(19)
(11)EP 2 008 635 B1

(12)EUROPEAN PATENT SPECIFICATION

(45)Mention of the grant of the patent:
07.03.2012 Bulletin 2012/10

(21)Application number: 08010682.6

(22)Date of filing:  12.06.2008
(51)International Patent Classification (IPC): 
A61H 33/00(2006.01)
E03C 1/05(2006.01)

(54)

Computer-controlled hydrotherapy system

Computergesteuertes Hydrotherapiesystem

Système d'hydrothérapie contrôlé par ordinateur


(84)Designated Contracting States:
AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MT NL NO PL PT RO SE SI SK TR

(30)Priority: 18.06.2007 US 764533

(43)Date of publication of application:
31.12.2008 Bulletin 2009/01

(73)Proprietor: MEGAFUNCO, Inc.
Cambrigde MA 02138 (US)

(72)Inventors:
  • Galyean, Tinsley A.
    Cambrigde, MA 02138 (US)
  • Galyean, E. Taylor
    New Orleans, LA 70115 (US)

(74)Representative: Göhring, Robert 
Westphal - Mussgnug & Partner Patentanwälte Am Riettor 5
78048 Villingen-Schwenningen
78048 Villingen-Schwenningen (DE)


(56)References cited: : 
EP-A2- 0 446 862
US-A- 2 714 488
US-A- 4 854 498
US-A- 5 790 437
US-B2- 7 374 156
ES-A1- 2 109 157
US-A- 4 757 943
US-A- 5 457 826
US-A1- 2006 163 382
  
      
    Note: Within nine months from the publication of the mention of the grant of the European patent, any person may give notice to the European Patent Office of opposition to the European patent granted. Notice of opposition shall be filed in a written reasoned statement. It shall not be deemed to have been filed until the opposition fee has been paid. (Art. 99(1) European Patent Convention).


    Description

    BACKGROUND



    [0001] This invention relates to hydrotherapy and hydrothermal therapy systems and particularly to computer-controlled hydrotherapy systems. Hydrotherapy is the use of water for treatment of disease, stress reduction and recuperation. Hydrothermal therapy additionally uses the temperature effects of water, for example in hot baths, saunas and wraps. For brevity, hydrotherapy and hydrothermal therapy will be referred to collectively as hydrotherapy below.

    [0002] Hydrotherapy is a traditional method of treatment that has been used by many cultures, including those of ancient Rome, Greece, China, and Japan for centuries. Water is also an important ingredient in Chinese and Native American healing traditions. However, a Bavarian monk, Father Sebastian Kneipp, is credited with re-popularizing the therapeutic use of water in the 19th century in Europe. There are now many dozens of methods of applying hydrotherapy, including baths, showers, saunas, douches, wraps, and packs.

    [0003] The recuperative and healing properties of hydrotherapy are based on the mechanical and thermal effects of the water and exploit a bodily reaction to hot and cold stimuli, to the protracted application of heat, to pressure exerted by the water and to the resulting sensation. It is thought that the nerves carry impulses felt at the skin deeper into the body, where they are instrumental in stimulating the immune system, influencing the production of stress hormones, invigorating the circulation and digestion, encouraging blood flow, and lessening pain sensitivity.

    [0004] It has also long been understood that both the temporal application and topical application of water stimuli to the body produces beneficial effects. In particular, the application of water streams with different pressures and temperatures to varying body areas in predetermined time patterns has been found to be beneficial. This fact has long been exploited by spas and resorts that use special shower systems to produce desired effects. Many spas feature "Swiss" showers. A Swiss shower is similar to a regular shower, but it has multiple water streams delivering both hot and cold water so that water of differing temperatures and pressures can be applied to different body areas. The streams are, in turn, controlled by valves that are manipulated by a trained operator. Such shower systems have several drawbacks. First, they require a trained operator to run them. Therefore, they are expensive to operate, and cannot easily be incorporated in home bathroom shower systems. In addition, even with training and experience, the trained operator can only operate the valves at relatively slow maximum speed.

    [0005] Consequently, attempts have been made to replace the trained operator with a computer system that controls the valves in a predetermined temporal pattern. One such system is called a "Silver TAG shower". In this system, a computer controls valves that can modify both the temperature and pressure of the water streams applied to different body zones. The system uses servo-controlled valves, such as those disclosed in U.S. Patent No. 5,050,062. Each valve receives both hot and cold water from separate supplies and mixes the hot and cold water via a mixing valve controlled by a stepper motor. The valve also includes a temperature sensor which is monitored by a computer. If the sensed temperature is different from a predetermined set-point temperature, then the computer controls the stepper motor to change the hot and cold water mixture to bring the actual temperature to the set-point temperature. Therefore, the water temperature delivered by the valves can be adjusted to any given temperature between the temperatures of the hot and cold water supplies and the flow rate is also continuously adjustable

    [0006] Due to the complexity of the valves used in the prior art system, the installation cost of the overall system is quite high and maintenance is also quite expensive. Thus, while the system may be suitable for spas and resorts, it is generally beyond the means of homeowners who want to install such a shower system in a home bathroom. Consequently, other shower systems have been developed to address the home need.

    [0007] These include shower systems designed and sold by various plumbing manufacturers, such as Kohler and Ondine. These systems use much less expensive valves that receive both hot and cold water and are thermostatically controlled, either mechanically or by a microprocessor. However, these systems generally do not have the capabilities of the more expensive systems. Typically, either all zones receive the same temperature water or only a few zones are used. It is not possible, for example, to apply water of different temperatures and/or different flow rates to different body areas simultaneously.

    [0008] Conventional hydrotherapy systems are known from US 5 457 826 A, US 2006/0163382 A1, ES 2 109 157 A1 and US 4 757 943.

    SUMMARY



    [0009] In accordance with the principles of the invention, a hydrotherapy system uses a plurality of water sources, each of which produces water at a temperature that is fixed during a particular hydrotherapy session. The water from the fixed temperature sources can be mixed to form several mixed water streams, each with a predetermined temperature, by an array of computer-controlled on-off solenoid valves. Solenoid valves can also be used to apply the mixed water streams with different flow rates selectively to different zones and, thence, to different body areas. Since the solenoid valves are relatively uncomplicated and readily available, they are much less expensive, and require much less maintenance, than custom mixing valves.

    [0010] In one embodiment, conventional mechanical thermostatic mixing valves are used to provide fixed temperature water sources.

    [0011] In another embodiment, the solenoid valves are controlled by a microcontroller.

    [0012] In still another embodiment, a graphical user interface can be used to quickly program complex sequences of water temperature and body location.

    BRIEF DESCRIPTION OF THE DRAWINGS



    [0013] Figure 1 is a block schematic diagram of a hydrotherapy shower system constructed in accordance with the principles of the invention.

    [0014] Figure 2 is a schematic diagram that shows an illustrative valve configuration and piping diagram using four fixed temperature sources.

    [0015] Figure 3 is a schematic diagram of a set of sequence words that generate an illustrative sequence of water streams with predetermined temperatures and flows.

    [0016] Figure 4 is a block schematic diagram that shows a control system for controlling the solenoid array based on the sequence shown in Figure 3.

    [0017] Figure 5 is a screen shot showing a graphical user interface that can be used to generate the sequence words shown in Figure 3.

    [0018] Figure 6 is a screen shot showing the graphical user interface shown in Figure 5 with a control window open that allows the flow rate to be set for a particular time period and body zone.

    [0019] Figure 7 is a schematic diagram illustrating a modification of a sequence during a hydrotherapy session in response to external information, such as inputs generated by monitoring devices to inputs generated by user actions.

    DETAILED DESCRIPTION



    [0020] Figure 1 shows the overall architecture 100 of a computerized hydrotherapy system constructed in accordance with the principles of the present invention. A sequence 102, which controls the pattern and timing of valve operation and is described in detail below, drives a controller 104. The controller 104, in turn, opens or closes the solenoid valves in the solenoid valve array 110 in the pattern directed by the sequence. The controller 104 can be implemented with a number of conventional architectures. For example, as shown in Figure 1, the controller can comprise a computer 106 that might, illustratively, be a personal computer that operates with a "touch screen" interface. The computer 106, in turn, controls a driver board 108 with a plurality of outputs, each of which can drive one of the solenoid valves in solenoid valve array 110. Alternatively, the controller 104 might comprise a microcontroller that operates with a button array interface. The microcontroller can, in turn, operate the driver board that controls the solenoid valves in array 110.

    [0021] Each solenoid valve, such as valve 112 or 114, is an on-off valve which is either fully open or fully closed. Such valves have a relatively simple construction, are easy to maintain and readily-available. For example, solenoid valves that operate on a low voltage, typically 24 AC volts, are commonly used in fire suppression systems and are relatively inexpensive. An example of such a valve is a Danfoss EVSI 15-50B. Similar valves are used in underground lawn sprinkler systems and these are also suitable for use with the invention.

    [0022] It has been found that the same therapeutic effects, which are achieved with prior art systems that use continuously adjustable valves, can also be achieved by mixing the output streams from a plurality of fixed-temperature water sources to form a fixed number of water streams with predetermined temperatures and by using a predetermined number of fixed flow rates. In particular, the solenoid valves in the array 108 are connected, via piping, between water sources whose temperatures are fixed during a particular therapeutic sequence and the water delivery jets. By opening and closing the valves in various patterns, selected water sources can be connected to selected jets in order to provide simultaneous water streams of various temperatures and flow rates to several body zones. An illustrative solenoid valve array and piping arrangement is shown in Figure 2. The array 200 connects four fixed-temperature water sources 202-208 to four body zones 210-216 and is comprised of a plurality of normally-closed solenoid valves S1 - S28 connected together by pipes that are represented in Figure 2 by lines. Although four water sources and four body zones are shown for illustrative purposes, those skilled in the art would understand that more or fewer water sources could be used and more or fewer body zones could also be used without departing from the spirit and scope of the invention.

    [0023] Each of the fixed-temperature water sources 202-208 receives hot water from a hot water supply 220 and cold water from a cold water supply 222. The hot water supply may be approximately at a temperature of 120 degrees Fahrenheit and the cold water can be at an ambient cold water temperature, for example 55 degrees Fahrenheit, although other water temperatures could also be used. In one embodiment, each of water sources 202-208 comprises an adjustable thermostatic mixing valve such as a Honeywell Sparco model AM 101C-US-1 manufactured and sold by Honeywell Controls, Inc. Such a valve mechanically adjusts the hot and cold water flows to produce an output water stream at a temperature intermediate between the hot and cold temperatures. The output temperature is typically determined by manually manipulating an adjustment knob. Once the output temperature has been set, the valve will maintain that temperature within a predetermined range. The use of such valves is advantageous because they are already required by many local building codes and regulations.

    [0024] Alternatively, motorized mixing valves could also be used. These valves use a small motor to adjust the hot and cold water flows to produce an output water stream at a temperature intermediate between the hot and cold temperatures. Such valves would allow the temperature of the supplies to be changed between sequences, but the temperature would remain fixed during the execution of a particular therapeutic sequence.

    [0025] Each of the water sources 202-208 is set to a different predetermined temperature. As shown, for example, source 202 is set to 70 degrees Fahrenheit, source 204 is set to 98 degrees Fahrenheit, source 206 is set to 106 degrees Fahrenheit and source 208 is set to 110 degrees Fahrenheit. In other embodiments, other temperatures could also be used depending on the type of therapy that is desired.

    [0026] Each of the sources 202-208 can be connected to a zone by opening one of solenoid valves S1-S16 to each of zones 210-216. For example, opening solenoid valve S1 connects 70°F water from source 202 to zone 1 (210). Similarly, opening solenoid valve S2 connects 70°F water from source 202 to zone 2 (213). Opening solenoid valve S3 connects 70°F water from source 202 to zone 3 (214). Finally, opening solenoid valve S4 connects 70°F water from source 202 to zone 4 (216). In a like manner, opening valve S5 connects 98°F water from source 204 to zone 1 (210). etc.

    [0027] In addition, opening two valves simultaneously directs water from two sources to a single zone. In this case, the water stream arriving at the zone has a temperature that is approximately the average of the water temperatures of the two sources. For example, opening both valve S1 and valve S5 produces an output water stream that is applied to zone 1 (210) and has a temperature of 84°F that is the average (70 + 98)/2 of the temperatures of the two water sources 202 and 204. Similarly, opening three valves, such as valves S1, S5 and S9 from three different water sources 202, 204 and 206 produces an output water stream that is applied to zone 1 (210) with a temperature of 91.3°F (70 + 98 + 106)/3.

    [0028] By opening different combinations of solenoid valves, the following possible temperatures (in degrees Fahrenheit) can be applied to each of zones 1-4 (210-216) 70, 84, 88, 90, 91.3, 92.7, 95.3, 96, 98, 102, 104, 104.7, 106, 108 and 110.

    [0029] In addition, each zone has a plurality of solenoid valves connected in parallel. For example, as illustrated in Figure 2, each zone has three solenoid valves connected in parallel. However, those skilled in the art would understand that more or fewer solenoid valves could be used with each zone without departing from the spirit and scope of the invention. These solenoid valves can be used to control the water flow rate for each zone. For example, the water flow rate for zone 1 (210) can be increased by simultaneously opening one, two or all of valves 517, S18 and S19. Similarly, valves S20, S21 and S22 control the flow rate for zone 2 (212); valves S23, S24 and S25 control the flow rate for zone 3 (21a) and valves S26, S27 and S28 control the flow rate for zone 4 (216).

    [0030] By opening and closing the valves that control the water temperature and flow rate for each body zone in a temporal sequence, various therapy routines can be devised. Because the solenoids are electrically controlled and open and close very rapidly, the temporal sequence can be precise and accurate. In addition, the array of solenoids allows water with different temperatures and flow rates to be applied simultaneously to two or more body zones.

    [0031] Figure 3 shows an illustrative sequence 300 for controlling the solenoid array 200 to produce a specified temporal sequence of water streams. The sequence 300 consists of a plurality of time periods, each of fixed length in this embodiment. In Figure 3, the sequence 300 consists of six time periods. Those skilled in the art would understand that more or fewer time periods could be used. In order to provide flexibility, each time period may be subdivided into shorter time intervals of fixed duration, for example, five seconds. The shorter time intervals allow time periods of different duration to be constructed. In particular, with five second time intervals, time periods can be constructed with time durations of five seconds, ten seconds, fifteen seconds, twenty seconds, etc. For example, each illustrative time period in Figure 3 is comprised of two time intervals and consequently, would be ten seconds in duration. With this arrangement, the entire sequence 300, which is comprised of six time periods, would be one minute in length.

    [0032] Each time interval is associated with a sequence word containing a plurality of bits, with each bit associated with one of the solenoids in array 200. For example, the first time interval of period 1 is associated with word 302 and the second time interval is associated with word 304. Each of words 302 and 304 contains 28 bits with each bit corresponding to one of the 28 solenoids in Figure 2 as marked at the top of Figure 3. Each sequence word controls the solenoid array for an entire time interval. When a particular bit is set to a "1", the associated valve will be open allowing water to flow through it for the entire time interval. When the bit is set to a "0", the valve will be closed and no water will pass through in the associated time interval. If more than one time interval is used to construct a time period, then the sequence words associated with each time interval in the time period will hold the identical pattern of "1"s and "0"s so that each solenoid will remain open or closed for the entire time period.

    [0033] Thus, by setting an appropriate pattern of "1"s and "0"s in a word or plurality of words (if more than one word is used per time period), a temporal sequence of different water temperatures and flow rates can be applied to selected body zones. In Figure 3, bits associated with solenoids that control the water temperature and flow rate for a particular body zone have been shaded in like manner for ease in identification. During time period 1, bits 6, 10 and 20 are set to "1 causing the associated solenoids to open their valves. Comparing this pattern to the solenoid array in Figure 2 shows that, with solenoids S6, S10 and S20 operating, water from sources 204 and 206 with a temperature of (98 + 106)/2 = 102 degrees is applied at a low flow rate (only one valve S20 open) to body zone 2.

    [0034] Similarly, during time period 1, bits 7, 11 and 23 are set to "1" causing the associated solenoids to open their valves. Comparing this pattern to the solenoid array in Figure 2 shows that, with solenoids S7, S11 and S23 operating, water from sources 204 and 206 with a temperature of (98 + 106)/2 = 102 degrees is applied at a low flow rate (only one valve S23 open) to body zone 3.

    [0035] During time period 2, bits 10 and 20 remain set to "1" but bit 6 is now set to "0" causing the associated solenoids to remain open, or close, their valves. Comparing this pattern to the solenoid array in Figure 2 shows that, with solenoids S10 and S20 operating, water from source 206 with a temperature of 106 degrees is applied at a low flow rate (only one valve S20 open) to body zone 2.

    [0036] Similarly, during time period 2, bits 7, 11, 15 and 23 are set to "1" causing the associated solenoids to open their valves. Comparing this pattern to the solenoid array in Figure 2 shows that, with solenoids S7, S11 and S23 operating, water from sources 204, 206 and 208 with a temperature of (98 + 106 + 110)/3 = 104.6 degrees is applied at a low flow rate (only one valve S23 open) to body zone 3.

    [0037] Next, during time period 3, bits 10 and 20 remain set to "1" but bit 21 is now set to "1" causing the associated solenoids to open their valves. Comparing this pattern to the solenoid array in Figure 2 shows that, with solenoids S10 and S20 operating, water from source 206 with a temperature of 106 degrees is applied at a medium flow rate (valves S20 and S21 open) to body zone 2.

    [0038] Also, during time period 3, bits 11 and 23 remain set to "1", but bits 7 and 15 are set to "0" causing the associated solenoids to open, or close, their valves. Comparing this pattern to the solenoid array in Figure 2 shows that, with solenoids S11 and S23 operating, water from source 206 with a temperature of 106 degrees is applied at a low flow rate (only one valve S23 open) to body zone 3.

    [0039] In addition, during time period 3, a new body zone begins operation. Specifically, bits 5, 9, 17 and 18 are set to "1"s causing the associated solenoids to open their valves. Comparing this pattern to the solenoid array in Figure 2 shows that, with solenoids S5 and S9 operating, water from sources 204 and 206 with a temperature of (98 + 106)/2 = 102 degrees is applied at a medium flow rate (valves S17 and S18 open) to body zone 1.

    [0040] In time period 4, bits 5, 9, 17 and 18 remain set to "1" is causing the associated solenoids to open their valves. Thus, water from sources 204 and 206 with a temperature of 102 degrees continues to be applied at a medium flow rate to body zone 1. This pattern also persists in time periods 5 and 6. However, during time period 4, bits 11 and 23 are set to "0" causing the water stream that was being applied to body zone 3 to stop. This pattern also persists in time periods 5 and 6.

    [0041] In time period 5, bits 4, 8, 12, 26, 27 and 28 are set to "1"s causing the associated solenoids to open their valves. With solenoids S4, S8 and S12 operating, water from sources 202, 204 and 206 with a temperature of (70 + 98 + 106)/3 = 91.3 degrees is applied at a high flow rate (valves S26, S27 and S28 open) to body zone 4. This pattern also persists during time period 6.

    [0042] In other embodiments, the solenoids could be controlled by sequences that specify the open and close time of each sequence. In this case, the time intervals during which the solenoids are open or closed need not be fixed, or equal, in duration.

    [0043] Figure 4 shows an illustrative system 400 for controlling the valve array shown in Figure 2 with the sequence shown in Figure 3. In this system, sequence words, such as those shown in Figure 3 are loaded into memory 412 at the start of a sequence. A timer 402 generates a time signal at the beginning of each time interval. This time signal is applied, as indicated schematically by arrow 404, to an address counter 408. The signal causes the counter 408 to generate a new set of address signals 410 that are applied to memory 412. The address signals cause the sequence word for that time interval to be read out of the memory 412 and to appear on memory outputs 414. The bits of the sequence word are latched into an output register 416 by another signal (indicated schematically by arrow 406) from timer 402. Outputs 418 of register 416, in turn, are applied to drivers 420 that provide the signals to operate the solenoids in the solenoid array 422.

    [0044] The system shown in Figure 4 could be implemented in hardware, firmware or by a software program running on a general purpose computer in a manner well-known to those skilled in the art.

    [0045] Sequences, such as that illustrated in Figure 3 can be manually built by setting the bits in each sequence word in memory 412. Such a process is tedious and time-consuming. Alternatively, sequences can be built via an interactive graphical user interface generated by a program. This program could be running on a computer operated by the user or, alternatively, the program could be running on a web server and accessed by the user remotely via a conventional web browser. Illustrative display screens generated by an interface of this type are shown in Figures 5 and 6. These screens are interactive in that they can be manipulated with a pointing device, such as a mouse.

    [0046] Figure 5 illustrates a display 500 for constructing sequences for a hydrotherapy system which has six body zones (zone 502 - "Overhead", zone 504 - "Shoulders", zone 506 - "Upper Torso", zone 508 - "Lower Torso", zone 510 - "Upper Legs" and zone 512 - "Lower Legs"). The portion of a sequence for each body zone is represented by the horizontal band extending to the right of the zone name. The sequence generated by this system has adjustable time segment lengths. Illustratively, time segment lengths of 10, 15, 20 or 30 seconds can be selected by selecting one of buttons 514, 516, 518, or 520. The time segments are represented by the spaces between the dotted vertical lines (such as line 532) in the viewing area 530. The time segment length selection also determines the overall length of the sequence as set forth on the button captions. In other embodiments, different length or variable length segments can be used. If a sequence extends outside of the viewing region 530, a portion of the sequence can be selected for viewing and moved into the viewing window 530 via slider 522.

    [0047] Each of zones 502-512 can be provided with one or more bars, such as bar 550. Each bar represents a period of time during which a water stream with a selected temperature and flow rate is being provided to that body zone. A bar, such as bar 550, can be positioned within a body zone by clicking on the bar and dragging the bar either to the right or left. The length of the bar can be adjusted by clicking on the start end 552 or the finish end 554 and dragging the end to the start or finish position as desired. Of course, the start end of a bar may only be positioned at the start of a time segment while the finish end of the bar may only be positioned at the end of a time segment.

    [0048] Once a bar has been positioned and its length adjusted, the temperature and flow rate for that body zone during the time period can be adjusted. This could be done by opening a control window containing controls that allow the temperature and flow rate to be adjusted. Alternatively, the latter controls could be located in a dedicated area of the existing window 600. An illustrative control window 660 is shown in Figure 6. In Figure 6, elements that correspond to those in Figure 5 have been given corresponding designations. For example, zone 602 in Figure 6 corresponds to zone 502 in Figure 5. A control window 660 has been opened for bar 656. In general, a control window can be opened for each bar by selecting the control window "Show" button 624 and then selecting the appropriate bar by clicking on it. Alternatively, a bar can be selected and a control window opened for the selected bar. The control window 660 has four flow control buttons: "Off" 662, "Low" 664, "Med" 666 and "High" 668 for setting the flow rate for the associated body zone during the time period represented by the bar. In addition, a slider 674 allows the water temperature to be set by either clicking the decrease/increase temperature buttons 670 and 672, respectively, or by directly manipulating the slider thumb 676. The set temperature is indicated on the slider thumb 676. When the control window is closed, the bar displays the temperature of the associated water stream in numbers and the flow rate by a number of dots (one dot indicating low flow rate, two dots indicating medium flow rate, etc.)

    [0049] Once the entire sequence has been constructed using the graphic user interface shown in Figures 5 and 6, the sequence can be given a name in the textbox 526 and saved by selecting button 528. Parameters determined by the settings in the graphic user interface can then be used to create sequence words, such as those shown in Figure 3 in a straightforward manner that would be well-known to those skilled in the art. The graphic user interface allows users to construct their own sequences. Alternatively, pre-built sequences could be downloaded from a source, such as a web-site, and modified with the graphic user interface,

    [0050] In addition, while hydrotherapy sessions comprised of predetermined temporal sequences and patterns are shown for purposes of illustration, in other embodiments, the temporal sequence or the pattern of water flow rates and temperatures could be changed during a hydrotherapy session to achieve a particular effect. For example, the temperature of a particular water source could be raised or lowered during a session thereby causing the temperatures of all water flows using this source to be raised or lowered. Alternatively, the range of flow rates or temperatures could be expanded or contracted by changing the number of solenoids used to generate this range of flow rates or temperatures. The aforementioned changes could be initiated by a user, for example, by pressing buttons or using a touch screen during the therapy session. Alternatively, physiological measurements, such as heart rate, body temperature, or brain wave patterns could be monitored and used as feedback to modify a session to achieve a particular effect. Figure 7 illustrates the modification of a sequence 700 during a hydrotherapy session. As shown in Scenario 702, a monitoring device 704 makes physiological measurements on user 705 and alters the sequence 700 as schematically illustrated by arrow 706. As an example, sequence 700 could be modified at a time 2 minutes and 40 seconds into the sequence to produce a new sequence 708 (the modification time is shown as line 710) with different shower sequence temperatures. Scenario 712 shows a sequence modification initiated when user 714 pushes a button 716. As illustrated by arrow 706, this latter action produces the same modified sequence 708. Those skilled in the art would understand that other methods could be used to modify hydrotherapy sequences and that several modifications could occur during any given sequence.

    [0051] A software implementation of the above-described embodiment may comprise a series of computer instructions either fixed on a tangible medium, such as a computer readable media, for example, a diskette, a CD-ROM, a ROM, or a fixed disk, or transmittable to a computer system via a modem or other interface device over a transmission path. The transmission path either may be tangible lines, including but not limited to, optical or analog communications lines, or may be implemented with wireless techniques, including but not limited to microwave, infrared or other transmission techniques. The transmission path may also be the Internet. The series of computer instructions embodies all or part of the functionality previously described herein with respect to the invention. Those skilled in the art will appreciate that such computer instructions can be written in a number of programming languages for use with many computer architectures or operating systems. Further, such instructions may be stored using any memory technology, present or future, including, but not limited to, semiconductor, magnetic, optical or other memory devices, or transmitted using any communications technology, present or future, including but not limited to optical, infrared, microwave, or other transmission technologies. It is contemplated that such a computer program product may be distributed as a removable medium with accompanying printed or electronic documentation, e.g., shrink wrapped software, pre-loaded with a computer system, e.g., on System ROM or fixed disk, or distributed from a server or electronic bulletin board over a network, e.g., the Internet or World Wide Web.


    Claims

    1. A hydrotherapy system for treating a plurality of body zones using a plurality of fixed-temperature water sources (202, 204, 206, 208), each water source providing water with a temperature different from other water sources, and a plurality of on-off solenoid valves (S1-S16),
    CHARACTERIZED IN THAT
    the plurality of on-off solenoid valves are arranged in sets (S1-S4, S5-S8, S9-S12, S13-S16), with all valves in each set being connected by pipes to a single one of the water sources;
    a nozzle (210, 212, 214 216) is provided for each body zone and connected to the valve sets by a plurality of pipes, each pipe connecting one valve in each set to that nozzle in order to combine water streams from selected water sources and apply the combined stream to that body zone; and
    a means (104) is provided for opening and closing selected ones of the plurality of solenoid valves to provide water streams simultaneously to each body zone in a pattern of temperature and flow rates, which pattern changes over time.
     
    2. The hydrotherapy system of claim 1 wherein each fixed temperature water source (202,204,206,208) comprises a thermostatic mixing valve connected to a hot water supply (220) and a cold water supply (222).
     
    3. The hydrotherapy system of claim 1 wherein each fixed temperature water source comprises a motorized mixing valve connected to a hot water supply and a cold water supply which remains in a fixed position during a portion of the temporal sequence.
     
    4. The hydrotherapy system of claim 1 further comprising a plurality of solenoid valves (S17-S19,S20-S22,S23-S25,S26-S28) connected in parallel between the array of solenoid valves and each nozzle and means (104) for opening and closing at least one of the plurality of valves in order to change the water flow rate to that nozzle.
     
    5. The hydrotherapy system of claim 1 wherein the means for opening and closing the solenoid valves comprises an electronic controller (400).
     
    6. The hydrotherapy system of claim 5 wherein the means for opening and closing the solenoid valves further comprises a plurality of sequences (300) stored in a memory (412) that control the controller.
     
    7. The hydrotherapy system of claim 6 wherein a program generates a graphic user interface (500) that can be manipulated to create and maintain the plurality of sequences.
     
    8. The hydrotherapy system of claim 7 wherein the program that generates the graphic user interface comprises:

    means for generating a screen display (500) having a band (502-512) associated with each body zone;

    means for generating in the band (502) of the screen display, a bar (550) having start end (552) and a finish end (554) signifying the start time and end time of a water stream with a constant temperature and flow rate applied to the body zone associated with that band;

    means (106) controlled by a pointing device for moving the start end and the finish end of the bar to desired start and end times of the water stream; and

    means for displaying controls (660) that are associated with the bar and allow the constant temperature and flow rate of the water stream to be specified.


     
    9. The hydrotherapy system of claim 8 wherein each band is divided into a plurality of equal-length time segments (514) which are visually indicated on the screen display (532).
     
    10. The hydrotherapy system of claim 9 wherein the means for moving the start end and the finish end of the bar to desired start and end times comprising means for selecting the start end of the bar and dragging the start end to a desired time segment and means for selecting the finish end of the bar and dragging the finish end to a desired time segment.
     
    11. A method of operating a hydrotherapy system for treating a plurality of body zones using a plurality of fixed-temperature water sources (202, 204, 206, 208), each water source providing water with a temperature different from other water sources, and a plurality of on-off solenoid valves (S1-S16),
    CHARACTERIZED IN THAT

    (a) the plurality of on-off solenoid valves are arranged in sets (S1-S4, S5-S8, S9-S12, S13-S16), with all valves in each set being connected by pipes to a single one of the water sources;

    (b) a nozzle (210, 212, 214 216) is provided for each body zone and connected to the valve sets by a plurality of pipes, each pipe connecting one valve in each set to that nozzle in order to combine water streams from selected water sources and apply the combined stream to that body zone; and

    (c) selected ones of the plurality of solenoid valves are opened and closed to provide water streams simultaneously to each body zone in a pattern of temperature and flow rates, which pattern changes over time.


     
    12. The method of claim 11 wherein selected ones of the plurality of solenoid valves are opened and closed by storing a plurality of sequences (300) in a memory (412) and opening and closing the solenoid valves in response to the stored sequences.
     
    13. The method of claim 12 wherein the plurality of sequences are stored in the memory by generating a graphic user interface that can be manipulated to create and maintain the plurality of sequences.
     
    14. The method of claim 11 wherein selected ones of the plurality of solenoid valves are opened and closed by sensing a physiological user condition during the hydrotherapy session and changing the patterns of temperature and flow rates during the hydrotherapy session in response to the sensed user condition.
     
    15. The method of claim 14 wherein the user condition is sensed by performing a physiological measurement on the user (704).
     


    Ansprüche

    1. Hydrotherapie-System zur Behandlung einer Mehrzahl von Körperzonen unter Verwendung einer Mehrzahl von Wasserquellen (202,204,206,208) mit fester Temperatur, wobei jede Wasserquelle Wasser mit einer Temperatur bereitstellt, die unterschiedlich von der anderer Wasserquellen ist, und einer Mehrzahl von An-Aus-Solenoidventilen (S1-S16),
    dadurch gekennzeichnet, dass
    die Mehrzahl von An-Aus-Solenoidventilen in Sets (S1-S4, S5-S8, S9-S12, S13-S16) arrangiert ist, wobei alle Ventile ein jedem Set über Rohre mit einer einzigen der Wasserquellen verbunden ist;
    für jede Körperzone eine Düse (210,212,214,216) bereitgestellt und über eine Mehrzahl von Rohren mit den Ventilsets verbunden ist, wobei jedes Rohr ein Ventil in jedem Set mit dieser Düse verbunden ist, um Wasserströme von ausgewählten Wasserquellen zu kombinieren und den kombinierten Ströme auf diese Körperzone anzuwenden; und
    ein Mittel (104) zum Öffnen und Schließen ausgewählter Solenoidventile vorhanden ist, um gleichzeitig Wasserströme an jeder Körperzone gemäß einem Schema von Temperaturen und Flussraten bereitzustellen, wobei das Schema sich mit der Zeit verändert.
     
    2. Hydrotherapiesystem nach Anspruch 1, wobei jede Wasserquelle (202,204,206,208) mit fester Temperatur ein thermostatisches Mischventil, das mit einer Heißwasserversorgung (220) und einer Kaltwasserversorgung (222) verbunden ist, umfasst.
     
    3. Hydrotherapiesystem nach Anspruch 1, wobei jede Wasserquelle (202,204,206,208) mit fester Temperatur ein motorisiertes Mischventil, das mit einer Heißwasserversorgung (220) und einer Kaltwasserversorgung (222) verbunden ist, umfasst, welches während eines Teils der Zeitsequenz in einer festen Position bleibt.
     
    4. Hydrotherapiesystem nach Anspruch 1, welches ferner eine Mehrzahl von Solenoidventilen (S17-S19, S20-S22, S23-S25, S26-S28), die parallel zwischen dem Feld von Solenoidventilen und jeder Düse verbunden sind und Mittel (104) zum Öffnen und Schließen zumindest eines der Mehrzahl von Ventilen zum Ändern der Wasserflussrate zu dieser Düse aufweist.
     
    5. Hydrotherapiesystem nach Anspruch 1, wobei die Mittel zum Öffnen und Schließen der Solenoidventile einen elektronischen Controller (400) umfassen.
     
    6. Hydrotherapiesystem nach Anspruch 5, wobei die Mittel zum Öffnen und Schließen der Solenoidventile ferner eine Mehrzahl von in einem Speicher (412) gespeicherten Sequenzen (300) umfasst, welche den Controller steuern.
     
    7. Hydrotherapiesystem nach Anspruch 6, wobei ein Programm ein graphisches Benutzer-Interface (500) erzeugt, das manipuliert werden kann, um die Mehrzahl von Sequenzen zu schaffen und zu pflegen.
     
    8. Hydrotherapiesystem nach Anspruch 7, wobei das Programm, das das graphische Benutzer-Interface erzeugt, umfasst:

    Mittel zum Erzeugen einer Bildschirmanzeige (500), die jeder Körperzone ein Band (502-512) zuordnet;

    Mittel zum Erzeugen eines Balkens (550) in dem Band (502) der Bildschirmanzeige (500) mit einem Anfang (552) und einem Ende (554), welche die Startzeit und die Endzeit eines Wasserstroms mit konstanter Temperatur und Flussrate, der auf die diesem Band zugeordnete Körperzone angewendet wird, verkörpern;

    Mittel (106), die durch eine Zeigevorrichtung kontrolliert werden zum Bewegen des Anfangs und des Endes des Balkens zu gewünschten Anfangs- und Endzeiten des Wasserstroms; und

    Mittel zum Darstellen von Bedienelementen (660), die dem Balken zugeordnet sind und die Auswahl der konstanten Temperatur und der Flussrate des Wasserstroms ermöglichen.


     
    9. Hydrotherapiesystem nach Anspruch 8, wobei jedes Band in eine Mehrzahl von Zeitabschnitten (514) gleicher Länge unterteilt ist, die sichtbar auf der Bildschirmanzeige (532) angezeigt werden.
     
    10. Hydrotherapiesystem nach Anspruch 9, wobei die Mittel zum Verschieben des Anfangs und des Endes des Balkens zu gewünschten Start- und Endzeiten Mittel zum Auswählen des Anfangs des Balkens und Ziehen des Anfangs zu einem gewünschten Zeitabschnitt und Mittel zum Auswählen des Endes des Balkens und Ziehen des Endes zu einem gewünschten Zeitabschnitt umfassen.
     
    11. Verfahren zum Betrieb eines Hydrotherapiesystems zur Behandlung einer Mehrzahl von Körperzonen unter Verwendung einer Vielzahl von Wasserquellen (202,204,206,208) mit fester Temperatur, wobei jede Wasserquelle Wasser mit einer Temperatur bereitstellt, die unterschiedlich von der anderer Wasserquellen ist, und einer Mehrzahl von An-Aus-Solenoidventilen (S1-S16),
    dadurch gekennzeichnet, dass

    (a) die Mehrzahl von An-Aus-Solenoidventilen in Sets (S1-S4, S5-S8, S9-S12, S13-S16) arrangiert ist, wobei alle Ventile ein jedem Set über Rohre mit einer einzigen der Wasserquellen verbunden ist;

    (b) für jede Körperzone eine Düse (210,212,214,216) bereitgestellt und über eine Mehrzahl von Rohren mit den Ventilsets verbunden ist, wobei jedes Rohr ein Ventil in jedem Set mit dieser Düse verbunden ist, um Wasserströme von ausgewählten Wasserquellen zu kombinieren und den kombinierten Ströme auf diese Körperzone anzuwenden; und

    (c) ausgewählte der Mehrzahl von Solenoid-Ventilen geöffnet und geschlossen werden, um gleichzeitig Wasserströme an jeder Körperzone gemäß einem Schema von Temperaturen und Flussraten bereitzustellen, wobei das Schema sich mit der Zeit verändert.


     
    12. Verfahren nach Anspruch 11, wobei ausgewählte der Mehrzahl von Solenoidventilen durch Speichern einer Mehrzahl von Sequenzen (300) in einem Speicher (412) und Öffnen und Schließen der Solenoidventile in Abhängigkeit von den gespeicherten Sequenzen geöffnet und geschlossen werden.
     
    13. Verfahren nach Anspruch 12, wobei die Mehrzahl von Sequenzen durch Erzeugung eines graphischen Benutzerinterfaces, das manipuliert werden kann, um die Mehrzahl von Sequenzen zu schaffen und zu pflegen, im Speicher gespeichert werden.
     
    14. Verfahren nach Anspruch 11, wobei ausgewählte der Mehrzahl von Solenoidventilen durch Erkennen einer physiologischen Befindlichkeit eines Benutzers während der Hydrotherapie-Sitzung und Wechseln des Schemas von Temperatur- und Flussraten in Abhängigkeit von der erkannten Befindlichkeit des Benutzers geöffnet und geschlossen werden.
     
    15. Verfahren nach Anspruch 14, wobei die Befindlichkeit des Benutzers durch Ausführen einer physiologischen Messung am Benutzer (704) erkannt wird.
     


    Revendications

    1. Système d'hydrothérapie pour traiter un ensemble de zones du corps humain en utilisant un ensemble de sources d'eau à température fixe (202, 204, 206, 208), chaque source d'eau fournissant de l'eau à une température différente de celle des autres sources d'eau ainsi qu'un ensemble d'électrovannes en position ouvert-fermé (S1-S16),
    caractérisé en ce que

    - l'ensemble électrovanne en position ouvert-fermé est réparti en groupes (S1-S4, S5-S8, S9-S12, S13-S16) et toutes les vannes de chaque groupe sont reliées par des conduites à une seule des sources d'eau,

    - une buse (210, 212, 214, 216) prévue pour chaque zone du corps est reliée au groupe de vannes par un ensemble de conduites, chaque conduite reliant une vanne de chaque groupe de façon que la buse combine les jets d'eau de sources d'eau sélectionnées et applique le jet combiné à cette zone du corps humain, et

    - un moyen (104) pour ouvrir et fermer celle des vannes sélectionnées de l'ensemble d'électrovannes pour fournir des jets d'eau simultanément à chaque zone du corps humain selon un schéma de température et de débit variable dans le temps.


     
    2. Système d'hydrothérapie selon la revendication 1, dans lequel chaque source d'eau à température fixe (202, 204, 206, 208) comporte une vanne mélangeuse thermostatique reliant à une alimentation en eau chaude (220) et à une alimentation en eau froide (222).
     
    3. Système d'hydrothérapie selon la revendication 1, dans lequel chaque source d'eau à température fixe comporte une vanne mélangeuse motorisée reliée à une alimentation en eau chaude et à une alimentation en eau froide et qui reste dans une position fixée au cours d'une partie de la séquence de temps.
     
    4. Système d'hydrothérapie selon la revendication 1, comportant en outre un ensemble d'électrovannes (S17-S19, S20-S22, S23-S25, S26-S28), branchées en parallèle entre le réseau d'électrovannes et chaque buse ainsi qu'un moyen (104) pour ouvrir et fermer au moins l'une des vannes de l'ensemble pour modifier le débit d'eau alimentant la buse.
     
    5. Système d'hydrothérapie selon la revendication 1, dans lequel le moyen pour ouvrir et fermer les électrovannes comporte un contrôleur électronique (400).
     
    6. Système d'hydrothérapie selon la revendication 5, dans lequel le moyen pour ouvrir et fermer les électrovannes comporte un ensemble de séquences (300) enregistrées dans une mémoire (412) pour commander le contrôleur.
     
    7. Système d'hydrothérapie selon la revendication 6, dans lequel un programme génère une interface d'utilisateur graphique (500) qui peut être manipulée pour créer et maintenir l'ensemble des séquences.
     
    8. Système d'hydrothérapie selon la revendication 7, dans lequel le programme qui génère l'interface d'utilisateur graphique comprend :

    - un moyen pour générer un écran d'affichage (500) ayant une bande (502-512) associée à chaque zone du corps,

    - un moyen pour générer dans la bande (502) de l'affichage d'écran, une barre (550) ayant un début (552) et une fin (554) correspondant à l'instant initial et à l'instant final du jet d'eau à température et à débit constants appliqués à la zone du corps associée à cette bande,

    - un moyen (106) commandé par un dispositif pointeur pour déplacer le début et la fin de la barre à des instants de démarrage et de fin choisis pour le jet d'eau, et

    - un moyen pour afficher les commandes (660) associées à la barre et permettant de spécifier la température constante et le débit constant du jet d'eau.


     
    9. Système d'hydrothérapie selon la revendication 8, dans lequel chaque bande est divisée en un ensemble de segments de même durée (514) indiqués visuellement sur l'écran d'affichage (532).
     
    10. Système d'hydrothérapie selon la revendication 9, dans lequel le moyen pour déplacer le début et la fin de la barre à l'instant de début et de fin choisi comprend des moyens pour sélectionner le début de la barre et pour tirer la fin sur un segment de temps choisi et des moyens pour sélectionner la fin de la barre et tirer la fin vers un segment de temps choisi.
     
    11. Procédé de fonctionnement d'un système d'hydrothérapie pour traiter un ensemble de zones du corps humain utilisant un ensemble de sources d'eau à température fixe (202, 204, 206, 208), chaque source d'eau fournissant de l'eau à une température différente de celle des autres sources d'eau ainsi qu'un ensemble d'électrovannes en position ouvert-fermé (S1-S16),
    procédé caractérisé en ce que

    (a) l'ensemble des électrovannes en position ouvert-fermé est réparti en groupes (S1-S4, S5-S8, S9-S12, S13-S16), toutes les vannes de chaque groupe étant reliées par des conduites à une unique source d'eau,

    (b) une buse (210, 212, 214, 216) pour chaque zone du corps humain et qui est reliée aux groupes de vannes par un ensemble de conduites, chaque conduite reliant une vanne de chaque groupe à la buse pour combiner des jets d'eau de sources d'eau sélectionnées et appliquer le jet combiné à cette zone du corps humain, et

    (c) sélectionner certaines électrovannes de l'ensemble d'électrovannes qui sont ouvertes et fermées pour fournir des jets d'eau simultanément à chaque zone du corps humain selon un schéma de température et de débit variable en fonction du temps.


     
    12. Procédé selon la revendication 11, dans lequel les électrovannes choisies dans l'ensemble des électrovannes sont ouvertes et fermées en enregistrant un ensemble de séquences (300) dans une mémoire (412) et en ouvrant et en fermant les électrovannes en réponse aux séquences enregistrées.
     
    13. Procédé selon la revendication 12, dans lequel l'ensemble des séquences est enregistré dans la mémoire en générant une interface d'utilisateur graphique qui peut être manipulée pour créer et maintenir l'ensemble des séquences.
     
    14. Procédé selon la revendication 11, dans lequel les électrovannes choisies de l'ensemble des électrovannes sont ouvertes et fermées par détection de la condition physiologique de l'utilisateur pendant la session d'hydrothérapie et on modifie les schémas de température et de débit au cours de la session d'hydrothérapie en fonction de la condition d'utilisateur, envoyée.
     
    15. Procédé selon la revendication 14, dans lequel la condition de l'utilisateur est détectée en effectuant des mesures physiologiques sur l'utilisateur (704).
     




    Drawing


























    Cited references

    REFERENCES CITED IN THE DESCRIPTION



    This list of references cited by the applicant is for the reader's convenience only. It does not form part of the European patent document. Even though great care has been taken in compiling the references, errors or omissions cannot be excluded and the EPO disclaims all liability in this regard.

    Patent documents cited in the description