(19)
(11)EP 0 125 088 B1

(12)EUROPEAN PATENT SPECIFICATION

(45)Mention of the grant of the patent:
27.12.1989 Bulletin 1989/52

(21)Application number: 84302916.6

(22)Date of filing:  01.05.1984
(51)International Patent Classification (IPC)4G05D 1/00, G05D 1/06

(54)

Flight control systems for helicopters

Flugkontrollsystem für Hubschrauber

Système de commande de vol pour hélicoptères


(84)Designated Contracting States:
DE FR GB IT

(30)Priority: 06.05.1983 US 492294

(43)Date of publication of application:
14.11.1984 Bulletin 1984/46

(73)Proprietor: HONEYWELL INC.
Minneapolis Minnesota 55408 (US)

(72)Inventor:
  • Skutecki, Edmund Richard
    Glendale Arizona 85304 (US)

(74)Representative: Singleton, Jeffrey et al
Eric Potter Clarkson St. Mary's Court St. Mary's Gate
Nottingham NG1 1LE
Nottingham NG1 1LE (GB)


(56)References cited: : 
GB-A- 2 095 867
US-A- 2 845 623
US-A- 4 382 283
GB-A- 2 135 794
US-A- 4 109 886
  
      
    Note: Within nine months from the publication of the mention of the grant of the European patent, any person may give notice to the European Patent Office of opposition to the European patent granted. Notice of opposition shall be filed in a written reasoned statement. It shall not be deemed to have been filed until the opposition fee has been paid. (Art. 99(1) European Patent Convention).


    Description


    [0001] The present invention relates generally to automatic flight control systems for aircraft and more particularly to such systems for helicopters for providing control of engine torque under conditions where the flight control system is demanding more power than the engine can safely supply.

    [0002] Autopilot systems particularly adapted to use with helicopter flight control have been used as disclosed, for example, in the present Applicants' U.S. Patent Specifications Nos. 2,845,623 and 4,109,886. The present system is concerned primarily with the control of the airspeed and the vertical path of the aircraft and hence involves independent cyclic pitch control and the collective pitch control for commanding the pitch attitude of the aircraft and its direct lift, respectively. Control of other axes are not herein addressed.

    [0003] In many prior art autopilot systems, when it is desired to control both the airspeed and vertical path of a helicopter, the pitch axis is used to control airspeed modes while the collective axis is used to control vertical path modes. The aircraft may be caused to accelerate or decelerate by a change in pitch attitude, while changes in the collective control setting vary the vertical thrust of the rotor system, resulting in a direct increase or decrease in lift. However, an increase in collective demand will also result in an increase in the power being demanded of the aircraft's engines and transmission. Since operational upper limits are imposed by the manufacturer on the allowable output of the power plant, expressed as a developed torque limit, it is desired that neither manual nor autopilot inputs should command outputs in excess of these allowable limits.

    [0004] It has been found that when flying at engine power settings near the maximum allowable limit, increases in collective setting in order to enter a climb or capture a desired altitude during a descent may cause the demands on the power plant to exceed the allowable limits. Thus, it has been the practice to monitor the developed engine torque so that the autopilot collective servo drive may be cut off if maximum torque is exceeded, or to actively monitor and manually limit the amount of torque which can be commanded. Unfortunately, this approach may adversely effect the vertical performance of the aircraft. For example, if the aircraft is being flown in the maximum power region while descending in an altitude preselect mode, the autopilot will be unable to arrest the descent and capture the desired altitude if either of the above techniques are used, either due to the fact of disabling the collective autopilot, or the inability to provide the required additional collective torque. Another approach has been to disable automatic collective control only at high speeds, thus flying vertical path modes with pitch axis control only, while keeping the collective torque setting constant. However, this approach has the undesirable result of permitting an aircraft to exceed its maximum allowable airspeed when a descent is commanded since the airspeeed is no longer in a controlled loop mode. It is also clear that where the pilot is required to monitor engine torque instruments and override the autopilot in the event of an over-torque condition, particularly during changes in attitude, this will result in an excessive workload as well as a potentially hazardous condition.

    [0005] The present invention which is defined in the appended claims, overcomes the above described operational difficulties by providing torque limiting circuitry in the pitch and collective axes of a helicopter autopilot. The circuitry limits the amount of engine torque that the colletive axis can command to a safe value. Furthermore, when the collective axis is in the limiting mode, the circuit will automatically adjust the action of the autopilot pitch axis to control vertical errors. Thus vertical performance is minimally degraded when the torque limit is approached. The invention thereby allows the aircraft to be flown at maximum continuous power settings without exceeding the power plant or airspeed maximums during manoeuvres. Climb capability and altitude capture performance are not adversely effected by power plant limitations.

    [0006] The above advantages are achieved in a flight control system for an aircraft having at least two independent channels of autopilot control and a predetermined maximum allowable engine torque by apportioning the torque between the two channels in response to error signals representing deviation of the aircraft from a reference provided for each of the channels. For each channel, the corresponding error signal is combined with an engine torque signal. When the maximum allowable engine torque is demanded, the command signals from both channels are further combined and directed to a preferred channel and the drive signal is diminished to the channel of secondary priority. Further, the channel assuming priority will also assume control of the correction for the partially de-energised channel.

    [0007] In the preferred embodiment, the system is applied to the collective and cyclic pitch axes of a helicopter. Each axis is provided with a limiter circuit programmed to provide a predetermined maximum drive signal commensurate with the allowable engine torque. When the demand is below the maximum allowable torque, error signals are processed to the collective and cyclic pitch servo actuators without modification. When the collective command reaches the maximum allowable torque, any further increases in torque result in a decrease in collective command. A similar limiter is included in the pitch axis. As the engine torque limit is neared, the amount of pitch attitude which can be commanded by the airspeed path is gradually reduced to zero by the limiting circuit, while providing the required lift signal to the pitch axis to maintain the desired vertical path. Thus, when the torque limit is reached, the pitch axis no longer tries to hold airspeed but rather allows the airspeed to decrease as required to climb or level off at a new altitude.

    [0008] A helicopter flight control system in accordance with the invention will now be described in greater detail, by way of example, with reference to the accompanying drawings, in which:-

    Figure 1 is a schematic block diagram illustrating the control axes of the helicopter autopilot embodying the invention;

    Figure 2 is a schematic block diagram of an airspeed error synchroniser for use with the present invention;

    Figure 3 shows a transfer function for the torque limiters corresponding to the block diagram of Figure 1; and

    Figure 4 is a transfer function diagram corresponding to the dead zone block of Figure 2.



    [0009] In the following description the present invention is applied to the flight control system of a helicopter. It should be appreciated that the stabilisation and navigation of the aircraft are controlled by means of three primary manual control elements: pitch and roll attitudes are controlled by means of rotor cyclic pitch; yaw is controlled by an anti-torque rotor; and vertical thrust is controlled by rotor collective pitch. The cyclic pitch thereby also controls the airspeed of the aircraft. The present invention is concerned primarily with the control of the vertical path of the helicopter and hence involves only the collective pitch control and the cyclic pitch control. Thus, roll and yaw attitudes are not herein involved.

    [0010] Referring to Figure 1, there is illustrated a block diagram of a conventional autopilot system for the collective and pitch axes, wherein the present invention has been incorporated. Area 1.1 represents the collective axes control system, area 1.2 represents the pitch axis control system, and area 1.3 designates the torque limiting circuitry of the present invention.

    [0011] Referring now to area 1.1, a plurality of sources of flight references 11 derived from craft altitude and navigational signals are provided to control a law block 12 where the signals are combined and correlated as functions of the dynamic flight characteristics of the aircraft. The application of the control laws for selected modes of operation have been described in detail in Applicants' copending European Patent Application No. 84.300870.7.

    [0012] The autopilot may be used to control the helicopter in various modes of operation, including altitude hold, vertical speed hold, glide slope, and airspeed hold. These modes are established by the pilot through a conventional mode logic selector 13 which selects the desired altitude control mode and applies it to the block 12. As a result of processing the input signals selected in block 12, a vertical speed reference hREF is obtained. Altitude and vertical acceleration information derived at 14 is applied to a block 15 to obtain a vertical speed signal h.

    [0013] The vertical speed computation block 15 is conventionally comprised of blending an altitude source and acceleration source together in complementary high and low pass filters which filter out the high frequency variations characteristic of a barometric altitude signal and combine its long term or low frequency component with the high frequency vertical acceleration component to pro- vide a relatively noise-free vertical speed signal. Conventionally, this is obtained by processing vertical acceleration and either barometric or radar altitude to obtain vertical speed. The vertical speed reference and vertical speed signals are algebraically summed in a summing junction 16 to obtain a vertical speed error term hE which is gain scaled in a block 17 to provide a collective position demand signal 18. This signal 18 is processed through the torque limiter circuit 1.3, the action of which will be defcribed below. The output of the torque limiter 1.3 is a collective command signal 19 which is coupled to a rate limiter circuitry block 20. The block 20 comprises conventional circuitry for limiting changes in the applied rate to the collective pitch servo actuator to assure that abrupt changes in vertical thrust do not exceed a rate which will cause discomfort to the occupants of the aircraft.

    [0014] The rate limiter 20 eliminates excessive acceleration or deceleration by making the system less responsive to transient vertical speed fluctuations such as may be caused by aerodynamic instability of the aircraft or a change in the vertical reference. The rate limit is varied according to the selected mode of operation. Thus, for example, under instrument flight rules, a more rapid response will be accepted to sacrifice occupant comfort for accuracy in navigation. The rate signal is applied through a summing junction 21 to a servo amplifier 22 which provides current to a collective servo actuator 23. A servo position feedback signal 24 is processed through a washout circuit 23 and shaping network 26 and coupled to the summing network 21 where it is algebraically summed with the rate limited signal 19. In a conventional manner, the collective servo amplifier 22 is driven by the error signal from the summing junction 21 until the desired rate is achieved, at which point the drive will be nulled out. The washout circuit 25 provides an integral control effect which attenuates any long-term residual vertical axis error to zero while passing relatively high frequency changes through to the shaping circuit 26, wherein the bandwidth of the servo loop is tailored to assure stability over the desired operating range. The shaping network 26 provides displacement and rate feedback from the servo actuator 23 to the servo amplifier 22 through the washout circuit 25 and summing network 21 in a conventional manner.

    [0015] Referring now to area 1.2 of Figure 1, the cyclic pitch axis of the flight control system is shown therein. An airspeed sensor 30 provides an airspeed signal to a summing junction 31. An airspeed reference signal 32 is also provided to the summing junction 31 to create an airspeed error term by algebraically summing the aircraft airspeed signal with the airspeed reference. The airspeed reference signal is preferably provided from the synchronising apparatus as shown in Figure 2, to be described below. The airspeed error signal is further corrected by applying gain 33 to form a cyclic pitch demand signal 34 which is applied to circuitry in the torque limiter 1.3 as will be describe below. The output 35 of the torque limiter 1.3 after passing through junctions 62 and 64 is a cylic pitch command term which supplies a pitch axis attitude loop 36. The pitch axis attitude loop 36 attempts to hold pitch steady to a pitch attitude reference 37 which may be provided by a vertical gyro. This control loop conventionally blends the attitude command 35 with a properly shaped pitch attitude reference 37 in order to drive the pitch servo loop. A pitch servo amplifier 39 drives a pitch axis servo actuator 40 thereby controlling the aircraft cyclic pitch. A servo position signal 41 is processed by a shaping circuit 42 as in the collective pitch servo loop and fed to a summing junction 43 where it is algebraically combined with the output of the pitch attitude loop 36 to provide a signal for driving the servo amplifier 39. It will be understood by one skilled in the art that the pitch axis of the autopilot may also employ an automatic trim actuator providing a slow, long-term pitch control motion to centre the servo actuator 40 near its midpoint of authority.

    [0016] Referring now to area 1.3, the operation of the torque limiter circuitry will be explained. As shown in Figure 1, the torque limiter circuitry operates on both the collective and pitch control axes. An engine torque sensor 50 which provides a signal 51 representing the developed engine torque is gain scaled by gain 52 and provided to summing junctions 53 and 54. The collective position demand signal 18 is supplied to a torque limiter circuit 55 and combined with torque signal 57 through a summing junction 53. The output signal 57 from gain 52 is also algebraically combined with the torque limiter output in a summing junction 54 to provide an amplitude limited signal 19. The torque limiter 55 has a limiting threshold, as shown in Figure 3, set to a value corresponding to a predetermined maximum allowable engine torque. It may be seen that since the signal 57 is added at the input of the limiter 55 and subtracted at the output thereof, it has no effect on the output at 19 so long as the engine torque signal 57 remains below the limiting threshold TmAx. Thus, for values of signal 57 below TmAx, the value of the input signal 18 is unaffected and appears at the same amplitude at 19. However, for values at or near the maximum allowable torque, the limiter 55 will be saturated by the sum of the signals 18 and 57. When the input to the limiter 55 is sufficient to reach the threshold of limiting, which may occur when the maximum permissible engine torque has been reached and the collective axis is demanding additional torque, the dominant signal at the summing junction 54 is that of the engine torque signal 57. Since this signal is applied in such a direction as to subtract from the collective drive, the result is to produce a feedback term to the collective servo which acts to reduce the demanded engine torque whenever the torque limit T MAX is exceeded. Note that under this circumstance positive values of position command 18 are not processed through the limiter 55.

    [0017] Referring again to pitch axis 1.2 of Figure 1, a similar torque limit circuit is included in the pitch autopilot channel. The engine torque signal 51 is gained scaled by gain 60 and thereupon coupled to summing junctions 61 and 62. The airspeed demand signal 34 is also summed at the junction 61 the output of which is processed by a limiter 38 in the manner described above for the limiter 55. The output of the limiter 38 is thereupon summed in the junction 62 with an engine torque signal 63. In a similar manner as described with respect to the collective axis, for values of the signal 63 less than TMAX, the output of summing junctions 61 and 62 is unaffected. Therefore, the signal 34 will be processed directly through the summing junctions 61, 62 and the limiter 38 to a further summing junctions 64. When the torque signal 63 reaches TMAX, any further increases in the signal 63 are processed directly to the summing junction 62 since the positive drive component of the signal 34 is removed by the limiter 38. The result is to provide a drive signal to the pitch axis attitude loop 36 which has the effect of pitching the aircraft nose up when the torque limit is exceeded. One effect of pitching the aircraft up is to result in a climb, thereby reducing the amount of engine collective torque required to sustain a desired vertical path. More significant, however, is the elimination of the pitch attitude command signal 34 that is normally commanded as a function of airspeed error whenever the torque limit is reached; consequently, the pitch axis is no longer effective in maintaining airspeed when the maximum torque limit has been reached. Note however that a cross-feed signal 65 from the collective axis 1.1 is also supplied to the summing junction 64. The cross-feed term 65 is obtained by algebraically summing the collective position command signal 19 and demand signal 18 in a summing junction 66. The resulting difference signal 67 which represents a vertical rate correction signal will be zero so long as the torque limit T MAX has not been reached, since the torque term is added at the input and subtracted at the output. Once T MAX has been reached however and the collective limiter is in saturation, then the difference signal 67 is provided which represents the difference between demanded and actual commanded collective drive, which corresponds to the vertical path error term resulting from failure to achieve altitude correction by the collective axis. This error term is scaled by gain 68 and summed as the signal 65 into the pitch axis command signal from junction 62 at junction 64. It is clear, therefore, that when the maximum torque limit is reached any vertical error that cannot be controlled by the collective axis will automatically be transferred to, and controlled by, the cyclic pitch axis. When the aircraft has manoeuvred to a position such that the demanded power is below the torque limit, collective control will be regained and the pitch axis will transition back to airspeed control.

    [0018] The operation of the airspeed synchroniser circuit of Figure 2 to provide an airspeed reference to the summing junction 31 of the pitch axis shown in Figure 1 will now be explained. The primary function of the synchroniser is to provide a reference for the autopilot representing the airspeed error with respect to an established airspeed. When clamped to the established airspeed setting, it provides a reference which may be used to furnish airspeed error signals to correct for airspeed changes which may be allowed by the action of the torque limiting circuitry. Since the pitch axis is controlled by the altitude input and ignores airspeed whenever the torque limit is reached, very large airspeed errors may consequently develop. These large errors could result in undesirable and rapid airspeed accelerations when the vertical command is no longer at the limit of maximum allowable engine torque and airspeed control is resumed. To protect against these excursions, the airspeed error signal is processed as shown in Figure 2. When unclamped, the circuit synchronises with the aircraft airspeed, thus providing a reference which tracks airspeed changes preparatory to clamping the reference, and thereby introduces a zero- value error signal at the summing junction 31 when the pitch axis autopilot is inoperative.

    [0019] An airspeed synchroniser input integration loop 70 comprises a summing junction 71, gain 72, a synchroniser control switch 73 and an integrator 74. The above elements are applied as a feedback loop around the algebraic summing junction 71. An airspeed signal from the sensor 30 or a navigational aid, is coupled to the summing junction 71 the ouptut of which is coupled to gain 72, which also introduces a delay or smoothing factor of approximately 0.5 seconds. The output of gain 72 is switched by a control 73 which may be a manual control or logic actuated device, and thence to an integrator 74. The output of the integrator 74, denoted as REF. 1, is subtracted from the airspeed signal at junction 71 to provide an error feedback signal to the loop 70. On initial power up, or other pilot action resulting in a change in airspeed, the synchroniser switch 73 is closed and the loop 70 is unclamped. The integrator 74 will thereupon slew to provide an output at REF. 1 equal to the airspeed, whereupon the loop 70 will follow the airspeed input. When the autopilot is thereafter engaged, as in the speed hold mode, the synchroniser switch 73 is opened. The integrator 74 remains clamped at a fixed value equal to the established velocity, which value is provided to the switch 75. In the position shown in Figure 2, the switch 75 couples the REF. 1 output to a summing junction 76. However, the switch 75 may also be transferred to provide a signal from an external reference 77 such as might be provided by an external path computer. When coupled to the airspeed sensor 30, the switch 75 provides a signal which corresponds to the aircraft airspeed at the time the synchroniser was clamped. The output of the switch 75 feeds an error softening circuit including a loop 78 which is comprised of a summing junction 76, gain 79, a limit amplifier 80, a summing junction 81, and an integrator 82. The purpose of the softening circuit is to attenuate large or rapid changes in the airspeed reference, while allowing momentary deviations from the airspeed reference if the allowable torque limit is exceeded. The gain and rate limit stages result in the integrator 82 slewing at a low, comfortable rate, thus softening the effect of any commanded airspeed acceleration discontinuities due to changes in the airspeed reference signal. Gain 79 has a time constant typically set for a value of about 8 seconds. The limiter 80 limits the error drive amplitude or maximum rate of change at the input to the summing junction 81. This rate limit is typically set at about 1 knot per second. The output of the limiter 80 is fed through the summing junction 81 to the integrator 82 the output of which is fed back to the input of the summing junction 76 to close the loop and provide a lag in the conventional manner. As noted, the rate limit and lag time constants are selected to prevent large momentary airspeed reference changes, as might be encountered when changing modes, or with attitude changes due to assumption of control by the collective axis, from affecting the operation of the altitude reference signal.

    [0020] A third integration loop 83 includes the summing junction 81, integrator 82, a summing junction 84, a dead zone 85, and gain 86. The output of the integrator 82 is fed to the summing junction 84 where aircraft airspeed is algebraically subtracted therefrom to provide a second error signal. Thus, if the airspeed reference 32 is equal to the airspeed from sesnor 30, no feedback error signal will be generated. However, when torque changes cause the collective axis to override the . pitch axis autopilot, an error signal will be introduced into the loop 83. The dead zone 85 receives this error signal. As shown in Figure 4, for small airspeed errors of the order of ±5 knots, there is no output from the dead zone 85, hence the output of the integrator 82 remains unaffected. When the error signal from the summing junction 84 exceeds the dead zone limit, the error signal is allowed to pass through gate 86 and thence to the summing junction 81. The error output from the summing junction 81 thereupon drives the integrator 82 to a new value which must fall within approximately 5 knots of the actual airspeed. The output of the integrator 82 at a junction 87 is coupled to the cyclic pitch axis to provide the airspeed reference 32 as shown in Figure 1. It may be seen that in the case where the pitch axis autopilot has been deactivated by the assumption of control by the collective axis when the engine torque limit has been reached, thereby allowing a large airspeed error to develop, the airspeed reference provided to the system at the summing junction 31 will follow within five knots of the actual error. When the aircraft flight path has been adjusted so that the torque limit is no longer commanded, the pitch axis control will transition back to the autopilot airspeed mode, and provide a progressive acceleration toward the moving airspeed reference which is now within approximately 5 knots of the actual airspeed. The value of the reference however, will continuously increase at a rate of 1 knot per second until the integrator 82 approaches the original values set by the output of the selector switch 75. Thus, the result is a smooth, comfortable acceleration to the original established airspeed.

    [0021] The embodiment herein has been exemplified by an analogue system for clarity. However, similar functions may be provided by software programming of a digital processor.

    [0022] The advantages of the present invention may be observed by considering the following example, referring again to Figure 1. Assume the pilot is flying in the vertical speed hold mode and airspeed hold mode simultaneously. A vertical speed reference of 1,000 ft/min (304.8 m/min), and airspeed reference of 170 knots have been set. Assume further that engine torque is at 90% of the maximum allowable torque. An error signal A-E from the summing junction 16 is coupled to gain 17, and thence to the junction 53. The engine torque signal 50 is processed through gain 52 and coupled to the junction 53. Since the sum of the engine torque signal 57 and the collective demand signal 18 are less than the maximum allowable torque demand, the signal from the limiter 55 is passed to the junction 54, where the torque signal 57 is now subtracted, to provide the collective command signal 19, which is essentially responsive to the input demand signal 18. The signal 19 then is coupled to the limiter 20 and thence to the collective servo actuator loop, which responds to the signal 19 in the conventional fashion.

    [0023] Since demanded engine torque is at 90%, collective commands are processed through the pitch axis limiter circuitry in a similar fashion.

    [0024] The pilot now arms the altitude preselect mode at logic 13 and initiates a descent. As the desired altitude is approached, the collective actuator demands 100% torque in an attempt to arrest the descent. Since 100% torque is demanded, the torque limiter 55 is now in saturation. Collective commands from the signal 18 are attenuated by the limiter 55 and the summation with the engine torque signal 57 at junction 54. Therefore, the collective command 19 now demands reduced torque, resulting in loss of autopilot altitude control in the collective axis. However, the limiter 38 is also in saturation, resulting in the signal 34 being attenuated in its passage through the limiter 38 and junction 62, only the subtractive engine torque signal component 63 appearing at junction 64.

    [0025] Furthermore, the desired demand signal 18 is algebraically summed with the developed command signal 19 at the junction 66. The difference signal 67 represents the vertical path error due to collective torque limiting. After passage through gain 68, the error signal 65 is summed at the junction 64 with an engine torque component from the junction 62. Since the altitude demand signal 34 has been removed by the cyclic limiter circuitry, the crossfeed signal 65 directed to the pitch axis results in allowing the aircraft to pitch nose up sufficiently to correct the vertical path error, resulting in a climb or arresting the descent in capturing the desired altitude and thereby reducing the collective engine torque required to sustain the desired vertical path.

    [0026] During this manoeuvre, the airspeed has been reduced, for example, to 130 knots and torque is kept at 100%. The pilot now elects to descend again. He re-engages the vertical speed hold mode and selects a descent reference of 1,000 ft/ min (304.8 m/min). Because of the reduced torque demand on the collective pitch axis, the collective autopilot reduces torque to 90% and the desired vertical speed rate is achieved. Control of the pitch axis autopilot is thereupon transferred back to the airspeed reference, which noses the aircraft down and commands an acceleration at 1 knot per second, until the desired airspeed of 170 knots has been reached.


    Claims

    1. A flight control system for helicopters having independent cyclic pitch means for controlling the pitch attitude thereof and collective pitch means for controlling the direct lift thereof, characterised in that the system comprises means (16) for providing an altitude error rate signal corresponding to the algebraic difference between craft vertical speed and a vertical speed reference, means (30, 31, 32) for providing an airspeed error signal corresponding to the algebraic difference of craft airspeed and an airspeed reference, and means (50) for providing a signal representing developed engine torque, the torque having a predetermined maximum value, first limiter means (55) for receiving the altitude error rate signal and the engine torque signal and limiting the error signal to a predetermined maximum, and for providing a collective pitch command signal to the collective pitch means (23), second limiter means (38) for receiving the airspeed error signal and the engine torque signal and limiting the airspeed error signal to a further predetermined maximum, and for providing a cyclic pitch command signal to the cyclic pitch means (40), first algebraic summing means (66) responsive to the first altitude error rate signal and the collective pitch command signal for providing a vertical rate correction signal representing the difference between commanded and developed collective torque to the cyclic pitch means, and second algebraic summing means (64) for receiving the vertical rate correction signal and the cyclic pitch command signal and conveying the sum of those signals to the cyclic pitch means, so that the airspeed error signal is diminished by the engine torque signal to the extent that the cyclic pitch means responds only to the vertical rate correction signal and the direct lift is apportioned between the collective pitch means and the cyclic pitch means when the flight control system demands at least the predetermined maximum engine torque, and the collective pitch means and the cyclic pitch means having independent control channels which are independently responsive to the respective altitude error rate and airspeed error signals when the demanded torque is less than the predetermined maximum.
     
    2. A system according to claim 1, characterised in that it further comprises third algebraic summing means (53) responsive to the algebraic sum of the altitude error rate signal and the engine torque signal for providing a collective pitch demand signal to the first limiter means, fourth algebraic summing means (54) responsive to the algebraic sum of the limited altitude error rate signal and the engine torque signal for providing the collective pitch command signal, whereby the collective pitch means responds to the collective pitch command signal when the engine torque is less than the predetermined maximum, and the fourth summing means (54) applies a reduced collective pitch command signal to the collective pitch means when the engine torque reaches at least the predetermined maximum value, fifth algebraic summing means (61) responsive to the algebraic sum of the airspeed error signal and the engine torque signal for providing a cyclic pitch demand signal to the second limiter means (38), and sixth algebraic summing means (62) responsive to the algebraic sum of the limited cyclic pitch demand signal and the engine torque signal for providing the cyclic pitch command signal, whereby the cyclic pitch means responds to the cyclic pitch command signal when the engine torque is less than the predetermined maximum, the sixth summing means (62) applies a reduced command signal to the cyclic pitch means when the engine torque reaches at least the predetermined maximum value, and the cyclic pitch means is only responsive to the vertical rate correction signal when the engine torque reaches at least the predetermined maximum value.
     
    3. A system according to claim 1 or 2, characterised in that it further comprises synchronising means (70) responsive to a predetermined airspeed signal for providing; when in a clamped condition, an airspeed reference signal to derive the airspeed error signal, the reference signal corresponding to deviations in the airspeed of the craft from the predetermined airspeed, and for returning the craft to the predetermined airspeed, thereby reducing the airspeed error signal to zero, the synchronising means also being responsive to a craft airspeed signal for maintaining, when in an unclamped condition, the airspeed error signal effectively zero during the deviations in airspeed.
     
    4. A system according to claim 3, characterised in that it further includes switching means (75) for clamping and unclamping the synchronising means.
     
    5. A system according to claim 3 or 4, characterised in that it further includes external airspeed reference means (77) for providing a plurality of airspeed signals, and switching means .(75) for selecting at least one of the plurality of airspeed reference signals.
     
    6. A system according to claim 3 or 4, characterised in that the predetermined airspeed is derived from craft airspeed.
     
    7. A system according to claim 5, characterised in that the predetermined airspeed is derived from the plurality of airspeed reference signals.
     
    8. A system according to any of claims 3 to 7, characterised in that it further includes means (74) for continuously increasing the airspeed reference signal when in the clamped condition from a value representing approximately the craft airspeed until the airspeed reference signal equals a predetermined value.
     
    9. A system according to any of claims 3 to 8, characterised in that it further includes level detector means responsive to the algebraic sum of the airspeed reference signal and the craft airspeed for providing a signal corresponding thereto when said sum exceeds a predetermined value.
     
    10. A system according to any of claims 3 to 8, characterised in that it further includes time delay means (79) responsive to the predetermined airspeed for delaying the rate of change of the reference signal by a predetermined time constant.
     
    11. A system according to claim 10, characterised in that it further includes rate means (80) responsive to the time delay means (79) for limiting the rate of change of the reference signal to a predetermined value.
     
    12. A system according to claim 10 or 11, characterised in that it further includes clampable integrator means (74) responsive to the craft airspeed for providing to the time delay means (79) a predetermined airspeed reference signal when clamped and a variable airspeed reference signal when unclamped.
     
    13. A system according to any of claims 3 to 12, characterised in that it further includes digital processor means for supplying the airspeed reference signal.
     
    14. A system according to claim 1, characterised in that it further includes digital processor means for supplying the collective pitch and cyclic pitch command signals.
     
    15. A system according to claim 1, characterised in that it further comprises digital processor means including means for receiving the demand signals from the altitude and air speed error signals, means (52) for receiving the engine torque signal, means (55) for limiting the error signals to first and second predetermined maximum amplitudes, respectively, means (54) for algebraically summing the engine torque signal and the limiter signals to provide the collective pitch and said cyclic pitch command signals, and means (66) for algebraically summing the limited signals and at least one of the error signals to provide a cyclic pitch command. signal when the maximum torque value is reached.
     
    16. System according to claim 3, characterised in that it further comprises digital processor means for clamping and unclamping the synchroniser (70), selecting the predetermined airspeed signal, transmitting rates of change of the reference signal after a predetermined time interval at a limited low rate, and establishing a rate window within which changes in the reference signal are not further limited and outside which changes in the signal are further limited to a predetermined value.
     
    17. A system according to claim 16, characterised in that the airspeed synchroniser (70) is unclamped in such a manner that it minimises abrupt changes in acceleration when transitioning between a torque-limited and non-torque-limited condition of the system.
     


    Ansprüche

    1. Flugkontrollsystem für Hubschrauber mit unabhängigen periodischen Blattwinkelsteuerungseinrichtungen zur Steuerung seiner Längsneigungslage und gleichsinnigen Blattwinkelsteuereinrichtungen zur Steuerung seines direkten Auftriebes, dadurch gekennzeichnet, daß das System Einrichtungen (16) zur Lieferung eines Höhenfehler-Ratensignals, das der abgebraischen Differenz zwischen der Luftfahrzeug-Vertikalgeschwindigkeit und einem vertikalen Geschwindigkeitsbezugswert entspricht, Einrichtungen (30,31, 32) zur Lieferung eines Fluggeschwindigkeitsfehlersignals, das der abgebraischen Differenz zwischen der Luftfahrzeug-Fluggeschwindigkeit und einem Fluggeschwindigkeits Bezugswert entspricht, Einrichtungen (50) zur Lieferung eines Signals, das das erzeugte Triebwerksdrehmoment darstellt, wobei diese Drehmoment einen vorgegebenen Maximalwert aufweist, erste Begrenzereinrichtungen (55), die das Höhenfehler-Ratensignal und das Triebwerks-Drehmomentsignal empfangen und das Fehlersignal auf einen vorgegebenen Maximalwert begrenzen, um ein gleichsinniges Blattwinkel-Befehlssignal an die gleichsinnigen Blattwinkelsteuerungseinrichtungen (23) zu liefern, zweite Begrenzereinrichtungen (38), die das Fluggeschwindigkeitsfehlersignal und das Triebswerksdrehmomentsignal empfangen und das Fluggeschwindigkeitsfehlersignal auf einen weiteren vorgegebenen Maximalwert begrenzen, um ein periodisches Blattwinkel-Befehlssignals an die gleichsinnigen Blattwinkelsteuerungseinrichtungen (40) zu liefern, erste algebraische Summiereinrichtungen (66), die auf das erste Höhenfehler-Ratensignal und das gleichsinnige Blattwinkel-Befehlssignal ansprechen und ein Vertikalraten- Korrektursignal liefern, das die Differenz zwischen dem Befehlssignal und dem erzeugten gleichsinnigen Drehmoment an die periodischen Blattwinkelsteuerungseinrichtungen darstellt, und zweite algebraische Summiereinrichtungen (64) umfaßt, die das Vertikalraten-Korrektursignal und das periodische Blattwinkel-Befehlssignal empfangen und die Summe dieser Signale an die periodischen Blattwinkelsteuerungseinrichtungen liefern, sodaß das Flugsgeschwindkgkeits-Fehlersignal durch das Triebwerksdrehmomentsignal bis zu dem Ausmaß verringert wird, daß die periodischen Blattwinkelsteuerungseinrichtungen lediglich auf das Vertikalraten-Korrektursignal ansprechen und daß der direkte Auftrieb zwischen den gleichsinnigen Blattwinkelsteuerungseinrichtungen und den periodischen Blattwinkelsteuerungseinrichtungen aufgeteilt wird, wenn das Flugkontrollsystem zumindestens das vorgegebene maximale Triebwerksdrehmoment anfordert, und daß die gleichsinnigen Blattwinkelsteuerungseinrichtungen und die periodischen Blattwinkelsteuerungseinrichtungen unabhängige Steuerkanäle aufweisen, die unabhängig voneinander auf die jeweiligen Höhenfehler-Ratensignals und Fluggeschwindigkeits-Fehlersignale ansprechen, wenn das angeforderte Drehmoment kleiner als der vorgegebene Maximalwert ist.
     
    2. System nach Anspruch 1, dadurch gekennzeichnet, daß es weiterhin dritte algebraische Summiereinrichtungen (53), die auf die algebraische Summe des Höhenfehler-Ratensignals und des Triebwerkdrehmomentsignals ansprechen, um ein gleichsinniges Blattwinkel-Anforderungssignal an die ersten Begrenzereinrichtungen zu liefern, vierte algebraische Summiereinrichtungen (54), die auf die algebraische Summe des begrenzten Höhenfehler-Ratensignals und des Triebwerksdrehmomentsignals ansprechen und das Befehlssignal für die gleichsinnige Blattwinkelsteuerung liefern, sodaß die gleichsinnigen Blattwinkelsteuerungseinrichtungen auf das Befehlssignal für die gleichsinnige Blättwinkelsteuerung ansprechen, wenn das Motordrehmoment kleiner als das vorgegebene Maximum ist, während die vierten Summiereinrichtungen (54) ein verringertes Befehlssignal für die gleichsinnige Blattwinkelsteuerung an die gleichsinnigen Blattwinkelsteuerungseinrichtungen liefert, wenn das Triehwerksdrehmoment zumindestens den vorgegebenen Maximalwert erreicht, fünfte algebraische Summiereinrichtungen (61), die auf die algebraische Summe des Fluggeschwindigkeits-Fehlersignals und des Triebwerksdrehmomentsignals ansprechen und ein periodisches Blattwinkel-Anforderungssignal an die zweiten Begrenzereinrichtungen (38) liefern, und sechste algebraische Summiereinrichtungen (62) umfaßt, die auf die algebraische Summe des begrenzten periodischen Blattwinkel-Anforderungssignals und des Triebwerksdrehmomentsignals ansprechen, um das Befehlssignal für die periodische Blattwinkelsteuerung zu liefern, sodaß die periodischen Blattwinkelsteuerungseinrichtungen auf das Befehlssignal für die periodische Blattwinkelsteuerung ansprechen, wenn das Triebwerksdrehmoment kleiner als das vorgegebene Maximum ist, während die sechsten Summiereinrichtungen (62) ein verringertes Befehlssignal an die periodischen Blattwinkelsteuerungseinrichtungen liefern, wenn das Triebwerksdrehmoment mindestens den vorgegebenen Maximalwert erreicht, und daß die periodischen Blattwinkelsteuerungseinrichtungen lediglich auf das Vertikalraten-Korrektursignal ansprechen, wenn das Triebwerksdrehmoment mindestens den vorgegebenen Maximalwert erreicht.
     
    3. System nach Anspruch 1 oder 2, dadurch gekennzeichnet, daß es weiterhin auf ein vorgegebenes Fluggeschwindigkeitssignal ansprechende Synchronisiereinrichtungen (70) umfaßt, die in einem geklemmten Zustand ein Fluggeschwindigkeits-Bezugssignal zur Ableitung des Fluggeschwindigkeits-Fehlersignals liefern, wobei das Bezugssignal den Abweichungen der Fluggeschwindigkeit des Luftfahrzeugs von der vorgegebenen Fluggeschwindigkeit entspricht, und die das Luftfahrzeug auf die vorgegebene Fluggeschwindigkeit zurückführen, wobei das Fluggeschwindigkeits-Fehlersignal auf Null verringert wird, und daß die Synchronisiereinrichtungen weiterhin auf ein Luftfahrzeug-Fluggeschwindigkeitssignal ansprechen, um im ungeklemmten Zustand das Fluggeschwindigkeits-Fehlersignal während der Abweichungen in der Fluggeschwindigkeit effektiv auf Null zu halten.
     
    4. System nach Anspruch 3, dadurch gekennzeichnet, daß es weiterhin Schalteinrichtungen (75) zum Klemmen und Entklemmen der Synchronisiereinrichtungen einschließt.
     
    5. System nach Anspruch 3 oder 4, dadurch gekennzeichnet, daß es weiterhin externe Fluggeschwindigkeits-Bezugseinrichtungen (77) zur Lieferung einer Mehrzahl von Fluggeschwindigkeitssignalen und Schaltereinrichtungen (75) zur Auswahl von zumindestens einer der Mehrzahl von Fluggeschwindigkeitsbezugssignalen einschließt.
     
    6. System nach Anspruch 3 oder 4, dadurch gekennzeichnet, daß die vorgegebene Fluggeschwindigkeit von der Luftfahrzeug-Fluggeschwindigkeit abgeleitet wird.
     
    7. System nach Anspruch 5, dadurch gekennzeichnet, daß die vorgegebene Fluggeschwindigkeit von der Mehrzahl der Fluggeschwindigkeitsbezugssignale abgeleitet wird.
     
    8. System nach einem der Ansprüche 3 bis 7, dadurch gekennzeichnet, daß es weiterhin Einrichtungen (74) zur kontinuierlichen Vergrößerung des Fluggeschwindigkeitsbezugssignals im geklemmten Zustand ausgehend von einem angenähert die Luftfahrzeug-Fluggeschwindigkeit darstellenden Wert einschließt, bis das Fluggeschwindigkeitsbezugssignal gleich einem vorgegebenen Wert ist.
     
    9. System nach einem der Ansprüche 3 bis 8, dadurch gekennzeichnet, daß es weiterhin Pegeldetektoreinrichtungen einschließt, die auf die algebraische Summe des Fluggeschwindigkeits- bezugssignals und der Luftfahrzeug-Fluggeschwindigkeit ansprechen um ein Signal zu liefern, das dieser entspricht, wenn die Summe einen vorgegebenen Wert überschreitet.
     
    10. System nach einem der Ansprüche 3 bis 8, dadurch gekennzeichnet, daß es weiterhin Zeitverzögerungseinrichtungen (79) einschließt, die auf die vorgegebene Fluggeschwindigkeit ansprechen, um die Änderungsgeschwindigkeit des Bezugssignals um eine vorgegebene Zeitkonstante zu verzögern.
     
    11. System nach Anspruch 10, dadurch gekennzeichnet, daß es weiterhin Rateneinrichtungen (80) einschließt, die auf die Zeitverzögerungseinrichtungen (79) ansprechen, um die Änderungsgeschwindigkeit des Bezugssignals auf einen vorgegebenen Wert zu begrenzen.
     
    12. System nach Anspruch 10 oder 11, dadurch gekennzeichnet, daß es weiterhin klemmbare Integratoreinrichtungen (74) einschließt, die auf die Luftfahrzeug-Fluggeschwindigkeit ansprechen, um an die Zeitverzögerungseinrichtungen (79) im geklemmten Zustand ein vorgegebenes Fluggeschwindigkeitsbezugssignal und im ungeklemmten Zustand ein veränderliches Fluggeschwindigkeitsbezugssignal zu liefern.
     
    13. System nach einem der Ansprüche 3 bis 12, dadurch gekennzeichnet, daß es weiterhin digitale Prozessoreinrichtungen zur Lieferung des Fluggeschwindigkeits-Bezugssignals einschließt.
     
    14. System nach Anspruch 1, dadurch gekennzeichnet, daß es weiterhin digitale Prozessoreinrichtungen zur Lieferung der gleichsinnigen und periodischen Blattwinkelsteuerungs-Befehlssignale einschließt.
     
    15. System nach Anspruch 1, dadurch gekennzeichnet, daß es weiterhin digitale Prozessoreinrichtungen umfaßt, die Einrichtungen zum Empfang der Anforderungssignale von den Höhen-und Fluggeschwindigkeits-Fehlersignalen, Einrichtungen (52) zum Empfang des Triebwerksdrehmomentsignais, Einrichtungen (55) zur Begrenzung der Fehlersignale auf erste bzw. zweite vorgegebene maximale Amplituden, Einrichtungen (54) zur algebraischen Summierung des Triebwerksdrehmomentsignals und der Begrenzersignale zur Lieferung der gleichsinnigen und der periodischen Blattwinkelsteuerungs-Befehlssignale und Einrichtungen (66) zur algebraischen Summierung der begrenzten Signale und zumindestens eines der Fehlersignale zur Lieferung eines periodischen Blattwinkelsteuerungs-Befehlssignals einschließen, wenn das maximale Drehmoment erreicht ist.
     
    16. System nach Anspruch 3, dadurch gekennzeichnet, daß es weiterhin digitale Prozessoreinrichtungen zum Klemmen und Entklemmen des Synchronisierers (70), zur Auswahl des vorgegebenen Fluggeschwindigkeitssignals, zur Übertragung von Änderungsgeschwindigkeiten des Bezugssignals nach einem vorgegebenen Zeitintervall mit einer begrenzten niedrigen Rate, und zur Ausbildung eines Ratenfensters umfaßt, innerhalb dessen Änderungen des Bezugssignals nicht weiter begrenzt werden, und außerhalb dessen Änderungen des Siganls weiter auf einen vorgegebenen Wert begrenzt sind.
     
    17. System nach Anspruch 16, dadurch gekennzeichnet, daß der Fluggeschwindigkeits-Synchronisierer (70) in einer derartigen Weise entklemmt wird, daß er abrupte Änderungen der Beschleunigung auf ein Minimum verringert, wenn ein Übergang zwischen einem drehmomentbegrenzten und einem nichtdrehmomentbegrenzten Zustand des Systems erfolgt.
     


    Revendications

    1. Système de commande de vol pour hélicoptères ayant un dispositif indépendant de commande de pas cyclique destiné à régler l'attitude en tangage de l'hélicoptère et un dispositif de pas collectif destiné à commander la portance directe, caractérisé en ce que le système comporte un dispositif (16) destiné à créer un signal de pente d'erreur d'altitude correspondant à la différence algébrique entre la vitesse verticale de l'aéronef et une référence de vitesse verticale, un dispositif (30, 31, 32) destiné à transmettre un signal d'erreur de vitesse aérodynamique correspondant à la différence algébrique entre la vitesse aérodynamique de l'aéronef et une référence de vitesse aérodynamique, et un dispositif (50) destiné à former un signal représentant le couple développé par le moteur, le couple ayant une valeur maximale prédéterminée, un premier dispositif de limitation (55) destiné à recevoir le signal de pente d'erreur d'altitude et le signal de couple du moteur et à limiter le signal d'erreur à une valeur maximale prédéterminèe et à transmettre un signal de commande de pas collectif au dispositif de pas collectif (23), un second dispositif de limitation (38) destiné à recevoir le signal d'erreur de vitesse aérodynamique et le signal de couple du moteur et à limiter le signal d'erreur de vitesse aérodynamique à une autre valeur maximale prédéterminée, et à transmettre un signal de commande de pas cyclique au dispositif de pas cyclique (40), un premier dispositif de sommation algébrique (66) commandé par le premier signal de pente d'erreur d'altitude et par le signal de commande de pas collectif et destiné à créer un signal de correction de pente verticale représentant la différence entre le couple collectif commandé et le couple collectif développé vers le dispositif de pas cyclique, et un second dispositif de sommation algébrique (64) destiné à revevoir le signal de correction de pente verticale et le signal de commande de pas cyclique et à transmettre la somme de ces signaux au dispositif de pas cyclique, si bien que le signal d'erreur de vitesse aérodynamique est réduit par le signal de couple du moteur dans la mesure où le dispositif de pas cyclique ne répond qu'au signal de correction de pente verticale et où la portance directe est répartie entre le dispositif de pas collectif et le dispositif de pas cyclique lorsque le système de commande de vol demande au moins le couple maximal prédéterminé du moteur, le dispositif de pas collectif et le dispositif de pas cyclique ayant des canaux indépendants de commande qui sont sensibles indépendamment aux signaux respectifs de pente d'erreur d'altitude et d'erreur de vitesse aérodynamique lorsque le couple demandé est inférieur à la valeur maximale prédéterminée.
     
    2. Système selon la revendication 1, caractérisé en ce qu'il comporte en outre un troisième dispositif de sommation algébrique (53) commandé par la somme algébrique du signal de pente d'erreur d'altitude et du signal de couple du moteur et destiné à transmettre le signal de demande de pas collectif au premier dispositif de limitation, un quatrième dispositif de sommation algébrique (54) commandé par la somme algébrique du signal limité de pente d'erreur d'altitude et du signal de couple du moteur et destiné à transmettre le signal de commande de pas collectif, si bien que le dispositif de pas collectif répond au signal de commande de pas collectif lorsque le couple du moteur est inférieur à la valeur maximale prédéterminée, et le quatrième dispositif de sommation (54) applique un signal réduit de commande de pas collectif au dispositif de pas collectif lorsque le couple du moteur atteint au moins la valeur maximale prédéterminée, un conquième dispositif de sommation algébrique (61) commandé par la somme algébrique du signal d'erreur de vitesse aérodynamique et par le signal de couple du moteur et destiné à transmettre un signal de demande de pas cyclique au second dispositif de limitation (38), et un sixième dispositif de sommation algébrique (62) commandé par la somme algébrique du signal limité de demande de pas cyclique et du signal de couple du moteur afin qu'il transmette le signal de commande de pas cyclique, si bien que le dispositif de pas cyclique répond au signal de commande de pas cyclique lorsque le couple du moteur est inférieur à la valeur maximale prédéterminée, le sixième dispositif de sommation (62) applique un signal réduit de commande au dispositif de pas cyclique lorsque le couple du moteur atteint au moins la valeur maximale prédéterminée, et le dispositif de pas cyclique n'est commandé que par le signal de correction de pente verticale lorsque le couple du moteur atteint au moins la valeur maximale prédéterminée.
     
    3. Système selon la revendication 1 ou 2, caractérisé en ce qu'il comporte en outre un dispositif de synchronisation (70) commandé par un signal de vitesse aérodynamique prédéterminé et destiné à transmettre, lorsqu'il est en condition verrouillée, un signal de référence de vitesse aérodynamique permettant la dérivation du signal d'erreur de vitesse aérodynamique, le signal de référence correspondant aux écarts de la vitesse aérodynamique de l'aéronef par rapport à la vitesse aérodynamique prédéterminée, afin que l'aéronef revienne à la vitesse aérodynamique prédéterminée, avec réduction à une valeur nulle du signal d'erreur de vitesse aérodynamique, le dispositif de synchronisation étant aussi commandé par un signal de vitesse aérodynamique de l'aéronef destiné à maintenir, lorsqu'il est en condition non verrouillée, le signal d'erreur de vitesse aérodynamique à une valeur nulle pendant les écarts de vitesse aérodynamique.
     
    4. Système selon la revendication 3, caractérisé en ce qu'il comporte en outre un dispositif de commutation (75) destiné à assurer le verrouillage ef le déverrouillage du dispositif de synchronisation.
     
    5. Système selon la revendication 3 ou 4, caractérisé en ce qu'il comporte en outre un dispositif externe de référence de vitesse aérodynamique (77) destiné à transmettre plusieurs signaux de vitesse aérodynamique, et un dispositif de commutation (75) destiné à sélectionner l'un au moins des différents signaux de référence de vitesse aérodynamique.
     
    6. Système selon la revendication 3 ou 4, caractérisé en ce que la vitesse aérodynamique prédéterminée est tirée de la vitesse aérodynamique de l'aéronef.
     
    7. Système selon la revendication 5, caractérisé en ce que la vitesse aérodynamique prédéterminée est tirée de plusieurs signaux de référence de vitesse aérodynamique.
     
    8. Système selon l'une quelconque des revendications 3 à 7, caractérisé en ce qu'il comporte en outre un dispositif (74) destiné à augmenter de façon continue le signal de référence de vitesse aérodynamique, lorsqu'il est à l'état verrouillé, d'une valeur représentant approximativement la vitesse aérodynamique de l'aéronef jusqu'à ce que le signal de référence de vitesse aérodynamique soit égal à une valeur prédéterminée.
     
    9. Système selon l'une quelconque des revendications 3 à 8, caractérisé en ce qu'il comporte en outre un dispositif détecteur de niveau commandé par la somme algébrique du signal de référence de vitesse aérodynamique et de la vitesse aérodynamique de l'aéronef et destiné à transmettre un signal qui leur correspond lorsque la somme dépasse une valeur prédéterminée.
     
    10. Système selon l'une quelconque des revendications 3 à 8, caractérisé en ce qu'il comporte en outre un dispositif à retard (79) commandé par la vitesse aérodynamique prédéterminée et destiné à retarder la vitesse de variation du signal de référence avec une constante de temps prédéterminée.
     
    11. Système selon la revendication 8, caractérisé en ce qu'il comporte en outre un dispositif à pente (80) commandé par le dispositif à retard (79) et destiné à limiter la pente du changement de signal de référence à une valeur prédéterminée.
     
    12. Système selon la revendication 10 ou 11, caractérisé en ce qu'il comporte en outre un intégrateur verrouillable (74) commandé par la vitesse aérodynamique de l'aéronef et destiné à transmettre au dispositif à retard (79) un signal de référence de vitesse aérodynamique prédéterminé lorsqu'il est verrouillé et un signal de référence variable de vitesse aérodynamique lorsqu'il n'est pas verrouillé.
     
    13. Système selon l'une quelconque des revendications 3 à 12, caracterisé en ce qu'il comporte en outre un processeur numérique pour la transmission du signal de référence de vitesse aérodynamique.
     
    14. Système selon la revendication 1, caractérisé en ce qu'il comporte en outre un processeur numérique pour la transmission des signaux de commande de pas collectif et de pas cyclique.
     
    15. Système selon la revendication 1, caractérisé en ce qu'il comporte en outre un processeur numérique comportant un dispositif destiné à recevoir les signaux de demande à partir des signaux d'erreur d'altitude et de vitesse aérodynamique, un dispositif (52) destiné à recevoir le signal de couple du moteur, un dispositif (55) destiné à limiter les signaux d'erreur à une première et une seconde amplitude maximales prédéterminées respectivement, un dispositif (54) de sommation algébrique du signal de couple du moteur et des signaux du circuit limiteur afin qu'il forme les signaux de commande de pas collectif et de pas cyclique, et un dispsitif (66) destiné à ajouter algébriquement les signaux limités et au moins l'un des signaux d'erreur afin qu'il forme le signal de commande de pas cyclique lorsque la valeur maximale du couple est atteinte.
     
    16. Système selon la revendication 3, caractérisé en ce qu'il comporte en outre un processeur numérique destiné à verrouiller et déverrouiller le dispositif de synchronisation (70), à sélectionner le signal de vitesse aérodynamique prédéterminé, à transmettre des pentes de changement du signal de référence après un intervalle de temps prédéterminé, à une faible pente limitée, et à établir une fenêtre de pente dans laquelle les changements du signal de référence ne sont pas limités de façon supplémentaire et en dehors de laquelle les changements du signal subissent une limitation supplémentaire et une valeur prédéterminée.
     
    17. Système selon la revendication 16, caractérisé en ce que le dispositif de synchronisation de vitesse aérodynamique (70) est déverrouillé de manière qu'il réduise au minimum les variations brutales d'accélération lors du pasasge entre un état à limitation du couple et un état sans limitation du couple du système.
     




    Drawing