(11)EP 2 030 209 B1


(45)Mention of the grant of the patent:
26.06.2013 Bulletin 2013/26

(21)Application number: 06747793.5

(22)Date of filing:  19.05.2006
(51)Int. Cl.: 
H01F 27/36  (2006.01)
H01F 27/34  (2006.01)
(86)International application number:
(87)International publication number:
WO 2007/136307 (29.11.2007 Gazette  2007/48)





(84)Designated Contracting States:

(43)Date of publication of application:
04.03.2009 Bulletin 2009/10

(73)Proprietor: ABB Technology Ltd.
8050 Zürich (CH)

  • ANDERSSON, Lars-Tommy
    S-771 92 Ludvika (SE)
  • PETERSON, Anders, K.
    S-771 34 Ludvika (SE)

(74)Representative: Kock, Ina 
ABB AB Intellectual Property Ingenjör Bååths Gata 11
721 83 Västerås
721 83 Västerås (SE)

(56)References cited: : 
EP-A1- 1 480 504
CH-A- 230 974
JP-A- 2000 285 745
US-A- 3 142 029
CH-A- 213 117
GB-A- 1 220 151
JP-A- 2005 019 419
    Note: Within nine months from the publication of the mention of the grant of the European patent, any person may give notice to the European Patent Office of opposition to the European patent granted. Notice of opposition shall be filed in a written reasoned statement. It shall not be deemed to have been filed until the opposition fee has been paid. (Art. 99(1) European Patent Convention).



    [0001] The present invention relates to a reactor shield and a reactor for HVDC system.


    [0002] In many power applications, such as in HVDC systems, a DC reactor is connected in series with a converter to reduce the harmonic currents on the DC or AC side of the converter or to reduce the risk of commutation failures by limiting the rate of rise of the DC line current at transient disturbances in the AC or DC systems. The converter reactor is surrounded by a shield to avoid inductive heating of the walls of the building in which the reactor is provided and to decrease the magnetic coupling between the three phases. The shields may also contribute to the RI shielding.

    [0003] Different kinds of shield designs have been used. One example is solid aluminium plates. However, this solution has the drawback of the risk for sound emission. Another drawback is difficult construction on site due to welding operations when the plates are joined to surround the reactor.

    [0004] Some prior art solutions involve water cooling of the shield. However, this leads to an expensive and complex arrangement.

    [0005] EP 1 480 504 describes a reactor shield and a reactor comprising an aluminum/aluminum-alloy casing having a specific conductibility below 0.4 OMEGA .mm2/m. In the casing plates integrate in supporting frames with tin-plated sections linked to the plates with TP screws. The SF and plates interlink mechanically/electrically so as to be conductive. A sealing protects contact surfaces between the section and the plates against the surrounding atmosphere.


    [0006] An object of the present invention is to provide a reactor shield which is easy to assemble on site and which is flexible as regards the configuration.

    [0007] The invention is based on the realization that the prior art plates can be replaced by electrically conductive wires which form a number of closed loops about the reactor so as to form a shield.

    [0008] According to the invention there is provided a reactor shield and a reactor for HVDC system according to claim 1.

    [0009] Further preferred embodiments are defined by the dependent claims.

    [0010] Thus there is provided a reactor shield which is easy to assemble on site and which is flexible as regards the configuration


    [0011] The invention is now described, by way of example, with reference to the accompanying drawings, in which:

    Fig. 1 is a schematic overview of a reactor and a reactor shield according to the invention,

    Fig. 2 shows a theoretical model explaining the inventive idea,

    Fig. 3 is a perspective overview of the frame of a reactor shield according to the invention,

    Fig. 4 is a side view of a reactor shield according to the invention,

    Fig. 5 is a top view of the reactor shield shown in Fig. 4,

    Fig. 6 is a top view of a wire loop comprised in a reactor according to the invention,

    Fig. 7 is a side view showing the distribution of wire loops comprised in a reactor according to the invention,

    Fig. 8 is a view similar to the one shown in Fig. 1 with an opening provided in the reactor shield, and

    Fig. 9 is a detailed view of the opening shown in Fig. 6.


    [0012] In the following a detailed description of a preferred embodiment of the present invention will be given.

    [0013] In Fig. 1 there is shown a schematic overview of a reactor 10 provided inside a reactor shield 20. The reactor 10 could be any kind of reactor, such as a reactor provided in a HVDC system mentioned above, emitting electro-magnetic radiation. The reactor shield comprises a number of closed circular loops of electrically conductive wires 22 provided in mutually parallel horizontal planes. The wire loops and the reactor are provided co-axially about a vertical axis z, thereby providing for a uniform distance between the reactor and the reactor shield formed by the loops.

    [0014] The wires are preferably twisted stranded wires made of copper or aluminium. The designs with stranded wire are favorable since the area per length unit is relatively large, reducing the skin effects that might appear. A twisted, stranded wire is expected to redistribute the current. Furthermore, the loops can be prefabricated from standard material, and only have to be mounted on site. They are also flexible in that wires can easily be added, redistributed or replaced by thicker ones if e.g. an upgrading to a higher reactor current is wanted. Furthermore, problems with sound emission are not expected.

    [0015] An electrically conductive aluminium plate 40 with a thickness of 3 millimeters is optionally provided inside the closed loops in a position between the reactor 10 and the floor so as to prevent electromagnetic radiation from penetrating the floor, thereby generating heat in electrically conductive reinforcement in the floor.

    [0016] To gain some physical understanding of the shielding mechanism and the influence of various parameters, a simple model of the reactor 10 and the reactor shield 20 is shown in Fig. 2. An inner loop, corresponding to the reactor 10, with self-inductance L1 and resistance R1 is connected to a constant current source with current i1 and angular frequency ω, resulting in a voltage v1. In an outer, short-circuited loop, corresponding to one of the closed wire loops 22 of the shield 20, with self-inductance L2 and resistance R2, a current i2 will be induced which counteracts the magnetic field from the inner loop due to the mutual inductance M.

    [0017] The following equations apply:

    where the partial magnetic fluxes φ1 = L1i1 and φ21 =M21i2, etc. Since the mutual inductance M21 = M12, M can be used instead.

    [0018] If R2 = 0 it is clear that the total flux through the outer loop cannot change with time; if it was zero to start with, then it must remain zero. This means that the total return flux outside the outer loop must be zero as well. However, this does not imply that the local magnetic field is zero everywhere.

    [0019] Switching to complex notation and assuming that i1=I1ejωt, (1) and (2) give

    [0020] Equation (4) gives

    if R2 can be neglected)
    whereafter (3) gives

    [0021] If R2 can be neglected, (6) gives a simple expression for the effective inductance of the two loops as seen from the current source i1:

    [0022] The power dissipation in the outer loop can be expressed as

    where ωMI1 is the electromotive force in the outer loop induced by the constant current in the inner loop. The power dissipation obviously has a maximum for R2 = ωL2. Equation (8) can be used to study how the power dissipation varies when the parameters (including the geometry) are changed, but first the dependences of the resistance, the self inductance and the mutual inductance on the geometry must be known.

    [0023] The resistance is simple, but the skin effect can be a complication. By using stranded wires, the skin effect is reduced as has been explained above.

    [0024] The self inductance is rather straight-forward for a circular loop:

    where r2 is the loop radius, rw2 the wire radius and p the relative permeability for the outer loop (µ = 1 for aluminium). The skin effect can be a complication also here if the internal inductance, i.e., the first term between the parentheses, cannot be neglected.

    [0025] The mutual inductance between two circular loops is more complicated since the analytical expression contains elliptic integrals. A more practical way is to use tables and simple expressions from the handbook literature. Simplified, for two concentric loops in the same plane the following equation apply.

    (M in µH, r1 and r2 in cm) (10)
    where F is a function of r1 and r2.

    [0026] The current and thus the heat dissipation can be decreased considerably by a moderate increase of the shield radius. This is due to a decreased mutual inductance combined with higher self-inductance and resistance (equation 5).

    [0027] The conductivity of the loops may vary for several reasons, such as wire material and temperature.

    [0028] Referring to Fig. 3, the wire loops 22 are held in fixed mutual relationship by means of a frame 30, which is made up of eight equidistant vertical poles 32 of suitable dimensions and material, such as aluminium. Cross bars 34 are provided between the vertical poles 32 and attached thereto by means of e.g., stainless steel bolts so as to provide a stable frame to which the wire loops can be attached.

    [0029] Fig. 4 shows a side view of the reactor shield 20 including the frame 30 and a number of wire loops 22 attached to the frame. It is here seen that the wire loops are unevenly distributed in a vertical direction, with a higher distribution density towards a vertical mirror line halfway up the reactor shield. This distribution density of wires is correlated to the density of the magnetic field. The purpose is to achieve well distributed losses in the shielding, thereby optimizing the use of material.

    [0030] Fig. 5 shows a top view of the reactor shield 20 shown in Fig. 4. It is here seen that the wire loops 22 are attached to the inside of the vertical poles 32. This is preferably effected by means of T-bolts of stainless steel.

    [0031] A wire loop 22 is shown in detail in Fig. 6. A wire having a length, which is given by the desired radius, is joined together at it ends by means of a jointing sleeve 22a. The operation of attaching the jointing sleeve can be performed on-site. This has the advantage of requiring less transport space for the wire. Alternatively, the wire loop 22 can be delivered to the site ready for mounting, but this requires more transport space.

    [0032] A preferred wire loop distribution will now be described with reference to Fig. 7, wherein the cylindrical geometry is shown with the vertical z axis to the left. Z = 0 is a symmetry plane, about which the distribution of the windings is mirrored. In this figure, the reactor 10, having a radius r1 of approximately 1.5 meters, is shown as a rectangle. The reactor shield 20 is shown with a radius r2 of 3.0 meters. The denser distribution close to the symmetry plane z = 0 is due to the larger field from the reactor at that point.

    [0033] In this preferred embodiment, the reactor shield comprises 80 short-circuited loops of stranded aluminium wire, half of which are visible in Fig. 7. The reactor shield radius r2 is 3 meters and the height of the shield is 7 meters. The conductor diameter is about 30 millimeters. The axial distribution of the wire loops is given in table 1 below.
    Table 1
    N = Loop number from midplane (Z = 0)Distance from previous loop [mm]Z [mm]
    1   35
    2 - 24 70  
    25 70 1715
    26 - 37 70 + (N - 25) * 7  
    38 70 + (38 - 25) * 7 = 161 3262
    39 120 3382
    40 120 3502

    [0034] This design is both economical and flexible, and can easily be upgraded to higher reactor currents if necessary. An opening 24 for a bushing can easily be formed in the shield 20 by supports holding the wires apart, as is shown in Figs. 8 and 9. It is preferred that the wires and the supports around the opening be insulated from each other except for necessary grounding unless measurements have confirmed that insulation is not necessary.

    [0035] Alternatively, the wires close to the opening are provided with increased material area in order to cope with the higher currents induced close to the opening.

    [0036] An opening of constant height, enough for the bushing, and stretching around the shield has been simulated. The dissipation (W/m3) in the wires in this case in each wire closest to the opening has increased from about 500 W to 1500 W, i.e., a 70 % current increase, but only a small part of this would affect the bushing. In addition, the dissipation in the adjacent wires has decreased, giving only a 1.5 kW total increase for the shield. Even this uneconomical design could easily be handled, and in a real design the wires will form an opening only between two of the eight vertical supports, giving much smaller increase in dissipation.

    [0037] A preferred embodiment of a reactor shield according to the invention has been described. A person skilled in the art realizes that this could be varied within the scope of the appended claims.

    [0038] The inventive shield has been described as a shield for a reactor. In this context the term reactor should be interpreted broadly, covering any inductance or similar device emitting electromagnetic radiation.


    1. A reactor shield and a reactor for an HVDC system, the reactor shield comprising an electrically conductive material arranged around the reactor, where in
    the electrically conductive material comprises a plurality of closed loops of electrically conductive wires (22), where
    each wire is joined together at its ends,
    the closed loops of electrically conductive wires (22) are provided in mutually parallel horizontal planes,
    the distribution of the closed loops is mirrored about a symmetry plane (z = 0), and
    the distribution of the closed loops is denser close to the symmetry plane (z = 0).
    2. The reactor shield according to claim 1, comprising an opening (24) in the shield provided by supports holding wires apart.
    3. The reactor shield according to claim 2, wherein the wires close to the opening are provided with increased material area.
    4. The reactor shield according to any of claims 1-3, further comprising an electrically conductive plate (40) inside the closed loops.
    5. The reactor shield according to any of claims 1-4, wherein the wires comprise twisted stranded wires.


    1. Reaktorabschirmung und ein Reaktor für ein HVDC-System, wobei die Reaktorabschirmung ein um den Reaktor herum angeordnetes stromleitendes Material umfasst, wobei
    das stromleitende Material mehrere geschlossene Schleifen aus stromleitenden Drähten (22) umfasst,
    jeder Draht an seinen Enden mit sich selbst verbunden ist,
    die geschlossenen Schleifen aus stromleitenden Drähten (22) in zueinander parallelen horizontalen Ebenen vorgesehen sind,
    die Verteilung der geschlossenen Schleifen um eine Symmetrieebene (z = 0) gespiegelt ist und
    die Verteilung der geschlossenen Schleifen nahe an der Symmetrieebene (z = 0) dichter ist.
    2. Reaktorabschirmung nach Anspruch 1, umfassend eine Öffnung (24) in der Abschirmung, durch Stützen bereitgestellt, Drähte beabstandet haltend.
    3. Reaktorabschirmung nach Anspruch 2, wobei die Drähte näher an der Öffnung mit vergrößertem Materialbereich versehen sind.
    4. Reaktorabschirmung nach einem der Ansprüche 1-3, weiterhin umfassend eine stromleitende Platte (40) innerhalb der geschlossenen Schleifen.
    5. Reaktorabschirmung nach einem der Ansprüche 1-4, wobei die Drähte verdrehte Litzen umfassen.


    1. Écran de réacteur et réacteur pour un système HVDC, l'écran de réacteur comprenant un matériau électriquement conducteur disposé autour du réacteur,

    le matériau électriquement conducteur comprend une pluralité de boucles fermées de câbles électriquement conducteurs (22), où
    chaque câble est relié à son extrémité,
    les boucles fermées de câbles électriquement conducteurs (22) sont pourvues dans des plans horizontaux mutuellement parallèles,
    la distribution des boucles fermées est symétrique par rapport à un plan de symétrie (z = 0), et
    la distribution des boucles fermées est plus dense à proximité du plan de symétrie (z = 0).
    2. Écran de réacteur selon la revendication 1, comprenant une ouverture (24) dans l'écran pourvue par des supports maintenant les câbles écartés.
    3. Écran de réacteur selon la revendication 2, dans lequel les câbles à proximité de l'ouverture sont pourvus avec une surface de matériau accrue.
    4. Écran de réacteur selon l'une quelconque des revendications 1 à 3, comprenant en outre une plaque électriquement conductrice (40) à l'intérieur des boucles fermées.
    5. Écran de réacteur selon l'une quelconque des revendications 1 à 4, dans lequel les câbles sont des câbles toronnés.



    This list of references cited by the applicant is for the reader's convenience only. It does not form part of the European patent document. Even though great care has been taken in compiling the references, errors or omissions cannot be excluded and the EPO disclaims all liability in this regard.

    Patent documents cited in the description