les intervalles entre les impulsions de courant intermittentes (81,82).
     
    12. L'appareil selon la revendication 10 ou 11, dans lequel des capteurs acoustiques sont prévus à proximité immédiate des parties d'extrémité supérieures et inférieures (1111a, 1111b) de l'antenne réceptrice (1111).
     
    13. L'appareil selon une quelconque des revendications 10 à 12, dans lequel des capteurs de pression sont prévus à proximité immédiate des parties d'extrémité supérieures et inférieures (1111a, 1111b) de l'antenne réceptrice (1111).
     
    14. L'appareil selon une quelconque des revendications 10 à 13, dans lequel l'au moins une source de champ électromagnétique (1113) de l'appareil et au moins un de l'au moins un récepteur (1109) sont agencés pour être déplacés sous commande ou de manière autonome pendant ou entre les mesures, les mesures étant effectuées en continu ou séquentiellement.
     
    15. L'appareil selon une quelconque des revendications 10 à 14, dans lequel la source de champ électromagnétique (1113) et/ou au moins de l'au moins un récepteur (1109) est/sont muni/s de moyens (1105, 1112) de transfert en temps réel d'au moins une sélection des données collectées à un processeur central.
     
    16. L'appareil selon une quelconque des revendications 10 à 15, dans lequel des capteurs supplémentaires (141) pour mesurer le champ électrique à trois composantes et/ou le champ magnétique à trois composantes dans des variations géomagnétiques sont disposées en un ou plusieurs emplacements sur le fond marin (1103).
     




    Drawing


























    Cited references

    REFERENCES CITED IN THE DESCRIPTION



    This list of references cited by the applicant is for the reader's convenience only. It does not form part of the European patent document. Even though great care has been taken in compiling the references, errors or omissions cannot be excluded and the EPO disclaims all liability in this regard.

    Patent documents cited in the description




    Non-patent literature cited in the description