(19)
(11)EP 1 952 594 B1

(12)EUROPEAN PATENT SPECIFICATION

(45)Mention of the grant of the patent:
22.01.2020 Bulletin 2020/04

(21)Application number: 06830091.2

(22)Date of filing:  23.11.2006
(51)International Patent Classification (IPC): 
H04L 12/801(2013.01)
H04L 12/813(2013.01)
H04L 12/803(2013.01)
H04L 12/823(2013.01)
(86)International application number:
PCT/EP2006/068808
(87)International publication number:
WO 2007/060194 (31.05.2007 Gazette  2007/22)

(54)

AGGREGATED LINKS

GESAMMELTE VERBINDUNGEN

LIAISONS AGRÉGÉES


(84)Designated Contracting States:
AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LI LT LU LV MC NL PL PT RO SE SI SK TR

(30)Priority: 23.11.2005 IT MI20052236

(43)Date of publication of application:
06.08.2008 Bulletin 2008/32

(73)Proprietor: Ericsson AB
164 80 Stockholm (SE)

(72)Inventors:
  • MARTINOTTI, Riccardo
    I-17100 Savona (IT)
  • FIORONE, Raoul
    I-16155 Genova (IT)
  • CORTI, Andrea
    I-17019 Varazze (SV) (IT)

(74)Representative: Ericsson 
Patent Development Torshamnsgatan 21-23
164 80 Stockholm
164 80 Stockholm (SE)


(56)References cited: : 
WO-A1-02/23354
US-A1- 2004 228 278
WO-A1-03/084152
  
  • GUO HUI ET AL: "A design and evaluation of ethernet links bundling systems" ADVANCED INFORMATION NETWORKING AND APPLICATIONS, 2004. AINA 2004. 18TH INTERNATIONAL CONFERENCE ON FUKUOKA, JAPAN 29-31 MARCH 2004, PISCATAWAY, NJ, USA,IEEE, vol. 2, 29 March 2004 (2004-03-29), pages 313-316, XP010695247 ISBN: 0-7695-2051-0
  • JEONG S-H ET AL: "QoS support for UDP/TCP based networks" COMPUTER COMMUNICATIONS, ELSEVIER SCIENCE PUBLISHERS BV, AMSTERDAM, NL, vol. 24, no. 1, 1 January 2001 (2001-01-01), pages 64-77, XP004227542 ISSN: 0140-3664
  
Note: Within nine months from the publication of the mention of the grant of the European patent, any person may give notice to the European Patent Office of opposition to the European patent granted. Notice of opposition shall be filed in a written reasoned statement. It shall not be deemed to have been filed until the opposition fee has been paid. (Art. 99(1) European Patent Convention).


Description


[0001] This invention relates to a method and a network link for transport of packets over aggregated links.

[0002] Traffic transport over logically aggregated links is a reality. Standard IEEE802.3-2002 defines a functionality called Link Aggregation (LA) where a logically aggregated link is made up of a number of physical links (over Ethernet for example). This functionality can be used for a number of reasons, the most important of which are simplified operation from the upper-levels viewpoint, logical bandwidth increase and a greater traffic protection capability.

[0003] The IEEE 802.3-2002 standards describe link aggregation without any awareness of the services actually being transported over the various physical ports making up the aggregated link. This is a considerable limitation for the system. For example, in case of failures involving the failure of one or more physical links making up an aggregated link, the system resizes the aggregated link bandwidth without any awareness of the services transported. Any part of the traffic in excess of the reduced bandwidth is dropped without giving any regard to the Class of Service (CoS) of the packets to be dropped. From the viewpoint of a client who stipulated a Service Level Agreement (SLA), this is obviously unacceptable.

[0004] There are known documents related to logical links formed by aggregation of several physical links, namely US2004/0228278A1 and GUO HUI ET AL: "A design and evaluation of ethernet links bundling systems" ADVANCED INFORMATION NETWORKING AND APPLICATIONS, 2004. AINA 2004. 18TH INTERNATIONAL CONFERENCE ON FUKUOKA, JAPAN 29-31 MARCH 2004, PISCATAWAY, NJ, USA, IEEE, vol. 2, 29 March 2004 (2004-03-29), pages 313-316. However, devices and operations as in the invention now to be described are neither disclosed nor suggested in these documents.

[0005] The general purpose of this invention is to remedy the above-mentioned shortcomings by making available methods and schemes with mechanisms allowing for specific requirements of the services transported over the logically aggregated link.

[0006] In view of this purpose it was sought to provide in accordance with this invention a method for sending traffic packets over a logical link made up of the aggregation of several physical links in which flows of incoming packets are sent to a scheduler/shaper which selects therefrom packets to create a global flow of packets falling within the bandwidth offered by the logical link on the basis of the bandwidth capability offered by the logical link and in which the packets in the incoming flows are classified according to service classes and in which, upon a decrease in the bandwidth offered by the logical link the scheduler/shaper acts on the incoming packets in such a manner that some of the incoming packets are queued or dropped to cause the global flow to fall within the bandwidth of the aggregated logical link depending on information correlated with the associated class of service of the packets.

[0007] Again in view of said purpose, it was sought to realize in accordance with this invention a scheme for traffic packet transport over a logical link made up of the aggregation of several physical links connecting a transmitting side to a receiving side and in which flows of incoming packets are sent to a scheduler/shaper which selects therefrom packets for creating a global flow of packets falling within the bandwidth offered by the logical link on the basis of the bandwidth capability offered by the logical link to then send them over the logical link to the receiving side and characterized in that it comprises a distributor which distributes the global flow over the plurality of physical links forming the logical link and oversees the physical links and sends to the scheduler/shaper signalling of the bandwidth decrease caused by failures of one or more physical links and which the scheduler/shaper is arranged to select the packets of the various queues so that they are queued or dropped depending on information correlated with the associated service class to cause the global flow to fall within the aggregated logical link bandwidth.

[0008] The invention is defined by the annexed claims.

[0009] To clarify the explanation of the innovative principles of this invention and its advantages compared with the prior art there is described below with the aid of the annexed drawings a possible embodiment thereof by way of nonlimiting example applying said principles. In the drawings:

FIG 1 shows a functional scheme of a service-aware aggregated link transport realized in accordance with this invention,

FIG 2 shows the equivalent logical scheme of the functional scheme of FIG 1, and

FIG 3 shows a scheme similar to that of FIG 2 in case of failure of one or more aggregated links.



[0010] With reference to the figures, FIG 1 shows a functional scheme of a system of a connection with aggregated links realized in accordance with the principles of this invention.

[0011] As may be seen in FIG 1, m flows of packets to be transported are queued in queues 11 with each flow having its own associated Class of Service (CoS). It is noted that the number of queues can be arbitrary but that, as is known, the capability of using at least one queue per class of service allows optimising the performance of the entire system if it is aware of the transported services. The traffic queue to which a flow of data belongs determines how the packets of that flow will be treated in the network nodes.

[0012] The queued flows are selected by a scheduler/shaper 12 which gives each of the packets a transmission priority dependant on the associated class of service, with the result of delaying transmission where necessary of those of the lowest service classes (various possible queue management policies will be implemented to drop the packets appropriately). The global flow at the outlet of the scheduler/shaper 12 is sent to a distributor 13 which divides the total flow into n flows each applied to one of n physical links 16 between a transmission interface 14 and a reception interface 15.

[0013] The n flows that reach the receiving side are applied by the receiving interfaces 15 to a merger 17 to again obtain the global flow that is then applied to a classifier 18 that again divides the packets into flows according to the m starting service classes. The flows can then possibly be treated by a policer 19 in cases where it is appropriate.

[0014] It is clear that, at the ends of the global flows exchanged between scheduler/shaper 12 and classifier 18, the block 20 realizes transparently a logical link formed by aggregation of the n physical links and that it has the total bandwidth sum of the bandwidths of the n physical links. The aggregate link is seen and treated as a single logical entity by the higher layers as though it were single physical link. It is also noted that the bandwidth actually usable for traffic whose transmission must be guaranteed cannot exceed (n-k) times the capability of the individual physical link, where k is the number of physical links whose simultaneous failure must not create any inefficiency for design objectives. It is also noted that typically in real cases k=1.

[0015] This is diagrammatically shown in FIG 2 where the logical scheme shows the block 20 as made up of a single logical transmission interface 21 and a single logical reception interface 22 connected by the aggregate link 23.

[0016] The distributor (which has information on the presence, operation and capability of the physical links connected thereto and usable for realization of the logical link) communicates with the scheduler/shaper 12 to pass thereto the information 25 on the real capability of the logical link.

[0017] In accordance with this invention the scheduler/shaper is responsible for the flow treatment policy based on the class of service and on the characteristics of the logical link. In this manner the scheduler/shaper 12 can select the packets to be transmitted whilst being aware of the available bandwidth by choosing them appropriately from the various incoming queues. This has the result of delaying transmission of those with lower priority (that is, belonging to the lower service classes); these packets can even be eliminated from the network depending on the queue management policy implemented and also in consideration of the quality of the service to which the traffic must be subjected. In this manner, the communication of the occurrence of a total bandwidth decrease of the logical link due, for example, to failure of one or more physical links is translated into optimisation of the operation procedure of the scheduler/shaper in such a manner as to always allow transmission of the traffic with highest priority (i.e. belonging to the highest service class) at the expense of the lower priority traffic.

[0018] Thanks to the principles of this invention the unit 23 made up of n aggregated links is placed within a service-aware framework providing what the aggregated link unit is not able to do, without requiring any modification of the aggregated link mechanisms.

[0019] With reference to the existing implementation of the aggregated link, the functionality and its protocols are not changed by the service-aware framework which provides its functionality in addition to the mechanisms provided by the aggregated link (that is to say, for example, in the distribution criteria), ensuring this way interoperability.

[0020] The awareness of the services can be perceived as a useful characteristic to have for the purpose of handling the various traffic types but may not seem to be essential for the specific application during normal operation of the network. In case of failure of the aggregated link, awareness of the services becomes fundamental for putting the network operator in a position to guarantee a Service Level Agreement (SLA) binding it to respect of the performance that the clients expect for the corresponding payment.

[0021] FIG 3 shows a fault scenario, to wit, a physical link within a group of aggregated links has failed. The communication capability of the logical link 23 is therefore reduced by the bandwidth (represented diagrammatically by reference number 24 in FIG 3) by the bandwidth of the failed physical link.

[0022] It is here that awareness of the service is shown to be advantageous. Indeed, in a prior art system (that is, no service awareness) complying with standard IEEE 802.3-2002, the group of aggregated links rearranges the traffic on the n-1 physical links available with no awareness of the type or Class of Service (CoS) of the packets that might have to be dropped after the failure. If the bandwidth required by the total traffic over the aggregated link is greater than that provided by the remaining n-1 physical links, the excess packets will be dropped without a real criterion. This involves a maximum drop in bandwidth equal to the bandwidth of the physical link that failed. In case of multiple failures, the situation will be understandably more serious.

[0023] It is noted that with the prior art the problem is not the need for having to drop any excess packets but not having a criterion for doing it that allows for the service class to which the packets belong and which works so as to respect the SLA toward the final client.

[0024] Thanks to the principles of this invention, the scheduler/shaper works on the basis of the CoS of the various packets flows so that those with the lowest service class can be dropped while saving those with higher service class. Other information correlated with the service classes and which the scheduler/shaper can consider, even in combination, can be associated with the packets for deciding the queuing/dropping of the packets in the queues. For example, where the packets in each service class have different drop precedence the queue management policy can concern itself with dropping the packets with highest drop precedence first.

[0025] It is now clear that the preset purposes have been achieved.

[0026] In accordance with this invention it is possible to set the aggregated links with service awareness. This invention can be used with the presently standardized aggregated link with other possible implementations of an aggregated link or can be integrated to make up a single entity. This invention gives network operators the choice of having the advantage of aggregated links with the possibility of signing more profitable SLAs, thanks to the capability of differentiating the services in the aggregated links either during normal operation or in case of failures.

[0027] This invention does not require alternations to current link aggregation methods or more generally, of a generic aggregated link, which would be architecturally in accordance with the schemes provided.

[0028] This invention can also be incorporated in a new implementation of an aggregated link or can remain wrapped around it, as in the case of the currently standard aggregated link.

[0029] The essential advantages of this invention lie in the capability of providing protection mechanisms aware of the service over an aggregated link made up generally of n physical ports. This allows ensuring Quality of Service (QoS) performance in accordance with a Service Level Specification (SLS) accompanying a Service Level Agreement even in case of failures.


Claims

1. A method for sending traffic packets over a logical link (23) made up of the aggregation of several physical links (16) in which flows of incoming packets are sent to a scheduler/shaper (12) which selects therefrom packets to create a global flow of packets falling within the bandwidth offered by the logical link (23) on the basis of the bandwidth capability offered by the logical link (23) and in which the packets in the incoming flows are classified according to service classes and in which, upon a decrease in the bandwidth offered by the logical link (23) the scheduler/shaper (12) acts on the incoming packets in such a manner that some of the incoming packets are queued or dropped to cause the global flow to fall within the bandwidth of the aggregated logical link (23) depending on information correlated with the associated class of service of the packets.
 
2. Method in accordance with claim 1 in which the information associated with the packets in each service class comprises a drop precedence.
 
3. Method in accordance with claim 1 in which the logical link (23) is formed with link aggregation functions of standard IEEE 802.3-2002.
 
4. A network link for packet traffic transport over a logical link (23), the link comprising the aggregation of several physical links (16) which connect a transmitting side (Tx) to a receiving side (Rx) and further comprising a scheduler/shaper (12) arranged to receive flows of incoming packets, the scheduler/shaper (12) being arranged to select from the incoming flows packets for creating a global flow of packets falling within the bandwidth offered by the logical link (23) on the basis of the bandwidth capability offered by the logical link (23) to then send them over the logical link (23) to the receiving side (Rx) and characterized in that the network link further comprises a distributor (13) arranged to distribute the global flow over the plurality of physical links (16) forming the logical link (23), oversee the physical links (16) and to signal the scheduler/shaper (12) of any bandwidth decrease caused by failures of one or more of the physical links and in which the scheduler/shaper (12) is arranged to select packets so that they are queued or dropped depending on information correlated with a service class associated with the packets so as to cause the global flow to fall within the aggregated logical link (23) bandwidth.
 
5. A network link in accordance with claim 4 comprising, on the receiving side (Rx) a merger (17) arranged to receive the flows arriving from the physical links (16) and merge them into a global flow; and a classifier (18) arranged to receive the global flow of packets and to form output flows of packets classified on the basis of the service classes associated therewith.
 


Ansprüche

1. Verfahren zum Senden von Datenverkehrspaketen über eine logische Verbindung (23), die aus der Aggregation von mehreren physischen Verbindungen (16) aufgebaut ist, in dem Ströme von eingehenden Paketen an einen Planer/Former (12) gesendet werden, der daraus Pakete auswählt, um einen globalen Strom von Paketen zu erzeugen, die in die Bandbreite fallen, die durch die logische Verbindung (23) angeboten wird, auf der Basis der Bandbreitenfähigkeit, die durch die logische Verbindung (23) angeboten wird, und in dem die Pakete in den eingehenden Strömen entsprechend Dienstklassen klassifiziert werden, und in dem bei einer Verringerung der Bandbreite, die durch die logische Verbindung (23) angeboten wird, der Planer/Former (12) auf die eingehenden Pakete in einer solchen Art und Weise wirkt, dass manche der eingehenden Pakete in eine Warteschlange eingereiht oder fallengelassen werden, um zu bewirken, dass der globale Strom in die Bandbreite der aggregierten logischen Verbindung (23) fällt, abhängig von den Informationen, die mit der zugeordneten Dienstklasse der Pakete korrelieren.
 
2. Verfahren gemäß Anspruch 1, in dem die Informationen, die den Paketen in jeder Dienstklasse zugeordnet sind, eine Fallenlasspräzedenz umfassen.
 
3. Verfahren gemäß Anspruch 1, bei dem die logische Verbindung (23) mit Verbindungsaggregationsfunktionen des Standards IEEE 802.3-2002 gebildet wird.
 
4. Netzwerkverbindung für einen Paketdatenverkehrstransport über eine logische Verbindung (23), wobei die Verbindung die Aggregation von mehreren physischen Verbindungen (16) umfasst, die eine Übertragungsseite (Tx) mit einer Empfangsseite (Rx) verbinden, und ferner umfassend einen Planer/Former (12), der angeordnet ist, um Ströme von eingehenden Paketen zu empfangen, wobei der Planer/Former (12) angeordnet ist, um aus den eingehenden Strömen Pakete zum Erzeugen eines globalen Stroms von Paketen auszuwählen, der in die Bandbreite fällt, die durch die logische Verbindung (23) angeboten wird, auf der Basis der Bandbreitenfähigkeit, die durch die logische Verbindung (23) angeboten wird, um sie dann über die logische Verbindung (23) an die Empfangsseite (Rx) zu senden, und dadurch gekennzeichnet, dass die Netzverbindung ferner einen Verteiler (13) umfasst, der angeordnet ist, um den globalen Strom über die Vielzahl von physischen Verbindungen (16) zu verteilen, welche die logische Verbindung (23) bilden, die physischen Verbindungen (16) zu überwachen, und dem Planer/Former (12) jede Bandbreitenabnahme zu signalisieren, die durch Versagen von einer oder mehreren der physischen Verbindungen verursacht wird, und in dem der Planer/Former (12) angeordnet ist, um Pakete auszuwählen, so dass sie in eine Warteschlange eingereiht oder fallengelassen werden, abhängig von Informationen, die mit einer Dienstklasse korreliert sind, die den Paketen zugeordnet ist, um zu bewirken, dass der globale Strom in die aggregierte Bandbreite der logischen Verbindung (23) fällt.
 
5. Netzverbindung gemäß Anspruch 4, umfassend, auf der Empfangsseite (Rx) einen Zusammenführer (17), der angeordnet ist, um die Ströme zu empfangen, die von den physischen Verbindungen (16) eingehen, und sie in einen globalen Strom zusammenzuführen; und einen Klassifizierer (18), der angeordnet ist, um den globalen Strom von Paketen zu empfangen und Ausgangsströme von Paketen zu bilden, die auf der Basis der damit zugeordneten Dienstklassen klassifiziert werden.
 


Revendications

1. Procédé d'envoi de paquets de trafic sur une liaison logique (23) constituée de l'agrégation de plusieurs liaisons physiques (16) dans lequel des flux de paquets entrants sont envoyés à un planificateur/conformateur (12) qui sélectionne à partir de ceux-ci des paquets pour créer un flux global de paquets tombant dans la largeur de bande offerte par la liaison logique (23) sur la base de la capacité de largeur de bande offerte par la liaison logique (23) et dans lequel les paquets dans les flux entrants sont classés selon des classes de service et dans lequel, lors d'une diminution de la largeur de bande offerte par la liaison logique (23) le planificateur/conformateur (12) agit sur les paquets entrants d'une manière telle que certains des paquets entrants sont mis en file d'attente ou abandonnés pour amener le flux global à tomber dans la largeur de bande de la liaison logique agrégée (23) en fonction d'informations corrélées avec la classe de service associée des paquets.
 
2. Procédé selon la revendication 1 dans lequel les informations associées aux paquets dans chaque classe de service comprennent une priorité d'abandon.
 
3. Procédé selon la revendication 1 dans lequel la liaison logique (23) est formée avec des fonctions d'agrégation de liaison de la norme IEEE 802.3-2002.
 
4. Liaison réseau pour un transport de trafic de paquets sur une liaison logique (23), la liaison comprenant l'agrégation de plusieurs liaisons physiques (16) qui connectent un côté transmission (Tx) à un côté réception (Rx) et comprenant en outre un planificateur/conformateur (12) agencé pour recevoir des flux de paquets entrants, le planificateur/conformateur (12) étant agencé pour sélectionner parmi les flux entrants des paquets pour créer un flux global de paquets tombant dans la largeur de bande offerte par la liaison logique (23) sur la base de la capacité de largeur de bande offerte par la liaison logique (23) pour ensuite les envoyer sur la liaison logique (23) au côté réception (Rx) et caractérisée en ce que la liaison réseau comprend en outre un distributeur (13) agencé pour distribuer le flux global sur la pluralité de liaisons physiques (16) formant la liaison logique (23), superviser les liaisons physiques (16) et pour signaler au planificateur/conformateur (12) n'importe quelle diminution de largeur de bande causée par des défaillances d'une ou plusieurs des liaisons physiques et dans lequel le planificateur/conformateur (12) est agencé pour sélectionner des paquets de sorte qu'ils sont mis en file d'attente ou abandonnés en fonction d'informations corrélées à une classe de service associée aux paquets afin d'amener le flux global à tomber dans la largeur de bande de liaison logique agrégée (23).
 
5. Liaison réseau selon la revendication 4 comprenant, sur le côté réception (Rx) un fusionneur (17) agencé pour recevoir les flux arrivant depuis les liaisons physiques (16) et les fusionner en un flux global ; et un classificateur (18) agencé pour recevoir le flux global de paquets et pour former des flux de paquets de sortie classés sur la base des classes de service associées à ceux-ci.
 




Drawing











Cited references

REFERENCES CITED IN THE DESCRIPTION



This list of references cited by the applicant is for the reader's convenience only. It does not form part of the European patent document. Even though great care has been taken in compiling the references, errors or omissions cannot be excluded and the EPO disclaims all liability in this regard.

Patent documents cited in the description




Non-patent literature cited in the description