(19)
(11)EP 2 096 466 B1

(12)EUROPEAN PATENT SPECIFICATION

(45)Mention of the grant of the patent:
11.12.2019 Bulletin 2019/50

(21)Application number: 09250563.5

(22)Date of filing:  27.02.2009
(51)International Patent Classification (IPC): 
G01V 3/08(2006.01)

(54)

A detector for detecting a current carrying conductor and a method of validating operation of the detector

Detektor zur Erkennung eines stromführenden Leiters und Verfahren zur Überprüfung des Detektorbetriebs

Détecteur pour la détection d'un conducteur transportant du courant et procédé de validation du fonctionnement du détecteur


(84)Designated Contracting States:
DE ES FR IT NL

(30)Priority: 29.02.2008 GB 0803873

(43)Date of publication of application:
02.09.2009 Bulletin 2009/36

(73)Proprietor: RADIODETECTION LIMITED
Bristol BS14 0AF (GB)

(72)Inventors:
  • Pearson Richard David
    Bristol, BS8 4RB (GB)
  • Conway, Kevin
    Bristol, BS14 0AZ (GB)

(74)Representative: EIP 
EIP Europe LLP Fairfax House 15 Fulwood Place
London WC1V 6HU
London WC1V 6HU (GB)


(56)References cited: : 
EP-A2- 0 735 377
US-A- 5 541 516
US-B1- 7 336 078
US-A- 5 043 666
US-A1- 2003 158 708
  
      
    Note: Within nine months from the publication of the mention of the grant of the European patent, any person may give notice to the European Patent Office of opposition to the European patent granted. Notice of opposition shall be filed in a written reasoned statement. It shall not be deemed to have been filed until the opposition fee has been paid. (Art. 99(1) European Patent Convention).


    Description

    Field of the invention



    [0001] The present invention relates to a detector for detecting a current carrying conductor and a method of validating operation of the detector.

    Background of the invention



    [0002] Before commencing excavation or other work where electrical cables, fibre optic cables or other utilities ducts or pipes are buried, it is important to determine the location of such buried cables or pipes to ensure that they are not damaged during the work.

    [0003] Current carrying conductors emit electromagnetic radiation which can be detected by an electrical antenna. If fibre optic cables or non-metallic utilities ducts or pipes are fitted with a small electrical tracer line, an alternating electrical current can be induced in the tracer line which in turn radiates electromagnetic radiation. It is known to use detectors to detect the electromagnetic field emitted by conductors carrying alternating current.

    [0004] Once a buried utility is located the depth of the utility can be calculated to determine a safe excavation depth. It is important that the depth information provided to the operator is accurate so as to avoid damage to the buried utility or injury to person when excavating the area.

    [0005] In this application we describe an improved detector for detecting a buried conductor which provides the user with a depth reading with improved integrity. A method is described for validating operation of the detector.

    [0006] US-A-7336078 describes a portable locator for finding and mapping buried objects such as utilities. An articulatable antenna node configuration and the use of Doppler radar and GPS navigation are also disclosed.

    [0007] US-A-5541516 describes a system for use in determining the location and orientation of concealed underground objects and, more particularly, to a locator system having an improved interface with an operator. A swivel joint couples an upper housing portion and a lower housing portion.

    [0008] US-A-5043666 describes electromagnetic field sensing apparatus used for locating and determining the distance to buried conductive conduits including at least two receptor means, each adapted to receive a signal from the conduit and produce an output voltage proportional to the signal received, and also including a calibrating coil, with known relative coupling to the receptor means, and capable of inducing calibrating signals therein.

    [0009] EP 0 735 377 A2 describes a two-channel magnetic metal detector, wherein the inductance of the coils is tested by applying a square wave test signal to the first coil and determining whether the resulting output signal from the second coil has a magnitude falling within a range of magnitudes defined by two threshold values stored in a memory.

    Summary of the invention



    [0010] According to a first aspect of the invention there is provided a detector for detecting a buried conductor according to claim 1.

    [0011] The predetermined limits for each antenna may be the calibration data ±0.01%.

    [0012] The processor may be configured to disable the detector if one of the test currents is outside the predetermined limits of the calibration data.

    [0013] The plurality of antennas may comprise two or three parallel antennas which in use are oriented horizontally and spaced vertically.

    [0014] The processor may be configured to store results of the test in the memory.

    [0015] The detector may further comprise a user interface for conveying the results of the test to a user and a communications module for transmitting results of the test to another device.

    [0016] According to a second aspect of the invention there is provided a system for validating the operation of a detector according to claim 9.

    [0017] The system may further comprise a server connected to said network, wherein the server is configured to receive test results from the microprocessor-controlled device. The server may be configured to generate a calibration certificate if the test results indicate that said detector is operating within predetermined limits, the calibration certificate being downloadable from the server to the microprocessor-controlled device. The network may be the Internet.

    [0018] According to a third aspect of the invention there is provided a method of validating the operation of a detector for detecting a buried conductor as defined in claim 1, the method comprising: providing a predefined current in the winding to generate an electromagnetic field at each antenna, thereby inducing a test current in each antenna; and processing the test currents to determine if the test currents are within predetermined limits of the calibration data.

    [0019] The predetermined limits for each antenna may be the calibration data ±0.01%. The processor may disable the detector if one of the test currents is outside the predetermined limits of the calibration data.

    [0020] The plurality of antennas may comprise two or three parallel antennas which in use are oriented horizontally and spaced vertically.

    [0021] The processor may store results of the test in the memory and the test may be conveyed to a user via a user interface.

    [0022] The method may further comprise: providing the detector with a communications module; providing a microprocessor-controlled device having a communications module for communicating with the communications module of the detector; and transmitting the results of the test from the detector to the microprocessor-controlled device via the communications modules.

    [0023] The method may further comprise: providing the microprocessor-controlled device with a communications module for accessing a network; and transmitting results of the test from the microprocessor-controlled device to said network.

    [0024] The method may further comprise: providing a server connected to said network; and transmitting results of the test from the microprocessor-controlled device to the server over said network.

    [0025] The method may further comprise: generating a calibration certificate at the server if the test results indicate that the detector is operating within predetermined limits and downloading the calibration certificate from the server to the microprocessor-controlled device. The network may be the Internet.

    [0026] The detector described above may further comprise a housing in which the other components of the detector are housed, wherein the detector is portable.

    [0027] According to a further aspect of the invention there is provided a system for detecting a buried conductor comprising: a transmitter for generating an alternating current test signal in said conductor; and a detector as defined in claims 1 to 8 for detecting the signal generated in said buried conductor by the transmitter.

    Brief description of the drawings



    [0028] 

    Figure 1 is a schematic representation of a detector system for detecting a buried conductor according to an embodiment of the invention;

    Figure 2 is a block diagram of the detector of the system of Figure 1;

    Figure 3 is a representation of two antennas of the detector of Figure 2; and

    Figure 4 shows a system for validating operation of the detector of Figure 2.


    Description of preferred embodiments



    [0029] Figure 1 is a schematic representation of a system 1 for detecting a buried conductor according to an embodiment of the invention, comprising a portable transmitter 3 and a portable receiver/detector 5. The transmitter 3 is placed in proximity to a buried conductor 7 to produce an alternating current test signal in the buried conductor 7.

    [0030] An aerial in the transmitter 3 is fed with an AC voltage to produce an electromagnetic field 9 which links with the buried conductor 7, thereby inducing the alternating current test signal in the buried conductor 7. The alternating current test signal is radiated as an electromagnetic field 11 by the buried conductor 7 and this electromagnetic field can be detected by the receiver 5. In other embodiments the transmitter may provide a test signal in the conductor by direct connection to the conductor or by clamping around the conductor, as is known in the art.

    [0031] Figure 2 is a block diagram of the receiver 5 of the system 1 of Figure 1. An electromagnetic field 11 radiated by the buried conductor 7 is detected by a plurality of antennas in an antenna module 13. Each antenna outputs a field strength signal representative of the electromagnetic field 11 at the antenna. The outputs from the antenna module 13 are fed into a signal processor module 15 for isolating signals of a desired frequency band or bands and processing these signals to derive their characteristics using known techniques. The signal processor module 15 may comprise a pre-amplification stage for amplifying the field strength signals output from the antennas if the detected signal is weak. The signal processor module 15 may further comprise an analogue to digital converter for converting the field strength signals into digital signals and a digital signal processor for processing the digitised signals.

    [0032] The receiver comprises a communications module 17 to provide a communication/data link between the receiver 5 and a microprocessor-controlled device such as a personal computer (PC) or a personal digital assistant (PDA) (not shown). The communication link may be implemented via a wired or wireless connection. Additionally the communications module 17 may provide a communication link with the transmitter 3.

    [0033] A user interface module 19 is provided to convey information to the operator of the receiver 5 and may comprise one or more of a display for displaying information to the operator of the device, input devices such as a keypad or a touch sensitive screen and an audible output device such as a speaker or beeper. The receiver 5 further comprises a memory module 21 and a power supply unit (PSU) 23 comprising power management circuitry and a power source such as batteries. The overall control of the various components of the receiver 5 is managed by a controller 25.

    [0034] When the receiver is located over a current carrying conductor which radiates an electromagnetic field, the depth of the conductor can be calculated using known techniques by comparing the current induced in at least two of the antennas in the antenna module 13. Figure 3 shows an antenna module 13 of a detector 5 comprising two horizontal vertically spaced antennas B, T. In use the detector 5 is held vertical on ground 27 in which a current carrying conductor 7 is buried, with the bottom antenna B close to the surface of the ground 27. The axes of the antennas are parallel and the separation between the bottom antenna B and the top antenna T is 2s. The conductor 7 is buried at a depth d below the surface of the ground 27 (and below the bottom antenna B) and the horizontal displacement between the antennas B and T and the conductor 7 is x. The components of the portable detector 5 are housed in a housing (not shown).

    [0035] When an alternating current flows in the conductor 7 and the conductor 7 radiates an electromagnetic field, the magnetic flux density or magnetic field at the bottom antenna B is BB and the magnetic flux density at the top antenna T is BT. The depth of the buried conductor 7 below the surface 27 of the ground is given by:



    [0036] It can be seen from the above equation that in order to produce an accurate depth calculation the outputs from the bottom antenna B and the top antenna T must be correctly calibrated with respect to each other. The calibration of the top antenna T relative to the bottom antenna B is performed when the detector is set up after manufacture and factory calibration data is stored in the memory 21. This invention provides a detector which can perform a self-test to ensure that the calibration of the antennas is within acceptable limits and a method of validating the operation of the detector.

    [0037] In the detector 5 of Figures 2 and 3 each antenna B, T is provided with a winding 29 (shown in dotted lines) which is wound around the ferrite of the antenna and connected to a precision current source 31 (shown in dotted lines) to provide an integrated built-in test capability. After the relative calibration of the top antenna T and the bottom antenna B is performed in the factory, separate calibration data is generated in the factory for the top antenna T and for the bottom antenna B by using the precision current source 31 of each antenna to generate a known, predefined current in the winding 29 and recording the current induced in the antennas B, T. This calibration data is stored in the memory 21 of the detector 5 so that it is available for future calibration self-tests.

    [0038] If it is desired to check that the detector 5 is still performing within its calibration limits then the user initiates the calibration procedure through the user interface 19. The predefined test current is generated by the precision current sources 31 and passed through the windings 29 to produce electromagnetic fields at the antennas B, T which induces test currents in the respective antennas B, T. The test currents output from the antennas B, T are compared to the factory calibration data stored in the memory 21 for each antenna B, T to verify that the currents are within predetermined limits of the factory calibration data. If the currents output from both of the antennas B, T are within the predetermined limits then the calibration test is deemed to be a pass. The predetermined limit for each antenna is that the test current is within the factory calibration data ±0.01% (i.e., 1 part in 10,000). If the current output from one of the antennas B, T is not within the predetermined limits then the calibration test is deemed to be a fail. The results of the integrated built-in test are conveyed to the user by means of the user interface 19 and stored in the memory 21. If the detector 5 fails the integrated built-in test then a warning is displayed to indicate that the detector 5 is out of calibration. Alternatively or additionally the controller 25 may lock the detector 5 to prevent its use until the detector is recalibrated and the integrated built-in test is passed.

    [0039] Figure 4 shows a system for validating the operation of the detector of Figure 2. The detector 5 communicates via its communications module 17 with a communications module of a PC 33, a PDA 35 or other microprocessor-controlled device (not shown). In the system of Figure 4 the detector 5 communicates wirelessly with the PC 33 and PDA 35 but in other embodiments the detector 5 may communicate via a wired connection.

    [0040] The PC 33 and PDA 35 are connected or connectable via a network 37, such as the Internet, to a server 39. The server 39 can access a storage device 41.

    [0041] The results of the calibration test together with an identifier of the detector 5, such as a serial number, can be uploaded from the memory 21 of the detector 5 to the PC 33 or PDA 35 and from there via the network 37 to a server 39 so that the results can be stored in the memory 41 associated with the server 39 to record the test results and whether the detector 5 passed or failed the calibration test on the date in question. If the calibration test was passed then the server 39 can generate a test pass certificate which can be downloaded to the PC 33 or PDA 35. A printer 43 connected to the PC 33 can print the calibration certificate to show that the detector 5 passed the calibration test on the date in question.

    [0042] Various modifications will be apparent to those in the art and it is desired to include all such modifications as fall within the scope of the accompanying claims.

    [0043] For example, the detector 5 shown in the Figures comprises two parallel horizontal antennas. It will be understood by a person skilled in the art that the detector may comprise three parallel horizontal antennas or more and that some or all of the antennas may comprise a winding wound around the ferrite of the antenna and connected to a precision current source to provide an integrated built-in test capability for some or all of the antennas.

    [0044] Aspects of the present invention can be implemented in any convenient form, for example using dedicated hardware, or a mixture of dedicated hardware and software.

    [0045] The processing apparatuses can comprise any suitably programmed apparatuses such as a general purpose computer, personal digital assistant, mobile telephone (such as a WAP or 3G-compliant phone) and so on. Since the present invention can be implemented as software, each and every aspect of the present invention thus encompasses computer software implementable on a programmable device. The computer software can be provided to the programmable device using any conventional carrier medium. The carrier medium can comprise a transient carrier medium such as an electrical, optical, microwave, acoustic or radio frequency signal carrying the computer code. An example of such a transient medium is a TCP/IP signal carrying computer code over an IP network, such as the Internet. The carrier medium can also comprise a storage medium for storing processor readable code such as a floppy disk, hard disk, CD ROM, magnetic tape device or solid state memory device.


    Claims

    1. A detector (5) for detecting a buried conductor (7), the detector comprising:

    a plurality of antennas (13, T, B) for detecting an electromagnetic field (11);

    a plurality of windings (29), each wound around a respective antenna (T, B), each winding (29) being connected to a current source (31) for providing a predefined current in the winding (29) to generate an electromagnetic field at the respective antenna (T, B), thereby inducing a test current in the respective antenna (T, B);

    a memory (21) for storing calibration data of the antennas (T, B),

    characterised by:

    the calibration data comprising a separate record for each antenna of the test current induced in that antenna when the predefined current was applied to the winding wound around that antenna when the antennas were calibrated with respect to each other; and

    a processor (25) configured to compare the test currents in the antennas (T, B) with the calibration data to determine if the test currents are within predetermined limits of the calibration data.


     
    2. A detector (5) as claimed in claim 1, wherein the predetermined limits for each antenna are the calibration data ±0 01%.
     
    3. A detector (5) as claimed in claim 1 or 2, wherein the processor (25) is configured to disable the detector (5) if one of the test currents is outside the predetermined limits of the calibration data.
     
    4. A detector (5) as claimed in claim 1, 2 or 3, wherein the plurality of antennas (13, T, B) comprise two or more parallel antennas (T, B) which in use are oriented horizontally and spaced vertically.
     
    5. A detector (5) as claimed in claim 4, wherein the plurality of antennas (13, T, B) comprise three parallel antennas which in use are oriented horizontally and spaced vertically.
     
    6. A detector (5) as claimed in any one of the preceding claims, wherein the processor (25) is configured to store results of the test in the memory (21).
     
    7. A detector (5) as claimed in any one of the preceding claims, further comprising a user interface (19) for conveying the results of the test to a user.
     
    8. A detector (5) as claimed in any one of the preceding claims, further comprising a communications module (17) for transmitting results of the test to another device (33, 35).
     
    9. A system for validating the operation of a detector (5) for detecting a buried conductor (7) as claimed in claim 8, the system comprising:
    a microprocessor-controlled device (33, 35) having a communications module for communicating with the communications module (17) of said detector (5) and a communications module for accessing a network (37), wherein the device (33, 35) is configured to receive test results from said detector (5) and transmit the test results to said network (37).
     
    10. A system as claimed in claim 9, further comprising a server (39) connected to said network (37), wherein the server (39) is configured to receive test results from the microprocessor-controlled device (33, 35).
     
    11. A system as claimed in claim 10, wherein the server (39) is configured to generate a calibration certificate if the test results indicate that said detector (5) is operating within predetermined limits.
     
    12. A system as claimed in claim 11, wherein the calibration certificate is downloadable from the server (39) to the microprocessor-controlled device (33, 35).
     
    13. A method of validating the operation of a detector (5) for detecting a buried conductor (7) as defined claim 1, the method comprising:

    providing a predefined current in the winding (29) to generate an electromagnetic field (T, B) at each antenna (7), thereby inducing a test current in each antenna (T, B); and

    processing the test currents to determine if the test currents are within predetermined limits of the calibration data.


     
    14. A method as claimed in claim 13, wherein the predetermined limits for each antenna (T, B) are the calibration data ±0.01%.
     
    15. A method as claimed in claim 13 or 14, wherein the processor (25) disables the detector if one of the test currents is outside the predetermined limits of the calibration data.
     
    16. A method as claimed in claim 13, 14 or 15, wherein the plurality of antennas (13, T, B) comprise two parallel antennas (T, B) which in use are oriented horizontally and spaced vertically.
     
    17. A method as claimed in any one of claims 13 to 16, wherein the processor (25) stores results of the test in the memory (21).
     
    18. A method as claimed in any one of claims 13 to 17, wherein results of the test are conveyed to a user via a user interface (19).
     
    19. A method as claimed in any one of the claims 13 to 18, further comprising:

    providing the detector (5) with a communications module (17);

    providing a microprocessor-controlled device (33, 35) having a communications module for communicating with the communications module (17) of the detector(5); and

    transmitting the results of the test from the detector (5) to the microprocessor controlled device (33, 35) via the communications modules (17).


     
    20. A method as claimed in claim 19, further comprising:

    providing the microprocessor-controlled device (33, 35) with a communications module for accessing a network (37); and

    transmitting results of the test from the microprocessor-controlled device (33, 35) to said network (37).


     
    21. A method as claimed in claim 20, further comprising:

    providing a server (39) connected to said network (37); and

    transmitting results of the test from the microprocessor-controlled device (33, 35) to the server (39) over said network (37).


     
    22. A method as claimed in claim 21, further comprising:
    generating a calibration certificate at the server (39) if the test results indicate that the detector (5) is operating within predetermined limits.
     
    23. A method as claimed in claim 22, further comprising:
    downloading the calibration certificate from the server (39) to the microprocessor-controlled device (33, 35).
     
    24. A system (1) for detecting a buried conductor (7) comprising:

    a transmitter (3) for generating an alternating current test signal (9) in said conductor (7); and

    a detector (5) as claimed in any one of claims 1 to 8 for detecting the signal generated in said buried conductor (7) by the transmitter (3).


     


    Ansprüche

    1. Detektor (5) zum Detektieren eines verdeckten Leiters (7), wobei der Detektor umfasst:

    mehrere Antennen (13, T, B) zum Detektieren eines elektromagnetischen Felds (11);

    mehrere Wicklungen (29), die jeweils um eine entsprechende Antenne (T, B) gewickelt sind, wobei jede Wicklung (29) mit einer Stromquelle (31) zum Bereitstellen eines vordefinierten Stroms in der Wicklung (29) verbunden ist, um ein elektromagnetisches Feld in der entsprechenden Antenne (T, B) zu erzeugen, wodurch ein Prüfstrom in die entsprechende Antenne (T, B) induziert wird;

    einen Speicher (21) zum Speichern von Kalibrierdaten der Antennen (T, B), dadurch gekennzeichnet, dass:

    die Kalibrierdaten einen separaten Eintrag für jede Antenne mit dem Prüfstrom umfasst, der in die jeweilige Antenne induziert wurde, wenn der vordefinierte Strom an die Wicklung angelegt wurde, die um die jeweilige Antenne gewickelt ist, wenn die Antennen bezogen aufeinander kalibriert wurden; und

    einen Prozessor (25), der konfiguriert ist, die Prüfströme in den Antennen (T, B) mit den Kalibrierdaten zu vergleichen, um zu bestimmen, ob die Testströme innerhalb vorbestimmter Grenzen der Kalibrierdaten liegen.


     
    2. Detektor (5) nach Anspruch 1, wobei die vorbestimmten Grenzen für jede Antenne die Kalibrierdaten ± 0,01 % sind.
     
    3. Detektor (5) nach Anspruch 1 oder 2, wobei der Prozessor (25) konfiguriert ist, den Detektor (5) abzuschalten, wenn einer der Testströme außerhalb der vorbestimmten Grenzen der Kalibrierdaten liegt.
     
    4. Detektor (5) nach Anspruch 1, 2 oder 3, wobei die mehreren Antennen (13, T, B) zwei oder mehrere parallele Antennen (T, B) aufweisen, die bei Verwendung horizontal ausgerichtet und vertikal beabstandet sind.
     
    5. Detektor (5) nach Anspruch 4, wobei die mehreren Antennen (13, T, B) drei parallele Antennen aufweisen, die bei Verwendung horizontal ausgerichtet und vertikal beabstandet sind.
     
    6. Detektor (5) nach einem der vorhergehenden Ansprüche, wobei der Prozessor (25) konfiguriert ist, die Ergebnisse des Tests in dem Speicher (21) zu speichern.
     
    7. Detektor (5) nach einem der vorhergehenden Ansprüche, ferner umfassend eine Benutzerschnittstelle (19) zum Übermitteln der Ergebnisse des Tests an einen Benutzer.
     
    8. Detektor (5) nach einem der vorhergehenden Ansprüche, ferner umfassend ein Kommunikationsmodul (17) zum Übertragen der Ergebnisse des Tests an andere Vorrichtungen (33, 35).
     
    9. System zum Validieren des Betriebs eines Detektors (5) zum Detektieren eines verdeckten Leiters (7) nach Anspruch 8, wobei das System umfasst:
    eine mikroprozessorgesteuerte Vorrichtung (33, 35), die ein Kommunikationsmodul zum Kommunizieren mit dem Kommunikationsmodul (17) des Detektors (5) und ein Kommunikationsmodul zum Zugriff auf ein Netzwerk (37) aufweist, wobei die Vorrichtung (33, 35) konfiguriert ist, Testergebnisse von dem Detektor (5) zu empfangen und die Testergebnisse an das Netzwerk (37) zu übertragen.
     
    10. System nach Anspruch 9, ferner umfassend einen Server (39), der mit dem Netzwerk (37) verbunden ist, wobei der Server (39) konfiguriert ist, Testergebnisse von der mikroprozessorgesteuerten Vorrichtung (33, 35) zu empfangen.
     
    11. System nach Anspruch 10, wobei der Server (39) konfiguriert ist, ein Kalibrierzertifikat zu erzeugen, wenn die Testergebnisse anzeigen, dass der Detektor (5) innerhalb vorbestimmter Grenzen arbeitet.
     
    12. System nach Anspruch 11, wobei das Kalibrierzertifikat von dem Server (39) durch die mikroprozessorgesteuerte Vorrichtung (33, 35) herunterladbar ist.
     
    13. Verfahren zum Validieren des Betriebs eines Detektors (5) zum Detektieren eines verdeckten Leiters (7) nach Anspruch 1, wobei das Verfahren umfasst:

    Bereitstellen eines vordefinierten Stroms in der Wicklung (29) zum Generieren eines elektromagnetischen Felds (T, B) durch jede Antenne (7), wodurch ein Teststrom in jede Antenne (T, B) induziert wird; und

    Verarbeiten der Testströme zum Bestimmen, ob die Testströme innerhalb vorbestimmter Grenzen der Kalibrierdaten liegen.


     
    14. Verfahren nach Anspruch 13, wobei die vorbestimmten Grenzen für jede Antenne (T, B) die Kalibrierdaten ± 0,01 % sind.
     
    15. Verfahren nach Anspruch 13 oder 14, wobei der Prozessor (25) den Detektor abschaltet, wenn einer der Testströme außerhalb der vorbestimmten Grenzen der Kalibrierdaten liegt.
     
    16. Verfahren nach Anspruch 13, 14 oder 15, wobei die mehreren Antennen (13, T, B) zwei parallele Antennen (T, B) aufweisen, die bei Verwendung horizontal ausgerichtet und vertikal beabstandet sind.
     
    17. Verfahren nach einem der Ansprüche 13 bis 16, wobei der Prozessor (25) die Ergebnisse des Tests in dem Speicher (21) speichert.
     
    18. Verfahren nach einem der Ansprüche 13 bis 17, wobei die Ergebnisse des Tests an einen Benutzer über eine Benutzerschnittstelle (19) übermittelt werden.
     
    19. Verfahren nach einem der Ansprüche 13 bis 18, ferner umfassend
    Bereitstellen des Detektors (5) mit einem Kommunikationsmodul (17);
    Bereitstellen einer mikroprozessorgesteuerten Vorrichtung (33, 35), die ein Kommunikationsmodul zum Kommunizieren mit dem Kommunikationsmodul (17) des Detektors (5) aufweist; und
    Übertragen der Ergebnisse des Tests vom Detektor (5) an die mikroprozessorgesteuerte Vorrichtung (33, 35) über die Kommunikationsmodule (17).
     
    20. Verfahren nach Anspruch 19, ferner umfassend:

    Bereitstellen der mikroprozessorgesteuerten Vorrichtung (33, 35) mit einem Kommunikationsmodul zum Zugriff auf ein Netzwerk (37); und

    Übertragen der Ergebnisse des Tests von der mikroprozessorgesteuerten Vorrichtung (33, 35) an das Netzwerk (37).


     
    21. Verfahren nach Anspruch 20, ferner umfassend:

    Bereitstellen eines Servers (39), der mit dem Netzwerk (37) verbunden ist; und

    Übertragen der Ergebnisse des Tests von der mikroprozessorgesteuerten Vorrichtung (33, 35) an den Server (39) über das Netzwerk (37).


     
    22. Verfahren nach Anspruch 21, ferner umfassend:
    Erzeugen eines Kalibrierzertifikats am Server (39), wenn die Testergebnisse anzeigen, dass der Detektor (5) innerhalb vorbestimmter Grenzen arbeitet.
     
    23. Verfahren nach Anspruch 22, ferner umfassend:
    Herunterladen des Kalibrierzertifikats vom Server (39) durch die mikroprozessorgesteuerte Vorrichtung (33, 35).
     
    24. System (1) zum Detektieren eines verdeckten Leiters (7) umfassend:

    einen Sender (3) zum Erzeugen eines Wechselstromtestsignals (9) in dem Leiter (7); und

    einen Detektor (5) nach einem der Ansprüche 1 bis 8 zum Detektieren des Signals, das in dem verdeckten Leiter (7) durch den Sender (3) erzeugt wurde.


     


    Revendications

    1. Détecteur (5) pour détecter un conducteur enterré (7), le détecteur comprenant :

    une pluralité d'antennes (13, T, B) pour détecter un champ électromagnétique (11) ;

    une pluralité d'enroulements (29), enroulés chacun autour d'une antenne respective (T, B), chaque enroulement (29) étant connecté à une source de courant (31) pour fournir un courant prédéfini dans l'enroulement (29) pour générer un champ électromagnétique au niveau de l'antenne respective (T, B), induisant ainsi un courant de test dans l'antenne respective (T, B) ;

    une mémoire (21) pour stocker des données d'étalonnage des antennes (T, B),

    caractérisé en ce que :

    les données d'étalonnage comprennent un enregistrement séparé pour chaque antenne du courant de test induit dans cette antenne lorsque le courant prédéfini a été appliqué à l'enroulement enroulé autour de cette antenne lorsque les antennes ont été étalonnées les unes par rapport aux autres ; et

    un processeur (25) configuré pour comparer le courant de test dans les antennes (T, B) aux données d'étalonnage pour déterminer si les courants de test sont dans des limites prédéterminées des données d'étalonnage.


     
    2. Détecteur (5) tel que revendiqué dans la revendication 1, dans lequel les limites prédéterminées pour chaque antenne sont les données d'étalonnage ± 0,01 %.
     
    3. Détecteur (5) tel que revendiqué dans la revendication 1 ou 2, dans lequel le processeur (25) est configuré pour désactiver le détecteur (5) si l'un des courants de test est en dehors des limites prédéterminées des données d'étalonnage.
     
    4. Détecteur (5) tel que revendiqué dans la revendication 1, 2 ou 3, dans lequel la pluralité d'antennes (13, T, B) comprend deux ou plus de deux antennes parallèles (T, B) qui sont, en utilisation, orientées horizontalement et espacées verticalement.
     
    5. Détecteur (5) tel que revendiqué dans la revendication 4, dans lequel la pluralité d'antennes (13, T, B) comprennent trois antennes parallèles qui sont, en utilisation, orientées horizontalement et espacées verticalement.
     
    6. Détecteur (5) tel que revendiqué dans l'une quelconque des revendications précédentes, dans lequel le processeur (25) est configuré pour stocker des résultats du test dans la mémoire (21).
     
    7. Détecteur (5) tel que revendiqué dans l'une quelconque des revendications précédentes, comprenant en outre une interface utilisateur (19) pour transférer les résultats du test à un utilisateur.
     
    8. Détecteur (5) tel que revendiqué dans l'une quelconque des revendications précédentes, comprenant en outre un module de communication (17) pour transmettre des résultats du test à un autre dispositif (33, 35).
     
    9. Système pour valider le fonctionnement d'un détecteur (5) pour détecter un conducteur enterré (7) tel que revendiqué dans la revendication 8, le système comprenant :
    un dispositif commandé par microprocesseur (33, 35) ayant un module de communication pour communiquer avec le module de communication (17) dudit détecteur (5) et un module de communication pour accéder à un réseau (37), le dispositif (33, 35) étant configuré pour recevoir des résultats de test à partir dudit détecteur (5) et transmettre les résultats de test audit réseau (37).
     
    10. Système tel que revendiqué dans la revendication 9, comprenant en outre un serveur (39) connecté audit réseau (37), dans lequel le serveur (39) est configuré pour recevoir des résultats de test à partir du dispositif commandé par microprocesseur (33, 35).
     
    11. Système tel que revendiqué dans la revendication 10, dans lequel le serveur (39) est configuré pour générer un certificat d'étalonnage si les résultats de test indiquent que ledit détecteur (5) fonctionne dans des limites prédéterminées.
     
    12. Système tel que revendiqué dans la revendication 11, dans lequel le certificat d'étalonnage est téléchargeable à partir du serveur (39) vers le dispositif commandé par microprocesseur (33, 35).
     
    13. Procédé de validation du fonctionnement d'un détecteur (5) pour détecter un conducteur enterré (7) selon la revendication 1, le procédé comprenant les étapes consistant à :

    fournir un courant prédéfini dans l'enroulement (29) pour générer un champ électromagnétique (T, B) au niveau de chaque antenne (7), induisant ainsi un courant de test dans chaque antenne (T, B) ; et

    traiter les courants de test pour déterminer si les courants de test sont dans des limites prédéterminées des données d'étalonnage.


     
    14. Procédé tel que revendiqué dans la revendication 13, dans lequel les limites prédéterminées pour chaque antenne (T, B) sont les données d'étalonnage ± 0,01 %.
     
    15. Procédé tel que revendiqué dans la revendication 13 ou 14, dans lequel le processeur (25) désactive le détecteur si l'un des courants de test est en dehors des limites prédéterminées des données d'étalonnage.
     
    16. Procédé tel que revendiqué dans la revendication 13, 14 ou 15, dans lequel la pluralité d'antennes (13, T, B) comprennent deux antennes parallèles (T, B) qui sont, en utilisation, orientées horizontalement et espacées verticalement.
     
    17. Procédé tel que revendiqué dans l'une quelconque des revendications 13 à 16, dans lequel le processeur (25) stocke des résultats du test dans la mémoire (21).
     
    18. Procédé tel que revendiqué dans l'une quelconque des revendications 13 à 17, dans lequel des résultats du test sont transférés à un utilisateur via une interface utilisateur (19).
     
    19. Procédé tel que revendiqué dans l'une quelconque des revendications 13 à 18, comprenant en outre les étapes consistant à :

    fournir au détecteur (5) un module de communication (17) ;

    fournir un dispositif commandé par microprocesseur (33, 35) ayant un module de communication pour communiquer avec le module de communication (17) du détecteur (5) ; et

    transmettre les résultats du test à partir du détecteur (5) au dispositif commandé par microprocesseur (33, 35) via les modules de communication (17).


     
    20. Procédé tel que revendiqué dans la revendication 19, comprenant en outre les étapes consistant à :

    fournir le dispositif commandé par microprocesseur (33, 35) avec un module de communication pour accéder à un réseau (37) ; et

    transmettre les résultats du test à partir du dispositif commandé par microprocesseur (33, 35) audit réseau (37).


     
    21. Procédé tel que revendiqué dans la revendication 20, comprenant en outre les étapes consistant à :

    fournir un serveur (39) connecté audit réseau (37) ; et

    transmettre les résultats du test à partir du dispositif commandé par microprocesseur (33, 35) au serveur (39) par ledit réseau (37).


     
    22. Procédé tel que revendiqué dans la revendication 21, comprenant en outre les étapes consistant à :
    générer un certificat d'étalonnage au niveau du serveur (39) si les résultats de test indiquent que le détecteur (5) fonctionne dans des limites prédéterminées.
     
    23. Procédé tel que revendiqué dans la revendication 22, comprenant en outre les étapes consistant à :
    télécharger le certificat d'étalonnage à partir du serveur (39) vers le dispositif commandé par microprocesseur (33, 35).
     
    24. Système (1) pour détecter un conducteur enterré (7) comprenant :

    un émetteur (3) pour générer un signal de test de courant alternatif (9) dans ledit conducteur (7) ; et

    un détecteur (5) tel que revendiqué dans l'une quelconque des revendications 1 à 8 pour détecter le signal généré dans ledit conducteur enterré (7) par l'émetteur (3) .


     




    Drawing











    Cited references

    REFERENCES CITED IN THE DESCRIPTION



    This list of references cited by the applicant is for the reader's convenience only. It does not form part of the European patent document. Even though great care has been taken in compiling the references, errors or omissions cannot be excluded and the EPO disclaims all liability in this regard.

    Patent documents cited in the description