(19)
(11)EP 2 025 199 B1

(12)EUROPEAN PATENT SPECIFICATION

(45)Mention of the grant of the patent:
27.11.2019 Bulletin 2019/48

(21)Application number: 07762371.8

(22)Date of filing:  01.06.2007
(51)Int. Cl.: 
G01V 1/16  (2006.01)
G01R 33/02  (2006.01)
G01P 15/13  (2006.01)
G01V 1/18  (2006.01)
G01P 15/11  (2006.01)
G01D 11/24  (2006.01)
(86)International application number:
PCT/US2007/070240
(87)International publication number:
WO 2007/143564 (13.12.2007 Gazette  2007/50)

(54)

MOTION TRANSDUCER

BEWEGUNGSWANDLER

TRANSDUCTEUR DE MOUVEMENT


(84)Designated Contracting States:
AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LI LT LU LV MC MT NL PL PT RO SE SI SK TR

(30)Priority: 02.06.2006 US 810744 P

(43)Date of publication of application:
18.02.2009 Bulletin 2009/08

(73)Proprietor: Input/Output, Inc.
Houston, TX 77042 (US)

(72)Inventor:
  • HAGEDOORN, Arend L.
    2252 GZ Voorschoten (NL)

(74)Representative: Dehns 
St. Bride's House 10 Salisbury Square
London EC4Y 8JD
London EC4Y 8JD (GB)


(56)References cited: : 
EP-A2- 0 323 709
GB-A- 2 143 947
US-A- 3 863 200
US-A- 4 128 010
US-A- 4 599 713
US-B1- 6 608 408
GB-A- 1 526 289
US-A- 3 246 291
US-A- 4 003 018
US-A- 4 188 612
US-A- 5 077 697
US-B2- 6 607 050
  
      
    Note: Within nine months from the publication of the mention of the grant of the European patent, any person may give notice to the European Patent Office of opposition to the European patent granted. Notice of opposition shall be filed in a written reasoned statement. It shall not be deemed to have been filed until the opposition fee has been paid. (Art. 99(1) European Patent Convention).


    Description

    BACKGROUND OF THE DISCLOSURE


    Technical Field



    [0001] The present disclosure generally relates to transducer sensors for sensing motion.

    Background Information



    [0002] Motion transducer sensors are used in a variety of applications. As an example, geophones are motion transducers that sense motion by suspending an inertial reference mass structure from a rigid, fixed supporting structure. Typically, the mass is a coil form suspended by springs in a magnetic field, one spring being attached at each end of the coil form. The springs position the coil form within the magnetic field so that the coil form is centered laterally and along its axis within the magnetic field. The springs also form a suspension system having a predetermined resonant frequency. In the case of geophones, the media is the earth. The same general transducer configuration may be used in any number of motion sensing applications having a measured media other than the earth.

    [0003] Motion transducer sensors of the coil-magnet type are also used non-seismic applications, e.g. structural measurements. A coil-magnet transducer may be fixed to a structure element using an adhesive or fasteners.

    [0004] US-4128010 discloses an accelerometer. GB-2143947 discloses an inertial instrument. US-4188612 discloses a seismometer. US-3246291 discloses a seismometer. GB-1526289 discloses a geophone.

    SUMMARY



    [0005] The present invention provides a motion transducer apparatus and a method of sensing motion as defined in independent claims 1 and 13, respectively.

    [0006] Further advantageous developments are defined in the dependent claims.

    BRIEF DESCRIPTION OF THE DRAWINGS



    [0007] For detailed understanding of the present disclosure, references should be made to the following detailed description of the preferred embodiment, taken in conjunction with the accompanying drawings, in which like elements have been given like numerals and wherein:

    Fig. 1 illustrates a rotating coil coil-magnet motion transducer having aspects of the disclosure for providing a transducer output signal representative of sensed motion;

    Fig. 2 illustrates aspects of the disclosure having stacked circuits within a transducer compartment for providing a transducer output signal representative of sensed motion;

    Fig. 3 illustrates aspects of the disclosure having vertically-arranged circuits within a transducer compartment for providing a transducer output signal representative of sensed motion;

    Fig. 4 illustrates multi-compartment aspects of the present disclosure with internal circuitry for providing a transducer output signal representative of sensed motion;

    Fig. 5 illustrates another multi-compartment aspect of the present disclosure;

    Fig. 6 illustrates yet another multi-compartment aspect of the present disclosure;

    Fig. 7 illustrates mounting and cable connector aspects of the disclosure;

    Fig. 8 illustrates other mounting and cable connector aspects of the disclosure; and

    Fig. 9 illustrates an aspect of the disclosure wherein a coil-magnet assembly includes a sleeve pole concentrating piece.


    DESCRIPTION OF EXEMPLARY EMBODIMENTS



    [0008] Fig. 1 illustrates a rotating coil coil-magnet motion transducer 10. The transducer 10 includes a magnet 12 surrounded by a coil form 14. The magnet 12 may be fixedly coupled to an inner top end plate or cap 16 and to a bottom end plate or cap 18. The coil form 14 may include a two-piece configuration having an upper coil form 14a and a lower coil form 14b as shown or may be of a one piece construction. The coil form further includes an electrically-conductive coil winding 20. The coil form is coupled to the magnet 12, inner top end plate 16 and bottom end plate 18 by a pair of springs 22 to allow relative movement of the coil form and magnet. The coil form 14 and magnet 12 are forming at least a portion of a coil-magnet assembly 56.

    [0009] The coil-magnet assembly 56 is disposed immediately within a cylindrical steel outer case 24. The case 24 includes a thick wall section 26, an upper extended thin wall section 28 and a lower thin wall section 30. The thick wall section may have a thickness selected based on the overall size and structural requirements desired for a particular transducer, and such dimensioning is within the skill of the art. The thick wall section 26 may have a thickness of about 1.0 mm to about 14 mm. The thinner wall sections 28, 30 may be on the order of about three-quarters down to one-quarter the thickness of the thick wall section 26 depending on particular needs and materials used. In one aspect the thin wall section is about 0.4 mm thick and the thick wall section is about 1.2 mm thick. The thicknesses and ranges provided here are not intended to limit the scope of the claims. A wall thickness or relative thickness falling outside the range specified herein is considered within the scope of the disclosure.

    [0010] A first case shoulder 32 is located at a junction of the upper extended thin wall section 28 and the thick wall section 26. The inner top end plate 16 abuts the first shoulder 32. A second case shoulder 34 is located at a junction of the lower thin wall section 30 and the thick wall section 26. The bottom end plate 18 abuts the second case shoulder 34.

    [0011] A cylindrical spacer 36, which may be a metal or non-metal, is disposed on an inner surface 38 of the case extended thin wall section and extends from a top or outer surface 40 of the inner top end plate to a bottom or inner surface 42 of an outer top end plate or cap 44. A distal upper end 46 of the case extended thin wall section may be crimped over the outer top end plate 44 and sealed via an elastomer seal 48 to close the upper portion of the transducer 10.

    [0012] The bottom surface 42 of the outer top end plate 44, and inner surface 50 of the cylindrical spacer and the top surface 40 of the inner top end plate form a compartment 52 within the transducer 10. Embodiments having stacked circuits, multiple top compartments and embodiments with top and bottom compartments will be described later with respect to Figs. 2-4.

    [0013] Still referring to Fig. 1, one or more electronic circuits 54 may be housed within the compartment 52. The electronic circuits may be mounted on a circuit board as shown and may include one or more of an amplifier circuit, a filter circuit, a signal conditioning circuit, a converter circuit such as an analog-to-digital circuit and or a force feedback circuit for controlling the coil-magnet assembly.

    [0014] The coil form is coupled to the fixed coil-magnet assembly via the springs. When the case is coupled to a media of interest, the case and magnet will move along with movement of the media of interest. The coil form will tend to remain motionless thereby causing relative movement of the coil within the magnet magnetic field setting up an electrical current in the coils of the coil form. The electrical current is a signal produced by the coil-magnet assembly 56 that is an analog electrical signal. The electrical signal an analog signal representative of the movement of the case, and therefore the movement of the media of interest. The analog electrical signal is conducted from the coil-magnet assembly the electronic circuits 54 for filtering and conditioning and may be conducted to an analog-to-digital converter circuit to transform the analog signal to a digital signal suitable for processing by a computer or processor. The processed signals provide useful information about the sensed motion.

    [0015] The case 24 may be a steel case where the steel case forms a concentrator for the magnetic flux of the magnet. A pair of electrical leads exits the coil-magnet assembly compartment at an end. The analog signal is modified by the electronic circuits and is then conveyed out of the case via a terminal pass-through 60 and electrical leads or terminals 62, which leads or terminals may be then connected to various other electronic circuits, a processor and or recorder device not shown here.

    [0016] Referring to Fig. 2, another aspect of a motion transducer 100 includes several circuits in a stacked configuration within a transducer compartment for providing a modified signal and a transducer output signal. Fig 2 shows stacked circuits 102 oriented substantially perpendicular to a longitudinal axis of the transducer 100.

    [0017] In one aspect, the transducer 100 includes a magnet 104 surrounded by a coil form 106. The magnet 104 may be fixedly coupled to an inner top end plate or cap 108 and to a bottom end plate or cap 110. The coil form and magnet may be considered a coil-magnet assembly 112, which may be substantially similar to the coil-magnet assembly described above and shown in Fig. 1.

    [0018] The coil magnet assembly 112 is disposed immediately within a case 114. In one aspect, the case 114 comprises a cylindrical steel outer case. The case 114 includes a thick wall section 116, an upper extended thin wall section 118 substantially similar to the wall sections described above and shown in Fig. 1.

    [0019] A top cap 124 is used to close an end section of the transducer. The top cap 124 has an inner surface 126, the extended wall section 118 has an inner surface 122, and the coil-magnet assembly cap 108 has an outer surface 128. These surfaces form or define a compartment within the transducer case 114 to house the electronic circuits 102.

    [0020] A cylindrical spacer 120, which may be a metal or non-metal, may be disposed in the compartment and extend along the surface 122 of the case extended thin wall section from the coil-magnet assembly cap 108 to the top cap 124 to provide added support for the case 114 and to secure the inner cap 108. In other aspects the thin wall section may include a support structure such as a rib structure to provide support. The case may alternatively include a groove structure to secure the inner cap 108. Alternatively there may be no added spacer or structure to provide added support and the thin wall section may provide full support. Alternatively, the inner cap may be secured by an adhesive, by fasteners or may be friction fit into place. Similarly to the transducer described above and shown in Fig. 1, the case extended thin wall section may be crimped over the outer top cap 124 and sealed using an elastomer seal.

    [0021] Still referring to Fig. 2, the electronic circuits 102 are mounted on printed circuit boards oriented perpendicular to a longitudinal axis of the transducer 100. The circuit boards are mounted in a stacked configuration. Any or all circuit boards 102 may include selected circuits for modifying a signal emanating from the coil-magnet assembly 112. The circuits may include one or more of an amplifier circuit, a filter circuit, a signal conditioning circuit, a converter circuit such as an analog-to-digital circuit and or a force feedback circuit for controlling the coil-magnet assembly. The signal emanating from the coil-magnet assembly is an analog signal representative of the movement of the case, and therefore the movement of the media of interest to which the case is coupled. The analog signal is modified by the electronic circuits and is then conveyed out of the case via a plurality of terminals 130, which terminals may be then connected to various other electronic circuits, a processor and or recorder device not shown here.

    [0022] Stacked circuits similar to the stacked circuits described above and shown in Fig. 2 may be oriented in a vertical configuration as shown in Fig. 3. Fig. 3 illustrates a transducer 200 having multiple circuit boards 202 configured in a vertical relationship and oriented substantially parallel to a longitudinal axis of the transducer 200 and within a case compartment. The circuit components may be mounted on the circuit boards on a single side or double side as shown. Although all transducer components are clearly shown in Fig. 3, in the interest of brevity, reference is made back to the configurations described above and shown in Figs. 1 and 2.

    [0023] Fig. 4 illustrates a transducer 300 having multiple compartments within a transducer case 302. In one aspect, a dividing member 304 separates an upper compartment 306 from a lower compartment 308. A coil-magnet assembly 310 may be disposed immediately within a case wall 312. A coil-magnet cap 414 has an outer surface 316, a case extended wall portion 318 includes an inner surface 320, and a transducer end cap 322 has an inner surface 324. The surfaces 316, 320 and 324 define the main compartment, which is divided into the two compartments by the dividing member 304. Each compartment may include electronic circuits for modifying the coil-magnet assembly signal to provide a transducer output signal representative of motion.

    [0024] Fig. 5 illustrates another multi-compartment aspect of the present disclosure. In one non-limiting aspect, a transducer 400 includes a coil-magnet assembly 402 disposed immediately within a case 404. An inner top cap 406 is disposed within the case 404 and above the coil-magnet assembly 402. An inner bottom cap 408 is disposed within the case 404 and below the coil-magnet assembly 402. The case shown includes an upper extended wall section 410 and a lower extended wall section 412. The upper extended wall section extends beyond the inner top cap 406 and is closed at an upper end by a case cap 414. The lower extended wall section extends beyond the inner bottom cap 408 and is closed at a lower end by a second case cap 416.

    [0025] In similar fashion to the transducer devices described above and shown in Figs. 1-4, inner surfaces of the extended wall sections 410, 412, inner surfaces of the case caps 414, 416, and outer surfaces of the inner caps 406, 408 respectively define an upper compartment 418 and a lower compartment 420. Electronic circuits 422 may be placed in either or both compartments for modifying a signal from the coil-magnet assembly 402, and the modified signal may be transmitted from the transducer 400 using conductors 424 extending through one or both of the case caps 414, 416.

    [0026] Fig. 6 illustrates yet another non-limiting example of multi-compartment aspect of the present disclosure. A transducer 500 includes a coil-magnet assembly 502 disposed immediately within a case 504. An inner top cap 506 is disposed within the case 504 and above the coil-magnet assembly 502. An inner bottom cap 508 is disposed within the case 504 and below the coil-magnet assembly 502. The case shown includes an upper extended wall section 510 and a lower extended wall section 512. The upper extended wall section extends beyond the inner top cap 506 and is closed at an upper end by a case cap 514. The lower extended wall section extends beyond the inner bottom cap 508 and is closed at a lower end by a second case cap 516.

    [0027] In similar fashion to the transducer devices described above and shown in Figs. 1-5, inner surfaces of the extended wall sections 510, 512, inner surfaces of the case caps 514, 516, and outer surfaces of the inner caps 506, 508 respectively define an upper compartment 518 and a lower compartment 520. Electronic circuits 522 may be placed in either or both compartments for modifying a signal from the coil-magnet assembly 502, and the modified signal may be transmitted from the transducer 500 using conductors 524 extending through each of the case caps 514, 516.

    [0028] Figs. 7-8 illustrate non-limiting examples of mounting and cable connector aspects of the disclosure. Referring to Fig. 7, a transducer 700 includes a coil-magnet assembly 702 disposed immediately within a case 704. An inner top cap 706 is disposed within the case 704 and above the coil-magnet assembly 702. The case shown includes an upper extended wall section 710. The upper extended wall section extends beyond the inner top cap 706 and is closed at an upper end by a case cap 714. The lower case end is closed a second case cap 716.

    [0029] In similar fashion to the transducer devices described above and shown in Figs. 1-4, an inner surface of the extended wall section 710, inner surface of the case cap 714, and the outer surface of the inner cap 706 respectively define an upper compartment 718. Electronic circuits 722 may be placed in the compartment 718 for modifying a signal from the coil-magnet assembly 702, and the modified signal may be transmitted from the transducer 700 using conductors 724 extending through case cap 714. A connector 708 may be used to connect a data cable (not separately shown) to the transducer 700. The connector may be any suitable connector useful in connecting a data cable. As a non-limiting example, the shown connector includes a threaded connection. Other non-limiting examples are bayonet connectors, banana plugs, soldered connection and other connectors. The connector 708 is shown with an angled housing 712. The housing may be angled or not depending on the particular application. Any suitable angle is within the scope of the disclosure.

    [0030] The transducer shown also includes a threaded mounting stud 720 as a non-limiting example of how the transducer 700 may be mounted on to a structure or other media of interest where motion measurements are to be made. The mounting stud may also be set at a desired angle.

    [0031] By way of non-limiting example, Fig. 8 represents a transducer 800 substantially similar to the transducer 700 shown in Fig. 7. The transducer 800 is shown without an angled threaded connector to illustrate the ability to configure the transducer 800 for a particular application. The transducer 800 includes conductors 824 connecting to terminal conductors 808 for connecting the transducer electronic circuits to external circuits not shown here. All other components of the transducer 800 are substantially similar to the like components described above and shown in Fig. 7. Therefore, further description is not necessary for the transducer example of Fig. 8.

    [0032] Fig. 9 illustrates an aspect of the disclosure wherein a coil-magnet assembly includes a sleeve pole concentrating piece. Referring to Fig. 9, a transducer 900 includes a coil-magnet assembly 902 disposed immediately within a case 904. The coil-magnet assembly 902 may include a sleeve member 903 made of a material suitable for concentrating the magnetic flux generated by the coil-magnet assembly 902. In aspects, the sleeve material may be paramagnetic or ferromagnetic.

    [0033] An inner top cap 906 is disposed within the case 904 and above the coil-magnet assembly 902. The case shown includes an upper extended wall section 910.

    [0034] In one non-limiting aspect, the extended wall section comprises a relatively thick wall as compared to the case wall disposed about the coil-magnet assembly 902. Reversing the relative thicknesses may affect the order of assembly, but the overall assembly and operation of the transducer is mostly unaffected by the choice regarding which wall section is thicker.

    [0035] In the transducer shown, the upper extended wall section extends beyond the inner top cap 906 and is closed at an upper end by a case cap 914. The lower case end is closed a second case cap 916.

    [0036] In similar fashion to the transducer devices described above and shown in Figs. 1-4, an inner surface of the extended wall section 910, inner surface of the case cap 914, and the outer surface of the inner cap 906 respectively define an upper compartment 918. Electronic circuits 922 may be placed in the compartment 918 for modifying a signal from the coil-magnet assembly 902, and the modified signal may be transmitted from the transducer 900 via a connector 908. The connector may be any suitable connector useful in connecting a data cable. As a non-limiting example, the shown connector includes a threaded connection. Other non-limiting examples are bayonet connectors, banana plugs, soldered connection and other connectors. The connector 908 is shown with a straight housing. The housing may be angled or not depending on the particular application.

    [0037] The transducer shown also includes a threaded mounting stud 920 as a non-limiting example of how the transducer 900 may be mounted on to a structure or other media of interest where motion measurements are to be made. The mounting stud may also be set at a desired angle.

    [0038] Those skilled in the art would recognize that in an example not forming part of the invention geophones need not be formed using a mass formed by a magnet coupled to the case while the coil form is moveable with respect to the case as described and shown here. Having the magnet being moveable with respect to the case and coil form would generally accomplish the same function.

    [0039] The present disclosure is to be taken as illustrative. The scope of the present invention is defined by the appended claims.


    Claims

    1. A motion transducer apparatus, comprising:

    a case (24) having an inner surface (38);

    a first cap (44) that closes the case (24) at a first end;

    a second cap (18) that closes the case (24) at a second end, the case inner surface (38), first cap (44) and second cap (18) defining a space within the case (24);

    at least one inner plate member (16) separating the space into at least a first compartment and a second compartment (52) within the case (24);

    a coil-magnet assembly (56) that produces a signal when subjected to motion, the coil-magnet assembly (56) disposed immediately within the case (24) and in the first compartment, the coil-magnet assembly (56) comprising at least a coil form (14), a magnet (12), and a pair of springs (22), wherein said coil form (14) is coupled to the magnet (12), inner plate member (16) and second cap (18) or a second inner plate member (408,508) by said pair of springs (22) to allow relative movement of the coil form and magnet; and

    an electronic circuit (54) disposed within the second compartment (52) that modifies the signal.


     
    2. A motion transducer apparatus as claimed in claim 1, wherein the electronic circuit (54) comprises either:

    (i) a circuit board; or

    (ii) a plurality of circuit boards, wherein the plurality of circuit boards are vertically arranged in a stacked relationship.


     
    3. A motion transducer apparatus as claimed in claim 1, wherein the electronic circuit (54) comprises one or more of: (i) an amplifier; (ii) a signal conditioning circuit; (iii) a force feedback circuit; and (iv) an A/D converter circuit.
     
    4. A motion transducer apparatus as claimed in claim 1, further comprising a dividing member disposed within the second compartment (52) separating the second compartment (52) to provide a third compartment, wherein the electronic circuit (54) comprises a first electronic circuit and a second electronic circuit, the first electronic circuit being disposed within the second compartment and the second electronic circuit being disposed within the third compartment.
     
    5. A motion transducer apparatus as claimed in claim 1, wherein the at least one inner plate member (16) comprises a first inner plate member and a second inner plate member, the first inner plate member and the second inner plate member being disposed on opposite ends of the coil-magnet assembly (56), the second inner plate member, case (24) and second cap (18) defining a third compartment within the case (24), said apparatus further comprising a second electronic circuit disposed in the third compartment.
     
    6. A motion transducer apparatus as claimed in claim 1, wherein the case (24) includes an extended wall section having a reduced thickness portion or an extended wall section having an increased thickness portion.
     
    7. A motion transducer apparatus as claimed in claim 1, wherein the case (24) includes an extended wall section, the apparatus further comprising a spacer disposed within the second compartment and adjacent the extended wall section.
     
    8. A motion transducer apparatus as claimed in claim 1, wherein the coil-magnet assembly (56) includes a member having a material for concentrating magnetic flux.
     
    9. A motion transducer apparatus as claimed in claim 8, wherein the member comprises a sleeve (903) disposed about the coil from (14).
     
    10. A motion transducer apparatus as claimed in 8, wherein the material is selected from a paramagnetic material and a ferromagnetic material.
     
    11. A motion transducer apparatus as claimed in claim 1, wherein the magnet (12) is coupled to the case and the coil form (14) is moveable with respect to the case and the magnet.
     
    12. A motion transducer apparatus as claimed in claim 2, wherein the circuit board is vertically arranged.
     
    13. A method of sensing motion, comprising:

    generating a signal representative of motion using a motion transducer, the motion transducer including a case (24) having an inner surface (38), a first cap (44) that closes the case (24) at a first end, a second cap (18) that closes the case (24) at a second end, the case inner surface (38), first cap (44) and second cap (18) defining a space within the case (24), at least one inner plate member (16) separating the space into at least a first compartment and a second compartment (52) within the case (24), a coil-magnet assembly (56) that produces the signal when subjected to motion, the coil-magnet assembly (56) disposed immediately within the case (24) and in the first compartment, the coil-magnet assembly (56) comprising at least a coil form (14), a magnet (12), and a pair of springs (22), wherein said coil form (14) is coupled to the magnet (12), inner plate member (16) and second cap (18) or a second inner plate member (408,508) by said pair of springs (22) to allow relative movement of the coil form and magnet; and

    modifying the signal using an electronic circuit (54) disposed within the second compartment (52).


     
    14. A method as claimed in claim 13, wherein the electronic circuit (54) comprises one or more of: (i) an amplifier; (ii) a signal conditioning circuit; (iii) a force feedback circuit; and (iv) an A/D converter circuit.
     
    15. A method as claimed in claim 13, wherein generating the signal includes concentrating magnetic flux of the coil-magnet assembly (56) using a member having material selected from a paramagnetic material and a ferromagnetic material.
     


    Ansprüche

    1. Bewegungsumwandler-Einrichtung, umfassend:

    ein Gehäuse (24), das eine Innenfläche (38) aufweist;

    eine erste Kappe (44), die das Gehäuse (24) an einem ersten Ende schließt;

    eine zweite Kappe (18), die das Gehäuse (24) an einem zweiten Ende schließt, wobei die Gehäuseinnenfläche (38), die erste Kappe (44) und die zweite Kappe (18) einen Raum innerhalb des Gehäuses (24) definieren;

    mindestens ein Innenplattenelement (16), das den Raum in mindestens ein erstes Fach und ein zweites Fach (52) innerhalb des Gehäuses (24) trennt;

    eine Magnetspulenbaugruppe (56), die ein Signal erzeugt, wenn sie Bewegung ausgesetzt wird, wobei die Magnetspulenbaugruppe (56) unmittelbar innerhalb des Gehäuses (24) und in dem ersten Fach angeordnet, wobei die Magnetspulenbaugruppe (56) mindestens eine Spulenform (14), einen Magneten (12) und ein Federpaar (22) umfasst, wobei die Spulenform (14) durch das Federpaar (22) mit dem Magneten (12), dem Innenplattenelement (16) und der zweiten Kappe (18) oder einem zweiten Innenplattenelement (408, 508) gekoppelt ist, um relative Bewegung der Spulenform und des Magneten zuzulassen; und

    eine elektronische Schaltung (54), die innerhalb des zweiten Fachs (52) angeordnet ist, die das Signal modifiziert.


     
    2. Bewegungsumwandler-Einrichtung nach Anspruch 1, wobei die elektronische Schaltung (54) umfasst, entweder:

    (i) eine Schaltungsplatte; oder

    (ii) eine Vielzahl von Schaltungsplatten, wobei die Vielzahl von Schaltungsplatten vertikal in einer gestapelten Beziehung angeordnet ist.


     
    3. Bewegungsumwandler-Einrichtung nach Anspruch 1, wobei die elektronische Schaltung (54) eines oder mehr umfasst von: (i) einem Verstärker; (ii) einer Signalaufbereitungsschaltung; (iii) einer Kraftrückmeldeschaltung; und (iv) einer A/D-Umformerschaltung.
     
    4. Bewegungsumwandler-Einrichtung nach Anspruch 1, weiter umfassend ein Teilungselement, das innerhalb des zweiten Fachs (52) angeordnet ist, das das zweite Fach (52) trennt, um ein drittes Fach bereitzustellen, wobei die elektronische Schaltung (54) eine erste elektronische Schaltung und eine zweite elektronische Schaltung umfasst, wobei die erste elektronische Schaltung innerhalb des zweiten Fachs angeordnet ist und die zweite elektronische Schaltung innerhalb des dritten Fachs angeordnet ist.
     
    5. Bewegungsumwandler-Einrichtung nach Anspruch 1, wobei das mindestens eine Innenplattenelement (16) ein erstes Innenplattenelement und ein zweites Innenplattenelement umfasst, wobei das erste Innenplattenelement und das zweite Innenplattenelement an gegenüber liegenden Enden der Magnetspulenbaugruppe (56) angeordnet sind, wobei das zweite Innenplattenelement, Gehäuse (24) und zweite Kappe (18) ein drittes Fach innerhalb des Gehäuses (24) definieren, wobei die Einrichtung weiter eine zweite elektronische Schaltung umfasst, die im dritten Fach angeordnet ist.
     
    6. Bewegungsumwandler-Einrichtung nach Anspruch 1, wobei das Gehäuse (24) eine ausgedehnte Außenwandsektion einschließt, die einen Abschnitt mit verringerter Dicke aufweist oder eine ausgedehnte Wandsektion, die einen Abschnitt mit erhöhter Dicke aufweist.
     
    7. Bewegungsumwandler-Einrichtung nach Anspruch 1, wobei das Gehäuse (24) eine ausgedehnte Wandsektion einschließt, wobei die Einrichtung weiter ein Distanzstück umfasst, das innerhalb des zweiten Fachs und angrenzend zu der ausgedehnten Wandsektion angeordnet ist.
     
    8. Bewegungsumwandler-Einrichtung nach Anspruch 1, wobei die Magnetspulenbaugruppe (56) ein Element einschließt, das ein Material zum Konzentrieren von magnetischem Fluss aufweist.
     
    9. Bewegungsumwandler-Einrichtung nach Anspruch 8, wobei das Element eine Hülse (903) umfasst, die über der Spulenform (14) angeordnet ist.
     
    10. Bewegungsumwandler-Einrichtung nach Anspruch 8, wobei das Material ausgewählt ist aus einem paramagnetischen Material und einem ferromagnetischen Material.
     
    11. Bewegungsumwandler-Einrichtung nach Anspruch 1, wobei der Magnet (12) mit dem Gehäuse gekoppelt ist und die Spulenform (14) im Verhältnis zu dem Gehäuse und dem Magneten beweglich ist.
     
    12. Bewegungsumwandler-Einrichtung nach Anspruch 2, wobei die Schaltungsplatte vertikal angeordnet ist.
     
    13. Verfahren zum Erkennen von Bewegung, umfassend:

    Generieren eines Signals, das für Bewegung repräsentativ ist, unter Verwendung eines Bewegungsumwandlers, wobei der Bewegungsumwandler ein Gehäuse (24) einschließt, das eine Innenfläche (38), eine erste Kappe (44), die das Gehäuse (24) an einem ersten Ende schließt, eine zweite Kappe (18), die das Gehäuse (24) an einem zweiten Ende schließt, aufweist, wobei die Gehäuseinnenfläche (38), die erste Kappe (44) und die zweite Kappe (18) einen Raum innerhalb des Gehäuses (24) definieren, mindestens ein Innenplattenelement (16), das den Raum in mindestens ein erstes Fach und ein zweites Fach (52) innerhalb des Gehäuses (24) trennt, eine Magnetspulenbaugruppe (56), die das Signal erzeugt, wenn sie Bewegung ausgesetzt wird, wobei die Magnetspulenbaugruppe (56) unmittelbar innerhalb des Gehäuses (24) und in dem ersten Fach angeordnet ist, die Magnetspulenbaugruppe (56) mindestens eine Spulenform (14), einen Magneten (12) und ein Federpaar (22) umfasst, wobei die Spulenform (14) durch das Federpaar (22) mit dem Magneten (12), dem Innenplattenelement (16) und der zweiten Kappe (18) oder einem zweiten Innenplattenelement (408, 508) gekoppelt ist, um relative Bewegung der Spulenform und des Magneten zuzulassen; und

    Modifizieren des Signals unter Verwendung einer elektronischen Schaltung (54), die innerhalb des zweiten Fachs (52) angeordnet ist.


     
    14. Verfahren nach Anspruch 13, wobei die elektronische Schaltung (54) eines oder mehr umfasst von: (i) einem Verstärker; (ii) einer Signalaufbereitungsschaltung; (iii) einer Kraftrückmeldeschaltung; und (iv) einer A/D-Umformerschaltung.
     
    15. Verfahren nach Anspruch 13, wobei das Generieren des Signals Konzentrieren von magnetischem Fluss der Magnetspulenbaugruppe (56) einschließt unter Verwendung eines Elements, das ein Material aufweist, ausgewählt aus einem paramagnetischen Material und einem ferromagnetischen Material.
     


    Revendications

    1. Appareil transducteur de mouvement, comprenant :

    un boîtier (24) présentant une surface interne (38) ;

    un premier capuchon (44) qui ferme le boîtier (24) à une première extrémité ;

    un second capuchon (18) qui ferme le boîtier (24) à une seconde extrémité, la surface intérieure de boîtier (38), le premier capuchon (44) et le second capuchon (18) définissant un espace à l'intérieur du boîtier (24) ;

    au moins un élément de plaque interne (16) séparant l'espace en au moins un premier compartiment et un deuxième compartiment (52) à l'intérieur du boîtier (24) ;

    un ensemble bobine-aimant (56) qui produit un signal lorsqu'il est soumis à un mouvement, l'ensemble bobine-aimant (56) disposé immédiatement dans le boîtier (24) et dans le premier compartiment, l'ensemble bobine-aimant (56) comprenant au moins une forme de bobine (14), un aimant (12) et une paire de ressorts (22), dans lequel ladite forme de bobine (14) est couplée à l'aimant (12), à l'élément de plaque interne (16) et au second capuchon (18) ou à un second élément de plaque interne (408, 508) par ladite paire de ressorts (22) pour permettre un déplacement relatif de la forme de bobine et de l'aimant ; et

    un circuit électronique (54) disposé dans le deuxième compartiment (52) qui modifie le signal.


     
    2. Appareil transducteur de mouvement selon la revendication 1, dans lequel le circuit électronique (54) comprend :

    (i) une carte de circuits imprimés ; ou

    (ii) une pluralité de cartes de circuits imprimés, la pluralité de cartes de circuits imprimés étant disposées verticalement dans une relation empilée.


     
    3. Appareil transducteur de mouvement selon la revendication 1, dans lequel le circuit électronique (54) comprend un ou plusieurs parmi : (i) un amplificateur ; (ii) un circuit de conditionnement de signal ; (iii) un circuit de retour de force ; et (iv) un circuit convertisseur A/N.
     
    4. Appareil transducteur de mouvement selon la revendication 1, comprenant en outre un élément de division disposé dans le deuxième compartiment (52) séparant le deuxième compartiment (52) pour former un troisième compartiment, dans lequel le circuit électronique (54) comprend un premier circuit électronique et un second circuit électronique, le premier circuit électronique étant disposé dans le deuxième compartiment et le second circuit électronique étant disposé dans le troisième compartiment.
     
    5. Appareil transducteur de mouvement selon la revendication 1, dans lequel le au moins un élément de plaque interne (16) comprend un premier élément de plaque interne et un second élément de plaque interne, le premier élément de plaque interne et le second élément de plaque interne étant disposés sur des extrémités opposées de l'ensemble bobine-aimant (56), le second élément de plaque interne, le boîtier (24) et le second capuchon (18) définissant un troisième compartiment à l'intérieur du boîtier (24), ledit appareil comprenant en outre un second circuit électronique disposé dans le troisième compartiment.
     
    6. Appareil transducteur de mouvement selon la revendication 1, dans lequel le boîtier (24) inclut une section de paroi étendue ayant une partie d'épaisseur réduite ou une section de paroi étendue ayant une partie d'épaisseur accrue.
     
    7. Appareil transducteur de mouvement selon la revendication 1, dans lequel le boîtier (24) inclut une section de paroi étendue, l'appareil comprenant en outre une entretoise disposée à l'intérieur du deuxième compartiment et adjacente à la section de paroi étendue.
     
    8. Appareil transducteur de mouvement selon la revendication 1, dans lequel l'ensemble bobine-aimant (56) inclut un élément ayant un matériau pour concentrer un flux magnétique.
     
    9. Appareil transducteur de mouvement selon la revendication 8, dans lequel l'élément comprend un manchon (903) disposé autour de la forme de bobine (14).
     
    10. Appareil transducteur de mouvement selon la revendication 8, dans lequel le matériau est choisi parmi un matériau paramagnétique et un matériau ferromagnétique.
     
    11. Appareil transducteur de mouvement selon la revendication 1, dans lequel l'aimant (12) est couplé au boîtier et la forme de bobine (14) est mobile par rapport au boîtier et à l'aimant.
     
    12. Appareil transducteur de mouvement selon la revendication 2, dans lequel la carte de circuits imprimés est agencée verticalement.
     
    13. Procédé de détection de mouvement, comprenant les étapes consistant à :

    générer un signal représentant un mouvement en utilisant un transducteur de mouvement, le transducteur de mouvement incluant un boîtier (24) présentant une surface interne (38), un premier capuchon (44) qui ferme le boîtier (24) à une première extrémité, un second capuchon (18) qui ferme le boîtier (24) à une seconde extrémité, la surface interne de boîtier (38), le premier capuchon (44) et le second capuchon (18) définissant un espace à l'intérieur du boîtier (24), au moins un élément de plaque interne (16) séparant l'espace en au moins un premier compartiment et un deuxième compartiment (52) dans le boîtier (24), un ensemble bobine-aimant (56) qui produit le signal lorsqu'il est soumis à un mouvement, l'ensemble bobine-aimant (56) disposé immédiatement dans le boîtier (24) et dans le premier compartiment, l'ensemble bobine-aimant (56) comprenant au moins une forme de bobine (14), un aimant (12) et une paire de ressorts (22), dans lequel ladite forme de la bobine (14) est couplée à l'aimant (12), à l'élément de plaque interne (16) et au second capuchon (18) ou à un second élément de plaque interne (408, 508) par ladite paire de ressorts (22) pour permettre un déplacement relatif de la forme de la bobine et de l'aimant ; et

    modifier le signal en utilisant un circuit électronique (54) disposé dans le deuxième compartiment (52).


     
    14. Procédé selon la revendication 13, dans lequel le circuit électronique (54) comprend un ou plusieurs parmi : (i) un amplificateur ; (ii) un circuit de conditionnement de signal ; (iii) un circuit de retour de force ; et (iv) un circuit convertisseur A/N.
     
    15. Procédé selon la revendication 13, dans lequel la génération du signal inclut la concentration d'un flux magnétique de l'ensemble bobine-aimant (56) en utilisant un élément ayant un matériau choisi parmi un matériau paramagnétique et un matériau ferromagnétique.
     




    Drawing


















    REFERENCES CITED IN THE DESCRIPTION



    This list of references cited by the applicant is for the reader's convenience only. It does not form part of the European patent document. Even though great care has been taken in compiling the references, errors or omissions cannot be excluded and the EPO disclaims all liability in this regard.

    Patent documents cited in the description