(19)
(11)EP 2 023 607 B1

(12)EUROPEAN PATENT SPECIFICATION

(45)Mention of the grant of the patent:
29.07.2020 Bulletin 2020/31

(21)Application number: 08013753.2

(22)Date of filing:  31.07.2008
(51)International Patent Classification (IPC): 
H04N 5/225(2006.01)

(54)

Vehicle camera system

Fahrzeugkamerasystem

Système de caméra pour un véhicule


(84)Designated Contracting States:
DE FR GB IT

(30)Priority: 07.08.2007 JP 2007205805

(43)Date of publication of application:
11.02.2009 Bulletin 2009/07

(73)Proprietor: Hitachi, Ltd.
Chiyoda-ku Tokyo 100-8280 (JP)

(72)Inventors:
  • Hayakawa, Jun c/o Hitachi, Ltd. Intellectual Property Group
    6-1, Marunouchi 1-chome Chiyoda-ku, Tokyo 100-8220 (JP)
  • Ohsumi, Ken c/o Hitachi, Ltd. Intellectual Property Group
    6-1, Marunouchi 1-chome Chiyoda-ku, Tokyo 100-8220 (JP)

(74)Representative: MERH-IP Matias Erny Reichl Hoffmann Patentanwälte PartG mbB 
Paul-Heyse-Strasse 29
80336 München
80336 München (DE)


(56)References cited: : 
JP-A- 2002 300 441
  
      
    Note: Within nine months from the publication of the mention of the grant of the European patent, any person may give notice to the European Patent Office of opposition to the European patent granted. Notice of opposition shall be filed in a written reasoned statement. It shall not be deemed to have been filed until the opposition fee has been paid. (Art. 99(1) European Patent Convention).


    Description

    BACKGROUND OF THE INVENTION


    1. Field of the Invention



    [0001] The present invention relates generally to vehicle camera systems that are mounted in automobiles, More particularly, the invention relates to a vehicle camera system improved in assembling efficiency and in assembling accuracy.

    2. Description of the Related Art



    [0002] During the fabrication of a conventional vehicle camera system, there has been a need to adjust and fix the relationship in position between an image sensor and lens assembly of the camera system in order to align the optical axes of these system constituent elements with each other. A large deal of assembling time has therefore been required during the adjustment of the optical axes.

    [0003] For this reason, in a known camera structure, a resin-sealing portion with a convexity thereon is provided at a marginal portion of an image sensor, and a lens assembly is pressed against a home position on the resin-sealing portion by a two-dimensional elastic body. Thus, the image sensor and the lens assembly are positioned. Such a camera structure is proposed in JP-A-2006-33254, for example.

    [0004] In JP 2002 300441 A a CCD mounting unit is described. A mounting structure is provided for a solid state imaging device for determining the mounting position with respect to the lens barrel of the solid state imaging device. The mounting structure of the solid state imaging device includes a resilient member that is configured to place the inclined surface opposite the mounting reference of the solid state imaging device provided on the mounting structure, the elastic member, as the inclined surface is in contact with the solid stage imaging device.

    Summary of the Invention



    [0005] The camera structure described in JP-A-2006-33254 , however, requires a resin-sealing step during the assembly of the camera, and hence, a correspondingly longer assembling time. In addition, since the image sensor and the lens assembly can only be two-dimensionally constrained with one elastic body, fixing in three-dimensional directions requires a plurality of elastic bodies, and hence, a longer assembling time.

    [0006] An object of the present invention is to provide a vehicle camera system adapted for easy position matching of an image sensor and a lens assembly, and capable of being reduced in assembling time,
    1. (1) In order to achieve the above object, according to the present invention there is proposed a vehicle system according to claim 1. Dependent claims relate to preferred exemplary embodiments.
      A vehicle camera system may comprise: an image sensor for acquiring images of a motor vehicle periphery, the image sensor having three-dimensional datum planes; a circuit board with the image sensor mounted thereon; and/or a lens assembly with a lens for focusing an acquired image on the image sensor. The lens assembly further has a concave portion for accommodating the image sensor. The concave portion of the lens assembly has: first, second, and third optical datum planes, each of which lies in any one of three-dimensional directions; first and second opposed planes of the lens assembly that are opposed to the first and second optical datum planes, respectively; and/or first and second force direction converters, one of which is provided between the third optical datum plane and the first opposed plane of the lens assembly, and the other is provided between the third optical datum plane and the second opposed plane of the lens assembly.
      The camera system may further comprises an elastic body having first and second protrusions. After the accommodation of the image sensor in the concave portion of the lens assembly, when (a) the first and second protrusions of the elastic body are inserted into first and second clearances, respectively, the first clearance being formed between a first image sensor opposed plane that is opposed to a first datum plane of the image sensor and the first opposed plane of the lens assembly, and the second clearance being formed between a second image sensor opposed plane that is opposed to a second datum plane of the image sensor and the second opposed plane of the lens assembly, and/or (b) the elastic body is pressed from a direction of the circuit board, the force direction converters convert the pressing direction to a force direction in which the first and second datum planes of the image sensor will be positioned with respect to the first and second optical datum planes, respectively, and the conversion results in the first and second datum planes of the image sensor being positioned with respect to the first and second optical datum planes, and a third datum plane of the image sensor being positioned with respect to the third optical datum plane by the force applied in the pressing direction.
      The configuration of the camera system according to claim 1 makes the image sensor and the lens assembly easy to match in position, and allows reduction in assembling time.
    2. (2) In above item (1), the elastic body is preferably formed from silicone rubber.
    3. (3) In item (1), the elastic body is preferably slitted at lower edges of the first and second protrusions.
    4. (4) In item (1), the lens assembly preferably includes a snap-fit to fix the circuit board.
    5. (5) In item (1), lengths of the first and second protrusions of the elastic body are preferably greater than depths of the first and second clearances.


    [0007] According to the present invention, position matching between an image sensor and a lens assembly is facilitated and an assembling time can be shortened.

    Brief Description of the Drawings



    [0008] 

    Fig. 1 is an exploded perspective view showing the configuration of a vehicle camera system according to an embodiment of the present invention;

    Fig. 2 is a perspective view showing the configuration of a lens assembly used in the vehicle camera system according to the embodiment;

    Fig. 3 is another perspective view showing the configuration of the lens assembly used in the vehicle camera system according to the embodiment;

    Fig. 4 is a perspective view showing the configuration of an image sensor used in the vehicle camera system according to the embodiment;

    Fig. 5 is a perspective view showing the configuration of an elastic body used in the vehicle camera system according to the embodiment;

    Fig. 6 is a flowchart that shows an assembly sequence relating to the vehicle camera system according to the embodiment;

    Fig. 7 is a perspective view showing a state of the camera existing during the assembly of the vehicle camera system according to the embodiment;

    Fig. 8 is a perspective view showing another state of the camera existing during the assembly of the vehicle camera system according to the embodiment;

    Fig. 9 is a perspective view showing yet another state of the camera existing during the assembly of the vehicle camera system according to the embodiment;

    Figs. 10A to 10C are explanatory diagrams of positioning principles during the assembly of the vehicle camera system according to the present embodiment;

    Fig. 11 is a perspective view showing still another state of the camera existing during the assembly of the vehicle camera system according to the embodiment;

    Fig. 12 is an explanatory diagram of an assembly process relating to a circuit board, lens assembly, and cover case used in the vehicle camera system according to the present embodiment;

    Fig. 13 is another explanatory diagram of the assembly process relating to the circuit board, lens assembly, and cover case used in the vehicle camera system according to the present embodiment;

    Fig. 14 is yet another explanatory diagram of the assembly process relating to the circuit board, lens assembly, and cover case used in the vehicle camera system according to the present embodiment; and

    Fig. 15 is a perspective view showing an example of a form of installing the vehicle camera system of the present embodiment in a vehicle.


    Description of the Preferred EmbodimentS



    [0009] The configuration of a vehicle camera system according to an embodiment of the present invention will be described using Figs. 1 to 15. Assembly of the vehicle camera system will also be described.

    [0010] The configuration of the vehicle camera system according to the present embodiment is first described using Fig. 1.

    [0011] Fig. 1 is an exploded perspective view showing the configuration of the vehicle camera system according to the present embodiment.

    [0012] The vehicle camera system according to the present embodiment includes a lens assembly 10, an image sensor 20, an elastic body 30, and a circuit board 40. Additionally, the lens assembly 10 has a lens barrel 11 including a lens (or lenses)

    [0013] The lens barrel 11 contains one or more lenses. Although generally adapted to allow only lens focus to be adjusted independently of the lens assembly 10, the lens barrel 11 can be formed integrally with the lens assembly 10. In this case, a certain degree of defocusing can be absorbed by using a lens of a wider-focusing range (i.e., a lens with greater focal depth).

    [0014] Detailed structures of each section of the vehicle camera system according to the present embodiment are next described using Figs. 2 to 5.

    [0015] The configuration of the lens assembly 10 used in the vehicle camera system according to the present embodiment is first described using Figs.2 and 3.

    [0016] Figs. 2 and 3 are perspective views showing the configuration of the lens assembly used in the vehicle camera system according to the present embodiment. The same reference numbers in Figs. 2 and 3 designate the same sections.

    [0017] The lens assembly 10 is formed of a high-strength plastic material such as polyphenylene sulfide (PPS). This is because the lens assembly needs to be formed with optical datum planes and because a material lower in price, in addition to being more resistant to thermal deformation, aged deterioration, vibration, and the like, is desirable.

    [0018] As shown in Fig. 2, a rectangular concave portion 16 with a size large enough for accommodating the image sensor 20 shown in Fig. 1 is formed centrally in the lens assembly 10. Optical datum planes 12a, 12b, and 12c for position matching to the image sensor 20 are formed at the concave portion 16. The optical datum planes 12a, 12b, and 12c are each formed with greater planarity, and at a higher position, than any other plane. In addition, the first datum plane 12a, second datum plane 12b, and third datum plane 12c of the lens assembly are formed in three-dimensional directions so as to be perpendicular to one another.

    [0019] As shown in Fig. 3, a first opposed plane 14a of the lens assembly is positioned to face the first datum plane 12a of the lens assembly, and a second opposed plane 14b of the lens assembly is positioned to face the second datum plane 12b of the lens assembly. A distance between the first datum plane 12a and first opposed plane 14a of the lens assembly, and a distance between the second datum plane 12b and second opposed plane 14b of the lens assembly are greater than vertical and horizontal sizes, respectively, of the image sensor 20 inserted into the concave portion 16.

    [0020] The concave portion 16 includes a convexity 17 protruding in directions of the first lens assembly datum plane 12a and the second lens assembly datum plane 12b. If the image sensor 20 is inserted into the concave portion 16 intact, the convex portion 17 will be an obstruction to the insertion. In order to avoid this, therefore, the image sensor 20 is inserted with directionality proximate to the first lens assembly datum plane 12a and the second lens assembly datum plane 12b. A clearance is consequently formed between a lateral face of the image sensor 20, the first lens assembly opposed plane 14a, and the second lens assembly opposed plane 14b. A convex portion (described later herein) on the elastic body 30 shown in Fig. 1 is inserted into the above clearance. The insertion of this convex portion will be described later herein Fig. 10.

    [0021] The lens assembly 10 further has a curved surface 15a between the first lens assembly datum plane 12a and the first lens assembly opposed plane 14a, and a curved surface 15b between the second lens assembly datum plane 12b and the second lens assembly opposed plane 14b. As will be described later herein Fig. 10, the curved surfaces 15a and 15b act as force direction converters.

    [0022] Referring back to Fig. 2, the lens assembly 10 includes fixing portions 11a and 11b for fixing the circuit board 40 and the lens assembly 10. The fixing portions 11a and 11b are each of a no-screw structure, such as a snap-fit.

    [0023] The lens assembly 10 also includes fixing portions 13a, 13b, and 13c for fixing a cover case 70 of the camera and for fixing the lens assembly 10. The fixing portions 13a, 13b, and 13c are each of a no-screw structure, such as a snap-fit.

    [0024] Next, the configuration of the image sensor 20 used in the vehicle camera system according to the present embodiment is described below using Fig. 4.

    [0025] Fig. 4 is a perspective view showing the configuration of the image sensor used in the vehicle camera system according to the present embodiment.

    [0026] The image sensor 20 is a device such as a charge-coupled device (CCD) or a complementary metal-oxide semiconductor (CMOS) device. The image sensor 20 has an imaging surface 22. After the lens assembly 10 has focused light, the image sensor 20 images the focused light on the imaging surface 22 and then converts the light into electrical signal form.

    [0027] Also, the image sensor 20 has triaxial datum planes 21a, 21b, and 21c that serve as a basis for imaging on the imaging surface 22. The first datum plane 21a, second datum plane 21b, and third datum plane 21c of the image sensor are each formed in any one of three-dimensional directions so as to be perpendicular to one another.

    [0028] A plane opposed to the first image sensor datum plane 21a is termed a first image sensor opposed plane 24a, and a plane opposed to the second image sensor datum plane 21b is termed a second image sensor opposed plane 24b.

    [0029] In addition, the image sensor 20 has lead terminals 23 for establishing circuit-like connection to the circuit board 40 shown in Fig. 1.

    [0030] Next, the configuration of the elastic body 30 used in the vehicle camera system according to the present embodiment is described below using Fig. 5.

    [0031] Fig. 5 is a perspective view showing the configuration of the elastic body used in the vehicle camera system according to the present embodiment.

    [0032] The elastic body 30 is formed of a relatively soft material such as silicone rubber, and can be flexibly bended.

    [0033] The elastic body 30 has protrusions 31a and 31b. The protrusions 31a and 31b are formed on adjoining sides of the elastic body 30, and are perpendicular to each other.

    [0034] The elastic body 30 also has a hole 32a and notch 32b permitting the lead terminals 23 of the image sensor 20 in Fig. 4 to pass through.

    [0035] Additionally, slits 36a and 36b for easy bending of the protrusions 31a and 31b of the elastic body 30 are formed basally at the protrusions 31a and 31b.

    [0036] Next, an assembly process for the vehicle camera system according to the present embodiment is described below using Figs. 6 to 11.

    [0037] Fig. 6 is a flowchart that shows an assembly sequence relating to the vehicle camera system according to the present embodiment. Figs. 7 to 9 and 11 are perspective views that show states of the camera existing during the assembly of the vehicle camera system according to the embodiment. The same reference numbers in Figs. 7 to 11 as used in Figs. 1 to 5 designate the same sections.

    [0038] Referring to Fig. 6, step S10 is executed to match the datum planes 21a, 21b, and 21c of the image sensor 20 to the optical datum planes 12a, 12b, and 12c, respectively, of the lens assembly 10.

    [0039] That is to say, as shown in Fig. 7, the datum planes 21a, 21b, and 21c of the image sensor 20 are matched to the optical datum planes 12a, 12b, and 12c, respectively, of the lens assembly 10. In this step, a face of the image sensor 20 that is opposite to the face having the lead terminals is directed towards the lens barrel 11 mounted on the lens assembly 10.

    [0040] At this time, since the lens assembly 10 has the convex portion 17, the datum planes 21a, 21b, and 21c of the image sensor 20 can be easily matched to the optical datum planes 12a, 12b, and 12c, respectively, of the lens assembly 10, by matching the direction of the image sensor 20 properly and inserting the image sensor 20 into the concave portion 16 of the lens assembly 10. The third optical datum plane 12c of the lens assembly 10 and the third datum plane 21c of the image sensor 20 come into contact with each other. At this point of time, however, there is no need for the optical datum planes 12a and 12b of the lens assembly 10 to be in firm contact with the datum planes 21a and 21b, respectively, of the image sensor 20.

    [0041] Next, step S20 in Fig. 6 is executed to dispose the elastic body 30 so that this body presses one of the optical datum planes of the image sensor 20 against the associated datum plane of the lens assembly.

    [0042] That is to say, as shown in Fig. 8, upon completion of step S10 in Fig. 6, clearances 18a and 18b are formed between the lens assembly 10 and the image sensor 20, i.e., at the above-mentioned optical datum plane of the lens assembly 10 and a plane of the image sensor that is opposite to the above datum plane thereof. More specifically, the clearance 18a is formed between the first lens assembly opposed plane 14a in Fig. 3 and the first image sensor opposed plane 24a in Fig. 4, and the clearance 18b is formed between the second lens assembly opposed plane 14b in Fig. 3 and the second image sensor opposed plane 24b in Fig. 4.

    [0043] The elastic body 30 is disposed so that the protrusions 31a and 31b thereof are inserted into the clearances 18a and 18b respectively that are present between the lens assembly 10 and the image sensor 20. Additionally, since the elastic body 30 has the hole 32a and the notch 32b through which the lead terminals 23 of the image sensor 20 can be passed, the lead terminals 23 are passed through the hole 32a and the notch 32b simultaneously with the insertion of the protrusions 31a and 31b into the clearances 18a and 18b.

    [0044] The elastic body 30 has non-electroconductive characteristics to prevent short-circuiting due to contact with the lead terminals 23 of the image sensor 20.

    [0045] Next, the circuit board 40 is fitted into the lens assembly 10 in step S30 of Fig. 6. After being fitted into the lens assembly 10, the circuit board 40 is fixed to the lens assembly 10 via the fixing portions 11a and 11b thereof.

    [0046] That is to say, as shown in Fig. 9, the circuit board 40 is fitted into the lens assembly 10 and then fixed using the fixing portions 11a and 11b provided on the lens assembly 10. During this fixing operation, the image sensor 20 can be easily positioned with respect to the lens assembly 10. This positioning operation will be described using Figs. 10A, 10B, and 10C.

    [0047] Principles of positioning during the assembly of the vehicle camera system according to the present embodiment are described below using Figs. 10A to 10C.

    [0048] Figs. 10A to 10C are explanatory diagrams of the positioning principles during the assembly of the vehicle camera system according to the present embodiment. The same reference numbers in Figs. 10A to 10C as used in Figs. 1 to 5 designate the same sections.

    [0049] Fig. 10A shows a state immediately following the insertion of the protrusion 31b of the elastic body 30 into the clearance 18b present between the lens assembly 10 and the image sensor 20. Because of no external force being applied to the elastic body 30, the protrusion 31b retains an original shape without deforming. In addition, under this state, the third optical datum plane 12c of the lens assembly 10 and the third datum plane 21c of the image sensor 20 are in contact with each other. At this point of time, however, there is no need for the optical datum plane 12b of the lens assembly 10 and the datum plane 21b of the image sensor 20 to be in firm contact with each other.

    [0050] Fig. 10B shows a state of the circuit board 40 being pressed against the elastic body 30 by a force A. At this point of time, the protrusion 31b of the elastic body 30 comes into contact with the curved surface 15b, and the force A deforms a front end of the protrusion 31b, along the curved surface 15b. As a result, the protrusion 31b comes into contact with the second opposed plane 24b of the image sensor 30, and a force B starts to press the second datum plane 21b of the image sensor 20 against the second datum plane 12a of the lens assembly 10. This means that the curved surface 15b operates to convert a direction of the force A to that of the force B. This conversion positions the second datum plane 21b of the image sensor 20 with respect to the second datum plane 12a of the lens assembly 10.

    [0051] Fig. 10C shows a state of the circuit board 40 existing upon completion of the pressing operation with the force A. When the force A causes the circuit board 40 to depress the elastic body 30 with a force C, the elastic body 30 is pressed against an upper face of the image sensor 20. This positions the third datum plane 21c of the image sensor 20 with respect to the third optical datum plane 12c of the lens assembly 10, and fixes the circuit board 40 via connections (fixing portions) 11a and 11b.

    [0052] The image sensor 20 and the lens assembly 10 are constructed so that after the datum plane 21b of the image sensor 20 has been pressed against the optical datum plane 12b of the lens assembly 10 on the same plane as that of the pressing force applied earlier, the datum plane 21c of the image sensor 20 is pressed against the optical datum plane 12c of the lens assembly 10. To this end, the protrusion 31b of the elastic body has a length greater than depth of the clearance 18b. Thus, the protrusion 31b of the elastic body 30 is earlier bent by the pressing force A, and then the force C is generated in a direction of the image sensor 20, thereby pressing the sensor.

    [0053] While the above description applies when the second datum plane 21b of the image sensor 20 and the second datum plane 12a of the lens assembly 10 are positioned using the protrusion 31b, the second datum plane 21b and second datum plane 12a shown in Fig. 7 are likewise positioned using the protrusion 31b shown in Fig. 5.

    [0054] As shown in Fig. 5, the protrusions 31a and 31b of the elastic body 30 have slits 36a and 36b at respective basal portions, and the protrusions 31a and 31b can easily be bent as shown in Fig. 10B.

    [0055] In addition, the elastic body 30 may be formed using a plurality of materials to enhance the bendability of the protrusions 31a, 31b.

    [0056] The elastic body 30 provides stronger hermetic sealing by filling in the clearances between the imaging surface of the image sensor 20 and the lens assembly 10. Therefore, unnecessary moisture does not enter any sections between the imaging surface of the image sensor 20 and the lens assembly 10, and this characteristic prevents the imaging surface of the image sensor 20 from fogging.

    [0057] The curved surface 15a and 15b acts as a force direction converter, so instead of this curved surface, any inclined section can be used, for example, only if the inclined section converts the direction of the force A into that of the force B.

    [0058] Referring again to Fig. 6, step S40 is executed to solder the lead terminals 23 of the image sensor 20 onto the circuit board 40. That is to say, as shown in Fig. 11, the lead terminals 23 and the circuit board 40 are fixed by soldering.

    [0059] Next, assembly of the circuit board, lens assembly, and cover case in the vehicle camera system according to the present embodiment will be described using Figs. 12 to 14.

    [0060] Figs. 12 to 14 are explanatory diagrams of an assembly process relating to the circuit board, lens assembly, and cover case in the vehicle camera system according to the present embodiment. The same reference numbers in Figs. 11 to 14 as used in Figs. 1 to 5 designate the same sections.

    [0061] The vehicle camera system needs miniaturizing, since its installation location in the vehicle is limited for reasons associated with an imaging range. In particular, since the camera will be installed primarily near a rearview mirror inside the vehicle, it is desirable that the sections of the image sensor 20 that are arranged in the direction of the imaging surface be miniaturized to ensure as wide a driver's vision as possible.

    [0062] Accordingly, only minimum necessary circuits relating to imaging, such as the image sensor 20, are mounted on the first circuit board 40, and other circuits are mounted on a second circuit board 60 through a connector 42.

    [0063] On the first circuit board 40, as described per Fig. 11, the image sensor 30 is mounted, and as shown in Figs. 12 and 13, the connector 42 and other elements are also mounted. Image data that the image sensor 20 has acquired on the first circuit board 40 is sent to the second circuit board 60 through the connector 42. A microcomputer, a power supply circuit, a vehicle connector, and other large components are mounted on the second circuit board 60. The camera system constituent elements in the direction of the imaging surface can be reduced in dimension by mounting large components on the second circuit board 60 in such a form.

    [0064] Connector-to-connector connection, cable connection, connector-to-board connection, or the like can be used to interconnect the first circuit board 40 and the second circuit board 60. In terms of the ease in assembly, however, connector-to-board connection is desirable. As shown in Fig. 13, connector-to-board connection allows both circuit boards to be connected using only the connector 42 and a connecting terminal 61 of the second circuit board, and is also advantageous in costs since no cable is necessary.

    [0065] Additionally, as shown in Fig.14, connector-to-board connection is effective for reducing assembly man-hours, since the cover case 70 can be assembled together with the second circuit board 60 when coupled to the lens assembly.

    [0066] The cover case 70 is formed in a non-glossy black color to minimize reflection onto a windshield.

    [0067] Next, a form of vehicle mounting of the vehicle camera system according to the present embodiment is described below using Fig. 15.

    [0068] Fig. 15 is a perspective view showing an example of a form of installing the vehicle camera system of the present embodiment in the vehicle.

    [0069] An attachment 80 for installing the vehicle camera system is mounted in the vehicle interior. The cover case 70 or the lens assembly 10 has a support 71 for connecting the case 70 or the assembly 10 to the attachment 80, and the support 71 is used to install the attachment 80. An upper planar section of the attachment 80 is installed so as to be in firm contact with the windshield, for example, of the vehicle.

    [0070] In addition, the cover case 70 and the lens assembly 10 are of a structure not degrading a layout or design of the vehicle interior and exterior.

    [0071] As set forth above, according to the present embodiment, the assembling time required can be reduced since positions of the image sensor and the lens assembly can be matched with respect to each other via an elastic body in all three-dimensional directions by pressing or depressing the circuit board only from one specific direction.


    Claims

    1. A vehicle camera system for mounting in a motor vehicle, the camera system comprising:

    - a circuit board (40);

    - an elastic body (30) having first and second protrusions (31a, 31b);

    - an image sensor (20) for acquiring images of a vehicle periphery; and

    - a lens assembly (10) with a lens for focusing an acquired image on the image sensor (20), wherein:

    the lens assembly (10) further has fixing portions (11a, 11b) for fixing the circuit board (40) and when the circuit board (40) is fixed to the lens assembly (10) by the fixing portions (11a, 11b), the elastic body (30) is pressed by the circuit board (40) and the image sensor (20) is fixed by being pressed by the elastic body (30) against the lens assembly (10), and

    when the circuit board (40) is fixed to the lens assembly (10) by the fixing portions (11a, 11b) the elastic body (30) is pressed between the image sensor (20) and the circuit board (40) white the image sensor (20) and the circuit board (40) are electrically connected, and

    the lens assembly (10) further has a concave portion (16) and the concave portion (16) of the lens assembly (10) includes inner walls being a first, second, third datum plane (12a, 12b, 12c) and a first, second opposed plane (14a, 14b) wherein

    the first opposed plane (14a) is positioned to face the first datum plane (12a) and a second opposed plane (14b) is positioned to face the second datum plane (12b), and

    the first, second, third datum planes (12a, 12b, 12c) are formed so as to be perpendicular to each other and are adapted to accommodate the image sensor (20);

    - the image sensor (20) having outer walls being a first, second and third image sensor datum plane (21a, 21b, 21c) and a first, second image sensor opposed plane (24a, 24b), wherein:
    the first, second and third image sensor datum planes (21a, 21b, 21c) of the image sensor (20) are formed so as to be perpendicular to each other, and
    the first image sensor datum plane (21a) is positioned to face the first image sensor opposed plane
    (24a), and the second image sensor datum plane (21b) is positioned to face the second image sensor opposed plane (24b);

    - the first and second protrusions (31a, 31b) of the elastic body (30) are formed along a whole length of adjoining sides of the elastic body (30) and are perpendicular to each other wherein:

    the protrusions (31a, 31b) are shorter in the direction perpendicular to the plane (30) than in the direction along the adjoining sides of the elastic body, and

    the first and second protrusions (31a, 31b) of the elastic body (30) are adapted to be deformed when the circuit board (40) is pressed against the elastic body (30) by a force (A),

    a first clearance (18a) being formed between the first image sensor opposed plane (24a) that is opposed to the first image sensor datum plane (21a) of the image sensor (20) and the first opposed plane (14a) of the lens assembly (10), and a second clearance (18b) being formed between the second image sensor opposed plane (24b) that is opposed to the second image sensor datum plane (21b) of the image sensor (20) and the second opposed plane (14b) of the lens assembly (10), and

    first and second force direction converters (15a, 1.5b) adapted to fill the corners between the opposed planes and the plane in which the lens is arranged; and

    after the accommodation of the image sensor (20) in the concave portion (16) of the lens assembly (10),

    when the first and second protrusions (31a, 31b) of the elastic body (30) are inserted into the first and second clearances (18a, 18b), respectively, then

    the elastic body (30) is pressed from a direction of the circuit board (40),

    characterized In that the force direction converters (15a, 15b) are surfaces which act as force direction converters adapted to deform the protrusions of the elastic body (30) and which therefore, when the circuit board (40) is pressed against the elastic body (30) and the protrusions (31a, 31b) of the elastic body (30) come into contact with said force direction converter (15a, 15b) convert the pressing direction to a force direction in which the first and second image sensor datum planes of the image sensor (20) will be positioned with respect to the first and second datum planes (12a, 12b), respectively, and the conversion results in the first and second image sensor datum planes (21 a, 21b) of the image sensor (20) being positioned with respect to the first and second datum planes (12a, 12b), and a third image sensor datum plane of the image sensor (20) being positioned with respect to the third datum plane (12c) by the force applied in the pressing direction by the elastic body (30) being pressed by the circuit board (40).


     
    2. The vehicle camera system according to claim 1, wherein
    the elastic body (30) is formed from silicone rubber.
     
    3. The vehicle camera system according to claim 1 or 2, wherein
    the elastic body (30) is slitted at lower edges of the first and second protrusions (31a, 31b).
     
    4. The vehicle camera system according to at least one of claims 1 to 3, wherein
    the lens assembly (10) includes a snap-fit to fix the circuit board.
     


    Ansprüche

    1. Fahrzeugkamerasystem für die Montage in einem Kraftfahrzeug, wobei das Kamerasystem Folgendes umfasst:

    - eine Leiterplatte (40);

    - einen elastischen Körper (30), der einen ersten und einen zweiten Vorsprung (31a, 31b) aufweist;

    - einen Bildsensor (20) zum Erfassen von Bildern einer Fahrzeugumgebung und

    - eine Linsenbaugruppe (10) mit einer Linse zum Fokussieren eines erfassten Bildes auf den Bildsensor (20), wobei:

    die Linsenbaugruppe (10) ferner Befestigungsabschnitte (11a, 11b) zum Befestigen der Leiterplatte (40) aufweist und dann, wenn die Leiterplatte (40) durch die Befestigungsabschnitte (11a, 11b) an der Linsenbaugruppe (10) befestigt ist, der elastische Körper (30) durch die Leiterplatte (40) gedrückt wird und der Bildsensor (20) befestigt wird, indem er durch den elastischen Körper (30) gegen die Linsenbaugruppe (10) gedrückt wird und

    dann, wenn die Leiterplatte (40) durch die Befestigungsabschnitte (11a, 11b) an der Linsenbaugruppe (10) befestigt ist, der elastische Körper (30) zwischen den Bildsensor (20) und die Leiterplatte (40) gedrückt wird, während der Bildsensor (20) und die Leiterplatte (40) elektrisch verbunden sind, und

    die Linsenbaugruppe (10) ferner einen konkaven Abschnitt (16) aufweist und der konkave Abschnitt (16) der Linsenbaugruppe (10) Innenwände umfasst, die eine erste, eine zweite und eine dritte Bezugsebene (12a, 12b, 12c) und eine erste und eine zweite gegenüberliegende Ebene (14a, 14b) sind, wobei

    die erste gegenüberliegende Ebene (14a) so positioniert ist, dass sie der ersten Bezugsebene (12a) zugewandt ist, und eine zweite gegenüberliegende Ebene (14b) so positioniert ist, dass sie der zweiten Bezugsebene (12b) zugewandt ist, und

    die erste, die zweite und die dritte Bezugsebene (12a, 12b, 12c) so gebildet sind, dass sie zueinander senkrecht sind und dafür ausgelegt sind, den Bildsensor (20) aufzunehmen;

    der Bildsensor (20) Außenwände aufweist, die eine erste, eine zweite und eine dritte Bildsensorbezugsebene (21a, 21b, 21c) und eine erste und eine zweite gegenüberliegende Bildsensorebene (24a, 24b) sind,

    wobei:

    die erste, die zweite und die dritte Bildsensorbezugsebene (21a, 21b, 21c) des Bildsensors (20) so gebildet sind, dass sie zueinander senkrecht sind, und

    die erste Bildsensorbezugsebene (21a) so positioniert ist, das sie der ersten gegenüberliegenden Bildsensorebene (24a) zugewandt ist, und die zweite Bildsensorbezugsebene (21b) so positioniert ist, dass sie der zweiten gegenüberliegenden Bildsensorebene (24b) zugewandt ist;

    der erste und der zweite Vorsprung (31a, 31b) des elastischen Körpers (30) entlang einer Gesamtlänge von angrenzenden Seiten des elastischen Körpers (30) gebildet sind und zueinander senkrecht sind, wobei:

    die Vorsprünge (31a, 31b) in der Richtung senkrecht zu der Ebene (30) kürzer sind als in der Richtung entlang der angrenzenden Seiten des elastischen Körpers und

    der erste und der zweite Vorsprung (31a, 31b) des elastischen Körpers (30) dafür ausgelegt sind, verformt zu werden, wenn die Leiterplatte (40) durch eine Kraft (A) gegen den elastischen Körper (30) gedrückt wird,

    wobei ein erster Zwischenraum (18a) zwischen der ersten gegenüberliegenden Bildsensorebene (24a), die gegenüber der ersten Bildsensorbezugsebene (21a) des Bildsensors (20) liegt, und der ersten gegenüberliegenden Ebene (14a) der Linsenbaugruppe (10) gebildet wird und ein zweiter Zwischenraum (18b) zwischen der zweiten gegenüberliegenden Bildsensorebene (24b), die gegenüber der zweiten Bildsensorbezugsebene (21b) des Bildsensors (20) liegt, und der zweiten gegenüberliegenden Ebene (14b) der Linsenbaugruppe (10) gebildet wird und

    ein erster und ein zweiter Kraftrichtungsumlenker (15a, 15b) dafür ausgelegt sind, die Kanten zwischen den gegenüberliegenden Ebenen und der Ebene, in der die Linse angeordnet ist, zu füllen, und

    nach der Unterbringung des Bildsensors (20) in dem konkaven Abschnitt (16) der Linsenbaugruppe (10)

    dann, wenn der erste und der zweite Vorsprung (31a, 31b) des elastischen Körpers (30) jeweils in den ersten und den zweiten Zwischenraum (18a, 18b) eingeführt werden, der elastische Körper (30) aus der Richtung der Leiterplatte (40) gedrückt wird,

    dadurch gekennzeichnet, dass

    die Kraftrichtungsumlenker (15a, 15b) Oberflächen sind, die als Kraftrichtungsumlenker wirken, die dafür ausgelegt sind, die Vorsprünge des elastischen Körpers (30) zu verformen, und die deshalb dann, wenn die Leiterplatte (40) gegen den elastischen Körper gedrückt wird und die Vorsprünge (31a, 31b) des elastischen Körpers (30) in Kontakt mit den Kraftrichtungsumlenkern (15a, 15b) kommen, die Druckrichtung in eine Kraftrichtung umlenken, in der die erste und die zweite Bildsensorbezugsebene des Bildsensors (20) jeweils in Bezug auf die erste und die zweite Bezugsebene (12a, 12b) positioniert wird, und die Umlenkung dazu führt, dass die erste und die zweite Bildsensorbezugsebene (21a, 21b) des Bildsensors (20) in Bezug auf die erste und die zweite Bezugsebene (12a, 12b) positioniert wird und eine dritte Bildsensorbezugsebene des Bildsensors (20) in Bezug auf die dritte Bezugsebene (12c) durch die Kraft, die durch die Druckrichtung des elastischen Körpers (30), der durch die Leiterplatte (40) gedrückt wird, ausgeübt wird, positioniert wird.


     
    2. Fahrzeugkamerasystem nach Anspruch 1, wobei
    der elastische Körper (30) aus einem Silikongummi gebildet ist.
     
    3. Fahrzeugkamerasystem nach Anspruch 1 oder 2, wobei
    der elastische Körper (30) an den unteren Kanten des ersten und des zweiten Vorsprungs (31a, 31b) geschlitzt ist.
     
    4. Fahrzeugkamerasystem nach mindestens einem der Ansprüche 1 bis 3, wobei
    die Linsenbaugruppe (10) einen Schnappverschluss umfasst, um die Leiterplatte zu befestigen.
     


    Revendications

    1. Système à caméra pour véhicule destiné à être monté dans un véhicule à moteur, le système à caméra comprenant :

    - une carte à circuits (40) ;

    - un corps élastique (30) ayant une première et une seconde projection (31a, 31b) ;

    - un capteur d'image (20) pour acquérir des images d'une périphérie du véhicule ; et

    - un assemblage à lentille (10) avec une lentille pour focaliser une image acquise sur le capteur d'image (20), dans lequel :

    l'assemblage à lentille (10) comprend en outre des portions de fixation (11a, 11b) pour fixer la carte à circuits (40) et, quand la carte à circuits (40) est fixée sur l'assemblage à lentille (10) par les portions de fixation (11a, 11b), le corps élastique (30) est pressé par la carte à circuits (40) et le capteur d'image (20) est fixé en étant pressé par le corps élastique (30) contre l'assemblage à lentille (10), et

    quand la carte à circuits (40) est fixée sur l'assemblage à lentille (10) par les portions de fixation (11a, 11b), le corps élastique (30) est pressé entre le capteur d'image (20) et la carte à circuits (40) alors que le capteur d'image (20) et la carte à circuits (40) sont électriquement connectés, et

    l'assemblage à lentille (10) a en outre une portion concave (16) et la portion concave (16) de l'assemblage à lentille (10) inclut des parois intérieures qui suivent un premier, un second et un troisième plan de référence (12a, 12b, 12c), et un premier et un second plan opposés (14a, 14b), dans lequel le premier plan opposé (14a) est positionné en face du premier plan de référence (12a) et un second plan opposé (14b) est positionné en face du second plan de référence (12b), et

    le premier, le second et le troisième plan de référence (12a, 12b, 12c) sont formés de manière à être perpendiculaires les uns aux autres et sont adaptés à loger le capteur d'image (20) ;

    le capteur d'image (20) ayant des parois extérieures qui suivent un premier, un second et un troisième plan de référence de capteur d'image (21a, 21b, 21c), et un premier et un second plan opposés de capteur d'image (24a, 24b),

    dans lequel :

    le premier, le second et le troisième plan de référence de capteur d'image (21a, 21b, 21c) du capteur d'image (20) sont formés de manière à être perpendiculaires les uns aux autres, et

    le premier plan de référence de capteur d'image (21a) est positionné en face du premier plan opposé de capteur d'image (24a) et le second plan de référence de capteur d'image (21b) est positionné en face du second plan opposé de capteur d'image (24b) ;

    la première et la seconde projection (31a, 31b) du corps élastique (30) sont formées le long d'une longueur entière des côtés adjacents du corps élastique (30) et sont perpendiculaires l'une à l'autre, de sorte que :

    les projections (31a, 31b) sont plus courtes dans la direction perpendiculaire au plan (30) que dans la direction le long des côtés adjacents du corps élastique, et

    la première et la seconde projection (31a, 31b) du corps élastique (30) sont adaptées pour être déformées quand la carte à circuits (40) est pressée contre le corps élastique (30) par une force (A),

    un premier jeu (18a) est formé entre le premier plan opposé de capteur d'image (24a), qui est opposé au premier plan de référence de capteur d'image (21a) du capteur d'image (20), et le premier plan opposé (14a) de l'assemblage à lentille (10),

    et un second jeu (18b) est formé entre le second plan opposé de capteur d'image (24b), qui est opposé au second plan de référence de capteur d'image (21b) du capteur d'image (20), et le second plan opposé (14b) de l'assemblage à lentille (10), et

    un premier et un second convertisseur de direction de force (15a, 15b) adaptés pour remplir les coins entre les plans opposés et le plan dans lequel la lentille est agencée ; et

    après que le capteur d'image (20) a été logé dans la portion concave (16) de l'assemblage à lentille (10),

    quand la première et la seconde projection (31a, 31b) du corps élastique (30) sont insérées dans le premier et dans le second jeu (18a, 18b), respectivement, alors :

    le corps élastique (30) est pressé depuis une direction de la carte à circuits (40),

    caractérisé en ce que

    les convertisseurs de direction de force (15a, 15b) sont des surfaces qui font office de convertisseurs de direction de force adaptés pour déformer les projections du corps élastique (30) et qui par conséquent, quand la carte à circuits (40) est pressée contre le corps élastique (30) et que les projections (31a, 31b) du corps élastique (30) viennent en contact avec ledit convertisseur de direction de force (15a, 15b), convertissent la direction de pressage en une direction de force dans laquelle le premier et le second plan de référence de capteur d'image du capteur d'image (20) seront positionnés par rapport au premier et au second plan de référence (12a, 12b), respectivement, et les résultats de conversion dans le premier et le second plan de référence de capteur d'image (21a, 21b) du capteur d'image (20) étant positionnés par rapport au premier et au second plan de référence (12a, 12b), et un troisième plan de référence de capteur d'image du capteur d'image (20) étant positionné par rapport au troisième plan de référence (12c) par la force appliquée dans la direction de pressage par le corps élastique (30) qui est pressé par la carte à circuits (40).


     
    2. Système à caméra pour véhicule selon la revendication 1, dans lequel le corps élastique (30) est formé de caoutchouc au silicone.
     
    3. Système à caméra pour véhicule selon la revendication 1 ou 2, dans lequel
    le corps élastique (30) est fendu au niveau des bords inférieurs de la première et de la seconde projection (31a, 31b).
     
    4. Système à caméra pour véhicule selon l'une au moins des revendications 1 à 3, dans lequel l'assemblage à lentille (10) inclut un engagement à encliquetage pour fixer la carte à circuits.
     




    Drawing
































    Cited references

    REFERENCES CITED IN THE DESCRIPTION



    This list of references cited by the applicant is for the reader's convenience only. It does not form part of the European patent document. Even though great care has been taken in compiling the references, errors or omissions cannot be excluded and the EPO disclaims all liability in this regard.

    Patent documents cited in the description