(19)
(11)EP 2 102 156 B1

(12)EUROPEAN PATENT SPECIFICATION

(45)Mention of the grant of the patent:
26.06.2019 Bulletin 2019/26

(21)Application number: 07848989.5

(22)Date of filing:  03.12.2007
(51)International Patent Classification (IPC): 
C07C 381/12(2006.01)
(86)International application number:
PCT/IB2007/003823
(87)International publication number:
WO 2008/068610 (12.06.2008 Gazette  2008/24)

(54)

PHOTOACTIVE COMPOUNDS

FOTOAKTIVE ZUSAMMENSETZUNGEN

COMPOSÉS PHOTOACTIFS


(84)Designated Contracting States:
AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LI LT LU LV MC MT NL PL PT RO SE SI SK TR

(30)Priority: 04.12.2006 US 566312

(43)Date of publication of application:
23.09.2009 Bulletin 2009/39

(73)Proprietor: Merck Patent GmbH
64293 Darmstadt (DE)

(72)Inventors:
  • PADMANABAN, Munirathna
    Bridgewater, NJ 08807 (US)
  • CHAKRAPANI, Srinivasan
    Bridgewater, NJ 08807 (US)
  • RAHMAN, M. Dalil
    Flemington, NJ 08822 (US)

(74)Representative: Rippel, Hans Christoph 
Patentanwälte Isenbruck Bösl Hörschler PartG mbB Eastsite One Seckenheimer Landstrasse 4
68163 Mannheim
68163 Mannheim (DE)


(56)References cited: : 
WO-A-02/082185
JP-A- 2005 148 291
JP-A- 2005 258 124
WO-A-2007/124092
JP-A- 2005 227 645
JP-A- 2007 178 858
  
      
    Note: Within nine months from the publication of the mention of the grant of the European patent, any person may give notice to the European Patent Office of opposition to the European patent granted. Notice of opposition shall be filed in a written reasoned statement. It shall not be deemed to have been filed until the opposition fee has been paid. (Art. 99(1) European Patent Convention).


    Description

    Field of Invention



    [0001] The present invention relates to novel photoactive compounds useful in photoresist compositions in the field of microlithography, and especially useful for imaging negative and positive patterns in the production of semiconductor devices, as well as photoresist compositions and processes for imaging photoresists.

    Background of the Invention



    [0002] Photoresist compositions are used in microlithography processes for making miniaturized electronic components such as in the fabrication of computer chips and integrated circuits. Generally, in these processes, a thin coating of film of a photoresist composition is first applied to a substrate material, such as silicon wafers used for making integrated circuits. The coated substrate is then baked to evaporate any solvent in the photoresist composition and to fix the coating onto the substrate. The photoresist coated on the substrate is next subjected to an image-wise exposure to radiation.

    [0003] The radiation exposure causes a chemical transformation in the exposed areas of the coated surface. Visible light, ultraviolet (UV) light, electron beam and X-ray radiant energy are radiation types commonly used today in microlithographic processes. After this image-wise exposure, the coated substrate is treated with a developer solution to dissolve and remove either the radiation exposed or the unexposed areas of the photoresist. The trend toward the miniaturization of semiconductor devices has led to the use of new photoresists that are sensitive at lower and lower wavelengths of radiation and has also led to the use of sophisticated multilevel systems to overcome difficulties associated with such miniaturization.

    [0004] There are two types of photoresist compositions: negative-working and positive-working. The type of photoresist used at a particular point in lithographic processing is determined by the design of the semiconductor device. When negative-working photoresist compositions are exposed image-wise to radiation, the areas of the photoresist composition exposed to the radiation become less soluble to a developer solution (e.g. a cross-linking reaction occurs) while the unexposed areas of the photoresist coating remain relatively soluble to such a solution. Thus, treatment of an exposed negative-working resist with a developer causes removal of the non-exposed areas of the photoresist coating and the creation of a negative image in the coating, thereby uncovering a desired portion of the underlying substrate surface on which the photoresist composition was deposited.

    [0005] On the other hand, when positive-working photoresist compositions are exposed image-wise to radiation, those areas of the photoresist composition exposed to the radiation become more soluble to the developer solution (e.g. a rearrangement reaction occurs) while those areas not exposed remain relatively insoluble to the developer solution. Thus, treatment of an exposed positive-working photoresist with the developer causes removal of the exposed areas of the coating and the creation of a positive image in the photoresist coating. Again, a desired portion of the underlying surface is uncovered.

    [0006] Photoresist resolution is defined as the smallest feature, which the resist composition can transfer from the photomask to the substrate with a high degree of image edge acuity after exposure and development. In many leading edge manufacturing applications today, photoresist resolution on the order of less than one-half µm (micron) are necessary. In addition, it is almost always desirable that the developed photoresist wall profiles be near vertical relative to the substrate. Such demarcations between developed and undeveloped areas of the resist coating translate into accurate pattern transfer of the mask image onto the substrate. This becomes even more critical as the push toward miniaturization reduces the critical dimensions on the devices. In cases where the photoresist dimensions have been reduced to below 150 nm, the roughness of the photoresist patterns has become a critical issue. Edge roughness, commonly known as line edge roughness, is typically observed for line and space patterns as roughness along the photoresist line, and for contact holes as side wall roughness. Edge roughness can have adverse effects on the lithographic performance of the photoresist, especially in reducing the critical dimension latitude and also in transferring the line edge roughness of the photoresist to the substrate. Hence, photoresists that minimize edge roughness are highly desirable.

    [0007] Photoresists sensitive to short wavelengths, between about 100 nm and about 300 nm are often used where subhalfmicron geometries are required. Particularly preferred are photoresists comprising non-aromatic polymers, a photoacid generator, optionally a dissolution inhibitor, and solvent.

    [0008] High resolution, chemically amplified, deep ultraviolet (100-300 nm) positive and negative tone photoresists are available for patterning images with less than quarter micron geometries. To date, there are three major deep ultraviolet (UV) exposure technologies that have provided significant advancement in miniaturization, and these use lasers that emit radiation at 248 nm, 193 nm and 157 nm. Photoresists used in the deep UV typically comprise a polymer which has an acid labile group and which can deprotect in the presence of an acid, a photoactive component which generates an acid upon absorption of light, and a solvent.

    [0009] Photoresists for 248 nm have typically been based on substituted polyhydroxystyrene and its copolymers, such as those described in US 4,491,628 and US 5,350,660. On the other hand, photoresists for 193 nm exposure require non-aromatic polymers, since aromatics are opaque at this wavelength. US 5,843,624 and GB 2,320,718 disclose photoresists useful for 193 nm exposure. Generally, polymers containing alicyclic hydrocarbons are used for photoresists for exposure below 200 nm. Alicyclic hydrocarbons are incorporated into the polymer for many reasons, primarily since they have relatively high carbon:hydrogen ratios which improve etch resistance, they also provide transparency at low wavelengths and they have relatively high glass transition temperatures. Photoresists sensitive at 157 nm have been based on fluorinated polymers, which are known to be substantially transparent at that wavelength. Photoresists derived from polymers containing fluorinated groups are described in WO 00/67072 and WO 00/17712.

    [0010] The polymers used in a photoresist are designed to be transparent to the imaging wavelength, but on the other hand, the photoactive component has been typically designed to be absorbing at the imaging wavelength to maximize photosensitivity. The photosensitivity of the photoresist is dependent on the absorption characteristics of the photoactive component, the higher the absorption, the less the energy required to generate the acid, and the more photosensitive is the photoresist.

    SUMMARY OF THE INVENTION



    [0011] The present invention relates to a compound of the formula

            Ai Xi,

    where Ai is an organic onium cation; and

    Xi is anion of the formula I-CF2CF2OCF2CF2-SO3-, where Ai is

    where R1A, R2A, R3A, R4A and R5A are each independently selected from hydrogen, OSO2R9, straight or branched (C1 - C10) alkyl chain optionally containing one or more O atoms, straight or branched (C1 - C10) alkoxy chain, halogen, or hydroxyl;

    R6 and R7 are each unsubstituted or substituted aryl, wherein substituted aryl is substituted with OSO2R9, hydroxy or C1 - C10-alkoxy;

    R9 is selected from alkyl, fluoroalkyl and perfluoroalkyl;

    T is a direct bond.

    The invention further relates to the use of the above described compound and its preferred embodiments as a photoacid generator in a photoresist composition.

    [0012] The present invention also relates to a photoresist composition comprising a polymer containing an acid labile group and a compound as described above. Optionally, the photoresist composition can also contain one or more additional photoacid generators selected from (a) a compound having the formula (Ai)2 Xi1, where each Ai is

    and

            Y-Ar

    where Ar is selected from

    naphthyl, or anthryl;

    Y is selected from



    where R1, R2, R3, R1A, R1B, R2A, R2B, R3A, R3B, R4A, R4B, R5A, and R5B are each independently selected from Z, hydrogen, OSO2R9, OR20, straight or branched alkyl chain optionally containing one or more O atoms, monocycloalkyl or polycycloalkyl group optionally containing one or more O atoms, monocycloalkyl- or polycycloalkylcarbonyl group, aryl, aralkyl, arylcarbonylmethyl group, alkoxyalkyl, alkoxycarbonylalkyl, alkylcarbonyl, monocycloalkyl- or polycycloalkyloxycarbonylalkyl with the cycloalkyl ring optionally containing one or more O atoms, monocycloalkyl- or polycycloalkyloxyalkyl with the cycloalkyl ring optionally containing one or more O atoms, straight or branched perfluoroalkyl, monocycloperfluoroalkyl or polycycloperfluoroalkyl, straight or branched alkoxy chain, nitro, cyano, halogen, carboxyl, hydroxyl, sulfate, tresyl, or hydroxyl;

    R6 and R7 are each independently selected from straight or branched alkyl chain optionally containing one or more O atoms, monocycloalkyl or polycycloalkyl group optionally containing one or more O atoms, monocycloalkyl- or polycycloalkylcarbonyl group, aryl, aralkyl, straight or branched perfluoroalkyl, monocycloperfluoroalkyl or polycycloperfluoroalkyl, arylcarbonylmethyl group, nitro, cyano, or hydroxyl or R6 and R7 together with the S atom to which they are attached form a 5-, 6-, or 7-membered saturated or unsaturated ring optionally containing one or more O atoms;

    R9 is selected from alkyl, fluoroalkyl, perfluoroalkyl, aryl, fluoroaryl, perfluoroaryl, monocycloalkyl or polycycloalkyl group with the cycloalkyl ring optionally containing one or more O atoms, monocyclofluoroalkyl or polycyclofluoroalkyl group with the cycloalkyl ring optionally containing one or more O atoms, or monocycloperfluoralkyl or polycycloperfluoroalkyl group with the cycloalkyl ring optionally containing one or more O atoms;

    R20 is alkoxyalkyl, alkoxycarbonylalkyl, alkylcarbonyl, monocycloalkyl- or polycycloalkyloxycarbonylalkyl with the cycloalkyl ring optionally containing one or more O atoms, or monocycloalkyl- or polycycloalkyloxyalkyl with the cycloalkyl ring optionally containing one or more O atoms;

    T is a direct bond, a divalent straight or branched alkyl group optionally containing one or more O atoms, divalent aryl group, divalent aralkyl group, or divalent monocycloalkyl or polycycloalkyl group optionally containing one or more O atoms;

    Z is -(V)j-(C(X11)(X12))n-O-C(=O)-R8, where either (i) one of X11 or X12 is straight or branched alkyl chain containing at least one fluorine atom and the other is hydrogen, halogen, or straight or branched alkyl chain or (ii) both of X11 and X12 are straight or branched alkyl chain containing at least one fluorine atom;

    V is a linkage group selected from a direct bond, a divalent straight or branched alkyl group optionally containing one or more O atoms, divalent aryl group, divalent aralkyl group, or divalent monocycloalkyl or polycycloalkyl group optionally containing one or more O atoms;

    X2 is hydrogen, halogen, or straight or branched alkyl chain optionally containing one or more O atoms;

    R8 is a straight or branched alkyl chain optionally containing one or more O atoms, a monocycloalkyl or polycycloalkyl group optionally containing one or more O atoms, or aryl;

    X3 is hydrogen, straight or branched alkyl chain, halogen, cyano, or -C(=O)-R50 where R50 is selected from straight or branched alkyl chain optionally containing one or more O atoms or -O-R51 where R51 is hydrogen or straight or branched alkyl chain;

    each of i and k are independently 0 or a positive integer;

    j is 0 to 10;

    m is 0 to 10;

    and n is 0 to 10,

    the straight or branched alkyl chain optionally containing one or more O atoms, straight or branched alkyl chain, straight or branched alkoxy chain, monocycloalkyl or polycycloalkyl group optionally containing one or more O atoms, monocycloalkyl- or polycycloalkylcarbonyl group, alkoxyalkyl, alkoxycarbonylalkyl, alkylcarbonyl, monocycloalkyl- or polycycloalkyloxycarbonylalkyl with the cycloalkyl ring optionally containing one or more O atoms, monocycloalkyl- or polycycloalkyloxyalkyl with the cycloalkyl ring optionally containing one or more O atoms, aralkyl, aryl, naphthyl, anthryl, 5-, 6-, or 7-membered saturated or unsaturated ring optionally containing one or more O atoms, or arylcarbonylmethyl group being unsubstituted or substituted by one or more groups selected from the group consisting of Z, halogen, alkyl, C1-8 perfluoroalkyl, monocycloalkyl or polycycloalkyl, OR20, alkoxy, C3-20 cyclic alkoxy, dialkylamino, dicyclic dialkylamino, hydroxyl, cyano, nitro, tresyl, oxo, aryl, aralkyl, oxygen atom, CF3SO3, aryloxy, arylthio, and groups of formulae (II) to (VI):

    wherein R10 and R11 each independently represent a hydrogen atom, a straight or branched alkyl chain optionally containing one or more O atoms, or a monocycloalkyl or polycycloalkyl group optionally containing one or more O atoms, or R10 and R11 together can represent an alkylene group to form a five- or six-membered ring;

    R12 represents a straight or branched alkyl chain optionally containing one or more O atoms, a monocycloalkyl or polycycloalkyl group optionally containing one or more O atoms, or aralkyl, or R10 and R12 together represent an alkylene group which forms a five- or six-membered ring together with the interposing -C-O- group, the carbon atom in the ring being optionally substituted by an oxygen atom;

    R13 represents a straight or branched alkyl chain optionally containing one or more O atoms or a monocycloalkyl or polycycloalkyl group optionally containing one or more O atoms;

    R14 and R15 each independently represent a hydrogen atom, a straight or branched alkyl chain optionally containing one or more O atoms or a monocycloalkyl or polycycloalkyl group optionally containing one or more O atoms;

    R16 represents a straight or branched alkyl chain optionally containing one or more O atoms, a monocycloalkyl or polycycloalkyl group optionally containing one or more O atoms, aryl, or aralkyl; and

    R17 represents straight or branched alkyl chain optionally containing one or more O atoms, a monocycloalkyl or polycycloalkyl group optionally containing one or more O atoms, aryl, aralkyl, the group -Si(R16)2R17, or the group -O-Si(R16)2R17, the straight or branched alkyl chain optionally containing one or more O atoms, monocycloalkyl or polycycloalkyl group optionally containing one or more O atoms, aryl, and aralkyl being unsubstituted or substituted as above and Xi1 is an anion of the formula Q-R500-SO3-, where Q is selected from -O3S and -O2C; and R500 is a group selected from linear or branched alkyl, cycloalkyl, aryl, or combinations thereof, optionally containing a catenary S or N, where the alkyl, cycloalkyl, and aryl groups are unsubstituted or substituted by one or more groups selected from the group consisting of halogen, unsubstituted or substituted alkyl, unsubstituted or substituted C1-8 perfluoroalkyl, hydroxyl, cyano, sulfate, and nitro; and (b) a compound having the formula Ai Xi2, where Ai is an organic onium cation as previously defined and Xi2 is an anion;and mixtures of (a) and (b) thereof. Examples of the Xi2 anion include CF3SO3-, CHF2SO3-, CH3SO3-, CCl3SO3-, C2F5SO3-, C2HF4SO3-, C4F9SO3-, camphor sulfonate, perfluorooctane sulfonate, benzene sulfonate, pentafluorobenzene sulfonate, toluene sulfonate, perfluorotoluene sulfonate, (Rf1SO2)3C- and (Rf1SO2)2N-, wherein each Rf1 is independently selected from the group consisting of highly fluorinated or perfluorinated alkyl or fluorinated aryl radicals and may be cyclic, when a combination of any two Rf1 groups are linked to form a bridge, further, the Rf1 alkyl chains contain from 1-20 carbon atoms and may be straight, branched, or cyclic, such that divalent oxygen, trivalent nitrogen or hexavalent sulfur may interrupt the skeletal chain, further when Rf1 contains a cyclic structure, such structure has 5 or 6 ring members, optionally, 1 or 2 of which are heteroatoms, and Rg-O-Rf2-SO3-, where Rf2 is selected from the group consisting of linear or branched (CF2)j where j is an integer from 4 to 10 and C1-C12 cycloperfluoroalkyl divalent radical which is optionally perfluoroC1-10alkyl substituted, Rg is selected from the group consisting of C1-C20 linear, branched, monocycloalkyl or polycycloalkyl, C1-C20 linear, branched, monocycloalkenyl or polycycloalkenyl, aryl, and aralkyl, the alkyl, alkenyl, aralkyl and aryl groups being unsubstituted, substituted, optionally containing one or more catenary oxygen atoms, partially fluorinated or perfluorinated. Examples of such anions Xi2 include (C2F5SO2)2N-, (C4F9SO2)2N-, (C8F17SO2)3C-, (CF3SO2)3C-, (CF3SO2)2N-, (CF3SO2)2(C4F9SO2)C-, (C2F5SO2)3C-, (C4F9SO2)3C-, (CF3SO2)2(C2F5SO2)C-, (C4F9SO2)(C2F5SO2)2C-, (CF3SO2)(C4F9SO2)N-, [(CF3)2NC2F4SO2]2N-, (CF3)2NC2F4SO2C-(SO2CF3)2, (3,5-bis(CF3)C6H3)SO2N-SO2CF3, C6F5SO2C-(SO2CF3)2, C6F5SO2N-SO2CF3,



    CF3CHFO(CF2)4SO3-, CF3CH2O(CF2)4SO3-, CH3CH2O(CF2)4SO3-, CH3CH2CH2O(CF2)4SO3-, CH3O(CF2)4SO3-, C2H5O(CF2)4SO3-, C4H9O(CF2)4SO3-, C6H5CH2O(CF2)4SO3-, C2H5OCF2CF(CF3)SO3-, CH2=CHCH2O(CF2)4SO3-, CH3OCF2CF(CF3)SO3-, C4H9OCF2CF(CF3)SO3-, C8H17O(CF2)2SO3-, and C4H9O(CF2)2SO3-. Other examples of suitable anions can be found in United States Patent No. 6,841,333 and United States Patent No. 5,874,616.



    [0013] Examples of Ai Xi2 include bis(4-t-butylphenyl) iodonium bis-perfluoroethane sulfonimide, diphenyliodonium trifluoromethane sulfonate, diphenyliodonium nonafluorobutane sulfonate, triphenylsulfonium trifluromethane sulfonate, triphenylsulfonium nonafluorobutane sulfonate, 4-(1-butoxyphenyl)diphenylsulfonium bis-(perfluorobutanesulfonyl)imide, 4-(1-butoxyphenyl)diphenylsulfonium bis-(perfluoroethanesulfonyl)imide, 2,4,6-trimethylphenyldiphenylsulfonium bis-perfluorobutanesulfonyl)imide, 2,4,6-trimethylphenyldiphenylsulfonium bis-(perfluoroethanesulfonyl)imide, toluenediphenylsulfonium bis-(perfluorobutanesulfonyl)imide, toluenediphenylsulfonium bis-(perfluoroethanesulfonyl)imide, toluenediphenylsulfonium-(trifluoromethyl perfluorobutylsulfonyl)imide, tris-(tert-butylphenyl)sulfonium-(trifluoromethyl perfluorobutylsulfonyl)imide, tris-(tert-butylphenyl)sulfonium bis-(perfluorobutanesulfonyl)imide, tris-(tert-butylphenyl)sulfonium-bis-(trifluoromethanesulfonyl)imide, and the like as well as other photoacid generators known to those skilled in the art.

    [0014] When used in combination, the ratio of the inventive photoacid generators to the additional photoacid generators ranges from about 1:0.6 to about 1:1.3.

    [0015] The present invention further relates to a process for imaging a photoresist comprising the steps of:
    1. a) applying a coating layer a substrate with the composition of the invention;
    2. b) baking the substrate to substantially remove the solvent;
    3. c) image-wise exposing the photoresist coating;
    4. d) optionally, postexposure baking the photoresist coating; and
    5. e) developing the photoresist coating with an aqueous alkaline solution.


    [0016] Processes for making coated substrates using the inventive photoacid generators as well as coated substrates are also provided for herein.

    DETAILED DESCRIPTION OF THE INVENTION



    [0017] The present invention relates to a compound of the formula

            Ai Xi,

    where Ai is an organic onium cation; and

    Xi is anion of the formula I-CF2CF2OCF2CF2-SO3-, where Ai is

    where R1A, R2A, R3A, R4A, R5A are each independently selected from hydrogen, OSO2R9, straight or branched (C1 - C10) alkyl chain optionally containing one or more O atoms, straight or branched (C1 - C10) alkoxy chain, halogen, or hydroxyl;

    R6 and R7 are each unsubstituted or substituted aryl wherein substituted aryl is substituted with OSO2R9, hydroxy or C1 - C10-alkoxy;

    R9 is selected from alkyl, fluoroalkyl and perfluoroalkyl;

    T is a direct bond.



    [0018] In the above mentioned embodiment it is further preferred that R3A is selected from hydroxy and straight or branched alkoxy chain and each of R2A and R4A is selected from hydrogen and straight or branched alkyl chain optionally containing one or more O atoms.

    [0019] Particulary preferred are compounds Ai Xi selected from the group (4-octyloxyphenyl) phenyl sulfonium 5-iodooctafluoro-3-oxapentane sulfonate, (4-t-butylphenyl diphenyl sulfonium) 5-iodooctafluoro-3-oxapentane sulfonate, and (triphenyl sulfonium) 5-iodooctafluoro-3-oxapentane sulfonate.

    [0020] The compounds of the invention can be synthesized by methods well known to those skilled in the art as described or in analogy to the methods specified in the examples.
    The acid fluoride F-Xi is commercially available, e. g., from SynQuest Labs., Inc. (Alachoa, Floride, U.S.A.).
    The synthesis of the group Ai is disclosed, e. g., in WO 2007/007175.
    The invention further relates to the use of the compounds Ai Xi and their preferred embodiments as a photo acid generator in a photoresist composition, preferably a photoresist composition as described below.

    [0021] The present invention also relates to a photoresist composition comprising a polymer containing an acid labile group and a compound as described above. Optionally, the photoresist composition can also contain one or more additional photoacid generators, preferably selected from (a) a compound having the formula (Ai)2 Xi1, where each Ai is

    and

            Y-Ar

    where Ar is selected from

    naphthyl, or anthryl;

    Y is selected from



    where R1, R2, R3, R1A, R1B, R2A, R2B, R3A, R3B, R4A, R4B, R5A, and R5B are each independently selected from Z, hydrogen, OSO2R9, OR20, straight or branched alkyl chain optionally containing one or more O atoms, monocycloalkyl or polycycloalkyl group optionally containing one or more O atoms, monocycloalkyl- or polycycloalkylcarbonyl group, aryl, aralkyl, arylcarbonylmethyl group, alkoxyalkyl, alkoxycarbonylalkyl, alkylcarbonyl, monocycloalkyl- or polycycloalkyloxycarbonylalkyl with the cycloalkyl ring optionally containing one or more O atoms, monocycloalkyl- or polycycloalkyloxyalkyl with the cycloalkyl ring optionally containing one or more O atoms, straight or branched perfluoroalkyl, monocycloperfluoroalkyl or polycycloperfluoroalkyl, straight or branched alkoxy chain, nitro, cyano, halogen, carboxyl, hydroxyl, sulfate, tresyl, or hydroxyl;

    R6 and R7 are each independently selected from straight or branched alkyl chain optionally containing one or more O atoms, monocycloalkyl or polycycloalkyl group optionally containing one or more O atoms, monocycloalkyl- or polycycloalkylcarbonyl group, aryl, aralkyl, straight or branched perfluoroalkyl, monocycloperfluoroalkyl or polycycloperfluoroalkyl, arylcarbonylmethyl group, nitro, cyano, or hydroxyl or R6 and R7 together with the S atom to which they are attached form a 5-, 6-, or 7-membered saturated or unsaturated ring optionally containing one or more O atoms;

    R9 is selected from alkyl, fluoroalkyl, perfluoroalkyl, aryl, fluoroaryl, perfluoroaryl, monocycloalkyl or polycycloalkyl group with the cycloalkyl ring optionally containing one or more O atoms, monocyclofluoroalkyl or polycyclofluoroalkyl group with the cycloalkyl ring optionally containing one or more O atoms, or monocycloperfluoralkyl or polycycloperfluoroalkyl group with the cycloalkyl ring optionally containing one or more O atoms;

    R20 is alkoxyalkyl, alkoxycarbonylalkyl, alkylcarbonyl, monocycloalkyl- or polycycloalkyloxycarbonylalkyl with the cycloalkyl ring optionally containing one or more O atoms, or monocycloalkyl- or polycycloalkyloxyalkyl with the cycloalkyl ring optionally containing one or more O atoms;

    T is a direct bond, a divalent straight or branched alkyl group optionally containing one or more O atoms, divalent aryl group, divalent aralkyl group, or divalent monocycloalkyl or polycycloalkyl group optionally containing one or more O atoms;

    Z is -(V)j-(C(X11)(X12))n-O-C(=O)-R8, where either (i) one of X11 or X12 is straight or branched alkyl chain containing at least one fluorine atom and the other is hydrogen, halogen, or straight or branched alkyl chain or (ii) both of X11 and X12 are straight or branched alkyl chain containing at least one fluorine atom;

    V is a linkage group selected from a direct bond, a divalent straight or branched alkyl group optionally containing one or more O atoms, divalent aryl group, divalent aralkyl group, or divalent monocycloalkyl or polycycloalkyl group optionally containing one or more O atoms;

    X2 is hydrogen, halogen, or straight or branched alkyl chain optionally containing one or more O atoms;

    R8 is a straight or branched alkyl chain optionally containing one or more O atoms, a monocycloalkyl or polycycloalkyl group optionally containing one or more O atoms, or aryl;

    X3 is hydrogen, straight or branched alkyl chain, halogen, cyano, or -C(=O)-R50 where R50 is selected from straight or branched alkyl chain optionally containing one or more O atoms or -O-R51 where R51 is hydrogen or straight or branched alkyl chain;

    each of i and k are independently 0 or a positive integer;

    j is 0 to 10;

    m is 0 to 10;

    and n is 0 to 10,

    the straight or branched alkyl chain optionally containing one or more O atoms, straight or branched alkyl chain, straight or branched alkoxy chain, monocycloalkyl or polycycloalkyl group optionally containing one or more O atoms, monocycloalkyl- or polycycloalkylcarbonyl group, alkoxyalkyl, alkoxycarbonylalkyl, alkylcarbonyl, monocycloalkyl- or polycycloalkyloxycarbonylalkyl with the cycloalkyl ring optionally containing one or more O atoms, monocycloalkyl- or polycycloalkyloxyalkyl with the cycloalkyl ring optionally containing one or more O atoms, aralkyl, aryl, naphthyl, anthryl, 5-, 6-, or 7-membered saturated or unsaturated ring optionally containing one or more O atoms, or arylcarbonylmethyl group being unsubstituted or substituted by one or more groups selected from the group consisting of Z, halogen, alkyl, C1-8 perfluoroalkyl, monocycloalkyl or polycycloalkyl, OR20, alkoxy, C3-20 cyclic alkoxy, dialkylamino, dicyclic dialkylamino, hydroxyl, cyano, nitro, tresyl, oxo, aryl, aralkyl, oxygen atom, CF3SO3, aryloxy, arylthio, and groups of formulae (II) to (VI):

    wherein R10 and R11 each independently represent a hydrogen atom, a straight or branched alkyl chain optionally containing one or more O atoms, or a monocycloalkyl or polycycloalkyl group optionally containing one or more O atoms, or R10 and R11 together can represent an alkylene group to form a five- or six-membered ring;

    R12 represents a straight or branched alkyl chain optionally containing one or more O atoms, a monocycloalkyl or polycycloalkyl group optionally containing one or more O atoms, or aralkyl, or R10 and R12 together represent an alkylene group which forms a five- or six-membered ring together with the interposing -C-O- group, the carbon atom in the ring being optionally substituted by an oxygen atom;

    R13 represents a straight or branched alkyl chain optionally containing one or more O atoms or a monocycloalkyl or polycycloalkyl group optionally containing one or more O atoms;

    R14 and R15 each independently represent a hydrogen atom, a straight or branched alkyl chain optionally containing one or more O atoms or a monocycloalkyl or polycycloalkyl group optionally containing one or more O atoms;

    R16 represents a straight or branched alkyl chain optionally containing one or more O atoms, a monocycloalkyl or polycycloalkyl group optionally containing one or more O atoms, aryl, or aralkyl; and

    R17 represents straight or branched alkyl chain optionally containing one or more O atoms, a monocycloalkyl or polycycloalkyl group optionally containing one or more O atoms, aryl, aralkyl, the group -Si(R16)2R17, or the group -O-Si(R16)2R17, the straight or branched alkyl chain optionally containing one or more O atoms, monocycloalkyl or polycycloalkyl group optionally containing one or more O atoms, aryl, and aralkyl being unsubstituted or substituted as above and Xi1 is an anion of the formula Q-R500-SO3-, where Q is selected from -O3S and -O2C; and R500 is a group selected from linear or branched alkyl, cycloalkyl, aryl, or combinations thereof, optionally containing a catenary S or N, where the alkyl, cycloalkyl, and aryl groups are unsubstituted or substituted by one or more groups selected from the group consisting of halogen, unsubstituted or substituted alkyl, unsubstituted or substituted C1-8 perfluoroalkyl, hydroxyl, cyano, sulfate, and nitro; and (b) a compound having the formula Ai Xi2, where Ai is an organic onium cation as previously defined and Xi2 is an anion;and mixtures of (a) and (b) thereof. Examples of the Xi2 anion include CF3SO3-, CHF2SO3-, CH3SO3-, CCl3SO3-, C2F5SO3-, C2HF4SO3-, C4F9SO3-, camphor sulfonate, perfluorooctane sulfonate, benzene sulfonate, pentafluorobenzene sulfonate, toluene sulfonate, perfluorotoluene sulfonate, (Rf1SO2)3C- and (Rf1SO2)2N-, wherein each Rf1 is independently selected from the group consisting of highly fluorinated or perfluorinated alkyl or fluorinated aryl radicals and may be cyclic, when a combination of any two Rf1 groups are linked to form a bridge, further, the Rf1 alkyl chains contain from 1-20 carbon atoms and may be straight, branched, or cyclic, such that divalent oxygen, trivalent nitrogen or hexavalent sulfur may interrupt the skeletal chain, further when Rf1 contains a cyclic structure, such structure has 5 or 6 ring members, optionally, 1 or 2 of which are heteroatoms, and Rg-O-Rf2-SO3-, where Rf2 is selected from the group consisting of linear or branched (CF2)j where j is an integer from 4 to 10 and C1-C12 cycloperfluoroalkyl divalent radical which is optionally perfluoroC1-10alkyl substituted, Rg is selected from the group consisting of C1-C20 linear, branched, monocycloalkyl or polycycloalkyl, C1-C20 linear, branched, monocycloalkenyl or polycycloalkenyl, aryl, and aralkyl, the alkyl, alkenyl, aralkyl and aryl groups being unsubstituted, substituted, optionally containing one or more catenary oxygen atoms, partially fluorinated or perfluorinated. Examples of such anions Xi2 include (C2F5SO2)2N-, (C4F9SO2)2N-, (C8F17SO2)3C-, (CF3SO2)3C-, (CF3SO2)2N-, (CF3SO2)2(C4F9SO2)C-, (C2F5SO2)3C-, (C4F9SO2)3C-, (CF3SO2)2(C2F5SO2)C-, (C4F9SO2)(C2F5SO2)2C-, (CF3SO2)(C4F9SO2)N-, [(CF3)2NC2F4SO2]2N-, (CF3)2NC2F4SO2C-(SO2CF3)2, (3,5-bis(CF3)C6H3)SO2N-SO2CF3, C6F5SO2C-(SO2CF3)2, C6F5SO2N-SO2CF3,



    CF3CHFO(CF2)4SO3-, CF3CH2O(CF2)4SO3-, CH3CH2O(CF2)4SO3-, CH3CH2CH2O(CF2)4SO3-, CH3O(CF2)4SO3-, C2H5O(CF2)4SO3-, C4H9O(CF2)4SO3-, C6H5CH2O(CF2)4SO3-, C2H5OCF2CF(CF3)SO3-, CH2=CHCH2O(CF2)4SO3-, CH3OCF2CF(CF3)SO3-, C4H9OCF2CF(CF3)SO3-, C8H17O(CF2)2SO3-, and C4H9O(CF2)2SO3-. Other examples of suitable anions can be found in United States Patent No. 6,841,333 and United States Patent No. 5,874,616.



    [0022] Examples of Ai Xi2 include bis(4-t-butylphenyl) iodonium bis-perfluoroethane sulfonimide, diphenyliodonium trifluoromethane sulfonate, diphenyliodonium nonafluorobutane sulfonate, triphenylsulfonium trifluromethane sulfonate, triphenylsulfonium nonafluorobutane sulfonate, 4-(1-butoxyphenyl)diphenylsulfonium bis-(perfluorobutanesulfonyl)imide, 4-(1-butoxyphenyl)diphenylsulfonium bis-(perfluoroethanesulfonyl)imide, 2,4,6-trimethylphenyldiphenylsulfonium bis-perfluorobutanesulfonyl)imide, 2,4,6-trimethylphenyldiphenylsulfonium bis-(perfluoroethanesulfonyl)imide, toluenediphenylsulfonium bis-(perfluorobutanesulfonyl)imide, toluenediphenylsulfonium bis-(perfluoroethanesulfonyl)imide, toluenediphenylsulfonium-(trifluoromethyl perfluorobutylsulfonyl)imide, tris-(tert-butylphenyl)sulfonium-(trifluoromethyl perfluorobutylsulfonyl)imide, tris-(tert-butylphenyl)sulfonium bis-(perfluorobutanesulfonyl)imide, tris-(tert-butylphenyl)sulfonium-bis-(trifluoromethanesulfonyl)imide, and the like as well as other photoacid generators known to those skilled in the art.

    [0023] When used in combination, the ratio of the inventive photoacid generators to the additional photoacid generators ranges from about 1:0.6 to about 1:1.3.

    [0024] The present invention further relates to a process for imaging a photoresist comprising the steps of:
    1. a) applying a coating layer a substrate with the composition of the invention;
    2. b) baking the substrate to substantially remove the solvent;
    3. c) image-wise exposing the photoresist coating;
    4. d) optionally, postexposure baking the photoresist coating; and
    5. e) developing the photoresist coating with an aqueous alkaline solution.


    [0025] Processes for making coated substrates using the inventive photoacid generators as well as coated substrates are also provided for herein.

    [0026] Throughout this specification, if not otherwise indicated, the following terms have the meanings described below.

    [0027] The term alkyl as used herein means a straight or branched chain hydrocarbon, preferably with 1 to 10 carbon atoms. Representative examples of alkyl include, but are not limited to, methyl, ethyl, n-propyl, iso-propyl, n-butyl, sec-butyl, iso-butyl, tert-butyl, n-pentyl, isopentyl, neopentyl, n-hexyl, 3-methylhexyl, 2,2-dimethylpentyl, 2,3-dimethylpentyl, n-heptyl, n-octyl, n-nonyl, and n-decyl.

    [0028] Alkylene refers to divalent alkyl radicals, which can be linear or branched, and preferably have 1 to 10 carbon atoms, such as, for example, methylene, ethylene, propylene, butylene or the like.

    [0029] By the term aryl is meant a radical (preferably with 6 to 14 carbon atoms) derived from an aromatic hydrocarbon by the elimination of one atom of hydrogen and can be substituted or unsubstituted. The aromatic hydrocarbon can be mononuclear or polynuclear. Examples of aryl of the mononuclear type include phenyl, tolyl, xylyl, mesityl, cumenyl, and the like. Examples of aryl of the polynuclear type include naphthyl, anthryl, phenanthryl, and the like. The aryl group can be unsubstituted or substituted as provided for hereinabove.

    [0030] The term alkoxy refers to a group of alkyl-O-, where alkyl is defined herein. Representative examples of alkoxy include, but are not limited to, methoxy, ethoxy, propoxy, 2-propoxy, butoxy, tert-butoxy, pentyloxy, and hexyloxy.

    [0031] The term aryloxy refers to a group of aryl-O-, where aryl is defined herein.

    [0032] By the term aralkyl is meant an alkyl group containing an aryl group, preferably (C6-C14)-aryl-(C1-C10)-alkyl. It is a hydrocarbon group having both aromatic and aliphatic structures, that is, a hydrocarbon group in which a lower alkyl hydrogen atom is substituted by a mononuclear or polynuclear aryl group. Examples of aralkyl groups include, without limitation, benzyl, 2-phenyl-ethyl, 3-phenyl-propyl, 4-phenyl-butyl, 5-phenyl-pentyl, 4-phenylcyclohexyl, 4-benzylcyclohexyl, 4-phenylcyclohexylmethyl, 4-benzylcyclohexylmethyl, naphthylmethyl, and the like.

    [0033] The term monocycloalkyl as used herein, refers to an optionally substituted, saturated or partially unsaturated monocycloalkyl ring system (preferably with 3 to 10 carbon atoms), where if the ring is partially unsaturated, it is then a monocycloalkenyl group. The term polycycloalkyl as used herein refers to an optionally substituted, saturated or partially unsaturated polycycloalkyl ring system containing two or more rings (preferably with 7 to 12 carbon atoms), where if the ring is partially unsaturated, it is then a polycycloalkenyl group. Examples of monocycloalkyl or polycycloalkyl groups optionally containing one or more O atoms are well know to those skilled in the art and include, for example, cyclopropyl, cyclobutyl, cyclopentyl, cycloheptyl, cyclohexyl, 2-methyl-2-norbornyl, 2-ethyl-2-norbornyl, 2-methyl-2-isobornyl, 2-ethyl-2-isobornyl, 2-methyl-2-adamantyl, 2-ethyl-2-adamantyl, 1-adamantyl-1-methylethyl, adamantyl, tricyclodecyl, 3-oxatricyclo[4.2.1.02,5]nonyl, tetracyclododecanyl, tetracyclo [5.2.2.0.0] undecanyl, bornyl, isobornyl norbornyl lactone, adamantyl lactone and the like.

    [0034] The term alkoxycarbonylalkyl embraces alkyl radicals substituted with an alkoxycarbonyl radical as defined herein. Examples of alkoxycarbonylalkyl radicals include methoxycarbonylmethyl [CH3O-C(=O)-CH2-], ethoxycarbonylmethyl [CH3CH2O-C(=O)-CH2-], methoxycarbonylethyl [CH3O-C(=O)-CH2CH2-], and ethoxycarbonylethyl [CH3CH2O-C(=O)-CH2CH2-].

    [0035] The term alkylcarbonyl as used herein means an alkyl group, as defined herein, appended to the parent molecular moiety through a carbonyl group, as defined herein, which can be generically represented as alkyl-C(O)-. Representative examples of alkylcarbonyl include, but are not limited to acetyl (methyl carbonyl), butyryl (propylcarbonyl), octanoyl (heptylcarbonyl), dodecanoyl (undecylcarbonyl), and the like.

    [0036] Alkoxycarbonyl means alkyl-O-C(O)-, wherein alkyl is as previously described. Non-limiting examples include methoxycarbonyl [CH3O-C(O)-] and the ethoxycarbonyl [CH3CH2O-C(O)-], benzyloxycarbonyl [C6H5CH2O-C(O)-] and the like.

    [0037] Alkoxyalkyl means that a terminal alkyl group is linked through an ether oxygen atom to an alkyl moiety, which can be generically represented as alkyl-O-alkyl wherein the alkyl groups can be linear or branched. Examples of alkoxyalkyl include, but are not limited to, methoxypropyl, methoxybutyl, ethoxypropyl, methoxymethyl

    [0038] Monocycloalkyl- or polycycloalkyloxycarbonylalkyl means that a terminal monocycloalkyl or polycycloalkyl group is linked through -O-C(=O)- to an alkyl moiety, generically represented as monocycloalkyl- or polycycloalkyl-O-C(=O)-alkyl.

    [0039] Monocycloalkyl- or polycycloalkyloxyalkyl means that a terminal monocycloalkyl or polycycloalkyl group is linked through an ether oxygen atom to an alkyl moiety, which can be generically represented as monocycloalkyl- or polycycloalkyl-O-alkyl.

    [0040] Monocyclofluoroalkyl- or polycyclofluoroalkyl means a monocyclalkyl- or polycycloalkyl group substituted with one or more fluorine atoms.

    [0041] Polymers useful in the photoresist compositions include those that have acid labile groups that make the polymer insoluble in aqueous alkaline solution, but such a polymer in the presence of an acid catalytically deprotects the polymer, wherein the polymer then becomes soluble in an aqueous alkaline solution. The polymers preferably are transparent below 200 nm, and are essentially non-aromatic, and preferably are acrylates and/or cycloolefin polymers. Such polymers are, for example, but not limited to, those described in US 5,843,624, US 5,879,857, WO 97/33,198, EP 789,278 and GB 2,332,679. Nonaromatic polymers that are preferred for irradiation below 200 nm are substituted acrylates, cycloolefins, substituted polyethylenes, etc. Aromatic polymers based on polyhydroxystyrene and its copolymers may also be used, especially for 248 nm exposure.

    [0042] Polymers based on acrylates are generally based on poly(meth)acrylates with at least one unit containing pendant alicyclic groups, and with the acid labile group being pendant from the polymer backbone and/or from the alicyclic group. Examples of pendant alicyclic groups, may be adamantyl, tricyclodecyl, isobornyl, menthyl and their derivatives. Other pendant groups may also be incorporated into the polymer, such as mevalonic lactone, gamma butyrolactone, alkyloxyalkyl, etc. Examples of structures for the alicyclic group include:







    [0043] The type of monomers and their ratios incorporated into the polymer are optimized to give the best lithographic performance. Such polymers are described in R.R. Dammel et al., Advances in Resist Technology and Processing, SPIE, Vol. 3333, p144, (1998). Examples of these polymers include poly(2-methyl-2-adamantyl methacrylate-co-mevalonic lactone methacrylate), poly(carboxy-tetracyclododecyl methacrylate-co-tetrahydropyranylcarboxytetracyclododecyl methacrylate), poly(tricyclodecylacrylate-co-tetrahydropyranylmethacrylate-co-methacrylicacid), poly(3-oxocyclohexyl methacrylate-co-adamantylmethacrylate).

    [0044] Polymers synthesized from cycloolefins, with norbornene and tetracyclododecene derivatives, may be polymerized by ring-opening metathesis, free-radical polymerization or using metal organic catalysts. Cycloolefin derivatives may also be copolymerized with cyclic anhydrides or with maleimide or its derivatives. Examples of cyclic anhydrides are maleic anhydride (MA) and itaconic anhydride. The cycloolefin is incorporated into the backbone of the polymer and may be any substituted or unsubstituted multicyclic hydrocarbon containing an unsaturated bond. The monomer can have acid labile groups attached. The polymer may be synthesized from one or more cycloolefin monomers having an unsaturated bond. The cycloolefin monomers may be substituted or unsubstituted norbornene, or tetracyclododecane. The substituents on the cycloolefin may be aliphatic or cycloaliphatic alkyls, esters, acids, hydroxyl, nitrile or alkyl derivatives. Examples of cycloolefin monomers, without limitation, include:







    [0045] Other cycloolefin monomers which may also be used in synthesizing the polymer are:



    [0046] Such polymers are described in the following reference and incorporated herein, M-D. Rahman et al, Advances in Resist Technology and Processing, SPIE, Vol. 3678, p1193, (1999). Examples of these polymers include poly((t-butyl-5-norbornene-2-carboxylate-co-2-hydroxyethyl-5-norbornene-2-carboxylate-co-5-norbornene-2-carboxylic acid-co-maleic anhydride), poly(t-butyl-5-norbornene-2-carboxylate-co-isobornyl-5-norbornene-2-carboxylate-co-2-hydroxyethyl-5-norbornene-2-carboxylate-co-5-norbornene-2-carboxylic acid-co-maleic anhydride), poly(tetracyclododecene-5-carboxylate-co-maleic anhydride), poly(t-butyl-5-norbornene-2-carboxylate-co-maleic anhydride-co-2-methyladamantyl methacrylate-co-2-mevalonic lactone methacrylate), poly(2-methyladamantyl methacrylate-co-2-mevalonic lactone methacylate) and the like.

    [0047] Polymers containing mixtures of (meth)acrylate monomers, cycloolefinic monomers and cyclic anhydrides, where such monomers are described above, may also be combined into a hybrid polymer. Examples of cycloolefin monomers include those selected from t-butyl norbornene carboxylate (BNC), hydroxyethyl norbornene carboxylate (HNC), norbornene carboxylic acid (NC), t-butyltetracyclo[4.4.0.1.2,61.7,10 ]dodec-8-ene-3-carboxylate, and t-butoxy carbonylmethyl tetracyclo[4.4.0.1.2,61.7,10] dodec-8-ene-3-carboxylate. In some instances, preferred examples of cycloolefins include t-butyl norbornene carboxylate (BNC), hydroxyethyl norbornene carboxylate (HNC), and norbornene carboxylic acid (NC). Examples of (meth)acrylate monomers include those selected from mevalonic lactone methacrylate (MLMA), 2-methyl-2-adamantyl methacrylate (MAdMA), 2-adamantyl methacrylate (AdMA), 2-methyl-2-adamantyl acrylate (MAdA), 2-ethyl-2-adamantyl methacrylate (EAdMA), 3,5-dimethyl-7-hydroxy adamantyl methacrylate (DMHAdMA), adamantyl methyloxymethyl methacrylate (AdOMMA), isoadamantyl methacrylate, hydroxy-1-methacryloxyadamatane (HAdMA; for example, hydroxy at the 3- position), hydroxy-1-adamantyl acrylate (HADA; for example, hydroxy at the 3- position), ethylcyclopentyl acrylate (ECPA), ethylcyclopentyl methacrylate (ECPMA), tricyclo[5,2,1,02,6]deca-8-yl methacrylate (TCDMA), 3,5-dihydroxy-1-methacryloxyadamantane (DHAdMA), β-methacryloxy-γ-butyrolactone, α- or β-gamma-butyrolactone methacrylate (either α- or β-GBLMA), 5-methacryloyloxy-2,6-norbornanecarbolactone (MNBL), 5-acryloyloxy-2,6-norbornanecarbolactone (ANBL),isobutyl methacrylate (IBMA), α-gamma-butyrolactone acrylate (a-GBLA), spirolactone (meth)acrylate, oxytricyclodecane (meth)acrylate, adamantane lactone (meth)acrylate, and α-methacryloxy-γ-butyrolactone, among others. Examples of polymers formed with these monomers include poly(2-methyl-2-adamantyl methacrylate-co-2-ethyl-2-adamantyl methacrylate-co-3-hydroxy-1-methacryloxyadamantane-co-α-gamma-butyrolactone methacrylate); poly(2-ethyl-2-adamantyl methacrylate-co-3-hydroxy-1-methacryloxyadamantane-co-β-gamma-butyrolactone methacrylate); poly(2-methyl-2-adamantyl methacrylate-co-3-hydroxy-1-methacryloxyadamantane-co-β-gamma-butyrolactone methacrylate); poly(t-butyl norbornene carboxylate-co-maleic anhydride-co-2-methyl-2-adamantyl methacrylate-co-β-gamma-butyrolactone methacrylate-co-methacryloyloxy norbornene methacrylate); poly(2-methyl-2-adamantyl methacrylate-co-3-hydroxy-1-methacryloxyadamantane-co-β-gamma-butyrolactone methacrylate-co-tricyclo[5,2,1,02,6]deca-8-yl methacrylate); poly(2-ethyl-2-adamantyl methacrylate-co-3-hydroxy-1-adamantyl acrylate-co-β-gamma-butyrolactone methacrylate); poly(2-ethyl-2-adamantyl methacrylate-co-3-hydroxy-1-adamantyl acrylate-co-α-gamma-butyrolactone methacrylate-co-tricyclo[5,2,1,02,6]deca-8-yl methacrylate); poly(2-methyl-2-adamantyl methacrylate-co-3,5-dihydroxy-1-methacryloxyadamantane-co-α-gamma-butyrolactone methacrylate); poly(2-methyl-2-adamantyl methacrylate-co-3,5-dimethyl-7-hydroxy adamantyl methacrylate-co-α-gamma-butyrolactone methacrylate); poly(2-methyl-2-adamantyl acrylate-co-3-hydroxy-1-methacryloxyadamantane-co-α-gamma-butyrolactone methacrylate); poly(2-methyl-2-adamantyl methacrylate-co-3-hydroxy-1-methacryloxyadamantane-co-β-gamma-butyrolactone methacrylate-co-tricyclo[5,2,1,02,6]deca-8-yl methacrylate); poly(2-methyl-2-adamantyl methacrylate-co-β-gamma-butyrolactone methacrylate-co-3-hydroxy-1-methacryloxyadamantane-co-ethylcyclopentylacrylate); poly(2-methyl-2-adamantyl methacrylate-co-3-hydroxy-1-adamantyl acrylate-co-α-gamma-butyrolactone methacrylate); poly(2-methyl-2-adamantyl methacrylate-co-3-hydroxy-1-methacryloxyadamantane-co-α-gamma-butyrolactone methacrylate-co-2-ethyl-2-adamantyl methacrylate); poly(2-methyl-2-adamantyl methacrylate-co-3-hydroxy-1-methacryloxyadamantane-co-β-gamma-butyrolactone methacrylate-co-tricyclo[5,2,1,02,6]deca-8-yl methacrylate); poly(2-methyl-2-adamantyl methacrylate-co-2-ethyl-2-adamantyl methacrylate-co-β-gamma-butyrolactone methacrylate-co-3-hydroxy-1-methacryloxyadamantane); poly(2-methyl-2-adamantyl methacrylate-co-2-ethyl-2-adamantyl methacrylate-co-α-gamma-butyrolactone methacrylate-co-3-hydroxy-1-methacryloxyadamantane); poly(2-methyl-2-adamantyl methacrylate-co-methacryloyloxy norbornene methacrylate-co-β-gamma-butyrolactone methacrylate); poly(ethylcyclopentylmethacrylate-co-2-ethyl-2-adamantyl methacrylate-co-α-gamma-butyrolactone acrylate); poly(2-ethyl-2-adamantyl methacrylate-co-3-hydroxy-1-adamantyl acrylate-co-isobutyl methacrylate-co-α-gamma-butyrolactone acrylate); poly(2-methyl-2-adamantyl methacrylate-co-P-gamma-butyrolactone methacrylate-co-3-hydroxy-1-adamantyl acrylate-co-tricyclo[5,2,1,02,6]deca-8-yl methacrylate); poly(2-ethyl-2-adamantyl methacrylate-co-3-hydroxy-1-adamantyl acrylate-co-α-gamma-butyrolactone acrylate); poly(2-methyl-2-adamantyl methacrylate-co--β gamma-butyrolactone methacrylate-co-2-adamantyl methacrylate-co-3-hydroxy-1-methacryloxyadamatane); poly(2-methyl-2-adamantyl methacrylate-co-methacryloyloxy norbornene methacrylate-co-P-gamma-butyrolactone methacrylate-co-2-adamantyl methacrylate-co-3-hydroxy-1-methacryloxyadamatane); poly(2-methyl-2-adamantyl methacrylate-co-methacryloyloxy norbornene methacrylate-co-tricyclo[5,2,1,02,6]deca-8-yl methacrylate-co-3-hydroxy-1-methacryloxyadamatane-co-α-gamma-butyrolactone methacrylate); poly(2-ethyl-2-adamantyl methacrylate-co-3-hydroxy-1-adamantyl acrylate-co-tricyclo[5,2,1,02,6]deca-8-yl methacrylate-co-α-gamma-butyrolactone methacrylate); poly(2-ethyl-2-adamantyl methacrylate-co-3-hydroxy-1-adamantyl acrylate-co-α-gamma-butyrolactone acrylate); poly(2-methyl-2-adamantyl methacrylate-co-3-hydroxy-1-methacryloxyadamatane-co-α-gamma-butyrolactone methacrylate-co-2-ethyl-2-adamantyl-co-methacrylate); poly(2-ethyl-2-adamantyl methacrylate-co-3-hydroxy-1-adamantyl acrylate-co-α-gamma-butyrolactone methacrylate-co-tricyclo[5,2,1,02,6]deca-8-yl methacrylate); poly(2-ethyl-2-adamantyl methacrylate-co-3-hydroxy-1-adamantyl acrylate-co-α-gamma-butyrolactone methacrylate); poly(2-methyl-2-adamantyl methacrylate-co-3-hydroxy-1-adamantyl acrylate-co-5-acryloyloxy-2,6-norbornanecarbolactone); poly(2-ethyl-2-adamantyl methacrylate-co-3-hydroxy-1-adamantyl acrylate-co-α-gamma-butyrolactone methacrylate-co-α-gamma-butyrolactone acrylate); poly(2-ethyl-2-adamantyl methacrylate-co-3-hydroxy-1-adamantyl acrylate-co-α-gamma-butyrolactone methacrylate-co-2-adamantyl methacrylate); and poly(2-ethyl-2-adamantyl methacrylate-co-3-hydroxy-1-adamantyl acrylate-co-α-gamma-butyrolactone acrylate-co-tricyclo[5,2,1,02,6]deca-8-yl methacrylate).

    [0048] Other examples of suitable polymers include those described in U.S. Pat. Nos. 6,610,465, 6,120,977, 6,136,504, 6,013,416, 5,985,522, 5,843,624, 5,693,453, 4,491,628, WO 00/25178, WO 00/67072, JP 2000-275845, JP 2000-137327, and JP 09-73173. Blends of one or more photoresist resins may be used. Standard synthetic methods are typically employed to make the various types of suitable polymers. Procedures or references to suitable standard procedures (e.g., free radical polymerization) can be found in the aforementioned documents.

    [0049] The cycloolefin and the cyclic anhydride monomer are believed to form an alternating polymeric structure, and the amount of the (meth)acrylate monomer incorporated into the polymer can be varied to give the optimal lithographic properties. The percentage of the (meth)acrylate monomer relative to the cycloolefin/anhydride monomers within the polymer ranges from about 95 mole% to about 5 mole%, further ranging from about 75 mole% to about 25 mole%, and also further ranging from about 55 mole% to about 45 mole%.

    [0050] Fluorinated non-phenolic polymers, useful for 157 nm exposure, also exhibit line edge roughness and can benefit from the use of the novel mixture of photoactive compounds described in the present invention. Such polymers are described in WO 00/17712 and WO 00/67072. Example of one such polymer is poly(tetrafluoroethylene-co-norbornene-co-5-hexafluoroisopropanol-substituted 2-norbornene.

    [0051] Polymers synthesized from cycloolefins and cyano containing ethylenic monomers are described in the US Patent 6,686,429, may also be used.

    [0052] The molecular weight of the polymers is optimized based on the type of chemistry used and on the lithographic performance desired. Typically, the weight average molecular weight is in the range of 3,000 to 30,000 and the polydispersity is in the range 1.1 to 5, preferably 1.5 to 2.5.

    [0053] Other polymers of interest include those found and described in US patent application serial no. 10/371,262, filed February 21, 2003, now filed as US patent application serial no. 10/658,840, filed December 17, 2003 (and published now as US patent application publication no. 2004/0166433). Still other polymers, such as those disclosed in US patent application serial no. 10/440,542, filed May 16, 2003 titled "Photoresist Composition for Deep UV and Process Thereof" (and published as WO 2004/102272), may also be used.

    [0054] The solid components of the present invention are dissolved in an organic solvent. The amount of solids in the solvent or mixture of solvents ranges from about 1 weight% to about 50 weight%. The polymer may be in the range of 5 weight% to 90 weight% of the solids and the photoacid generator may be in the range of 1 weight% to about 50 weight% of the solids. Suitable solvents for such photoresists may include for example ketones such as acetone, methyl ethyl ketone, methyl isobutyl ketone, cyclohexanone, isophorone, methyl isoamyl ketone, 2-heptanone 4-hydroxy, and 4-methyl 2-pentanone; C1 to C10 aliphatic alcohols such as methanol, ethanol, and propanol; aromatic group containing-alcohols such as benzyl alcohol; cyclic carbonates such as ethylene carbonate and propylene carbonate; aliphatic or aromatic hydrocarbons (for example, hexane, toluene, xylene, etc and the like); cyclic ethers, such as dioxane and tetrahydrofuran; ethylene glycol; propylene glycol; hexylene glycol; ethylene glycol monoalkylethers such as ethylene glycol monomethylether, ethylene glycol monoethylether; ethylene glycol alkylether acetates such as methylcellosolve acetate and ethylcellosolve acetate; ethylene glycol dialkylethers such as ethylene glycol dimethylether, ethylene glycol diethylether, ethylene glycol methylethylether, diethylene glycol monoalkylethers such as diethylene glycol monomethylether, diethylene glycol monoethylether, and diethylene glycol dimethylether; propylene glycol monoalkylethers such as propylene glycol methylether, propylene glycol ethylether, propylene glycol propylether, and propylene glycol butylether; propylene glycol alkyletheracetates such as propylene glycol methylether acetate, propylene glycol ethylether acetate, propylene glycol propylether acetate, and propylene glycol butylether acetate; propylene glycol alkyletherpropionates such as propylene glycol methyletherpropionate, propylene glycol ethyletherpropionate, propylene glycol propyletherpropionate, and propylene glycol butyletherpropionate; 2-methoxyethyl ether (diglyme); solvents that have both ether and hydroxy moieties such as methoxy butanol, ethoxy butanol, methoxy propanol, and ethoxy propanol; esters such as methyl acetate, ethyl acetate, propyl acetate, and butyl acetate methyl-pyruvate, ethyl pyruvate; ethyl 2-hydroxy propionate, methyl 2-hydroxy 2-methyl propionate, ethyl 2-hydroxy 2-methyl propionate, methyl hydroxy acetate, ethyl hydroxy acetate, butyl hydroxy acetate, methyl lactate, ethyl lactate, propyl lactate, butyl lactate, methyl 3-hydroxy propionate, ethyl 3-hydroxy propionate, propyl 3-hydroxy propionate, butyl 3-hydroxy propionate, methyl 2-hydroxy 3-methyl butanoic acid, methyl methoxy acetate, ethyl methoxy acetate, propyl methoxy acetate, butyl methoxy acetate, methyl ethoxy acetate, ethyl ethoxy acetate, propyl ethoxy acetate, butyl ethoxy acetate, methyl propoxy acetate, ethyl propoxy acetate, propyl propoxy acetate, butyl propoxy acetate, methyl butoxy acetate, ethyl butoxy acetate, propyl butoxy acetate, butyl butoxy acetate, methyl 2-methoxy propionate, ethyl 2-methoxy propionate, propyl 2-methoxy propionate, butyl 2-methoxy propionate, methyl 2-ethoxypropionate, ethyl 2-ethoxypropionate, propyl 2-ethoxypropionate, butyl 2-ethoxypropionate, methyl 2-butoxypropionate, ethyl 2-butoxypropionate, propyl 2-butoxypropionate, butyl 2-butoxypropionate, methyl 3-methoxypropionate, ethyl 3-methoxypropionate, propyl 3-methoxypropionate, butyl 3-methoxypropionate, methyl 3-ethoxypropionate, ethyl 3-ethoxypropionate, propyl 3-ethoxypropionate, butyl 3-ethoxypropionate, methyl 3-propoxypropionate, ethyl 3-propoxypropionate, propyl 3-propoxypropionate, butyl 3-propoxypropionate, methyl 3-butoxypropionate, ethyl 3-butoxypropionate, propyl 3-butoxypropionate, and butyl 3-butoxypropionate; oxyisobutyric acid esters, for example, methyl-2-hydroxyisobutyrate, methyl α-methoxyisobutyrate, ethyl methoxyisobutyrate, methyl α-ethoxyisobutyrate, ethyl α-ethoxyisobutyrate, methyl β-methoxyisobutyrate, ethyl β-methoxyisobutyrate, methyl β-ethoxyisobutyrate, ethyl β-ethoxyisobutyrate, methyl β-isopropoxyisobutyrate, ethyl β-isopropoxyisobutyrate, isopropyl β-isopropoxyisobutyrate, butyl β-isopropoxyisobutyrate, methyl β-butoxyisobutyrate, ethyl β-butoxyisobutyrate, butyl β-butoxyisobutyrate, methyl α-hydroxyisobutyrate, ethyl α-hydroxyisobutyrate, isopropyl α-hydroxyisobutyrate, and butyl α-hydroxyisobutyrate; and other solvents such as dibasic esters, a ketone ether derivative such as diacetone alcohol methyl ether; a ketone alcohol derivative such as acetol or diacetone alcohol; lactones such as butyrolactone and gamma-butyrolactone; an amide derivative such as dimethylacetamide or dimethylformamide, anisole, and mixtures thereof.

    [0055] Various other additives such as colorants, non-actinic dyes, anti-striation agents, plasticizers, adhesion promoters, dissolution inhibitors, coating aids, photospeed enhancers, additional photoacid generators, and solubility enhancers (for example, certain small levels of solvents not used as part of the main solvent (examples of which include glycol ethers and glycol ether acetates, valerolactone, ketones, lactones, and the like), and surfactants may be added to the photoresist composition before the solution is coated onto a substrate. Surfactants that improve film thickness uniformity, such as fluorinated surfactants, can be added to the photoresist solution. A sensitizer that transfers energy from a particular range of wavelengths to a different exposure wavelength may also be added to the photoresist composition. Often bases are also added to the photoresist to prevent t-tops or bridging at the surface of the photoresist image. Examples of bases are amines, ammonium hydroxide, and photosensitive bases. Particularly preferred bases are trioctylamine, diethanolamine and tetrabutylammonium hydroxide.

    [0056] The prepared photoresist composition solution can be applied to a substrate by any conventional method used in the photoresist art, including dipping, spraying, and spin coating. When spin coating, for example, the photoresist solution can be adjusted with respect to the percentage of solids content, in order to provide coating of the desired thickness, given the type of spinning equipment utilized and the amount of time allowed for the spinning process. Suitable substrates include silicon, aluminum, polymeric resins, silicon dioxide, doped silicon dioxide, silicon nitride, tantalum, copper, polysilicon, ceramics, aluminum/copper mixtures; gallium arsenide and other such Group III/V compounds. The photoresist may also be coated over antireflective coatings.

    [0057] The photoresist coatings produced by the described procedure are particularly suitable for application to silicon/silicon dioxide wafers, such as are utilized in the production of microprocessors and other miniaturized integrated circuit components. An aluminum/aluminum oxide wafer can also be used. The substrate may also comprise various polymeric resins, especially transparent polymers such as polyesters.

    [0058] The photoresist composition solution is then coated onto the substrate, and the substrate is treated (baked) at a temperature from about 70°C to about 150°C for from about 30 seconds to about 180 seconds on a hot plate or for from about 15 to about 90 minutes in a convection oven. This temperature treatment is selected in order to reduce the concentration of residual solvents in the photoresist, while not causing substantial thermal degradation of the solid components. In general, one desires to minimize the concentration of solvents and this first temperature. Treatment (baking) is conducted until substantially all of the solvents have evaporated and a thin coating of photoresist composition, on the order of half a micron (micrometer) in thickness, remains on the substrate. In a preferred embodiment the temperature is from about 95°C to about 120°C. The treatment is conducted until the rate of change of solvent removal becomes relatively insignificant. The film thickness, temperature and time selection depends on the photoresist properties desired by the user, as well as the equipment used and commercially desired coating times. The coated substrate can then be imagewise exposed to actinic radiation, e.g., ultraviolet radiation, at a wavelength of from about 100 nm (nanometers) to about 300 nm, x-ray, electron beam, ion beam or laser radiation, in any desired pattern, produced by use of suitable masks, negatives, stencils, templates, etc.

    [0059] The photoresist is then subjected to a post exposure second baking or heat treatment before development. The heating temperatures may range from about 90°C to about 150°C, more preferably from about 100°C to about 130°C. The heating may be conducted for from about 30 seconds to about 2 minutes, more preferably from about 60 seconds to about 90 seconds on a hot plate or about 30 to about 45 minutes by convection oven.

    [0060] The exposed photoresist-coated substrates are developed to remove the image-wise exposed areas by immersion in a developing solution or developed by spray development process. The solution is preferably agitated, for example, by nitrogen burst agitation. The substrates are allowed to remain in the developer until all, or substantially all, of the photoresist coating has dissolved from the exposed areas. Developers include aqueous solutions of ammonium or alkali metal hydroxides. One preferred developer is an aqueous solution of tetramethyl ammonium hydroxide. After removal of the coated wafers from the developing solution, one may conduct an optional post-development heat treatment or bake to increase the coating's adhesion and chemical resistance to etching conditions and other substances. The post-development heat treatment can comprise the oven baking of the coating and substrate below the coating's softening point or UV hardening process. In industrial applications, particularly in the manufacture of microcircuitry units on silicon/silicon dioxide-type substrates, the developed substrates may be treated with a buffered, hydrofluoric acid base etching solution or dry etching. Prior to dry etching the photoresist may be treated to electron beam curing in order to increase the dry-etch resistance of the photoresist.

    [0061] The invention further provides a method for producing a semiconductor device by producing a photo-image on a substrate by coating a suitable substrate with a photoresist composition. The subject process comprises coating a suitable substrate with a photoresist composition and heat treating the coated substrate until substantially all of the photoresist solvent is removed; image-wise exposing the composition and removing the image-wise exposed areas of such composition with a suitable developer.

    [0062] The following examples provide illustrations of the methods of producing and utilizing the present invention. These examples are not intended, however, to limit or restrict the scope of the invention in any way and should not be construed as providing conditions, parameters or values which must be utilized exclusively in order to practice the present invention. Unless otherwise specified, all parts and percents are by weight.

    Example 1: Synthesis of triphenylsulfonium 5-iodooctafluoro-3-oxapentane sulfonate



    [0063] 12.56 grams (0.03 mol) of 5-iodooctafluoro-3-oxapentanesulfonyl fluoride (Synquest) was taken in a flask in water and excess amount of KOH (0.06 mol, 3.31 grams) was added and the resulting mixture was heated under stirring at 80°C for six hours. To this reaction mixture (after cooling to room temperature) was added 1:2 v/v THF/water solution of triphenyl sulfonium bromide (0.03 mol, 10.14 grams) dropwise over a period of one hour with stirring. After the addition, the reaction mixture was further stirred for additional 3 hours at room temperature. Upon completion, the target compound triphenylsuflonium 5-iodooctafluoro-3-oxapentafluoro sulfonate was extracted using methylene chloride. It was washed at least three times with DI water. Methylene chloride was evaporated to get a pale yellow liquid. It was redissolved in methylene chloride and precipitated into hexanes. Yield was 82%. Melting point (capillary) 110-112°C.

    Reference Example 2: Synthesis of bis(4-t-butylphenyl)iodonium 5-iodooctafluoro-3-oxapentane sulfonate



    [0064] 9.93 grams (0.0233 mol) of 5-iodooctafluoro-3-oxapentanesulfonyl fluoride (Synquest) was taken in a flask in water and excess amount of KOH (0.0473 mol, 2.65 grams) was added and the resulting mixture was heated under stirring at 80°C for six hours. After cooling the reaction mixture to room temperature, 5:1 v/v THF/water solution of bis(t-butylphenyl)iodonium acetate (0.0233 mol, 10.56 grams) was added dropwise over a period of one hour with stirring. After the addition, the reaction mixture was further stirred for additional 3 hours at room temperature. Upon completion, the target compound bis(4-t-butylphenyl) iodonium 5-lodooctafluoro-3-oxapentafluoro sulfonate was extracted and purified in a manner similar to that of Example 1. Yield was 84%. Melting point (capillary) 118-122C.

    Example 3:



    [0065] 0.6318g of poly (2-ethyl-2-adamantyl methacrylate (EAdMA)/ethylcyclopentyl methacrylate (ECPMA)/hydroxy-1-adamantyl acrylate (HAdA)/α-gamma-butyrolactone methacrylate (α-GBLMA); 15/15/30/40) polymer, 0.062 g (143 µmol/gram) of triphenylsulfonium 5-iodooctafluoro-3-oxapentafluoro sulfonate synthesized in Example 1, 0.0062 grams of N,N-diisopropyl aniline (DIPA) (38.6% mol%), and 0.0204 g of 10 weight% propylene glykol monomethyl ether acetate (PGMEA) solution of a surfactant (fluoroaliphatic polymeric ester, supplied by 3M Corporation, St. Paul Minnesota) were dissolved in 15.44 g of methyl-2-hydroxy isobutyrate (MHIB) and 3.61g of propylene glykol monomethyl ether (PGME). The solution was thoroughly mixed for complete dissolution and filtered using 0.2 µm filter.

    Example 4:



    [0066] A silicon substrate coated with a bottom antireflective coating (B.A.R.C.) was prepared by spin coating the bottom anti-reflective coating solution (AZ® ArF-38, available from AZ Electronic Materials USA Corp., Somerville, NJ) onto the silicon substrate and baking at 225°C for 90 sec. The B.A.R.C film thickness was 87 nm. The photoresist solution for Example 3 was then coated on the B.A.R.C coated silicon substrate. The spin speed was adjusted such that the photoresist film thickness was 130 nm, soft baked at 100°C/60s, exposed with Nikon 306D 0.85NA & dipole illumination using 6% half-tone mask. The exposed wafer was post exposure baked at 110°C/60 s, and developed using a 2.38 weight% aqueous solution of tetramethyl ammonium hydroxide for 30 sec. The line and space patterns were then measured on a AMAT CD SEM (critical dimension scanning electron microscope). The sensitivity to print 70nm dense CD was 30 mJ, more than 0.20nm DoF, with 3sigma line edge roughness (LER)/ line width roughness (LWR) values of 9 and 13 nm, respectively.

    Example 5:



    [0067] 0.6208g of poly(EAdMA/ECPMA/HAdA/α-GBLMA; 15/15/30/40) polymer, 0.0144 g (30µmol/g) of bis(4-t-butylphenyl) iodonium bis-perfluoroethane sulfonimide, 0.0256 g (60µmol/g) of triphenylsuflonium 5-iodooctafluoro-3-oxapentafluoro sulfonate synthesized in Example 1, 0.0335 g (47µmol/g) of bis[di(4-t-butylphenyl) iodonium] perfluorobutane-1,4-disulfonate, 0.0058 g of DIPA and 0.0204 g of 10 weight% PGMEA solution of a surfactant (fluoroaliphatic polymeric ester, supplied by 3M Corporation, St. Paul Minnesota) were dissolved in 15.44g of MHIB and 3.76g of PGME to give a photoresist solution. The photoresist solution was filtered through a 0.2 µm filter.

    Example 6:



    [0068] A silicon substrate coated with a bottom antireflective coating (B.A.R.C.) was prepared by spin coating the bottom anti-reflective coating solution (AZ® ArF-38, available from AZ Electronic Materials USA Corp., Somerville, NJ) onto the silicon substrate and baking at 225°C for 90 sec. The B.A.R.C film thickness was 87 nm. The photoresist solution for Example 5 was then coated on the B.A.R.C coated silicon substrate. The spin speed was adjusted such that the photoresist film thickness was 130 nm, soft baked at 100°C/60s, exposed with Nikon 306D 0.85NA & dipole illumination using 6% half-tone mask. The exposed wafer was post exposure baked at 110°C/60 s, and developed using a 2.38 weight% aqueous solution of tetramethyl ammonium hydroxide for 30 sec. The line and space patterns were then measured on a CD SEM. The sensitivity to print 70nm dense CD was 41 mJ, had more 6% EL, more than 0.25 nm DoF, with 3sigma LER/LWR values of 6.36/10.38 nm with straight profiles.

    Example 7:



    [0069] 0.62 g of poly(EAdMA/ECPMA/adamantyl methyloxymethyl methacrylate (AdOMMA)/HAdA/α-GBLMA; 5/15/10/30/40) polymer, 0.0144 g (30 µmol/g) of bis (4-t-butylphenyl) iodonium bis-perfluoroethane sulfonimide, 0.0256 g (60µmol/g) of triphenylsuflonium 5-iodooctafluoro-3-oxapentafluoro sulfonate synthesized in Example 1, 0.0335 g (47µmol/g) of bis [di(4-t-butylphenyl) iodonium] perfluorobutane-1,4-disulfonate, 0.0058 g of DIPA and 0.0204 g of 10 weight% PGMEA solution of a surfactant (fluoroaliphatic polymeric ester, supplied by 3M Corporation, St. Paul Minnesota) were dissolved in 15.44g of MHIB and 3.76g of PGME The photoresist solution was filtered through a 0.2 µm filter.

    Example 8:



    [0070] A silicon substrate coated with a bottom antireflective coating (B.A.R.C.) was prepared by spin coating the bottom anti-reflective coating solution (AZ® ArF-38, available from AZ Electronic Materials Corporation, Somerville, NJ) onto the silicon substrate and baking at 225°C for 90 sec. The B.A.R.C film thickness was 87 nm. The photoresist solution for Example 7 was then coated on the B.A.R.C coated silicon substrate. The spin speed was adjusted such that the photoresist film thickness was 130 nm, soft baked at 100°C/60s, exposed with Nikon 306D 0.85NA & dipole illumination using 6% half-tone mask. The exposed wafer was post exposure baked at 110°C/60 s, and developed using a 2.38 weight% aqueous solution of tetramethyl ammonium hydroxide for 30 sec. The line and space patterns were then measured on a CD SEM. The sensitivity to print 70nm dense CD was 41 mJ, had more 8% EL, more than 250 nm DoF, with 3sigma LER/LWR values of 6.34/9.73 nm with straight profiles.

    Example 9:



    [0071] 0.6156g of poly(EAdMA/ECPMA/HAdA/α-GBLMA; 15/15/30/40) polymer, 0.0144 g (30 µmol/g) of bis (4-t-butylphenyl) iodonium bis-perfluoroethane sulfonimide, 0.0164 g (30 µmol/g) of bis (triphenyl sulfonium) perfluorobutane-1,4-disulfonate, 0.0472 g (94µmol/g) of bis(4-t-butylphenyl)iodonium 5-lodooctafluoro-3-oxapentane sulfonate synthesized in example 2, 0.0065 g of DIPA and 0.0240 g of 10 weight% PGMEA solution of a surfactant (fluoroaliphatic polymeric ester, supplied by 3M Corporation, St. Paul Minnesota) were dissolved in 15.44g of MHIB and 3.76g of PGME to give a photoresist solution. The photoresist solution was filtered through a 0.2 µm filter.

    Example 10:



    [0072] A silicon substrate coated with a bottom antireflective coating (B.A.R.C.) was prepared by spin coating the bottom anti-reflective coating solution (AZ® ArF-38, available from AZ Electronic Materials Corporation, Somerville, NJ) onto the silicon substrate and baking at 225°C for 90 sec. The B.A.R.C film thickness was 87 nm. The photoresist solution for Example 9 was then coated on the B.A.R.C coated silicon substrate. The spin speed was adjusted such that the photoresist film thickness was 130 nm, soft baked at 100°C/60s, exposed with Nikon 306D 0.85NA & dipole illumination using 6% half-tone mask. The exposed wafer was post exposure baked at 110°C/60 s, and developed using a 2.38 weight% aqueous solution of tetramethyl ammonium hydroxide for 30 sec. The line and space patterns were then measured on a CD SEM. The sensitivity to print 70nm dense CD was 45 mJ, 6% EL, more than 250nm DoF, with 3sigma LER/LWR values of 7 and 11nm, respectively, with straight profiles.

    Example 11:



    [0073] Examples 3, 5, 7, and 9 can be repeated by substituting the polymer therein with one of the following polymers: poly(2-methyl-2-adamantyl methacrylate-co-2-ethyl-2-adamantyl methacrylate-co-3-hydroxy-1-methacryloxyadamantane-co-α-gamma-butyrolactone methacrylate); poly(2-ethyl-2-adamantyl methacrylate-co-3-hydroxy-1-methacryloxyadamantane-co-β-gamma-butyrolactone methacrylate); poly(2-methyl-2-adamantyl methacrylate-co-3-hydroxy-1-methacryloxyadamantane-co-β-gamma-butyrolactone methacrylate); poly(t-butyl norbornene carboxylate-co-maleic anhydride-co-2-methyl-2-adamantyl methacrylate-co-β-gamma-butyrolactone methacrylate-co-methacryloyloxy norbornene methacrylate); poly(2-methyl-2-adamantyl methacrylate-co-3-hydroxy-1-methacryloxyadamantane-co-β-gamma-butyrolactone methacrylate-co-tricyclo[5,2,1,02,6]deca-8-yl methacrylate); poly(2-ethyl-2-adamantyl methacrylate-co-3-hydroxy-1-adamantyl acrylate-co-β-gamma-butyrolactone methacrylate); poly(2-ethyl-2-adamantyl methacrylate-co-3-hydroxy-1-adamantyl acrylate-co-α-gamma-butyrolactone methacrylate-co-tricyclo[5,2,1,02,6]deca-8-yl methacrylate); poly(2-methyl-2-adamantyl methacrylate-co-3,5-dihydroxy-1-methacryloxyadamantane-co-α-gamma-butyrolactone methacrylate); poly(2-methyl-2-adamantyl methacrylate-co-3,5-dimethyl-7-hydroxy adamantyl methacrylate-co-α-gamma-butyrolactone methacrylate); poly(2-methyl-2-adamantyl acrylate-co-3-hydroxy-1-methacryloxyadamantane-co-α-gamma-butyrolactone methacrylate); poly(2-methyl-2-adamantyl methacrylate-co-3-hydroxy-1-methacryloxyadamantane-co-β-gamma-butyrolactone methacrylate-co-tricyclo[5,2,1,02,6]deca-8-yl methacrylate); poly(2-methyl-2-adamantyl methacrylate-co-β-gamma-butyrolactone methacrylate-co-3-hydroxy-1-methacryloxyadamantane-co-ethylcyclopentylacrylate); poly(2-methyl-2-adamantyl methacrylate-co-3-hydroxy-1-adamantyl acrylate-co-α-gamma-butyrolactone methacrylate); poly(2-methyl-2-adamantyl methacrylate-co-3-hydroxy-1-methacryloxyadamantane-co-α-gamma-butyrolactone methacrylate-co-2-ethyl-2-adamantyl methacrylate); poly(2-methyl-2-adamantyl methacrylate-co-3-hydroxy-1-methacryloxyadamantane-co-β-gamma-butyrolactone methacrylate-co-tricyclo[5,2,1,02,6]deca-8-yl methacrylate); poly(2-methyl-2-adamantyl methacrylate-co-2-ethyl-2-adamantyl methacrylate-co-β-gamma-butyrolactone methacrylate-co-3-hydroxy-1-methacryloxyadamantane); poly(2-methyl-2-adamantyl methacrylate-co-2-ethyl-2-adamantyl methacrylate-co-α-gamma-butyrolactone methacrylate-co-3-hydroxy-1-methacryloxyadamantane); poly(2-methyl-2-adamantyl methacrylate-co-methacryloyloxy norbornene methacrylate-co-β-gamma-butyrolactone methacrylate); poly(ethylcyclopentylmethacrylate-co-2-ethyl-2-adamantyl methacrylate-co-α-gamma-butyrolactone acrylate); poly(2-ethyl-2-adamantyl methacrylate-co-3-hydroxy-1-adamantyl acrylate-co-isobutyl methacrylate-co-α-gamma-butyrolactone acrylate); poly(2-methyl-2-adamantyl methacrylate-co-P-gamma-butyrolactone methacrylate-co-3-hydroxy-1-adamantyl acrylate-co-tricyclo[5,2,1,02,6]deca-8-yl methacrylate); poly(2-ethyl-2-adamantyl methacrylate-co-3-hydroxy-1-adamantyl acrylate-co-α-gamma-butyrolactone acrylate); poly(2-methyl-2-adamantyl methacrylate-co--β gamma-butyrolactone methacrylate-co-2-adamantyl methacrylate-co-3-hydroxy-1-methacryloxyadamatane); poly(2-methyl-2-adamantyl methacrylate-co-methacryloyloxy norbornene methacrylate-co-P-gamma-butyrolactone methacrylate-co-2-adamantyl methacrylate-co-3-hydroxy-1-methacryloxyadamatane); poly(2-methyl-2-adamantyl methacrylate-co-methacryloyloxy norbornene methacrylate-co-tricyclo[5,2,1,02,6]deca-8-yl methacrylate-co-3-hydroxy-1-methacryloxyadamatane-co-α-gamma-butyrolactone methacrylate); poly(2-ethyl-2-adamantyl methacrylate-co-3-hydroxy-1-adamantyl acrylate-co-tricyclo[5,2,1,02,6]deca-8-yl methacrylate-co-α-gamma-butyrolactone methacrylate); poly(2-ethyl-2-adamantyl methacrylate-co-3-hydroxy-1-adamantyl acrylate-co-α-gamma-butyrolactone acrylate); poly(2-methyl-2-adamantyl methacrylate-co-3-hydroxy-1-methacryloxyadamatane-co-α-gamma-butyrolactone methacrylate-co-2-ethyl-2-adamantyl-co-methacrylate); poly(2-ethyl-2-adamantyl methacrylate-co-3-hydroxy-1-adamantyl acrylate-co-α-gamma-butyrolactone methacrylate-co-tricyclo[5,2,1,02,6]deca-8-yl methacrylate); poly(2-ethyl-2-adamantyl methacrylate-co-3-hydroxy-1-adamantyl acrylate-co-α-gamma-butyrolactone methacrylate-co-2-adamantyl methacrylate); poly(2-ethyl-2-adamantyl methacrylate-co-3-hydroxy-1-adamantyl acrylate-co-α-gamma-butyrolactone methacrylate); and poly(2-ethyl-2-adamantyl methacrylate-co-3-hydroxy-1-adamantyl acrylate-co-α-gamma-butyrolactone acrylate-co-tricyclo[5,2,1,02,6]deca-8-yl methacrylate)
    to form a photoresist solution. The photoresist solutions formed therefrom are expected to give similar results as to those found in Examples 4, 6, 8, and 10.

    Example 12:



    [0074] Example 11 can be repeated by replacing triphenylsulfonium 5-iodooctafluoro-3-oxapentafluoro sulfonate from Example 1 with (4-t-butylphenyl diphenyl sulfonium) 5-iodooctafluoro-3-oxapentane sulfonate or replacing bis(4-t-butylphenyl)iodonium 5-iodooctafluoro-3-oxapentane sulfonate from Example 2 with one of the following: bis(4-octyloxyphenyl) iodonium 5-iodooctafluoro-3-oxapentane sulfonate, [(4-octyloxyphenyl) phenyl iodonium] 5-iodooctafluoro-3-oxapentane sulfonate, (4-methylphenyl) phenyl iodonium 5-iodooctafluoro-3-oxapentane sulfonate, bis(4-methylphenyl) iodonium 5-iodooctafluoro-3-oxapentane sulfonate, (4-methoxyphenyl) phenyl iodonium 5-iodooctafluoro-3-oxapentane sulfonate, bis(4-methoxyphenyl) iodonium 5-iodooctafluoro-3-oxapentane sulfonate, 4-hydrxoy-3,5-dimethyl dimethyl phenyl sulfonium 5-iodooctafluoro-3-oxapentane sulfonate, (4-t-butylphenyl diphenyl sulfonium) 5-iodooctafluoro-3-oxapentane sulfonate, bis(4-t-butylphenyl) phenyl iodonium 5-iodooctafluoro-3-oxapentane sulfonate, bis(4-hydroxyphenyl) phenyl iodonium 5-iodooctafluoro-3-oxapentane sulfonate, (benzoyltetramethylenesulfonium) 5-iodooctafluoro-3-oxapentane sulfonate, (tris(4-t-butyl phenyl) sulfonium) 5-iodooctafluoro-3-oxapentane sulfonate, [bis[2-methyl-adamantylacetyloxymethoxyphenyl]phenylsulfonium]5-iodooctafluoro-3-oxapentane sulfonate, [bis[4-(3,5-di(trifluoromethyl)benzenesulfonyloxy)-phenyl] phenylsulfonium] 5-iodooctafluoro-3-oxapentane sulfonate, [bis[4,4-bis(trifluoromethyl)-3-oxatricyclo[4.2.1.02,5]-nonylmethoxyphenyl]phenyl sulfonium] 5-iodooctafluoro-3-oxapentane sulfonate, or, [bis[4-pentafluorobenzenesulfonyloxyphenyl]phenylsulfonium]5-iodooctafluoro-3-oxapentane sulfonate. The photoresist solutions formed therefrom are expected to give similar results as to those found in Examples 4, 6, 8, and 10.

    [0075] The additional photoacid generators of formula (Ai)2 Xi1 can be made in accordance with the procedures set forth in United States Patent Application Serial Nos. 11/179,886, filed July 12, 2005, and 11/355,762, filed February 16, 2006 (published as WO 2007/007175). Other examples are found in United States Patent Application Serial No. 11/355,400, filed February 16, 2006, United States Published Patent Application 2004-0229155, and United States Published Patent Application 2005-0271974, United States Patent No. 5,837,420, United States Patent No. 6,111,143, and United States Patent No. 6,358,665. Those additional photoacid generators of formula Ai Xi2 are well known to those skilled in the art, for example, those known from United States Published Patent Application No. 2003/0235782 and United States Published Patent Application No. 2005/0271974.


    Claims

    1. A compound of the formula Ai Xi,

    where Ai is an organic onium cation; and

    Xi is anion of the formula I-CF2CF2OCF2CF2-SO3-, where Ai is

    where R1A, R2A, R3A, R4A, R5A are each independently selected from hydrogen, OSO2R9, straight or branched (C1 - C10) alkyl chain optionally containing one or more O atoms, straight or branched (C1 - C10) alkoxy chain, halogen, or hydroxyl;

    R6 and R7 are each unsubstituted or substituted aryl wherein substituted aryl is substituted with OSO2R9, hydroxy or C1 - C10-alkoxy;

    R9 is selected from alkyl, fluoroalkyl and perfluoroalkyl;

    T is a direct bond.


     
    2. The compound of claim 1 wherein R3A is selected from hydroxy and straight or branched alkoxy chain and each of R2A and R4A is selected from hydrogen and straight or branched alkyl chain optionally containing one or more O atoms.
     
    3. The compound of claims 1 or 2 selected from the group (4-octyloxyphenyl) phenyl sulfonium 5-iodooctafluoro-3-oxapentane sulfonate, (4-t-butylphenyl diphenyl sulfonium) 5-iodooctafluoro-3-oxapentane sulfonate, and (triphenyl sulfonium) 5-iodooctafluoro-3-oxapentane sulfonate.
     
    4. A photoresist composition useful for imaging in deep UV comprising;

    a) a polymer containing an acid labile group; and

    b) a compound of any one of claims 1 to 3.


     
    5. The photoresist composition of claim 4, which further comprises c) one or more additional photoacid generators.
     
    6. The composition of claim 5, wherein c) the one or more additional photoacid generators are selected from

    (a) a compound of the formula

            (Ai)2 Xi1,

    where each Ai is

    and

            Y-Ar

    where Ar is selected from

    naphthyl, or anthryl;

    Y is selected from



    where R1, R2, R3, R1A, R1B, R2A, R2B, R3A, R3B, R4A, R4B, R5A, and R5B are each independently selected from Z, hydrogen, OSO2R9, OR20, straight or branched alkyl chain optionally containing one or more O atoms, monocycloalkyl or polycycloalkyl group optionally containing one or more O atoms, monocycloalkyl- or polycycloalkylcarbonyl group, aryl, aralkyl, arylcarbonylmethyl group, alkoxyalkyl, alkoxycarbonylalkyl, alkylcarbonyl, monocycloalkyl- or polycycloalkyloxycarbonylalkyl with the cycloalkyl ring optionally containing one or more O atoms, monocycloalkyl- or polycycloalkyloxyalkyl with the cycloalkyl ring optionally containing one or more O atoms, straight or branched perfluoroalkyl, monocycloperfluoroalkyl or polycycloperfluoroalkyl, straight or branched alkoxy chain, nitro, cyano, halogen, carboxyl, sulfate, tresyl, or hydroxyl;

    R6 and R7 are each independently selected from straight or branched alkyl chain optionally containing one or more O atoms, monocycloalkyl or polycycloalkyl group optionally containing one or more O atoms, monocycloalkyl- or polycycloalkylcarbonyl group, aryl, aralkyl, straight or branched perfluoroalkyl, monocycloperfluoroalkyl or polycycloperfluoroalkyl, arylcarbonylmethyl group, nitro, cyano, or hydroxyl or R6 and R7 together with the S atom to which they are attached form a 5-, 6-, or 7-membered saturated or unsaturated ring optionally containing one or more O atoms;

    R9 is selected from alkyl, fluoroalkyl, perfluoroalkyl, aryl, fluoroaryl, perfluoroaryl, monocycloalkyl or polycycloalkyl group with the cycloalkyl ring optionally containing one or more O atoms, monocyclofluoroalkyl or polycyclofluoroalkyl group with the cycloalkyl ring optionally containing one or more O atoms, or monocycloperfluoralkyl or polycycloperfluoroalkyl group with the cycloalkyl ring optionally containing one or more O atoms;

    R20 is alkoxyalkyl, alkoxycarbonylalkyl, alkylcarbonyl, monocycloalkyl- or polycycloalkyloxycarbonylalkyl with the cycloalkyl ring optionally containing one or more O atoms, or monocycloalkyl- or polycycloalkyloxyalkyl with the cycloalkyl ring optionally containing one or more O atoms;

    T is a direct bond, a divalent straight or branched alkyl group optionally containing one or more O atoms, divalent aryl group, divalent aralkyl group, or divalent monocycloalkyl or polycycloalkyl group optionally containing one or more O atoms; Z is -(V)j-(C(X11)(X12))n-O-C(=O)-R8, where either (i) one of X11 or X12 is straight or branched alkyl chain containing at least one fluorine atom and the other is hydrogen, halogen, or straight or branched alkyl chain or (ii) both of X11 and X12 are straight or branched alkyl chain containing at least one fluorine atom;

    V is a linkage group selected from a direct bond, a divalent straight or branched alkyl group optionally containing one or more O atoms, divalent aryl group, divalent aralkyl group, or divalent monocycloalkyl or polycycloalkyl group optionally containing one or more O atoms;

    X2 is hydrogen, halogen, or straight or branched alkyl chain optionally containing one or more O atoms;

    R8 is a straight or branched alkyl chain optionally containing one or more O atoms, a monocycloalkyl or polycycloalkyl group optionally containing one or more O atoms, or aryl;

    X3 is hydrogen, straight or branched alkyl chain, halogen, cyano, or -C(=O)-R50 where R50 is selected from straight or branched alkyl chain optionally containing one or more O atoms or -O-R51 where R51 is hydrogen or straight or branched alkyl chain;

    each of i and k are independently 0 or a positive integer;

    j is 0 to 10;

    m is 0 to 10;

    and n is 0 to 10,

    the straight or branched alkyl chain optionally containing one or more O atoms, straight or branched alkyl chain, straight or branched alkoxy chain, monocycloalkyl or polycycloalkyl group optionally containing one or more O atoms, monocycloalkyl- or polycycloalkylcarbonyl group, alkoxyalkyl, alkoxycarbonylalkyl, alkylcarbonyl, monocycloalkyl- or polycycloalkyloxycarbonylalkyl with the cycloalkyl ring optionally containing one or more O atoms, monocycloalkyl- or polycycloalkyloxyalkyl with the cycloalkyl ring optionally containing one or more O atoms, aralkyl, aryl, naphthyl, anthryl, 5-, 6-, or 7-membered saturated or unsaturated ring optionally containing one or more O atoms, or arylcarbonylmethyl group being unsubstituted or substituted by one or more groups selected from the group consisting of Z, halogen, alkyl, C1-8 perfluoroalkyl, monocycloalkyl or polycycloalkyl, OR20, alkoxy, C3-20 cyclic alkoxy, dialkylamino, dicyclic dialkylamino, hydroxyl, cyano, nitro, tresyl, oxo, aryl, aralkyl, oxygen atom, CF3SO3, aryloxy, arylthio, and groups of formulae (II) to (VI):

    wherein R10 and R11 each independently represent a hydrogen atom, a straight or branched alkyl chain optionally containing one or more O atoms, or a monocycloalkyl or polycycloalkyl group optionally containing one or more O atoms, or R10 and R11 together can represent an alkylene group to form a five- or six-membered ring;

    R12 represents a straight or branched alkyl chain optionally containing one or more O atoms, a monocycloalkyl or polycycloalkyl group optionally containing one or more O atoms, or aralkyl, or R10 and R12 together represent an alkylene group which forms a five- or six-membered ring together with the interposing -C-O- group, the carbon atom in the ring being optionally substituted by an oxygen atom;

    R13 represents a straight or branched alkyl chain optionally containing one or more O atoms or a monocycloalkyl or polycycloalkyl group optionally containing one or more O atoms;

    R14 and R15 each independently represent a hydrogen atom, a straight or branched alkyl chain optionally containing one or more O atoms or a monocycloalkyl or polycycloalkyl group optionally containing one or more O atoms;

    R16 represents a straight or branched alkyl chain optionally containing one or more O atoms, a monocycloalkyl or polycycloalkyl group optionally containing one or more O atoms, aryl, or aralkyl; and

    R17 represents straight or branched alkyl chain optionally containing one or more O atoms, a monocycloalkyl or polycycloalkyl group optionally containing one or more O atoms, aryl, aralkyl, the group -Si(R16)2R17, or the group -O-Si(R16)2R17, the straight or branched alkyl chain optionally containing one or more O atoms, monocycloalkyl or polycycloalkyl group optionally containing one or more O atoms, aryl, and aralkyl being unsubstituted or substituted as above;

    Xi1 is an anion of the formula

            Q-R500-SO3-

    where Q is selected from -O3S and -O2C;

    R500 is a group selected from linear or branched alkyl, cycloalkyl, aryl, or combinations thereof, optionally containing a catenary S or N, where the alkyl, cycloalkyl, and aryl groups are unsubstituted or substituted by one or more groups selected from the group consisting of halogen, unsubstituted or substituted alkyl, unsubstituted or substituted C1-8 perfluoroalkyl, hydroxyl, cyano, sulfate, and nitro; and

    (b) a compound having the formula

            Ai Xi2,

    where Ai is an organic onium cation as previously defined and Xi2 is an anion; and mixtures of (a) and (b) thereof.


     
    7. The composition of claim 5 or 6 wherein the ratio of b) to c) ranges from 1:0.6 to 1:1.3.
     
    8. A process for imaging a photoresist comprising the steps of:

    a) applying a coating layer a substrate with the composition of any one of claims 4 to 7;

    b) baking the substrate to substantially remove the solvent;

    c) image-wise exposing the photoresist coating;

    d) optionally, postexposure baking the photoresist coating; and

    e) developing the photoresist coating with an aqueous alkaline solution.


     
    9. The use of a compound of any one of claims 1 to 3 as a photoacid generator in a photoresist composition.
     


    Ansprüche

    1. Verbindung der Formel Ai Xi,
    wobei Ai ein organisches Onium-Kation ist; und
    Xi ein Anion der Formel I-CF2CF2OCF2CF2-SO3- ist, wobei Ai

    ist, wobei R1A, R2A, R3A, R4A, R5A jeweils unabhängig ausgewählt sind aus Wasserstoff, OSO2R9, gerade oder verzweigte (C1 - C10) Alkylkette optional enthaltend ein oder mehrere O-Atome, gerade oder verzweigte (C1 - C10) Alkoxykette, Halogen, oder Hydroxyl;

    R6 und R7 jeweils unsubstituiertes oder substituiertes Aryl sind, wobei substituiertes Aryl mit OSO2R9, Hydroxy oder C1 - C10 Alkoxy substituiert ist;

    R9 ausgewählt ist aus Alkyl, Fluoralkyl und Perfluoralkyl;

    T eine direkte Bindung ist.


     
    2. Verbindung gemäß Anspruch 1, wobei R3A ausgewählt ist aus Hydroxy und gerader oder verzweigter Alkoxykette und jedes von R2A und R4A ausgewählt ist aus Wasserstoff und gerader oder verzweigter Alkylkette optional enthaltend ein oder mehrere O-Atome.
     
    3. Verbindung gemäß Ansprüchen 1 oder 2 ausgewählt aus der Gruppe (4-octyloxyphenyl) phenyl sulfonium 5-iodoctafluor-3-oxapentan Sulfonat, (4-t-butylphenyldiphenylsulfonium) 5-iodoctafluor-3-oxapentan Sulfonat, und (triphenyl sulfonium) 5-iodoctafluor-3-oxapentan Sulfonat.
     
    4. Fotolackzusammensetzung verwendbar zur Bildgebung in tiefem UV umfassend;

    a) ein Polymer, enthaltend eine säurelabile Gruppe; und

    b) eine Verbindung gemäß einem der Ansprüche 1 bis 3.


     
    5. Fotolackzusammensetzung gemäß Anspruch 4, welche des Weiteren c) einen oder mehrere zusatzliche Fotosäureerzeuger umfasst.
     
    6. Zusammensetzung gemäß Anspruch 5, wobei c) der eine oder mehrere zusätzliche Fotosäureerzeuger ausgewählt sind aus

    (a) einer Verbindung der Formel

            (Ai)2 Xi1,

    wobei jedes Ai

    und

            Y-Ar

    ist, wobei Ar ausgewählt ist aus

    Naphthyl, oder Anthryl;

    Y ausgewählt ist aus



    wobei R1, R2, R3, R1A, R1B, R2A, R2B, R3A, R3B, R4A, R4B, R5A, und R5B jeweils unabhängig ausgewählt sind aus Z, Wasserstoff, OSO2R9, OR20 gerader oder verzweigter Alkylkette optional enthaltend ein oder mehrere O-Atome, Monocycloalkyl- oder Polycycloalkylgruppe optional enthaltend ein oder mehrere O-Atome, Monocycloalkyl- oder Polycycloalkylcarbonylgruppe, Aryl, Aralkyl, Arylcarbonylmethylgruppe, Alkoxyalkyl, Alkoxycarbonylalkyl, Alkylcarbonyl, Monocycloalkyl- oder Polycycloalkyloxycarbonylalkyl mit dem Cycloalkyl Ring optional enthaltend ein oder mehrere O-Atome, Monocycloalkyl- oder Polycycloalkyloxyalkyl mit dem Cycloalkyl Ring optional enthaltend ein oder mehrere O-Atome, geradem oder verzweigtem Perfluoralkyl, Monocycloperfluoralkyl oder Polycycloperfluoralkyl, gerader oder verzweigter Alkoxykette, Nitro, Cyano, Halogen, Carboxyl, Sulfat, Tresyl oder Hydroxyl;

    R6 und R7 jeweils unabhängig ausgewählt sind aus gerader oder verzweigter Alkylkette optional enthaltend ein oder mehrere O-Atome, Monocycloalkyl- oder Polycycloalkylgruppe optional enthaltend ein oder mehrere O-Atome, Monocycloalkyl- oder Polycycloalkylcarbonylgruppe, Aryl, Aralkyl, geradem oder verzweigtem Perfluoroalkyl, Monocycloperfluoroalkyl oder Polycycloperfluoroalkyl, Arylcarbonylmethylgruppe, Nitro, Cyano, oder Hydroxyl oder R6 und R7 zusammen mit dem S-Atom an welchem sie befestigt sind einen 5-, 6-, oder 7-gliedrigen gesättigten oder ungesättigten Ring optional enthaltend ein oder mehrere O-Atome;

    R9 ausgewählt ist aus Alkyl, Fluoralkyl, Perfluoralkyl, Aryl, Fluoraryl, Perfluoroaryl, Monocycloalkyl- oder Polycycloalkylgruppe mit dem Cycloalkyl Ring optional entahltend ein oder mehrere O-Atome, Monocyclofluoralkyl- oder Polycyclofluoralkylgruppe mit dem Cycloalkyl Ring optional enthaltend ein oder mehrere O-Atome, oder Monocycloperfluoralkyl- oder Polycycloperfluoralkylgruppe mit dem Cycloalkyl Ring optional enthaltend ein oder mehrere O-Atome;

    R20 Alkoxyalkyl, Alkoxycarbonylalkyl, Alkylcarbonyl, Monocycloalkyl- oder Polycycloalkyloxycarbonylalkyl mit dem Cycloalkyl Ring optional enthaltend ein oder mehrere O-Atome, oder Monocycloalkyl- oder Polycycloalkyloxyalkyl mit dem Cycloalkyl Ring optional enthaltend ein oder mehrere O-Atome ist;

    T eine direkte Bindung, eine divalente gerade oder verzweigte Alkylgruppe optional enthaltend ein oder mehrere O-Atome, divalente Arylgruppe, divalente Aralkylgruppe, oder divalente Monocycloalkyl- oder Polycycloalkylgruppe optional enthaltend ein oder mehrere O-Atome ist;

    Z -(V)j-(C(X11)(X12))n-O-C(=O)-R8 ist, wobei entweder (i) eines von X11 oder X12 gerade oder verzweigte Alkylkette enthaltend mindestens ein Fluoratom ist und das andere Wasserstoff, Halogen, oder gerade oder verzweigte Alkylkette ist oder (ii) beide von X11 und X12 eine gerade oder verzweigte Alkylkette enthaltend mindestens ein Fluoratom sind;

    V eine Verbindungsgruppe ausgewählt aus einer direkten Bindung, einer divaltenten geraden oder ungeraden Alkylgruppe optional enthaltend ein oder mehrere O-Atome, divalente Arylgruppe, divalente Aralkylgruppe, oder divalente Monocycloalkyl- oder Polycycloalkylgruppe optional enthaltend ein oder mehrere O-Atome ist;

    X2 Wasserstoff, Halogen, oder gerade oder verzweigte Alkylkette optional enthaltend ein oder mehrere O-Atome ist;

    R8 eine gerade oder verzweigte Alkylkette optional enthaltend ein oder mehrere O-Atome, eine Monocycloalkyl- oder Polycycloalkylgruppe optional enthaltend ein oder mehrere O-Atome, oder Aryl ist;

    X3 Wasserstoff, gerade oder verzweigte Alkylkette, Halogen, Cyano, oder -C(=O)-R50 ist, wobei R50 ausgewählt ist aus gerader oder verzweigter Alkylkette optional enthaltend ein oder mehrere O-Atome oder -O-R51, wobei R51 Wasserstoff oder gerade oder verzweigte Alkylkette ist;

    jedes von i und k unabhängig 0 oder eine positive ganze Zahl sind;

    j 0 bis 10 ist;

    m 0 bis 10 ist;

    und n 0 bis 10 ist,

    die gerade oder verzweigte Alkylkette optional enthaltend ein oder mehrere O-Atome, gerade oder verzweigte Alkylkette, gerade oder verzweigte Alkoxykette, Monocycloalkyl- oder Polycycloalkylgruppe optional enthaltend ein oder mehrere O-Atome, Monocycloalkyl- oder Polycycloalkylcarbonylgruppe, Alkoxyalkyl, Alkoxycarbonylalkyl, Alkylcarbonyl, Monocycloalkyl- oder Polycycloalkyloxycarbonylalkyl mit dem Cycloalkyl Ring optional enthaltend ein oder mehrere O-Atome, Monocycloalkyl- oder Polycycloalkyloxyalkyl mit dem Cycloalkyl Ring optional enthaltend ein oder mehrere O-Atome, Aralkyl, Aryl, Naphthyl, Anthryl, 5-, 6-, oder 7-gliedriger gesättigter oder ungesättigter Ring optional enthaltend ein oder mehrere O-Atome, oder Arylcarbonylmethylgruppe ? unsubstituiert oder substituiert ist/sind mit einer oder mehreren Gruppen ausgewählt aus der Gruppe bestehend aus Z, Halogen, Alkyl, C1-8 Perfluoralkyl, Monocycloalkyl oder Polycycloalkyl, OR20, Alkoxy, C3-20 zyklischem Alkoxy, Dialkylamino, dizyklischem Dialkylamino, Hydroxyl, Cyano, Nitro, Tresyl, Oxo, Aryl, Aralkyl, Sauerstoffatom, CF3SO3, Aryloxy, Arylthio, und Gruppen der Formeln (II) bis (VI):

    wobei R10 und R11 jeweils unabhängig ein Wasserstoffatom, eine gerade oder verzweigte Alkylkette optional enthaltend ein oder mehrere O-Atome, oder eine Monocycloalkyl- oder Polycycloalkylgruppe optional enthaltend ein oder mehrere O-Atome darstellen, oder R10 und R11 zusammen eine Alkylengruppe darstellen können, um einen fünf- oder sechs- gliedrigen Ring zu bilden;

    R12 eine gerade oder verzweigte Alkylkette optional enthaltend ein oder mehrere O-Atome, eine Monocycloalkyl- oder Polycycloalkylgruppe optional enthaltend ein oder mehrere O-Atome, oder Aralkyl darstellen, oder R10 und R12 zusammen eine Alkylengruppe darstellen, die einen fünf- oder sechs- gliedrigen Ring zusammen mit der zwischengestellten -C-O-Gruppe bilden, wobei das Kohlenstoffatom in dem Ring optional durch ein Sauerstoffatom substituiert ist;

    R13 eine gerade oder verzweigte Alkylkette optional enthaltend ein oder mehrere O-Atome oder eine Monocycloalkyl- oder Polycycloalkylgruppe optional enthaltend ein oder mehrere O-Atome darstellt;

    R14 und R15 jeweils unabhängig ein Wasserstoffatom, eine gerade oder verzweigte Alkylkette optional enthaltend ein oder mehrere O-Atome oder eine Monocycloalkyl- oder Polycycloalkylgruppe optional enthaltend ein oder mehrere O-Atome darstellen;

    R16 eine gerade oder verzweigte Alkylkette optional enthaltend ein oder mehrere O-Atome, eine Monocycloalkyl- oder Polycycloalkylgruppe optional enthaltend ein oder mehrere O-Atome, Aryl oder Aralkyl darstellt; und

    R17 gerade oder verzweigte Alkylkette optional enthaltend ein oder mehrere O-Atome, eine Monocycloalkyl- oder Polycycloalkylgruppe optional enthaltend ein oder mehrere O-Atome, Aryl oder Aralkyl, die Gruppe -Si(R16)2R17, oder die Gruppe -O-Si(R16)2R17 darstellt, wobei die gerade oder verzweigte Alkylkette optional enthaltend ein oder mehrere O-Atome, Monocycloalkyl- oder Polycycloalkylgruppe optional enthaltend ein oder mehrere O-Atome, Aryl und Aralkyl, wie oben unsubstituiert oder substituiert sind;

    Xi1 ein Anion der Formel

            Q-R500-SO3-

    ist,

    wobei Q ausgewählt ist aus -O3S und -O2C;

    R500 eine Gruppe ist ausgewählt aus linearem oder verzweigtem Alkyl, Cycloalkyl, Aryl oder Kombinationen davon, optional enthaltend ein verkettendes S oder N, wobei die Alkyl-, Cycloalkyl- und Arylgruppen unsubstituiert oder substituiert mit einer oder mehreren Gruppen sind ausgewählt aus der Gruppe bestehend aus Halogen, unsubstituiertem oder substituiertem Alkyl, unsubstituiertem oder substituiertem C1-8 Perfluoroalkyl, Hydroxyl, Cyano, Sulfat, und Nitro; und

    (b) eine Verbindung mit der Formel

            Ai Xi2,

    wobei Ai ein organisches Oniumkation wie zuvor definiert und Xi2 ein Anion ist; und Mischungen von (a) und (b) davon.


     
    7. Zusammensetzung gemäß Anspruch 5 oder 6, wobei das Verhältnis von b) zu c) sich von 1 : 0,6 bis 1 : 1,3 erstreckt.
     
    8. Verfahren zum Abbilden eines Fotolacks umfassend die Schritte:

    a) Aufbringen einer Beschichtungsschicht auf ein Substrat mit der Zusammensetzung gemäß einem der Ansprüche 4 bis 7;

    b) Brennen des Substrats um das Lösungsmittel im Wesentlichen zu entfernen;

    c) bildweise Belichten der Fotolackbeschichtung;

    d) optional, Nachbelichtungsbrennen der Fotolackbeschichtung; und

    e) Entwickeln der Fotolackbeschichtung mit einer wässrigen alkalischen Lösung.


     
    9. Verwendung einer Verbindung gemäß einem der Ansprüche 1 bis 3 als Fotosäureerzeuger in einer Fotolackzusammensetzung.
     


    Revendications

    1. Composé de formule Ai Xi,
    Ai étant un cation onium organique ; et
    Xi étant un anion de formule I-CF2CF2OCF2CF2-SO3-, Ai représentant

    R1A, R2A, R3A, R4A et R5A étant chacun indépendamment choisis parmi hydrogène, OSO2R9, chaîne C1-10-alkyle linéaire ou ramifiée contenant éventuellement un ou plusieurs atome (s) de O, chaîne C1-10-alcoxyle linéaire ou ramifiée, halogène ou hydroxyle ;

    R6 et R7 étant chacun aryle non substitué ou substitué, aryle substitué étant substitué par OSO2R9, hydroxyle ou C1-10-alcoxyle ;

    R8 étant choisi parmi alkyle, fluoroalkyle et perfluoroalkyle ;

    T représentant une liaison directe.


     
    2. Composé selon la revendication 1, R3A étant choisi parmi hydroxyle et chaîne alcoxyle linéaire ou ramifiée et chacun de R2A et R4A étant choisi parmi hydrogène et chaîne alkyle linéaire ou ramifiée contenant éventuellement un ou plusieurs atome(s) de O.
     
    3. Composé selon les revendications 1 ou 2 choisi dans le groupe du 5-iodooctafluoro-3-oxapentanesulfonate de (4-octyloxyphényl)-phénylsulfonium, du 5-iodooctafluoro-3-oxapentanesulfonate de (4-t-butylphényl)-diphénylsulfonium et du 5-iodooctafluoro-3-oxapentanesulfonate de triphénylsulfonium.
     
    4. Composition de résine photosensible utile pour une imagerie en UV lointain comprenant :

    a) un polymère contenant un groupe labile sous l'effet d'acide ; et

    b) un composé selon l'une quelconque des revendications 1 à 3.


     
    5. Composition de résine photosensible selon la revendication 4, comprenant en outre c) un ou plusieurs générateur(s) de photoacide supplémentaire(s).
     
    6. Composition selon la revendication 5, c) le générateur ou les générateurs de photoacide supplémentaire(s) étant choisi(s) parmi

    (a) un composé de formule

            (Ai)2Xi1,

    chaque Ai représentant

    et

            Y-Ar

    Ar étant choisi parmi

    naphtyle ou anthryle ;

    Y étant choisi parmi

    -I+-naphtyle,-I+-anthryle ;

    R1, R2, R3, R1A, R1B, R2A, R2B, R3A, R3B, R4A, R4B, R5A et R5B étant chacun indépendamment choisis parmi Z, hydrogène, OSO2R9, OR20, chaîne alkyle linéaire ou ramifiée contenant éventuellement un ou plusieurs atome(s) d'O, groupe monocycloalkyle ou polycycloalkyle contenant éventuellement un ou plusieurs atome(s) d'O, groupe monocycloalkylcarbonyle ou groupe polycycloalkylcarbonyle, aryle, aralkyle, groupe arylcarbonylméthyle, alcoxyalkyle, alcoxycarbonylalkyle, alkylcarbonyle, monocycloalkyloxycarbonylalkyle ou polycycloalkyloxycarbonylalkyle, le cycle cycloalkyle contenant éventuellement un ou plusieurs atomes d'O, monocycloalkyloxyalkyle ou polycycloalkyloxyalkyle, le cycle cycloalkyle contenant éventuellement un ou plusieurs atomes d'O, perfluoroalkyle linéaire ou ramifié, monocycloperfluoroalkyle ou polycycloperfluoroalkyle, chaîne alcoxyle linéaire ou ramifiée, nitro, cyano, halogène, carboxyle, sulfate, trésyle ou hydroxyle ;

    R6 et R7 étant chacun indépendamment choisis parmi chaîne alkyle linéaire ou ramifiée contenant éventuellement un ou plusieurs atome(s) d'O, groupe monocycloalkyle ou polycycloalkyle contenant éventuellement un ou plusieurs atome(s) d'O, groupe monocycloalkylcarbonyle ou polycycloalkylcarbonyle, aryle, aralkyle, perfluoroalkyle linéaire ou ramifié, monocycloperfluoroalkyle ou polycycloperfluoroalkyle, groupe arylcarbonylméthyle, nitro, cyano ou hydroxyle ou R6 et R7 conjointement avec l'atome de soufre auquel ils sont liés formant un cycle saturé ou insaturé à 5, 6 ou 7 chaînons contenant éventuellement un ou plusieurs atome(s) d'O ;

    R9 étant choisi parmi alkyle, fluoroalkyle, perfluoroalkyle, aryle, fluoroaryle, perfluoroaryle, groupe monocycloalkyle ou polycycloalkyle, le cycle cycloalkyle contenant éventuellement un ou plusieurs atome(s) d'O, groupe monocyclofluoroalkyle ou polycyclofluoroalkyle, le cycle cycloalkyle contenant éventuellement un ou plusieurs atome(s) d'O ou groupe monocycloperfluoroalkyle ou polycycloperfluoroalkyle, le cycle cycloalkyle contenant éventuellement un ou plusieurs atome(s) d'O ;

    R20 représentant alcoxyalkyle, alcoxycarbonylalkyle, alkylcarbonyle, monocycloalkyloxycarbonylalkyle ou polycycloalkyloxycarbonylalkyle, le cycle cycloalkyle contenant éventuellement un ou plusieurs atome(s) d'O ou monocycloalkyloxyalkyle ou polycycloalkyloxyalkyle, le cycle cycloalkyle contenant éventuellement un ou plusieurs atome(s) d'O ;

    T représentant une liaison directe, groupe alkyle divalent linéaire ou ramifié contenant éventuellement un ou plusieurs atome(s) d'O, groupe aryle divalent, groupe aralkyle divalent ou groupe monocycloalkyle ou polycycloalkyle divalent, contenant éventuellement un ou plusieurs atome(s) d'O ;

    Z représentant -(V)j-(C(X11)(X12))n-OC(=O)-R8, où soit (i) l'un de X11 ou X12 est une chaîne alkyle linéaire ou ramifiée contenant au moins un atome de fluor et l'autre représente hydrogène, halogène ou une chaîne alkyle linéaire ou ramifiée ou soit (ii) à la fois X11 et X12 sont une chaîne alkyle linéaire ou ramifiée contenant au moins un atome de fluor ;

    V étant un groupe lieur choisi parmi une liaison directe, groupe alkyle divalent linéaire ou ramifié contant éventuellement un ou plusieurs atome(s) d'O, groupe aryle divalent, groupe aralkyle divalent ou groupe monocycloalkyle ou polycycloalkyle divalent, le cycle cycloalkyle contenant éventuellement un ou plusieurs atome(s) d' O ;

    X2 représentant hydrogène, halogène ou chaîne alkyle linéaire ou ramifiée contenant éventuellement un ou plusieurs atomes d'O ;

    R8 représentant une chaîne alkyle linéaire ou ramifiée contenant éventuellement un ou plusieurs atomes d'O, groupe monocycloalkyle ou polycycloalkyle contenant éventuellement un ou plusieurs atome(s) d'O ou aryle ;

    X3 représentant hydrogène, chaîne alkyle linéaire ou ramifiée, halogène, cyano ou-C(=O)-R50, R50 étant choisi parmi une chaîne alkyle linéaire ou ramifiée contenant éventuellement un ou plusieurs atomes d'O ou -O-R51, R51 représentant hydrogène ou une chaîne alkyle linéaire ou ramifiée ;

    chacun de i et k représentant indépendamment 0 ou un entier positif ;

    j représentant 0 jusqu'à 10 ;

    m représentant 0 jusqu'à 10 ;

    et n représentant 0 jusqu'à 10,

    chaîne alkyle linéaire ou ramifiée contenant éventuellement un ou plusieurs atomes d'O, chaîne alkyle linéaire ou ramifiée, chaîne alcoxyle linéaire ou ramifiée, groupe monocycloalkyle ou polycycloalkyle contenant éventuellement un ou plusieurs atome(s) d'O, groupe monocycloalkylcarbonyle ou polycycloalkylcarbonyle, alcoxyalkyle, alcoxycarbonylalkyle, alkylcarbonyle, monocycloalkyloxycarbonylalkyle ou polycycloalkyloxycarbonylalkyle, le cycle cycloalkyle contenant éventuellement un ou plusieurs atomes d'O, monocycloalkyloxyalkyle ou polycycloalkyloxyalkyle, le cycle cycloalkyle contenant éventuellement un ou plusieurs atomes d'O, aralkyle, aryle, naphtyle, anthryle, cycle saturé ou insaturé à 5, 6 ou 7 chaînons contenant éventuellement un ou plusieurs atome(s) d'O ou groupe arylcarbonylméthyle étant non substitués ou substitués par un ou plusieurs groupe (s) choisi (s) dans le groupe constitué par Z, halogène, alkyle, C1-8-perfluoroalkyle, monocycloalkyle ou polycycloalkyle, OR20, alcoxyle, C3-20-alcoxyle cyclique, dialkylamino, dialkylamino bicyclique, hydroxyle, cyano, nitro, trésyle, oxo, aryle, aralkyle, atome d'oxygène, CF3SO3, aryloxyle, arylthio et groupes de formules (II) jusqu'à (VI)

    R10 et R11 représentant chacun indépendamment un atome d'hydrogène, une chaîne alkyle linéaire ou ramifiée contenant éventuellement un ou plusieurs atome(s) d'O ou un groupe monocycloalkyle ou polycycloalkyle contenant éventuellement un ou plusieurs atome (s) d'O ou R10 et R11 pouvant représenter conjointement un groupe alkylène pour former un cycle à 5 ou 6 chaînons ;

    R12 représentant une chaîne alkyle linéaire ou ramifiée contenant éventuellement un ou plusieurs atomes d'O, un groupe monocycloalkyle ou polycycloalkyle contenant éventuellement un ou plusieurs atome (s) d'O ou aralkyle, ou R10 et R12 représentant conjointement un groupe alkylène formant un cycle à 5 ou 6 chaînons conjointement avec le groupe intercalant-C-O-, l'atome de carbone dans le cycle étant éventuellement substitué par un atome d'oxygène ;

    R13 représentant une chaîne alkyle linéaire ou ramifiée contenant éventuellement un ou plusieurs atomes d'O, un groupe monocycloalkyle ou polycycloalkyle contenant éventuellement un ou plusieurs atome(s) d'O ;

    R14 et R15 représentant chacun indépendamment un atome d'hydrogène, une chaîne alkyle linéaire ou ramifiée contenant éventuellement un ou plusieurs atome(s) d'O ou un groupe monocycloalkyle ou polycycloalkyle contenant éventuellement un ou plusieurs atome(s) d'O ;

    R16 représentant une chaîne alkyle linéaire ou ramifiée contenant éventuellement un ou plusieurs atomes d'O, un groupe monocycloalkyle ou polycycloalkyle contenant éventuellement un ou plusieurs atome(s) d'O, aryle ou aralkyle ; et

    R17 représentant une chaîne alkyle linéaire ou ramifiée contenant éventuellement un ou plusieurs atomes d'O, un groupe monocycloalkyle ou polycycloalkyle contenant éventuellement un ou plusieurs atome(s) d'O, aryle, aralkyle, le groupe-Si(R16)2R17 ou le groupe -O-Si(R16)2R17, la chaîne alkyle linéaire ou ramifiée contenant éventuellement un ou plusieurs atomes d'O, groupe monocycloalkyle ou polycycloalkyle contenant éventuellement un ou plusieurs atome(s) d'O, aryle et aralkyle étant non substitué ou substitué comme ci-dessus ;

    Xi1 représentant un anion de formule

            Q-R500-SO3-

    Q étant choisi parmi -O3S et -O2C ;

    R500 étant un groupe choisi parmi alkyle linéaire ou ramifié, cycloalkyle, aryle ou des combinaisons correspondantes, contenant éventuellement un S ou un N caténaire, les groupes alkyle, cycloalkyle et aryle étant non substitués ou substitués par un ou plusieurs groupe (s) choisi (s) dans le groupe constitué par halogène, alkyle non substitué ou substitué, C1-8-perfluoroalkyle non substitué ou substitué, hydroxyle, cyano, sulfate et nitro ; et

    (b) un composé possédant la formule

            Ai Xi2

    Ai représentant un cation onium organique tel que défini précédemment et Xi2 représentant un anion ;

    et des mélanges de (a) et (b) correspondants.


     
    7. Composition selon la revendication 5 ou 6, le rapport de b) sur c) étant situé dans la plage de 1:0,6 jusqu'à 1:1,3.
     
    8. Procédé de formation d'une image dans une résine photosensible comprenant les étapes de :

    a) application d'une couche de revêtement sur un substrat avec la composition selon l'une quelconque des revendications 4 à 7 ;

    b) cuisson du substrat afin d'éliminer sensiblement le solvant ;

    c) exposition à l'image du revêtement de résine photosensible ;

    d) éventuellement, cuisson après exposition du revêtement de résine photosensible ; et

    e) développement du revêtement de résine photosensible avec une solution aqueuse alcaline.


     
    9. Utilisation d'un composé selon l'une quelconque des revendications 1 à 3 en tant que générateur de photoacide dans une composition de résine photosensible.
     






    Cited references

    REFERENCES CITED IN THE DESCRIPTION



    This list of references cited by the applicant is for the reader's convenience only. It does not form part of the European patent document. Even though great care has been taken in compiling the references, errors or omissions cannot be excluded and the EPO disclaims all liability in this regard.

    Patent documents cited in the description




    Non-patent literature cited in the description