(19)
(11)EP 2 021 813 B1

(12)EUROPEAN PATENT SPECIFICATION

(45)Mention of the grant of the patent:
27.08.2014 Bulletin 2014/35

(21)Application number: 07761557.3

(22)Date of filing:  30.04.2007
(51)International Patent Classification (IPC): 
G01R 27/04(2006.01)
F01N 9/00(2006.01)
(86)International application number:
PCT/US2007/067750
(87)International publication number:
WO 2007/130896 (15.11.2007 Gazette  2007/46)

(54)

MICROWAVE SENSING FOR DETERMINATION OF LOADING OF FILTERS

MIKROWELLENMESSUNG ZUR BESTIMMUNG VON FILTERLADUNG

DÉTECTION HYPERFRÉQUENCE PERMETTANT DE DÉTERMINER LA CHARGE DE FILTRES


(84)Designated Contracting States:
AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LI LT LU LV MC MT NL PL PT RO SE SI SK TR

(30)Priority: 01.05.2006 US 746081 P

(43)Date of publication of application:
11.02.2009 Bulletin 2009/07

(73)Proprietor: Massachusetts Institute of Technology Inc.
Cambridge, MA 02142 (US)

(72)Inventors:
  • BROMBERG, Leslie
    Sharon, MA 02067-1562 (US)
  • SAPPOK, Alex
    Cambridge, MA 02142 (US)
  • PARKER, Ronald
    Belmont, MA 02178 (US)
  • WONG, Victor
    Peabody, MA 01960 (US)
  • KOERT, Peter
    Boston, MA 02115 (US)

(74)Representative: UEXKÜLL & STOLBERG 
Patentanwälte Beselerstrasse 4
22607 Hamburg
22607 Hamburg (DE)


(56)References cited: : 
EP-A2- 0 356 040
WO-A1-92/02807
WO-A1-2005/093233
US-A- 4 042 879
US-A- 5 142 595
US-A1- 2001 007 571
WO-A1-92/02807
WO-A1-93/05388
WO-A2-2004/074670
US-A- 4 477 771
US-A- 6 147 503
US-B1- 6 819 849
  
      
    Note: Within nine months from the publication of the mention of the grant of the European patent, any person may give notice to the European Patent Office of opposition to the European patent granted. Notice of opposition shall be filed in a written reasoned statement. It shall not be deemed to have been filed until the opposition fee has been paid. (Art. 99(1) European Patent Convention).


    Description

    Background of the Invention



    [0001] This invention relates to determination of filter loading and more particularly to the use of microwave sensing to determine filter loading.

    [0002] In many realms there is a need for accurate sensing of the amount of material that has been captured by a filter. An example is the need to determine filter loading of soot on a diesel particulate filter (DPF). The amount of loading on a diesel particulate filter must be known in order to determine appropriate conditions for start-up of regeneration as well as monitoring conditions to determine when complete regeneration has been achieved. The level of loading is important in this context because regeneration of a DPF is often through an uncontrolled burn in which soot is ignited by the presence of free oxygen and a combustion wave is generated through the filter. Under certain conditions, it is possible that regeneration will produce temperatures that are very high resulting in large thermal stresses that can result in limited fatigue life of the filter and ultimately its destruction. Thus, the level of soot loading is important for successful filter regeneration.

    [0003] It is well known that there are several methods for determining the loading of a filter. The most commonly investigated method is by measurement of the pressure drop across the filter. This method can be combined with expert systems that calculate the amount of soot that has been captured through a cumulative calculation of soot production through an engine.

    [0004] An object of the present invention is the application of microwave technology to the determination of the status of loading of traps or filters.

    [0005] WO92/02807 discloses a method for determining the loading of a PM filter wherein the level of soot accumulation can be monitored by detecting changes in the effective dielectric properties of the filter medium, and subsequently the changes in either the dielectric constant or the dielectric loss factor can be detected for determining the loading of a PM filter. WO92/0280 describes an advantage of the transmission loss measurement system to average the signal over a frequency range, to avoid problems with power source frequency drift with time. Measurement error induced by frequency shift in the source signal is inherent to the invention disclosed in WO92/02807 which requires averaging over a large frequency range to reduce, and is a clear disadvantage.

    Summary of the Invention



    [0006] The method according to the invention for determining loading of a filter having a first dielectric constant with contaminant material having a second dielectric constant, the filter contained within a metallic container forming a microwave cavity, includes establishing microwave energy in the cavity and monitoring changes in the cavity microwave response. It is necessary that the second dielectric constant be different from that of the media which the contaminant material is displacing, usually air, exhaust gases or a fluid. The changes in cavity microwave response are related to filter loading. In a preferred embodiment, the microwave energy includes multiple cavity modes thereby allowing determination of spatial distribution of the contaminant material loading.

    [0007] In a preferred embodiment, the microwave cavity response includes a shift in frequency of a resonant mode. Alternatively, the microwave cavity response includes a shift in quality factor Q of a resonant mode. The microwave cavity response may include a shift in amplitude of the microwave's signal at resonance.

    [0008] It is preferred that at least one antenna be used to transmit/receive microwave energy. In a preferred embodiment, one antenna only is used in a reflection mode to transmit/receive the microwave energy. Two antennas may be used in a transmission mode with one antenna transmitting and the other antenna receiving. Instead of an antenna, at least one waveguide may be used to transmit/receive the microwave energy. In an embodiment, one waveguide is used in reflection mode to transmit/receive the microwave energy. Alternatively, two waveguides may be used in transmission mode with one waveguide transmitting and the other wav guide receiving.

    [0009] In an important embodiment, the filter is a diesel particulate trap for removing particulate matter from the exhaust of a diesel engine. The particulate matter may be soot.

    [0010] In still another embodiment, the metallic container includes a cylindrical portion between two transition cones, one of which is connected to an exhaust pipe. The microwave energy may be in the S-band. A preferred filter material is cordierite. Another suitable filter material is silicon carbide. It is preferred that both low order and high order cavity modes are used to monitor trap loading. In this embodiment, it is preferred that the frequency of operation be chosen so that the modes are operating at cutoff at reduced size inlet and outlet pipes of the filter.

    [0011] When two antennas or waveguides are used, they may be located on opposite sides of the filter or on the same side of the filter. It is preferred that the antennas and waveguides be located on the downstream side of the filter to prevent contamination.

    [0012] The microwave energy may be provided by a modified microwave chip and the microwave energy may be monitored by a diode with or without amplification. Cavity monitoring may use lock-in detection or hetereodyne detection.

    Brief Description of the Drawing



    [0013] 

    Fig. 1 is a perspective view of a canned diesel particulate filter according to an embodiment of the invention.

    Fig. 2 is a cross-sectional view of another embodiment of the invention.

    Fig. 3 is a graph of experimentally determined S21 transmission as a function of frequency (magnitude of S21 is shown).

    Fig. 4 is a graph of experimentally determined S11 (reflection) response as a function of frequency.

    Fig. 5 is a graph showing an expanded view of the transmission mode of Fig. 3.


    Description of the Preferred Embodiment



    [0014] The present invention is based on the recognition that microwaves can be used to determine the status of loading of traps or filters. The loading may be soot, particulates, ash or any solid/liquid. In addition to determining the total amount of loading, the microwave system to be described herein is useful in determining the distribution of the loading throughout the trap. The microwave sensing used in this invention can be inexpensive as inexpensive oscillators and detectors in the frequency range of interest are commercially available.

    [0015] In the case of a diesel particulate filter, the particulates are made from soot and other organic compounds (solid and/or liquid), and ash. For the purposes of this disclosure, the combination of carbon, organic compounds and ash will be referred to, for simplicity, as soot. Those of skill in the art will recognize that soot and organic compounds are removed through regeneration but ash loading will remain.

    [0016] Usually, diesel particulate filter units are made of cordierite material which has a dielectric constant at frequencies around S-band, slightly higher than 4, with a weak temperature dependence. The effective dielectric constant of the cordierite filter, which is mainly void with a fraction of cordierite, is around 1.5-1.7, and it is slightly anisotropic because of the orientation dependence of the trap.. The presence of soot (which can be as much as 10g/liter of trap, with the size of the trap being about two liters for 5.66 inch, 14,38 cm, traps) changes the microwave characteristics of the microwave cavity, as the soot has a dielectric constant that is different from the gas (air or exhaust) that it displaces. Thus, the maximum soot loading for this trap could be as high as 20g with a volume of about 20 cm3. This amount of soot corresponds to a substantial volume and a correspondingly large change in the dielectric characteristics of the trap. It is noted that the dielectric constant of some types of soot is approximately 2.

    [0017] Silicon carbide is also suitable for the manufacture of a diesel particulate filter. The microwave properties of silicon carbide also make it suitable for the use of microwaves for loading sensing. Those skilled in the art will recognize that the microwave load sensing technology disclosed herein can be used, for example, to determine the loading of fiber filters (organic and inorganic fibers), such as those used in bag-houses, and in other applications where substantial masses/volumes of materials that have non-unity dielectric constants are collected.

    [0018] Ash content, which is not removed through regeneration, can be monitored if substantial ash amounts build with time on the trap.

    [0019] Low order cavity modes as well as high order modes can be used to monitor the trap loading. Different cavity modes have different electric field patterns with peaks and nulls that vary across the volume. Since for a given cavity mode only the presence of soot in those regions with high electric field affects the microwave response in the cavity. By choosing different modes in the cavity it is possible to sample different regions and thus obtain information on the soot distribution.

    [0020] The theory on which the present invention is based will now be discussed briefly. The presence of soot affects the cavity response in several ways. The resonant frequency shifts to lower frequencies with soot buildup. In addition, the cavity quality Q is affected by the presence of absorbing soot. Further, the amplitude of the signal at resonance decreases with soot buildup. All three of these parameters can be used to determine the soot level. Several modes can be used to monitor the loading in various regions of the diesel particulate filter.

    [0021] The invention will now be described in conjunction with the figures. With reference first to Fig. 1, a diesel particulate filter unit 10 includes a metallic cylinder (referred as the can) portion 12 and transition cones 14 and 16. The cone 14 connects to an exhaust pipe 18. In this embodiment, a pair of rod antennas 20 and 22 are located on opposite sides of a filter 24.

    [0022] Because of the conical transition sections 14 and 16, the frequency of operation can be chosen so that the modes are operating below cutoff at the small inlet and outlet pipes of the trap, with the frequency such that the modes are operating below cutoff on main exhaust pipe 18. It is not necessary to provide screens to confine the microwave radiation. In the embodiment of Fig. 1, one of the conventional rod antennas, 20 and 22, serves as a transmitter and the other serves as a receiver. It should be understood that both of the rod antennas 20 and 22 could be located on the same side of the filter 24 rather than flanking it. In this case, the preferred location for the rod antennas 20 and 22 will be downstream from the filter element 24 to minimize soot on the surface of the transmitter, receiver or associated components.

    [0023] With reference now to Fig. 2, it is possible to implement the transmitter through the use of a loop antenna 26, or through the use of a waveguide 28. The waveguide 28 will likely be filled with a high dielectric material. It is also contemplated to use the loop antenna 26 and/or the waveguide 28 to monitor the radiation by acting as receiving antennas.

    [0024] It is possible to use a single antenna (rod or loop), as well as a single waveguide, or to use two antennas or waveguides. In the case of a single antenna/waveguide, the information is in the reflected signal. In the case of separate antennas/waveguides for transmitter/receiver it is possible to choose between reflection or transmission modes. In the case of two antennas/waveguides, there are four elements in the coupling matrix that could be used to determine soot loading: transmission from one antenna/waveguide to the other, the reverse, and reflection in each antenna/waveguide.

    [0025] As shown in Fig. 2, one suitable location of the transmitter and/or receiver is in the central region of the filter. This location illustrates a clear advantage of the microwave system disclosed herein as the waves penetrate through the external surface of the filter and a sensor can thus be protected from soot deposition by the external walls of the filter. This arrangement can be done for either single or double waveguides, loop antennas or rod antennas.

    [0026] In operation, microwave energy is established within the cavity of the device 10. There are a large number of modes that can be used to determine the trap loading. Fig. 3 shows the transmission element S21 as a function of frequency and Fig. 4 shows the reflections from a single launcher/receiver system. In Fig. 3 rod antennas were on opposite sides of the trap as shown in Fig. 1. The graph in Fig. 4 was created with a single antenna and the information is in the reflected signal. Fig. 5 is an expanded view of the transmission mode from Fig. 3 and shows detail around the mode near 1.7 GHz. One can readily see how the graph changes from no soot to soot. It is this difference that allows a determination of trap loading to be determined.

    [0027] The microwave sensing system disclosed herein can use inexpensive components with the microwave source being a modified microwave chip such as those used in cell phones, and the receiver can be a simple diode with or without amplification. The detection system can use advanced detection systems such as lock-in detection, heterodyne detection and others.

    [0028] Although the loading has been assumed to be of soot (as from a diesel engine), any matter that builds in a substantial amount on the surface of a filter can be measured as long as it has a dielectric constant different from the background filter material (one in the case of air/engine exhaust).

    [0029] The system can be used to monitor the health of the trap. When substantial cracks are present in the system, soot distribution changes, and becomes inhomogeneous.

    [0030] In addition, it may be possible to use the temperature dependence of the cordierite to monitor temperature across the trap.

    [0031] Although the description refers to the use of a single DPF in the can, the approach is also applicable to the case of multiple filters in a single can.

    [0032] The filtering monitoring system can be either original equipment, as well as be used as refrofits.

    [0033] It is recognized that modifications and variations of the invention will occur to those of ordinary skill in the art and it is intended that all such modifications and variations be included within the scope of the appended claims.


    Claims

    1. A method for determining loading of a filter (24) having a first dielectric constant with contaminant material having a second dielectric constant that differs from the dielectric constant from the media which it displaces, the filter (24) contained within a metallic container (12, 14, 16),
    characterized in that the metallic container (12, 14, 16) forms a microwave cavity, and that the method comprises:

    establishing microwave energy in the cavity;

    monitoring changes in quality factor, Q, of a resonant mode in the microwave cavity; and

    determining filter loading based on the monitored changes in quality factor Q.


     
    2. The method of claim 1 wherein the microwave energy includes multiple cavity modes allowing determination of spatial distribution of the contaminant material loading.
     
    3. The method of claim 1 wherein the microwave cavity response further includes a shift in frequency of a resonant mode, and a shift in amplitude of the microwave signal at resonance.
     
    4. The method of claim 1 including one antenna (26) used in reflection mode to transmit/receive the microwave energy, or wherein two antennas (20, 22) are used in transmission mode with one antenna transmitting and the other antenna receiving.
     
    5. The method of claim 1 including one waveguide (28) used in reflection mode to transmit/receive the microwave energy, or wherein two waveguides are used in transmission mode with one wave guide transmitting and the other waveguide receiving.
     
    6. The method of claim 1 wherein the filter (24) is a diesel particulate trap for removing particulate matter from the exhaust of a diesel engine;
    wherein the metallic container (12, 14, 16)includes a cylindrical portion (12) between two transition cones (14, 16), one of which is connected to an exhaust pipe (18); and
    wherein the filter material is cordierite or silicon carbide.
     
    7. The method of claim 4 wherein at least one antenna is a rod antenna (20), or a loop antenna (26).
     
    8. The method of claim 6 wherein the particulate matter is soot, or ash.
     
    9. The method of claim 1 wherein both low-order and high-order cavity modes are used to monitor loading.
     
    10. The method of claim 6 wherein frequency of operation is chosen so that modes are operating at cutoff at reduced size inlet and outlet pipes of the filter (24).
     
    11. The method of claim 4 wherein the two antennas (20, 22) are located on opposite sides of the filter, or on the same side of the filter, or to minimize soot on the surface of the antennas (20, 22) the antennas are located on the downstream side of the filter.
     
    12. The method of claim 1 where the microwave energy is provided by a modified microwave chip and is monitored by a diode with or without amplification.
     
    13. The method of claim 1 wherein the monitoring uses lock-in detection or heterodyne detection.
     
    14. The method of claim 1 wherein a microwave monitor is used to determine the health of the filter (24) through determination of anomalous soot or ash buildup or lack thereof.
     
    15. The method of claim 1 wherein a microwave monitor is used to determine the temperature of the filter (24), when the dielectric constant of the filter or contaminant material is a function of temperature.
     
    16. The method of claim 1 wherein a microwave monitor is used to determine the loading of ash remaining following filter regeneration.
     
    17. A microwave filter sensing system (10) comprising a combination of:

    a filter (24) contained within a housing (12, 14, 16) forming a microwave cavity; and

    one or more antennas (20, 22) arranged to monitor changes in microwave cavity response, the changes being related to filter loading,

    a microwave generator and detector operable to determine the microwave properties of the cavity; and

    associated electronics and signal processing adapted to determine the filter loading using the method according to any of the preceding claims.


     


    Ansprüche

    1. Verfahren zur Bestimmung der Belastung eines Filters (24), der eine erste Dielektrizitätskonstante hat, mit einem Verunreinigungsmaterial, das eine zweite Dielektrizitätskonstante hat, die von der Dielektrizitätskonstante von dem Medium verschieden ist, das es verdrängt, wobei der Filter (24) in einem metallischen Behälter (12, 14, 16) enthalten ist,
    dadurch gekennzeichnet, dass der metallische Behälter (12, 14, 16) einen Mikrowellenhohlraum bildet und dass das Verfahren aufweist:

    Bereitstellen von Mikrowellenenergie in dem Hohlraum,

    Überwachen von Änderungen in einem Gütefaktor, Q, einer Resonanzmode in dem Mikrowellenhohlraum und

    Bestimmen der Filterbelastung auf Basis der überwachten Änderungen in dem Gütefaktor Q.


     
    2. Verfahren nach Anspruch 1, bei dem die Mikrowellenenergie mehrere Hohlraummoden enthält, die eine Bestimmung einer räumlichen Verteilung der Verunreinigungsmaterialbelastung ermöglichen.
     
    3. Verfahren nach Anspruch 1, bei dem die Mikrowellenhohlraumantwort ferner eine Verschiebung in der Frequenz einer Resonanzmode aufweist und eine Verschiebung in der Amplitude des Mikrowellensignals bei Resonanz.
     
    4. Verfahren nach Anspruch 1, das eine Antenne (26) aufweist, die in einer Reflexionsbetriebsart verwendet wird, um die Mikrowellenenergie zu senden/empfangen, oder bei dem zwei Antennen (20, 22) in einer Sendebetriebsart verwendet werden, wobei eine Antenne sendet und die andere Antenne empfängt.
     
    5. Verfahren nach Anspruch 1, das einen Hohlleiter (28) aufweist, der in einer Reflexionsbetriebsart verwendet wird, um die Mikrowellenenergie zu senden/empfangen, oder bei dem zwei Hohlleiter in einer Sendebetriebsart verwendet werden, wobei ein Hohlleiter sendet und der andere Hohlleiter empfängt.
     
    6. Verfahren nach Anspruch 1, bei dem der Filter (24) ein Dieselpartikelfilter zum Entfernen von Partikelmaterial aus dem Abgas eines Dieselmotors ist,
    wobei der metallische Behälter (12, 14, 16) einen zylindrischen Abschnitt (12) zwischen zwei Übergangskonusse (14, 16) aufweist, von denen einer mit einer Abgasleitung (18) verbunden ist, und
    wobei das Filtermaterial Cordierit oder Siliziumkarbid ist.
     
    7. Verfahren nach Anspruch 4, bei dem mindestens eine Antenne eine Stabantenne (20) oder eine Rahmenantenne (26) ist.
     
    8. Verfahren nach Anspruch 6, bei dem das Partikelmaterial Ruß oder Asche ist.
     
    9. Verfahren nach Anspruch 1, bei dem sowohl Hohlraummoden niedriger Ordnung als auch Hohlraummoden hoher Ordnung verwendet werden, um die Belastung zu überwachen.
     
    10. Verfahren nach Anspruch 6, bei dem die Betriebsfrequenz in der Weise gewählt wird, dass Moden bei Beschneidung an Einlass- und Auslassleitungen verringerter Größe des Filters (24) arbeiten.
     
    11. Verfahren nach Anspruch 4, bei dem die zwei Antennen (20, 22) auf gegenüberliegenden Seiten des Filters angeordnet sind oder auf derselben Seite des Filters oder die Antennen zur Minimierung von Ruß an der Oberfläche der Antennen (20, 22) auf der stromabwärts gelegenen Seite des Filters angeordnet sind.
     
    12. Verfahren nach Anspruch 1, bei dem die Mikrowellenenergie durch einen modifizierten Mikrowellenchip bereitgestellt wird und durch eine Diode mit oder ohne Verstärkung überwacht wird.
     
    13. Verfahren nach Anspruch 1, bei dem die Überwachung Lock-in-Detektion oder Heterodyndetektion verwendet.
     
    14. Verfahren nach Anspruch 1, bei dem eine Mikrowellen-Überwachungseinrichtung verwendet wird, um die Betriebsbereitschaft des Filters (24) durch Bestimmung von anormaler Ruß- oder Aschebildung oder einem Fehlen davon zu bestimmen.
     
    15. Verfahren nach Anspruch 1, bei dem eine Mikrowellen-Überwachungseinrichtung verwendet wird, um die Temperatur des Filters (24) zu bestimmen, wenn die Dielektrizitätskonstante des Filters oder Verunreinigungsmaterials eine Funktion der Temperatur ist.
     
    16. Verfahren nach Anspruch 1, bei dem eine Mikrowellen-Überwachungseinrichtung verwendet wird, um die Belastung von Asche zu bestimmen, die nach einer Filterregeneration verbleibt.
     
    17. Mikrowellenfilterdetektionssystem (10), das eine Kombination des folgenden aufweist:

    eines Filters (24), der in einem Gehäuse (12, 14, 16) enthalten ist, das einen Mikrowellenhohlraum bildet, und

    einer oder mehrerer Antennen (20, 22), die angeordnet sind, um Änderungen in der Mikrowellenhohlraumantwort zu überwachen, wobei die Änderungen mit einer Filterbelastung in Zusammenhang stehen,

    eines Mikrowellengenerators und -detektors, die betrieben werden können, um die Mikrowelleneigenschaften des Hohlraums zu bestimmen, und

    zugeordneter Elektronik und Signalverarbeitung, die angepasst sind, um die Filterbelastung unter Verwendung des Verfahrens nach einem der vorhergehenden Ansprüche zu bestimmen.


     


    Revendications

    1. Procédé de détermination de la charge d'un filtre (24) ayant une première constante diélectrique avec un matériau contaminant ayant une seconde constante diélectrique qui diffère de la constante diélectrique du milieu qu'il déplace, le filtre (24) étant contenu à l'intérieur d'un récipient métallique (12, 14, 16),
    caractérisé en ce que le récipient métallique (12, 14, 16) forme une cavité hyperfréquence et en ce que le procédé comprend :

    l'établissement d'une énergie hyperfréquence dans la cavité ;

    la surveillance de changements dans le facteur de qualité, Q, d'un mode résonnant dans la cavité hyperfréquence ; et

    la détermination de la charge du filtre sur la base des changements surveillés dans le facteur de qualité Q.


     
    2. Procédé selon la revendication 1, dans lequel l'énergie hyperfréquence inclut de multiples modes de cavité permettant la détermination de la distribution spatiale de la charge de matériau contaminant.
     
    3. Procédé selon la revendication 1, dans lequel la réponse de la cavité hyperfréquence inclut en outre un décalage en fréquence d'un mode résonnant et un décalage en amplitude du signal hyperfréquence à la résonance.
     
    4. Procédé selon la revendication 1, incluant une antenne (26) utilisée en mode réflexion pour émettre/recevoir l'énergie hyperfréquence, ou dans lequel deux antennes (20, 22) sont utilisées en mode émission, une antenne émettant et l'autre antenne recevant.
     
    5. Procédé selon la revendication 1, incluant un guide d'ondes (28) utilisé en mode réflexion pour émettre/recevoir l'énergie hyperfréquence, ou dans lequel deux guides d'ondes sont utilisés en mode émission, un guide d'ondes émettant et l'autre guide d'ondes recevant.
     
    6. Procédé selon la revendication 1, dans lequel le filtre (24) est un piège à particules diesel pour éliminer la matière particulaire de l'échappement d'un moteur diesel ;
    dans lequel le récipient métallique (12, 14, 16) inclut une partie cylindrique (12) entre deux cônes de transition (14, 16), l'un d'entre eux étant raccordé à un tuyau d'échappement (18) ; et
    dans lequel le matériau du filtre est de la cordiérite ou du carbure de silicium.
     
    7. Procédé selon la revendication 4, dans lequel au moins une antenne est une antenne tige (20) ou une antenne cadre (26).
     
    8. Procédé selon la revendication 6, dans lequel la matière particulaire est de la suie ou de la cendre.
     
    9. Procédé selon la revendication 1, dans lequel les deux modes de cavité d'ordre faible et d'ordre élevé sont utilisés pour surveiller la charge.
     
    10. Procédé selon la revendication 6, dans lequel la fréquence de fonctionnement est choisie de telle sorte que les modes fonctionnent au point de coupure au niveau de tuyaux d'entrée et de sortie à taille réduite du filtre (24).
     
    11. Procédé selon la revendication 4, dans lequel les deux antennes (20, 22) sont situées sur des côtés opposés du filtre ou sur le même côté du filtre ou, pour réduire au minimum la suie sur la surface des antennes (20, 22), les antennes sont situées sur le côté aval du filtre.
     
    12. Procédé selon la revendication 1, où l'énergie hyperfréquence est fournie par une puce hyperfréquence modifiée et est surveillée par une diode avec ou sans amplification.
     
    13. Procédé selon la revendication 1, dans lequel la surveillance utilise la détection synchrone ou la détection hétérodyne.
     
    14. Procédé selon la revendication 1, dans lequel un dispositif de surveillance hyperfréquence est utilisé pour déterminer la santé du filtre (24) par la détermination d'accumulation anormale de suie ou de cendre ou d'absence de celle-ci.
     
    15. Procédé selon la revendication 1, dans lequel un dispositif de surveillance hyperfréquence est utilisé pour déterminer la température du filtre (24) lorsque la constante diélectrique du filtre ou du matériau contaminant est une fonction de la température.
     
    16. Procédé selon la revendication 1, dans lequel un dispositif de surveillance hyperfréquence est utilisé pour déterminer la charge de cendre restante suite à la régénération du filtre.
     
    17. Système de détection de filtre hyperfréquence (10) comprenant une combinaison :

    d'un filtre (24) contenu à l'intérieur d'un logement (12, 14, 16) formant une cavité hyperfréquence ; et

    d'une ou de plusieurs antennes (20, 22) conçues pour surveiller les changements de réponse de cavité hyperfréquence, les changements étant relatifs à la charge du filtre,

    d'un générateur et d'un détecteur d'hyperfréquences utilisables pour déterminer les propriétés d'hyperfréquence de la cavité ; et

    de l'équipement électronique et du traitement des signaux associés aptes à déterminer la charge du filtre au moyen du procédé selon l'une quelconque des revendications précédentes.


     




    Drawing














    Cited references

    REFERENCES CITED IN THE DESCRIPTION



    This list of references cited by the applicant is for the reader's convenience only. It does not form part of the European patent document. Even though great care has been taken in compiling the references, errors or omissions cannot be excluded and the EPO disclaims all liability in this regard.

    Patent documents cited in the description