(19)
(11)EP 0 005 857 B2

(12)NEW EUROPEAN PATENT SPECIFICATION

(45)Date of publication and mention of the opposition decision:
08.06.1988 Bulletin 1988/23

(45)Mention of the grant of the patent:
14.10.1981 Bulletin 1981/41

(21)Application number: 79101747.8

(22)Date of filing:  01.06.1979
(51)International Patent Classification (IPC)4G10K 11/02, G10K 11/26, H04R 1/34

(54)

Method for transferring ultrasonic energy to or from an object and focused ultrasonic transducer

Verfahren zur Übertragung von Ultraschallenergie in oder aus einem Körper und fakussierender Ultraschallwandler

Procédé pour la transmission de l'énergie ultra-sonore vers ou d'un object et transducteur ultra-sonore focalisé


(84)Designated Contracting States:
AT BE CH DE FR GB IT NL SE

(30)Priority: 01.06.1978 US 911524

(43)Date of publication of application:
12.12.1979 Bulletin 1979/25

(73)Proprietor: ADVANCED DIAGNOSTIC RESEARCH CORPORATION
Tempe Arizone 85282 (US)

(72)Inventor:
  • Kopel, LeRoy
    Tempe Arizona 85283 (US)

(74)Representative: Grünecker, Kinkeldey, Stockmair & Schwanhäusser Anwaltssozietät 
Maximilianstrasse 58
80538 München
80538 München (DE)


(56)References cited: : 
AT-A- 10 267
DE-A- 2 709 916
US-A- 3 529 465
DE-A- 2 537 788
FR-A- 900 298
US-A- 4 016 530
  
  • Bergmann, L. Der Ultraschall, Zürich,1949,p. 120/121
  • Benson, C. Ultrasonics N.Y.,1960,p. 203/204
  • Krautkrämer, J. u. H. Ultrasonic Testing of Materials, Berlin 1977,p. 223
  • Wiss.Zeitschrift der Ernst-Moritz-Arndt-Universität Greifswald, Jahrgang XII, 1963, Math.u.naturwissensch. Reihe Nr. 1/2, Techn. Fortschritte in der ophthalmologischen Ultraschall-Diagnostik, p. 59-63
  • Konstruktionszeichnungen u. Stücklisten der Serie HB der Fa. Kretztechnik v. Juni 1977
  • Konstruktionszeichung über eine Schwingereinheit d. Fa. Dr. Lehfeld & Co. v. 9.1.1964, J.u.H. Krautkrämer / Werkstoffprüfung m. Ultraschall, 3. Aufl. - Springer 1975, p. 71
  • K
  • Zeitschrift "Materialprüfung" 18(1976), Nr. März, pp. 81-86
  


Description


[0001] This invention relates to a method for efficiently transferring ultrasonic energy to or from body tissue or source or receiver or electrical energy to a piezoelectric crystal having a concave active surface and an acoustical impedance substantially larger than the body tissue or water, and coupling ultrasonic energy between the active surface of the crystal and the surface of the body tissue or water through a coupling layer of material filling the concavity of the crystal and forming a flat surface facing away from the concave surface of the crystal, the acoustical impedance of the material being between that of the crystal and that of the body tissue or water.

[0002] The invention relates as well to a focused ultrasonic transducer comprising a piezoelectric crystal having a concave active surface and an acoustical impedance substantially higher than that of water, and a coupling layer of material filling the concavity of the crystal and forming a flat surface facing away from the concave surface of the crystal, the acoustical impedance of the material being between that of the crystal and that of water.

[0003] To couple focused ultasonic energy into an interrogated object having a relatively flat surface, it is conventional to employ a piezoelectric crystal having a concave active surface and a filler such as mica-loaded epoxy, between the active surface and the object. The filler has a convex surface and a flat surface through which the ultrasonic energy is coupled from the crystal to the object. The filler has an acoustical impedance between that of the crystal and that of the object to provide an impedance match, but has a large sonic velocity relative to water.

[0004] For flat piezoelectric crystals, it is already known from US-A-4 016 530 and FR-A-900 298 to choose the acoustical impedance of the material of the coupling layer between that of the crystal and that of the object but substantially different from both. In focused ultrasonic transducers, as result of the large sonic velocity, when the interrogated object is water or body tissue, the filler defocuses the coupled ultrasonic energy. Consequently, a shorter curvature must be formed on the concave active surface to compensate for the defocusing effect, which makes manufacturing more diffcult.

[0005] An object of the invention is to provide a method and a focused ultrasonic transducer for efficiently transferring focused ultrasonic energy to an object without appreciably defocusing the ultrasonic beam.

[0006] According to the invention, this object is achieved by a method as mentioned above which, is characterized in that the coupling layer consists of a tungsten-loaded epoxy and that the weight, percentage between tungsten and epoxy is chosen as such that the acoustical impedance of the material is substantially different from the acoustical impedance of the crystal and of the body tissue or water.

[0007] According to the invention, this object with respect to a focused ultrasonic transducer is achieved by a focused ultrasonic transducer as mentioned above, being characterized in that the coupling layer consists of a tungsten-loaded epoxy material, the weight percentage between tungsten and epoxy being chosen such that the acoustical impedance of the material is substantially different from the acoustical impedances of the crystal and of water, and the coupling layer has a sonic velocity near that of water.

Brief Description of the Drawing



[0008] The features of a specific embodiment of the best mode contemplated of carrying out the invention are illustrated in the drawing, the single figure of which is a side-sectional view of an ultrasonic transducer incorporating the principles of the invention.

Detailed Description of the Specific Embodiment



[0009] In the drawing, is shown an ultrasonic transducer suitable for coupling focused ultrasonic energy into body tissue or water, both of which have approximately the same ultrasonic properties, namely, sonic velocity and acoustical impedance. A housing 10 has an open end 11 adjacent to which a piezoelectric crystal 12 lies within housing 10. Crystal 12 has approximately uniform thickness, a concave surface on which a thin layer 13 of conductive material is deposited or bonded, and a convex surface on which a thin layer 14 of conductive material is deposited or bonded. The concave surface of crystal 12 faces open end 11. A flat layer 15 of molded material extends across open end 11 of housing 10 to enclose completely transducer 12 in housing 10 and to form a space between layer 13 and layer 15. Layer 15 is positioned as close to crystal 12 as possible. An intermediate layer 16 of molded material fills the space between layers 13 and 15. Crystal 12 is backed by a button 17 inside housing 10. Button 17 is made of a suitable material to rigidize and absorb vibrations of crystal 12. One of many suitable materials for button 17 is disclosed in my U.S. Patent No. 3,487,137. An electrically insulated barrier 18 lies between housing 10 and crystal 12, layer 16, and button 17. Barrier 18 could be eliminated if housing 10 is made of plastic or other insulative material. An electrical conductor 19 connected at one end to layer 13 and at the other end to one output terminal of a source 20 of electrical energy passes through a groove 21 in the outside of barrier 18 to the exterior of housing 10. An electrical conductor 22 connected at one end to layer 14 and at the other end to the other output terminal of source 20 extends through button 17 to the exterior of housing 10.

[0010] Crystal 12 could either be spherical, in which case the remaining described components have a cross section perpendicular to the drawing that is circular in shape, or cylindrical, in which case the remaining described components have a cross section perpendicular to the drawing that is rectangular in shape.

[0011] Crystal 12 is excited to ultrasonic emission by the electrical energy from source 20. The focused ultrasonic energy emitted by crystal 12 is coupled by layers 15 and 16 into body tissue or water the surface of which abuts layer 15.

[0012] The thickness of layer 15 is preferably 1/4 of the wavelength corresponding to the average or center frequency of the ultrasonic energy to further improve the efficiency of energy transfer. To achieve efficient ultrasonic coupling to the body tissue or water, materials are selected for layers 15 and 16 that have different acoustical impedances between that of crystal 12 and that of water, the acoustical impedance of the material of layer 16 being larger than that of the material of layer 15. To optimize the energy transfer from crystal 12 to the interrogated object, the impedance ratio between crystal 12 and layer 16, the impedance ratio between layer 16 and layer 15, and the impedance ratio between layer 15 and the interrogated object all equal the cubed root of the impedance ratio between crystal 12 and the interrogated object. By way of example, crystal 12 could be a lead zirconate titanate piezoelectric material sold by Vernitron Corporation under the designation PZT 5A and having an acoustical impedance of 35 x 105 g/cm2 sec. To optimize the ultrasonic energy transfer assuming the acoustical impedance of crystal 12 is 35 x 105 g/cm2 sec, and the acoustical impedance of the interrogated object is 1,5 x 105 g/cm2 sec, the impedance of the materials of layers 15 and 16 would be respctively 4,3 x 105 g/cm2 sec and 12,2 x 105 g/cm2 sec.

[0013] To minimize the defocusing of the ultrasonic energy, a material is selected for layer 16 that also has a sonic velocity near that of water. By way of example, the material of layer 16 could be tungsten-loaded epoxy. In one embodiment, commercially available tungsten powder sold by Sylvania under the grade designation M55, which has an average particle diameter of 55 microns and a specific gravity of 19, was mixed with a commercially available unfilled epoxy. The tungsten powder was added to the unfilled epoxy until it began to separate out, the resulting mixture being about 90 % by weight tungsten. This tungsten-filled epoxy has a sonic velocity of 1,6 x 105 cm/sec and an acoustical impedance of 12 x 105 g/cm2 sec.

[0014] By way of example the material of layer 15 could be a conventional commercially available mica-loaded epoxy containing about 40 % mica by weight. This mica-loaded epoxy material has a sonic velocity of 2,9 x 105 cm/sec and an acoustical impedance of 4,3 x 105 g/cm2 sec. In summary, the exemplary materials, tungsten-loaded epoxy and mica-loaded epoxy have respective acoustical impedances closely approximating the values for optimum energy transfer set forth above, the tungsten-loaded epoxy has a sonic velocity near that of water.

[0015] Materials other than tungsten-loaded epoxy and mica-loaded epoxy can be employed so long as such materials have approximately the described acoustical properties. To vary the acoustical impedance of tungsten-loaded epoxy and mica-loaded epoxy, the proportion of tungsten or mica is changed - more tungsten of mica for higher impedance, and vice versa. The tungsten proportion in expoxy can be increased above 90 % by compaction with a centrfuge, or otherweise. Although it is preferable that the materials be moldable from the point of view of ease of manufacture, layers 15 and 16 could be formed by machining, if desired. If it is desired to couple ultrasonic energy into an object having an acoustical impedance substantially different from that of water or to generate ultrasonic energy with a piezoelectric crystal having a different acoustical impedance, correspondingly different acoustical impedances for layers 15 and 16 would be selected. Similady, if ultrasonic energy is coupled to an interrogated object having a different sonic velocity from that of water, a material is preferably selected for layer 16 having a sonic velocity near that of such object.

[0016] Depending upon the nature of the interrogated object, it might be desirable or necessary to employ a coupling fluid between the described transducer and the object.

[0017] Thus, the invention provides efficient transfer of focused ultrasonic energy to an object without appreciably defocusing the ultrasonic beam. The described embodiment of the invention is only considered to be preferred and illustrative of the inventive concept; the scope of the invention is not to be restricted to such embodiment. Various and numerous other arrangements may be devised by one skilled in the art without departing from the spirit and scope of this invention. For example, an electrical energy receiver could be coupled to the piezoelectric crystal altenately with a source of electrical energy, or instead of such source, depending upon the mode of operation of the transducer.


Claims

1. A method of efficiently transferring ultrasonic energy to or from body tissue or water, the method comprising the steps of:

coupling a source or receiver of electrical energy to a piezoelectric crystal having a concave active surface and an acoustical impedance substantially larger than the body tissue or water;

coupling ultrasonic energy between the active surface of the crystal and the surface of the body tissue or water through a coupling layer of material filling the concavity of the crystal and forming a flat surface facing away from the concave surface of the crystal, the acoustical impedance of the material being between that of the crystal and that of the body tissue or water, characterized in that the coupling layer consists of a tungsten-loaded epoxy and that the weight percentage between tungsten and epoxy is chosen as such that the acoustical impedance of the material is substantially different from the acoustical impedance of the crystal and of the body tissue or water, and the sonic velocity of the material is near that of the body tissue or water.


 
2 The method of claim 1, in which a flat layer of material abuts the flat surface of the coupling layer, the acoustical impedance ratio between the crystal and the material of the coupling layer, the acoustical impedance ratio between the material of the coupling layer and the material of the flat layer, and the acoustical impedance ratio between the material of the flat layer and the object are all equal to the cubed root of the acoustical impedance ratio between the crystal and the object.
 
3. The method of claim 2, in which the flat layer has a uniform thickness of approximately one quarter of the average wavelength of the coupled ultrasonic energy.
 
4. A focused ultrasonic transducer comprising: a piezoelectric crystal having a concave active surface and an acoustical impedance substantially higher than that of water; and

a coupling layer of material filling the concavity of the crystal and forming a flat surface facing away from the concave surface of the crystal, the acoustical impedance of the material being between that of the crystal and that of water,

characterized in that the coupling layer consists of a tungsten-loaded epoxy material, the weight percentage between tungsten and epoxy being chosen such that the acoustical impedance of the material is substantially different from the acoustical impedances of the crystal and of water, and the coupling layer has a sonic velocity near that of water.


 
5. The transducer of claim 4, in which the material of the coupling layer is solid.
 
6. The transducer of claim 4 or 5, additionally comprising a flat layer of material abutting the flat surface of the coupling layer, the flat layer of material having an acoustical impedance between that of water and that of the coupling layer of material, the coupling layer forming an intermediate layer of material filling the space between the crystal and the flat layer.
 
7. The transducer of claim 6, in which the material of the intermediate layer and the material of the flat layer are both solid.
 
8. The transducer of claim 6 or 7, in which the acoustical impedance ratio between the crystal and the material of the intermediate layer, the acoustical impedance ratio between the material of the intermediate layer and the material of the flat layer, and the acoustical impedance ratio between the material of the flat layer and water are all equal to the cubed root of the acoustical impedance ratio between the crystal and water.
 
9. The transducer of claim 6, in which the acoustical impedance of the crystal, the intermediate layer, and the flat layer is approximately 35,12.2 and 4.3 x 105 g/cm2 sec, respectively.
 
10. The transducer of one of claims 4 - 9, in which the material of the intermediate layer is moldable.
 
11. The transducer of one of claims 6 - 10, in which the material of the flat layer is moldable.
 
12. The transducer of one of claims 6 - 11, in which the material of the flat layer is mica-loaded epoxy.
 
13. The transducer of one of claims 5 - 12, additionally comprising a housing for supporting the crystal, the flat layer and the intermediate layer.
 


Ansprüche

1. Verfahren für die effektive Übertragung von Ultraschallenergie zu oder von Körpergewebe oder Wasser, wobei das Verfahren die Schritte umfaßt:

Koppeln einer Quelle oder eines Empfängers elektrischer Energie an einen piezoelektrischen Kristall, der eine konkave, aktive Oberfläche und eine akustische Impedanz aufweist, die wesentlich größer als diejenige des Körpergewebes oder Wasser ist;

Koppeln der Ultraschallenergie zwischen der aktiven Oberfläche des Kristalls und der Oberfläche des Körpergewebes oder von Wasser durch eine Kopplungsschicht aus einem Material, welches die konkave Vertiefung des Kristalls füllt und eine flache, von der konkaven Oberfläche des Kristalls weggewandte Oberfläche bildet, wobei die akustische Impedanz des Materials zwischen derjenigen des Kristalls und derjenigen des Körpergewebes oder von Wasser liegt, dadurch gekennzeichnet, daß die Kopplungsschicht aus einem mit Wolfram beladenen Epoxid besteht und daß der Gewichtsprozentsatz zwischen Wolfram und Epoxid so gewählt ist, daß die akustische Impedanz des Materials im wesentlichen verschieden von der akustischen Impedanz des Kristalls und des Körpergewebes oder Wasser ist.


 
2. Verfaren nach Anspruch 1, bei dem eine flache Materialschicht an die flache Oberfläche der Kopplungsschicht anstößt, das akustische Impedanzverhältnis zwischen dem Kristall und dem Material der Kopplungsschicht, das akustische Impedanzverhältnis zwischen dem Material der Kopplungsschicht und dem Material der flachen Schicht und das akustische Impedanzverhältnis zwischen dem Material der flachen Schicht und dem Objekt alle gleich der dritten Wurzel aus dem akustischen Impedanzverhältnis zwischen dem Kristall und dem Objekt sind.
 
3. Verfahren nach Anspruch 2, bei dem die flache Schicht eine gleichmäßige Dicke von näherungsweise einem Viertel der mittleren Wellenlänge der gekoppelten Ultraschall-Energie hat.
 
4. Fokussierter Ultraschall-Wandler mit:

einem piezoelektrischen Kristall, der eine konkave, aktive Oberfläche und eine wesentlich größere akustische Impedanz als diejenige von Wasser aufweist, und

einer Kopplungsschicht aus einem Material, welches die konkave Vertiefung des Kristalls füllt und eine flache, von der konkaven Oberfläche des Kristalls weggewandte Oberfläche bildet, wobei die akustische Impedanz des Materials zwischen derjenigen des Kristalls und derjenigen von Wasser liegt,


dadurch gekennzeichnet, daß die Kopplungsschicht aus einem mit Wolfram beladenen Epoxidmaterial besteht, der Gewichtsprozentsatz zwischen Wolfram und Epoxid so gewählt ist, daß die akustische Impedanz des Materials wesentlich verschieden von der akustischen Impedanz des Kristalls und von Wasser ist und die Kopplungsschicht eine Schallgeschwindigkeit nahe derjenigen von Wasser aufweist.
 
5. Wandler nach Anspruch 4, bei dem das Material der Kopplungsschicht fest ist.
 
6. Wandler nach Anspruch 4 oder 5, der zusätzlich eine flache Materialschicht aufweist, die an die flache Oberfläche der Kopplungsschicht anstößt, die flache Materialschicht eine akustische Impedanz zwischen derjenigen von Wasser und derjenigen der Kopplungsmaterialschicht aufweist, wobei die Kopplungsschicht eine Zwischenschicht aus einem Material bildet, welches den Raum zwischen dem Kristall und der flachen Schicht füllt.
 
7. Wandler nach Anspruch 6, bei dem das Material der Zwischenschicht und das Material der flachen Schicht beide fest sind.
 
8. Wandler nach Anspruch 6 oder 7, bei dem das akustische Impedanzverhältnis zwischen dem Kristall und dem Material der Zwischenschicht, das akustische Impedanzverhältnis zwischen dem Material der Zwischenschicht und dem Material der flachen Schicht und das akustische Impedanzverhältnis zwischen dem Material der flachen Schicht und Wasser alle gleich der dritten Wurzel aus dem akustischen Impedanzverhältnis zwischen dem Kristall und Wasser sind.
 
9. Wandler nach Anspruch 8, bei dem die akustische Impedanz des Kristalls, der Zwischenschicht und der flachen Schicht näherungsweise 35, bzw. 12,2 bzw. 4,3 x 105 g/cm2 sec betragt.
 
10. Wandler nach einem der Ansprüche 4 bis 9, bei dem das Material der Zwischenschicht gießbar ist.
 
11. Wandler nach einem der Ansprüche 6 bis 10, bei dem das Material der flachen Schicht gießbar ist.
 
12. Wandler nach einem der Ansprüche 6 bis 11, bei dem das Material der flachen Schicht glimmerbeladenes Expoxid ist.
 
13. Wandler nach einem der Ansprüche 5 bis 12, welcher zusätzlich ein Gehäuse zur Halterung des Kristalls, der flachen Schicht und der Zwischenschicht aufweist.
 


Revendications

1. Procédé permettant de transmettre efficacement une énergie ultrasonique à un tissu corporel ou à de l'eau, ou à partir dudit tissu ou de ladite eau, les étapes de ce procédé consistant à:

connecter une source où un récepteur d'énergie électrique à un cristal piézoélectrique présentant une surface efficace concave et une impédance acoustique sensiblement plus grande que celle du tissu corporel ou de l'eau; et

à transmettre l'énergie ultrasonique de la surface dudit cristal à la surface du tissu corporel ou de l'eau, à travers une couche de transfert consistant en une matière remplissant la concavite dudit cristal et délimitant une surface plane orientée à l'égard de ladite surface concave dudit cristal, l'impédance acoustique de ladite matière étant constituée entre celle dudit cristal et celle du tissu corporel ou de l'eau,

procédé caractérisé par le fait que la couche de transfert consiste en une résine époxy chargée de tungstène et que le pourcentage pondéral entre le tungstène et la résine époxy est choisi de telle manière que l'impédance acoustique de ladite matière est sensiblement différente de l'impédance acoustique du cristal et de celle du tissu corporel ou de l'eau, et par le fait que la vitesse sonore de ladite matière est proche de celle du tissu corporel ou de l'eau.


 
2. Procédé selon la revendication 1, caractérisé par le fait qu'une couche plane de matière est appliquée contre la surface plane de la couche de transfert, et par le fait que le rapport d'impédances acoustiques entre le cristal et la matière constituant ladite couche de transfert, le rapport d'impédances acoustiques entre la matière constituant ladite couche de transfert et la matière constituant ladite couche plane, ainsi que le rapport d'impédances acoustiques entre la matière constituant ladite couche plane et l'objet sont tous égaux à la racine cubique du rapport d'impédances acoustiques entre ledit cristal et ledit objet.
 
3. Procédé selon la revendication 2, caractérisé par le fait que la couche plane présente une épaisseur uniforme correspondant à approximativement 1/4 de la longueur d'onde moyenne de l'énergie ultrasonique transférée.
 
4. Transducteur d'énergie ultrasonique concentrée comprenant un cristal piézoélectrique présentant une surface efficace concave et une impédance acoustique sensiblement supérieure à celle de l'eau; et une couche de transfert constituée d'une matière remplissant la concavité dudit cristal et délimitant une surface plane orientée à l'écart de ladite surface concave du cristal, l'impédance acoustique de ladite matière etant située entre celle dudit cristal et celle de l'eau, transducteur caractérisé par le fait que ladite couche de transfert consiste en une matière à base de résine époxy chargée de tungstène, le pourcentage pondéral entre le tungstène et la résine époxy étant choisi de telle manière que l'impédance acoustique de ladite matière soit sensiblement différente des impédances acoustiques du cristal et de l'eau, et par le fait que la couche de transfert a une vitesse de transfert sonore proche de celle de l'eau.
 
5. Transducteur selon la revendication 4, caractérisé par le fait que la couche de transfert consiste en une matière solide.
 
6. Transducteur selon l'une des revendications 4 et 5, caractérisé par le fait qu'il comporte en outre une couche plane de matière appliquée contre la surface plane de la couche de transfert, ladite couche plane présentant une impédance acoustique comprise entre celle de l'eau et celle de ladite couche de transfert, et par le fait que la couche de transfert forme une couche intermédiaire de matière comblant l'espace compris entre le cristal et ladite couche plane.
 
7. Transducteur selon la revendication 6, caractérisé par le fait que la couche intermédiaire et la couche plane consistent toutes deux en des matières solides.
 
8. Transducteur selon l'une des revendications 6 et 7, caractérisé par le fait que le rapport des impédances acoustiques entre le cristal et la matière constituant la couche intermédiaire, le rapport d'impédances acoustiques entre la matière constituant ladite couche intermédiaire et la matière constituant la couche plane, et le rapport d'impedances acoustiques entre la matière constituant cette couche plane et l'eau sont tous égaux à la racine cubique du rapport d'impédances acoustiques entre ledite cristal et l'eau.
 
9. Transducteur selon la revendication 8, caractérisé par le fait que les impédances acoustiques du cristal, de la couche intermédiaire et de la couche plane sont approximativement de 35.105 g/cm2/s, 12,2-105 g/cm2/s et 4,3-105g/cm2/s, respectivement.
 
10. Transducteur selon l'une quelconque des revendications 4 à 9, caractérisé par le fait que la matière constituant la couche intermédiaire peut être moulée.
 
11. Transducteur selon l'une quelconque des revendications 6 à 10, caractérisé par le fait que la matière constituant la couche plane peut être moulée.
 
12. Transducteur selon l'une quelconque des revendications 6 à 11, caractérisé par le fait que la matière constituant la couche plane est une résine époxy chargée de mica.
 
13. Transducteur selon l'une quelconque des revendications 5 à 12, caractérisé par le fait qu'il comporte en outre un boîtier logeant le cristal, la couche plane et la couche intermédiaire.
 




Drawing