(19)
(11)EP 2 119 417 B2

(12)NEW EUROPEAN PATENT SPECIFICATION
After opposition procedure

(45)Date of publication and mention of the opposition decision:
29.04.2020 Bulletin 2020/18

(45)Mention of the grant of the patent:
25.04.2012 Bulletin 2012/17

(21)Application number: 09160105.4

(22)Date of filing:  13.05.2009
(51)International Patent Classification (IPC): 
A61F 2/24(2006.01)

(54)

Atraumatic prosthetic heart valve prosthesis

Atraumatische prothetische Herzklappenprothese

Prothèse valvulaire cardiaque atraumatique


(84)Designated Contracting States:
AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO SE SI SK TR

(30)Priority: 16.05.2008 US 53943 P

(43)Date of publication of application:
18.11.2009 Bulletin 2009/47

(73)Proprietor: Sorin Group Italia S.r.l.
13040 Saluggia (VC) (IT)

(72)Inventor:
  • Manasse, Eric
    20123, Milano (IT)

(74)Representative: Bosotti, Luciano 
Buzzi, Notaro & Antonielli d'Oulx S.p.A. Corso Vittorio Emanuele ll, 6
10123 Torino
10123 Torino (IT)


(56)References cited: : 
EP-A1- 1 690 515
WO-A1-92/09247
WO-A1-2006/135831
WO-A1-2008/028569
WO-A2-2005/062980
WO-A2-2007/071436
WO-A2-2008/070797
US-A1- 2006 149 360
US-A1- 2007 225 801
EP-A1- 1 913 901
WO-A1-2006/127765
WO-A1-2007/130537
WO-A1-2008/150529
WO-A2-2006/124649
WO-A2-2008/035337
US-A1- 2006 064 174
US-A1- 2007 198 048
  
  • Grube et al: Catherization and Cardiovascular Interventions, vol. 66, 2005, pages 465-469,
  • Younes Boudjemline, Gabriella Agnoletti, Damien Bonnet, Daniel Sidi, Philipp Bonhoeffer: "Percutaneous pulmonary valve replacement in a large right ventricular outflow tract", JOURNAL OF THE AMERICAN COLLEGE OF CARDIOLOGY, ELSEVIER, NEW YORK, NY, US, vol. 43, no. 6, 1 March 2004 (2004-03-01), pages 1082-1087, XP055241588, US ISSN: 0735-1097, DOI: 10.1016/j.jacc.2003.10.037
  


Description

TECHNICAL FIELD



[0001] The present invention relates to cardiac-valve prostheses.

[0002] More specifically, the present invention is directed to a prosthesis amenable to a minimally-invasive implantation procedure having a stent-like anchoring structure. Such a prosthesis is known, e.g., from WO-A-2008/070797.

BACKGROUND



[0003] The aorta is made up of three layers. The layer that is in direct contact with the flow of blood is the tunica intima, commonly called the intima. This layer is made up of mainly endothelial cells. The next layer is the tunica media, known as the media. This "middle layer" is made up of smooth muscle cells and elastic tissue. The outermost layer (furthest from the flow of blood) is known as the tunica adventitia or the adventitia. This layer is composed of connective tissue.

[0004] Expandable heart valve prosthesis are sometimes ballooned or otherwise expanded upon insertion. The ballooning process presses the self-expanding or balloon-expandable portions of the heart valve prosthesis against the Valsalva sinus, higher up in the ascending aorta, and/or lower down into the valve annulus in order to properly anchor the prosthesis. In some instances, the ballooning process may weaken the tunica intima, tunica media and/or tunica adventitia. Additionally, as a result of the expansion and contraction of the heart and movement of the prosthesis over time, the prosthesis may rub against the layers or the aorta and may tear the tunica intima, the tunica media and/or the tunica adventitia, resulting in an aortic dissection. Other factors such as a patient's age or natural predisposition to aortic tears may contribute to an event leading to an aortic dissection and/or aortic rupture.

SUMMARY



[0005] According to various other embodiments, the present invention is a heart valve prosthesis configured to facilitate the flow of blood through a heart valve as set forth in the appended claims. The heart valve prosthesis is configured to be delivered to an implantation site in a minimally invasive manner, and includes an expandable anchoring support structure having an outflow portion including a distal end, the outflow portion configured to curve inward towards a central axis of the prosthesis such that the distal end of the anchoring support structure is curved away from the implantation site.

[0006] According to some embodiments, the anchoring support structure can be balloon expandable. According to other embodiments, the anchoring support structure can be self-expanding. In some embodiments the outflow portion can be smooth and free from rough edges. In yet other embodiments, an outer surface of the outflow portion can be provided with a lubricious coating.

[0007] While multiple embodiments are disclosed, still other embodiments of the present invention will become apparent to those skilled in the art from the following detailed description, which shows and describes illustrative embodiments of the invention. Accordingly, the drawings and detailed description are to be regarded as illustrative in nature and not restrictive.

BRIEF DESCRIPTION OF THE DRAWINGS



[0008] FIG. 1 is a cross-sectional view of an aorta of a human heart with an expandable heart valve prosthesis implanted within or adjacent to an aortic valve.

[0009] FIGS. 2A and 2B are perspective views of a heart valve prosthesis.

[0010] FIG. 3 is a perspective view of a heart valve prosthesis.

[0011] FIGS. 4A and 4B are perspectives view of a heart valve prosthesis according to embodiments of the present invention.

[0012] While the invention is amenable to various modifications and alternative forms, specific embodiments have been shown by way of example in the drawings and are described in detail below. The intention, however, is not to limit the invention to the particular embodiments described. On the contrary, the invention is intended to cover all modifications, equivalents, and alternatives falling within the scope of the invention as defined by the appended claims.

DETAILED DESCRIPTION



[0013] FIG. 1 is a schematic view of an expandable heart valve prosthesis 10 implanted within or adjacent an aortic annulus 16 of an ascending aorta 6. As shown in FIG. 1, the ascending aorta is coupled to the left ventricle 18. During normal operation, the left ventricle 18 pumps blood out of the heart through the aortic annulus 16 and into the ascending aorta 6 (as indicated by the arrows in FIG. 1).

[0014] As further shown in FIG. 1, the expandable heart valve prosthesis 10 includes an expandable anchoring or support structure 24 coupled to a prosthetic valve 30. The heart valve prosthesis 10 is suitable for implantation within or adjacent a valved intraluminal site using endovascular delivery techniques known to those of skill in the art. Exemplary valved intraluminal site includes the aortic valve 16 (as shown in FIG. 1), the tricuspid valve, the pulmonary valve, and the mitral valve annuluses of a patient's heart. As shown in FIG. 1, the heart valve prosthesis 10 can be implanted such that the annular elements 32a and 32b of the anchoring support structure 24 occupy positions proximal and distal, respectively, of the Valsalva sinuses VS, with the flared proximal end of the annular member 32a forming the proximal entrance of the lumen defined by the anchoring support structure 24 of the prosthesis 10.

[0015] As shown in FIG. 1, the heart valve prosthesis 10 includes an anchoring support structure 24 coupled to an prosthetic valve 30, many examples of which are known in the art. The prosthetic valve 30 can be configured to be implanted within a fluid passageway of a body lumen to regulate the flow of a bodily fluid therethrough in a single direction. Exemplary lumens include cardiac, arterial, or venus valves. The prosthetic valve 30 is configured to be implanted within or adjacent to the aortic valve. The prosthetic valve 30 is constructed from biocompatible materials so as to minimize any adverse body reaction to the implantation of prosthetic valve 30 at the selected implantation site. The prosthetic heart valve 30 includes a plurality of valve leaflets 34. As shown in FIGS. 1, the prosthetic valve 30 includes three valve leaflets 34. The prosthetic valve 30 may include as many as six valve leaflets. The valve leaflets 34 are deflectable between a closed configuration (shown in FIG. 1), in which fluid flow through the valve passageway is restricted, and an open configuration in which fluid flow through the valve passageway is permitted. The valve leaflets 34 are biased towards a closed, flow-restricting configuration. Exemplary prosthetic heart valves are shown and described in U.S. Publication 2006/0178740 and U.S. Publication 2005/0197695.

[0016] FIGS. 2A-4B are perspective views of anchoring or support structures 100, 200, 300, and 400 partly according to various embodiments of the present invention. The anchoring or support structures 100, 200, 300, and 400 have a stent-like configuration and are adapted to support a prosthetic heart valve. The anchoring structures 100, 200, 300, and 400 are adapted to expand from a collapsed or compressed configuration to an expanded configuration. Upon expansion, the anchoring structures 100, 200, 300, and 400 are constrained by the inner vessel wall at the implantation site. The expanded anchoring structures 100, 200, 300, and 400 place sufficient radial expansion force on the inner surface of the implantation site so as to secure and stabilize the anchoring structures 100, 200, 300, and 400 at the implantation site.

[0017] The anchoring structures 100, 200, 300, and 400 can be balloon expandable or self-expanding. At least a portion of the anchoring structures 100, 200, 300, and 400 can be expanded using an inflatable balloon. The ballooning process presses the expandable portions of the anchoring structures 100, 200, 300, and 400 against the Valsalva sinus, higher up in the ascending aorta, and/or lower down into the valve annulus in order to properly anchor the prosthesis including the anchoring support structure coupled to an expandable prosthetic valve at the implantation site.

[0018] The anchoring structures 100, 200, 300, and 400 are made from a biocompatible metal or plastic. The anchoring structures 100, 200, 300, and 400 can be formed from a variety of materials including stainless steel, titanium, platinum, gold and other bio-compatible metals. Shape memory plastics, polymers, and thermoplastic materials which are inert in the body may also be employed. The anchoring structures 100, 200, 300, and 400 can be formed from Nitinol or other similar shape memory alloys.

[0019] FIGS. 2A and 2B are perspective views of anchoring structures 100 and 200. As shown, the anchoring structures 100 and 200 are adapted to be coupled to an expandable prosthetic heart valve. The anchoring structures 100 and 200 have a stent-like configuration and can be balloon expandable or self-expanding. The anchoring structures 100 and 200 each include an inflow portion 130, 230 and an outflow portion 135, 235 (e.g., an outflow ring). The inflow portions 130, 230 are sized and shaped to be positioned within and secured adjacent to a native valve annulus.

[0020] The outflow portions 135, 235 are located distal to an outflow end of an expandable prosthetic heart valve. In some embodiments, the outflow portions 135, 235 are configured to expand within the Valsalva sinuses bearing against the sinus walls when in an expanded configuration. The outflow portions 135, 235 are configured to expand higher up within the ascending aorta (i.e., distal to the Valsalva sinuses). As shown in FIG. 2A, the outflow portion 135 of the anchoring structure 100 is configured such that it has a neck-down portion 140 located between a distal end 160 and a main portion 145. As shown in FIG. 2B, the outflow portion 235 is configured such that it curves inwardly towards the central axis X1 of the anchoring structure 200. This narrowing or tapering configuration of the outflow portions 135 and 235 will function to minimize trauma to the vessel wall (e.g., the aortic tunica intima) as a result of continued expansion and contraction of the heart and movement of the outflow portions 135, 235 against the vessel wall.

[0021] FIG. 3 is a perspective view of an expandable anchoring structure 300. As shown in FIG. 3, the inflow portion 330 can be flared in an outward direction away from a central axis X1 of the anchoring structure 300. The flared inflow portion 330 is expanded at a position slightly proximal to the valve annulus and facilitates anchorage of the prosthesis at the implantation site. The outflow portion 335 extends distally from an outflow end an expandable prosthetic heart valve coupled to the anchoring structure 300. The outflow portion 335 has a bulbous configuration that is adapted to radially expand and conform the walls of the aorta further securing and stabilizing the support structure 300 and any valve to which it is coupled at the implantation site. Additionally, the outflow portion 335 curves away from the point of contact at the implantation site and towards the central axis of the anchoring structure 300, such that a distal end 360 has a reduced diameter, which minimized the force against the vessel wall (e.g., the aortic tunica intima) during the continued motion caused by the beating of the heart.

[0022] FIGS. 4A and 4B are perspective views of an anchoring structure 400 coupled to a prosthetic heart valve 410. According to some embodiments, as shown in FIGS. 4A and 4B, the anchoring structure 400 includes one or more anchoring appendages 450 configured to anchor and stabilize the anchoring structure 400 at the implantation site. One such exemplary anchoring structure is shown and described in co-pending and co-owned U.S. Patent Publication No. 2006/0178740 entitled "Cardiac-Valve Prosthesis," filed Feb 10, 2006. The anchoring appendages 450 are sized and shaped to project into the Valsalva sinuses when the anchoring structure is in its expanded configuration. The outflow portion 435 has a stent-like configuration and is adapted to contact the vessel wall at a location distal to the Valsalva sinus. As shown, the outflow portion 435 is curved inwardly from the vessel wall towards the central axis X1 of the anchoring structure 400.

[0023] According to the invention, the outflow portion 435 includes two outflow rings 460 and 465 coupled together. The proximal outflow ring 460 is disposed proximal to the distal outflow ring 465. As shown in FIGS. 4A and 4B, the proximal outflow ring 465 extends generally parallel to a longitudinal axis of the support structure 400. The distal outflow ring 460, on the other hand, narrows in diameter in a distal direction. According to some embodiments, the distal outflow ring 460 extends generally linearly from the distal end of the proximal outflow ring 465 to a distal end location having a reduced diameter. According to other embodiments, the distal outflow ring 460 extends along a curved, concave (from the perspective of the longitudinal axis) path in a distal direction. According to the invention, the distal end of distal outflow ring 460 is disposed between about 0.5 and about 3 mm closer to the longitudinal axis than is the distal end of the proximal outflow ring 465.

[0024] In various exemplary embodiments, the distal outflow ring 460 tapers inwardly, in a generally linear fashion, at an angle of between about 5 and about 40 degrees with respect to the central axis X1. In some embodiments of the invention, the distal outflow ring 460 tapers inwardly, in a generally linear fashion, at an angle of between about 15 and about 25 degrees. In yet other embodiments, the distal outflow ring 460 tapers inwardly, in a generally linear fashion, at an angle of about 20 degrees. In various embodiment of the invention, the proximal outflow ring 465 and distal outflow ring 460 have generally the same length of between about 2 and about 5 mm each. In one exemplary embodiment, the proximal outflow ring 465 and distal outflow ring 460 have a combined length of about 7 mm.

[0025] According to various embodiments of the present invention, the inflow portions of the anchoring structures described above may include a suture ring adapted to further anchor and secure the prostheses at the implantation site. According to yet other embodiments, the prosthetic valves coupled to the anchoring structures may include a cuff, skirt, or other sealing means at the base of the expandable valve so as to provide an efficient seal between the prosthesis and the implantation site preventing the leakage of fluid at the implantation site.

[0026] According to various embodiments of the present invention, the outer surface of the anchoring structure is smooth and free from rough edges. In some embodiments, the distal ends 160, 260, 360, and 460 of the outflow portions 134, 235, 335, and 435 of the anchoring structures 100, 200, 300, and 400 are blunt or free from sharp edges so as to reduce the risk of snagging or tearing the vessel wall at the implantation site. According to other embodiments, the outflow portions 135, 235, 335, and 435 may include a lubricious coating. In some embodiments, a lubricious coating may be applied to the outer surface of the entire anchoring support structure 100, 200, 300, and 400. An exemplary lubricious coating is Teflon. Other lubricious coatings known to those of skill in the art may also be applied to the outer surface of the outflow portions 135, 235, 335, and 435 of the anchoring structures 100, 200, 300, and 400. According to the invention, the outflow portions 135, 235, 335, and 435 are covered with a protective material to prevent trauma to or tearing of the aortic tunica intima.

[0027] According to some embodiments, outflow portions 135, 235, 335, and 435 are shaped to decrease the shearing of blood cells passing over or through the low portion and may decrease blood flow turbulence through the prosthesis.

[0028] The heart valve prosthesis 10 of the present invention can be delivered to the implantation site using any of a variety of techniques known in the art. For example, it may be delivered through a delivery catheter using techniques and tools known to those of skill in the art. A crimping tool or other similar device known to those of skill in the art can be used to radially collapse the prosthetic heart valve including the anchoring structure. After the prosthesis has been transitioned from an expanded position to a collapsed position, the prosthesis can be loaded into a delivery catheter. The prosthesis can then be delivered to a target implantation site within a patient's heart using known methods and techniques in a minimally invasive manner. The delivery catheter is then withdrawn facilitating the automatic expansion of the prosthesis including the support structure from its collapsed configuration to its expanded configuration.

[0029] An inflatable balloon can be inserted and expanded within the prosthetic heart valve facilitating expansion of the valve and the support structure at the implantation site. The expandable stent structure is sized and shaped to prevent a locus minoris resistentiae in an aortic wall when the prosthesis is balloon expanded.

[0030] Various modifications and additions can be made to the exemplary embodiments discussed without departing from the scope of the present invention. For example, while the embodiments described above refer to particular features, the scope of this invention also includes embodiments having different combinations of features and embodiments that do not include all of the described features. Accordingly, the scope of the present invention is intended to embrace all such alternatives, modifications, and variations as fall within the scope of the claims.


Claims

1. A heart valve prosthesis (10) adapted for minimally invasive delivery to an implantation site of a patient, the implantation site having an annulus (16), a Valsalva sinus (VS), and an aortic tunica intima, the prosthesis comprising:

an anchoring structure (400) having a radially collapsed configuration for delivery and a radially expanded configuration for deployment;

a valve (410) coupled to the anchoring structure (400) and configured such that in the expanded configuration, the valve permits blood flow through the lumen in a first direction and substantially prevents blood flow through the lumen in a second direction generally opposite the first direction;

wherein the anchoring structure (400) includes a generally cylindrical portion adapted to engage an annular vessel wall at the implantation site;

wherein the generally cylindrical portion includes an outflow portion (435) adapted to engage the vessel wall at a location distal to the Valsalva sinus (VS);

wherein, in the expanded configuration, the outflow portion (435) tapers inwardly towards a distal end, such that the distal end imparts less force than a proximal portion upon the aortic tunica intima,

the heart valve prosthesis being characterized in that

the outflow portion (435) includes a proximal outflow ring (465) and a distal outflow ring (460), wherein the distal outflow ring (460) has a tapered configuration and narrows in diameter in a distal direction, such that a distal end of the distal outflow ring (460) has a smaller diameter than a proximal end of the distal outflow ring (460), and in that the distal end of distal outflow ring (460) is disposed between about 0.5 and about 3 mm closer to a longitudinal axis (X1) of the anchoring structure (400) than is a distal end of the proximal outflow ring (465)

wherein the proximal outflow ring (465) and the distal outflow ring (460) are coupled together, the proximal outflow ring (465) being disposed proximal to the distal outflow ring (460),

wherein the proximal outflow ring (465) extends generally parallel to the longitudinal axis (X1) of the anchoring structure (400), and

wherein the outflow portion (435) is covered with a protective material to prevent trauma to or tearing of the aortic tunica intima..


 
2. The prosthesis of claim 1 wherein the implantation site is the aortic annulus (16) of the patient.
 
3. The prosthesis of claim 1 wherein the distal outflow ring (460) defines a concave curved configuration.
 
4. The prosthesis of claim 1 further comprising a prosthetic heart valve (410) including three coapting leaflets, the valve coupled to the anchoring support structure.
 
5. The prosthesis of claim 1 wherein the anchoring structure (24; 400) is configured to be self-expanding.
 
6. The heart valve prosthesis of claim 1 wherein the anchoring structure is a stented structure and the outflow portion (435) is curved away from the aortic tunica intima.
 
7. The heart valve prosthesis of claim 1 wherein the outflow portion (435) is blunt.
 
8. The heart valve prosthesis of claim 1 wherein the outflow portion (435) is covered with a protective coating or material.
 
9. The heart valve prosthesis according to claim 7 wherein the distal end is configured so as not to snag tissue at the implantation site.
 
10. The heart valve prosthesis of claim 1 wherein an outside surface of the outflow portion (435) is smooth and free from rough edges.
 
11. The heart valve prosthesis of claim 1 wherein the outside surface of the anchoring support structure (400) includes a lubricious coating.
 


Ansprüche

1. Eine Herzklappenprothese (10), die ausgebildet ist für eine minimal-invasive Platzierung an einer Implantationsstelle eines Patienten, wobei die Implantationsstelle einen Ringraum (16), ein Valsalva Sinus (VS) und eine Tunica Intima der Aorta aufweist, und die Prothese umfasst:

eine Verankerungskonstruktion (400), die eine radial kollabierte Konfiguration für die Platzierung und eine radial expandierte Konfiguration für den Einsatz aufweist;

eine Pumpe (410), die mit der Verankerungskonstruktion (400) verbunden und ausgestaltet ist, um in der expandierten Konfiguration den Blutfluss durch das Lumen in einer ersten Richtung zu erlauben und in einer zweiten, der ersten Richtung im Wesentlichen entgegengesetzten Richtung den Blutfluss durch das Lumen im Wesentlichen zu verhindern;

wobei die Verankerungsstruktur (400) einen im Wesentlichen zylindrischen Bereich umfasst, der ausgebildet ist, um mit einer ringförmigen Gefäßwand an der Implantationsstelle in Kontakt zu kommen;

wobei der im Wesentlichen zylindrische Bereich einen Abflussbereich (435) umfasst, der ausgebildet ist, um mit der Gefäßwand an einer Position distal zu der Valsalva Sinus (VS) in Kontakt zu kommen;

wobei sich der Abflussbereich (435) in der ausgefahrenen Konfiguration zum distalen Ende hin verjüngt, derart, dass das distale Ende auf die Tunika Intima der Aorta weniger Kraft ausübt als ein proximaler Bereich,

und die Herzklappenprothese dadurch charakterisiert ist, dass

der Abflussbereich (435) einen proximalen Abflussring (465) und einen distalen Abflussring (460) umfasst, wobei der distale Abflussring (460) eine sich verjüngende Konfiguration hat und sich im Durchmesser in eine distale Richtung verengt, derart, dass das distale Ende des distalen Abflussrings (460) einen kleineren Durchmesser hat als das proximale Ende des distalen Abflussrings (460) und dass das distale Ende des distalen Abflussrings (460) zwischen etwa 0,5 und etwa 3 mm näher zu einer longitudinalen Achse (X1) der Verankerungsstruktur (400) angeordnet ist als ein distales Ende des proximalen Abflussrings (465)

wobei der proximale Abflussring (465) und der distale Abflussring (460) miteinander gekoppelt sind, wobei der proximale Abflussring (465) proximal zu dem distalen Abflussring (460) angeordnet ist,

wobei sich der proximale Abflussring (465) im Wesentlichen parallel zu der Längsachse (X1) der Verankerungsstruktur (400) erstreckt, und

wobei der Abflussbereich (435) mit einem Schutzmaterial abgedeckt ist, um ein Trauma oder ein Reißen der Tunika Intima der Aorta zu verhindern.


 
2. Die Herzklappenprothese nach Anspruch 1, dadurch gekennzeichnet, dass die Implantationsstelle der Aorten-Ringraum (16) des Patienten ist.
 
3. Die Herzklappenprothese nach Anspruch 1, dadurch gekennzeichnet, dass der distale Abflussring (460) eine konkave gebogene Anordnung definiert.
 
4. Die Herzklappenprothese nach Anspruch 1, weiterhin umfassend eine prothetische Herzklappe (410), die drei Klappensegel umfasst, wobei die Klappe mit der Verankerungsstruktur verbunden ist.
 
5. Herzklappenprothese nach Anspruch 1, dadurch gekennzeichnet, dass die Verankerungsstruktur (24; 400) selbst-expandierend ausgebildet ist.
 
6. Herzklappenprothese nach Anspruch 1, dadurch gekennzeichnet, dass die Verankerungsstruktur eine stentartige Struktur ist und der Abflussbereich (435) von der Tunika Intima der Aorta weggebogen ist.
 
7. Herzklappenprothese nach Anspruch 1, dadurch gekennzeichnet, dass der Abflussbereich (435) stumpf ist.
 
8. Herzklappenprothese nach Anspruch 1, dadurch gekennzeichnet, dass der Abflussbereich (435) mit einer schützenden Beschichtung oder einem schützenden Material überzogen ist.
 
9. Herzklappenprothese nach Anspruch 7, dadurch gekennzeichnet, dass das distale Ende derart ausgestaltet ist, dass es kein Gewebe an der Implantationsstelle mitreißt.
 
10. Herzklappenprothese nach Anspruch 1, dadurch gekennzeichnet, dass eine außenseitige Oberfläche des Abflussbereichs (435) glatt und ohne raue Kanten ist.
 
11. Herzklappenprothese nach Anspruch 1, dadurch gekennzeichnet, dass die äußere Oberfläche der Verankerungsstruktur (400) eine gleitfähige Beschichtung umfasst.
 


Revendications

1. Prothèse valvulaire cardiaque (10) adaptée à une pose peu invasive sur un site d'implantation d'un patient, le site d'implantation comportant un anneau (16), un sinus de Valsalva (VS) et une intima aortique, la prothèse comprenant :

une structure d'ancrage (400) présentant une configuration radialement pliée pour la pose et une configuration radialement étendue pour le déploiement ;

une valvule (410) couplée à la structure d'ancrage (400) et conçue de sorte que dans la configuration étendue, la valvule permet au sang de s'écouler par la lumière dans une première direction et empêche pratiquement le sang de s'écouler par la lumière dans une seconde direction généralement opposée à la première direction ;

dans laquelle la structure d'ancrage (400) comprend une partie généralement cylindrique apte à venir en prise avec une paroi de vaisseau annulaire au niveau du site d'implantation ;

dans laquelle la partie généralement cylindrique comprend une partie sortie (435) apte à venir en prise avec la paroi de vaisseau à un emplacement distant du sinus de Valsalva (VS) ;

dans laquelle, dans la configuration étendue, la partie sortie (435) se resserre vers l'intérieur en direction d'une extrémité distale, de sorte que l'extrémité distale exerce moins de force qu'une partie proximale sur l'intima aortique,

la prothèse valvulaire cardiaque étant caractérisée en ce que

la partie sortie (435) comprend un anneau de sortie proximal (465) et un anneau de sortie distal (460), dans laquelle l'anneau de sortie distal (460) présente une configuration conique et diminue en diamètre dans une direction distale, de sorte qu'une extrémité distale de l'anneau de sortie distal (460) présente un plus petit diamètre qu'une extrémité proximale de l'anneau de sortie distal (460), et en ce que l'extrémité distale de l'anneau de sortie distal (460) est disposée environ 0,5 à environ 3 mm plus près d'un axe longitudinal (X1) de la structure d'ancrage (400) que ne l'est une extrémité distale de l'anneau de sortie proximal (465) ;

dans laquelle l'anneau de sortie proximal (465) et l'anneau de sortie distal (460) sont couplés l'un à l'autre, l'anneau de sortie proximal (465) étant disposé à proximité de l'anneau de sortie distal (460),

dans laquelle l'anneau de sortie proximal (465) s'étend généralement parallèlement à l'axe longitudinal (X1) de la structure d'ancrage (400), et

dans laquelle la partie sortie (435) est couverte d'un matériau de protection destiné à prévenir un traumatisme ou une déchirure de l'intima aortique.


 
2. Prothèse selon la revendication 1 dans laquelle le site d'implantation est l'anneau aortique (16) du patient.
 
3. Prothèse selon la revendication 1 dans laquelle l'anneau de sortie distal (460) définit une configuration incurvée concave.
 
4. Prothèse selon la revendication 1 comprenant en outre une valvule cardiaque prothétique (410) comprenant trois feuillets en coaptation, la valvule étant couplée à la structure support d'ancrage.
 
5. Prothèse selon la revendication 1 dans laquelle la structure d'ancrage (24 ; 400) est conçue pour être auto-extensible.
 
6. Prothèse valvulaire cardiaque selon la revendication 1 dans laquelle la structure d'ancrage est une structure à endoprothèse et la partie sortie (435) s'incurve en s'écartant de l'intima aortique.
 
7. Prothèse valvulaire cardiaque selon la revendication 1 dans laquelle la partie sortie (435) est arrondie.
 
8. Prothèse valvulaire cardiaque selon la revendication 1 dans laquelle la partie sortie (435) est couverte d'un revêtement ou d'un matériau de protection.
 
9. Prothèse valvulaire cardiaque selon la revendication 7 dans laquelle l'extrémité distale est conçue pour ne pas accrocher de tissus au niveau du site d'implantation.
 
10. Prothèse valvulaire cardiaque selon la revendication 1 dans laquelle une surface extérieure de la partie sortie (435) est lisse et exempte de bords rugueux.
 
11. Prothèse valvulaire cardiaque selon la revendication 1 dans laquelle la surface extérieure de la structure support d'ancrage (400) comprend un revêtement lubrifiant.
 




Drawing























Cited references

REFERENCES CITED IN THE DESCRIPTION



This list of references cited by the applicant is for the reader's convenience only. It does not form part of the European patent document. Even though great care has been taken in compiling the references, errors or omissions cannot be excluded and the EPO disclaims all liability in this regard.

Patent documents cited in the description