(19)
(11)EP 2 135 480 B1

(12)EUROPEAN PATENT SPECIFICATION

(45)Mention of the grant of the patent:
04.07.2018 Bulletin 2018/27

(21)Application number: 08730252.7

(22)Date of filing:  20.02.2008
(51)International Patent Classification (IPC): 
H04R 9/02(2006.01)
H04R 31/00(2006.01)
(86)International application number:
PCT/US2008/054411
(87)International publication number:
WO 2008/103723 (28.08.2008 Gazette  2008/35)

(54)

LOUDSPEAKER MAGNETIC FLUX COLLECTION SYSTEM

LAUTSPRECHER-MAGNETFLUSS-SAMMELSYSTEM

SYSTÈME DE CAPTAGE DE FLUX MAGNÉTIQUE DE HAUT-PARLEUR


(84)Designated Contracting States:
AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MT NL NO PL PT RO SE SI SK TR

(30)Priority: 22.02.2007 US 891169 P

(43)Date of publication of application:
23.12.2009 Bulletin 2009/52

(73)Proprietor: Harman International Industries, Inc.
Northridge, CA 91329 (US)

(72)Inventors:
  • DANOVI, Benny
    Llantwit Major, CF61 1ZB (GB)
  • ROYSE, Eric
    Indianapolis, IN 46220 (US)

(74)Representative: Grünecker Patent- und Rechtsanwälte PartG mbB 
Leopoldstraße 4
80802 München
80802 München (DE)


(56)References cited: : 
EP-A- 1 227 701
JP-A- 9 154 193
JP-A- 61 184 096
JP-A- 7 007 792
JP-A- 61 074 499
  
      
    Note: Within nine months from the publication of the mention of the grant of the European patent, any person may give notice to the European Patent Office of opposition to the European patent granted. Notice of opposition shall be filed in a written reasoned statement. It shall not be deemed to have been filed until the opposition fee has been paid. (Art. 99(1) European Patent Convention).


    Description

    BACKGROUND OF THE INVENTION


    1. Technical Field.



    [0001] The invention relates to loudspeakers for producing audible sound, and more particularly to a magnetic flux collection system for a loudspeaker.

    2. Related Art.



    [0002] A transducer is a device that converts one form of an input signal to another form. Loudspeakers are one example of a transducer. Loudspeakers convert electrical signals to audible sound. Loudspeakers include a diaphragm, a voice coil and a magnet structure. The voice coil is connected to the diaphragm and is disposed in an air gap. The magnet structure generates a magnetic flux in an air gap between the magnet structure and the voice coil.

    [0003] Input current flowing through the voice coil creates an induced magnetic field that interacts with the magnetic field in the air gap. This may cause the voice coil to move, which in turn causes the diaphragm to move or vibrate. As a result, sound is generated. Other structures such as a spider, a surround, and a frame, may be used to form a loudspeaker.

    [0004] JP 61 184096 A teaches a loud speaker configuration, wherein a frame of a magnetically conductive material is attached to a yoke. The magnetic force of the magnetic field is concentrated in the magnetic gap. JP 61 074499 A, JP 09 154193 A and JP 07 007792 A teach loudspeaker configurations wherein a center plate between two magnets and a top plate positioned on the upper surface of the upper magnet in order to close the magnetic circuits are provided. Both magnets are positioned within a magnet housing. EP -A- 1 227 701 teaches a loud speaker configuration, wherein a first magnet is separated from a second magnet by a center plate, wherein a top plate is formed on the second magnet and wherein the first magnet faces a yoke whereas the second magnet is positioned above the yoke surface. Magnetic flux is radiated from the second magnetic flows into the upper surface of the center plate and most of the thus directed magnetic flux passes the magnetic gap to return to the magnet via the yoke.

    SUMMARY



    [0005] It is provided a loudspeaker comprising:

    a support frame constructed of a magnetically non-conductive material;

    a plurality of magnets configured in a motor assembly to each produce a magnetic flux; a magnet housing configured to at least partially surround at least one of the magnets, the magnet housing is a magnetically conductive material; and

    a magnetic flux collector coupled with the magnet housing and extending outwardly away from the magnet housing;

    where the magnetic flux collector is a magnetically conductive material configured to receive and channel the magnetic flux of at least one of the magnets to an air gap formed between the magnet housing and the motor assembly, and where a distal end of the magnetic flux collector is coupled to the support frame and a proximal end of the magnetic flux collector is coupled with the magnet housing, and the magnetic flux collector is operable as a structural member to maintain a position of the magnet housing with respect to the support frame.


    BRIEF DESCRIPTION OF THE DRAWINGS



    [0006] The invention may be better understood with reference to the following drawings and description. The components in the figures are not necessarily to scale, emphasis instead being placed upon illustrating the principles of the invention. Moreover, in the figures, like referenced numerals designate corresponding parts throughout the different views.

    Figure 1 is a plan view of an example loudspeaker that includes a magnetic flux collector.

    Figure 2 is a cut-away side view of the loudspeaker of Figure 1.

    Figure 3 is an exploded view of the loudspeaker of Figure 1.

    Figure 4 is an exploded view of a motor assembly, a magnet housing and the flux collector included in the loudspeaker of Figure 3.

    Figure 5 is a plan view of an example magnetic flux collector and a magnet housing.

    Figure 6 is a cut away side view of the magnetic flux collector and magnet housing of FIG. 5.

    Figure 7 is a plan view of another example magnetic flux collector and a magnet housing.

    Figure 8 is a partial cut away side view of the magnetic flux collector and magnet housing of FIG. 7.

    Figure 9 is a portion of the loudspeaker of FIG. 6 depicted with magnetic flux lines.

    Figure 10 is also a portion of the loudspeaker of FIG. 6 depicted with magnetic flux lines.


    DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS



    [0007] FIG. 1 is a plan view of an example loudspeaker 100 that includes a support frame 102, a motor assembly 104, a magnetic flux collector 106 and a spider 108. In FIG. 1, the loudspeaker 100 is illustrated in a generally oval shape. In other examples, different geometric loudspeaker shapes may also be used such as squares, circles, rectangles and so forth. In addition, the components that are described as included in the loudspeaker 100 should be viewed in an illustrative sense and not as limitations or required components. Some of the described example components may be omitted, and/or other components may be used within the loudspeaker 100 in other examples.

    [0008] FIG. 2 is a cut-away side view of the loudspeaker 100 of FIG. 1 along line 2--2. In FIGs. 1 and 2, the loudspeaker 100 may include the support frame 102, the motor assembly 104, the magnetic flux collector 106 and a magnet housing 202. The support frame 102 may be formed from any rigid material, such as plastic, aluminum, steel, carbon fiber, magnesium, or other materials. The motor assembly 104 may include a first centering pin 204, a first magnet 206, a second magnet 208, a first core cap 210, a second core cap 212, and a second centering pin 214. In other examples, the motor assembly 104 may include three or more magnets. Additionally or alternatively, the centering pin, and/or the second core cap may be omitted.

    [0009] The magnet housing 202 may be formed of any type of magnetically conductive material (ferromagnetic) that is configurable to include a base and a surrounding wall that define a hollow cavity. In one example, the magnet housing 202 may be referred to as a shellpot. The first magnet 206 may be disposed at least partially in the hollow cavity contiguous with the base of the magnet housing 202 and at least partially surrounded by the wall of the magnet housing 202. The first magnet 206 may be coupled with the base of the magnet housing 202 with a mechanical fastener, an adhesive, friction fit, or any other mechanism to fixedly couple the first magnet 206 with the base of the magnet housing 202. The second magnet 208 may be disposed adjacent to the first magnet 206 with the first core cap 210 positioned between the first magnet 206 and the second magnet 208. The second magnet 208 may be at least partially outside the magnet housing 202.

    [0010] In FIG. 2, the second magnet 208 is positioned almost entirely outside the magnet housing 202 such that most of the magnetic field produced by the second magnet 208 is not channeled through the magnet housing 202. The second core cap 212 may be positioned in contiguous contact with the second magnet 208 on a side of the second magnet 208 that is opposite the first core cap 210. The first and second magnets 206 and 208 may be formed from any magnetic material, such as iron, cobalt, nickel, or polymer, that is capable of producing or being charged to produce magnetic energy. In FIG. 2, the first magnet 206 is operable as a primary magnet, and the second magnet 208 is operable as a bucking magnet. Thus, the polarity of the first and second magnets 206 and 208 is such that the same polarity of the first and second magnets 206 and 208 are positioned to be facing one another on the opposite sides of the first core cap 210.

    [0011] During operation of the example in FIG. 2, the magnetic energy from the first magnet 206 may be channeled substantially through the magnet housing 202 and an air gap 220 formed between the motor assembly 104 and the magnet housing 202 to complete a first magnetic circuit. The air gap 220 is a predetermined location where the magnetic energy of the magnets 206 and 208 is concentrated. The magnetic energy of a top pole of the second magnet 208 (the bucking magnet) positioned adjacent the second core cap 212, may travel mostly through air, including the air gap 220, in order to complete a second magnetic circuit. Travel through air of the magnetic energy of the second magnet 208 reduces the level of magnetic energy relatively quickly because the magnetic reluctance of air is relatively high. The reluctance of the magnetic flux collector 106, on the other hand, is relatively low, and the magnetic energy generated by the second magnet 208 is channeled through the magnetic flux collector 106 to the air gap 220, rather than traveling through air. Thus, the magnetic flux collector 106 reduces the amount of travel of the magnetic energy of the second magnet 208 through air in order to maximize the magnetic energy level being supplied to the air gap 220. As a result, the magnitude of magnetic energy from the second magnet 208 that is available to contribute to operation of the loudspeaker is significantly increased by use of the magnetic flux collector 106.

    [0012] The motor assembly 104 and the magnet housing 202 may be aligned to be concentric with a central axis 216 of the loudspeaker 100. The first magnet 206, the second magnet 208, the first core cap 210 and the second core cap 212 may be fixedly held in relative position to each other and the magnet housing 202 by adhesive, mechanical fasteners, interlocking features, or any other mechanism. The magnetic flux collector 106 also may be aligned to be concentric with magnet housing 202 and/or the central axis 216 of the loudspeaker 100.

    [0013] In FIG. 2, each of the base of the magnet housing 202, the first magnet 206, the second magnet 208, the first core cap 210, and the second core cap 212 may include an aperture to accommodate the first and second centering pins 204 and 214. The apertures may be formed along the central axis 216. Thus, the first magnet 206, the second magnet 208, the first core cap 210 and the second core cap 212 may be fixedly coupled together and to the base of the magnet housing 202 with a coupling mechanism formed with the first and second centering pins 204 and 214. In other examples, the first and second centering pins 204 and 214 may be a single member, or any other configuration that holds in place the components included in the motor assembly 104. Also, the first and second centering pins 204 and 214 may be a single member formed as a post. In this configuration, the magnetic energy of the first magnet 206 and the second magnet 208 may be used in conjunction with the post to hold the first magnet 206, the second magnet 208, the first core cap 210 and the second core cap 212 in place. In addition, or alternatively, multiple coupling mechanisms, or posts that are offset from the central axis 216 may be used to maintain the position of the components of the motor assembly 104 with respect to each other and the magnet housing 202.

    [0014] The first and second centering pins 204 and 214 may be any design that provides a rigid keeper function to maintain the position of the first magnet 206, the second magnet 208, the first core cap 210 and the second core cap 212 with respect to each other and the magnet housing 202. In FIG. 2, the first and second centering pins 204 and 214 are a threaded two-piece design that includes outer flanges formed to contact the base of the magnet housing 202 and the second core cap 212. In one example, the configuration of the first magnet 206, the second magnet 208, the first core cap 210, and the second core cap 212 in contiguous contact may form a pot type multiple magnet stator configuration.

    [0015] A voice coil 222 may be supported by the spider 108 within the air gap 220 in the magnetic field produced by the first and second magnets 206 and 208. Thus, the voice coil 222 is subject to the concentrated magnetic energy of the magnets 206 and 208. The spider 108 may include a central opening to which the voice coil 222 is coupled at an inner periphery of the spider 108. The spider 108 may be coupled at an outer periphery to the support frame 102, the magnetic flux collector 106, or a combination of the support frame 102 and the magnetic flux collector 106. As described later, in FIG. 2, the spider 108 is coupled with the magnetic flux collector 106.

    [0016] Generally, during operation, current from an amplifier supplying electric signals representing program material to be transduced by the loudspeaker 100 drives the voice coil 222. The voice coil 222 may generate an induced magnetic field based on the electric signals. Interaction of the induced magnetic field with a magnetic field produced by the first magnet 206 and the second magnet 208 may cause the voice coil 222 to reciprocate axially while supported and maintained in a desired range of reciprocation motion by the spider 108. Reciprocation of the voice coil 222 generates sound representing the program material transduced by the loudspeaker 100.

    [0017] The magnetic flux collector 106 may be formed of any material capable of conducting magnetic energy, such as steel. The magnetic flux collector 106 may be coupled with the magnet housing 202, or may be integrally formed as part of a single unitary structure that includes at least a portion of the magnet housing 202. The magnetic flux collector 106 may also be coupled with the support frame 102. In FIG. 2, the magnetic flux collector 106 may be coupled with the support frame 102 by fasteners, such as machine screws 224. In other examples, the magnetic flux collector 106 may be integrally formed with support frame 102, overmolded by the support frame 102, glued to the support frame 102, welded to the support frame 102, and/or coupled by some form of mechanical connection, such as a threaded connection, a snap fit and/or a frictional fit.

    [0018] FIG. 3 is an exploded perspective view of the example loudspeaker of FIGs. 1 and 2. In FIG. 3, the magnetic flux collector 106 is coupled with the motor assembly 104. The magnetic flux collector 106 is also coupled with the support frame 102 by a coupling mechanism, such as fasteners 302. FIG. 3 also illustrates a cone 304, a pad ring 306, a top gasket 308, and a electrical connector 310 that may be coupled with the support frame 102. In other examples, the pad ring 306, and/or top gasket 308 may be omitted. A central apex of the cone 304 may be attached to an end of the voice coil 222 near the motor assembly 104. An outer peripheral edge of the cone 304 may be coupled to the surround 314 or other compliance structure. The surround 314 may be attached at an outer perimeter to the support frame 102. In other examples, the surround 314 may be omitted and the cone 304 may be directly coupled with the support frame 102. The support frame 102 may also include a lip, ears, or other mechanism 316 that may be used to support mounting of the loudspeaker 100 in a desired location such as on a surface or in a loudspeaker enclosure. The spider 108, the voice coil 222, the cone 304, the pad ring 306, the top gasket 308, and the surround 314 may be positioned concentric with the central axis 216.

    [0019] The electrical connector 310 is an example of a terminal for coupling conductors to the loudspeaker 100. Such conductors may provide electrical signals representative of program material. The electrical connector 310 may include a positive and negative connection point to the loudspeaker 100. The electrical connector 310 may also be coupled with the voice coil 222. In FIG. 3, the electrical connector 310 is a two piece socket connector having a male piece and a female piece. In other examples, any other form of electrical connection may be used, including, but not limited to, screw terminals, solder connections, crimp connectors, banana plug sockets, and other connections.

    [0020] FIG. 4 is an exploded perspective view of an example of the motor assembly 104 and the magnetic flux collector 106. In FIG. 4, the magnet housing 202 and the magnetic flux collector 106 are integrally formed as a single unitary structure. For example, the magnet housing 202 and the magnetic flux collector 106 may be a single machined part. In other examples, the magnet housing 202 and the magnetic flux collector 106 may be a two-piece forged and machined part, or a three-piece forged, machined and stamped part. In the two and three piece examples, the pieces may be permanently coupled to form the single unitary structure by welding, threaded connection, press fit, friction fit, or any other mechanism. In other examples, the magnet housing 202 and the magnetic flux collector 106 may be separately manufactured pieces that are coupled during the loudspeaker assembly process.

    [0021] In FIGs. 2 and 4, the first centering pin 204 is coupled with the magnet housing 202 by fasteners, such as machine screws 402. In other examples, any other coupling mechanism may be used to fixedly couple the first centering pin 204 to the magnet housing 202. In still other examples, the first centering pin 204 may be integrally formed with the magnet housing 202.

    [0022] In FIG. 4, the second centering pin 214 may be threaded into the first centering pin 204 to fixedly hold the magnet housing 202, the first magnet 206, the first core cap 210, the second magnet 208, and the second core cap 212 in positional relationship with each other concentric with the central axis 216 of the loudspeaker. In other examples, any other mechanism or material, such as an adhesive, may be used to maintain the positional relationships.

    [0023] In one example, the first centering pin 204 may form a post that extends from the base of the magnet housing 202 through the motor assembly 104, and the second centering pin 214 may be omitted. In this example, the magnetic energy of the first and second magnets 206 and 208 may be used to fixedly hold the magnet housing 202, the first magnet 206, the first core cap 210, the second magnet 208, and the second core cap 212 in positional relationship with each other, and the first centering pin 204 (the post) may maintain the motor assembly 104 concentric with the central axis 216 of the loudspeaker.

    [0024] The first and second centering pins 204 and 214 may be formed of any rigid material that does not conduct magnetic energy, such as brass, ceramic, carbon fiber, plastic, wood or glass. Thus, magnetic fields of the first and second magnets 206 and 208 are not channeled through the first and second centering pins 204 and 214, but instead are channeled through the magnetic flux collector 106 and the magnet housing 202 into the air gap 220.

    [0025] FIG. 5 is an example of a magnetic flux collector 106 that is formed integrally with a magnet housing 202. In FIG. 5, the magnetic flux collector 106 is circular and does not include the motor assembly for clarity of illustration. The magnetic flux collector 106 includes an inner diameter 502 that is a radial diameter, and an outer diameter 504 that is a radial diameter, both of which are generally circular. In other examples, where the magnetic flux collector 106 is oval, square, rectangular, or any other shape, the inner and outer diameters 502 and 504 may be a corresponding shape defining a respective inner and outer periphery of the magnetic flux collector. Thus, as used herein, the inner diameter 502 is defined as the inner periphery of the magnetic flux collector 106, and the outer diameter 504 is defined as the outer periphery of the flux collector 106 regardless of the shape of the inner and outer periphery of the magnetic flux collector 106.

    [0026] The body of the magnetic flux collector 106 extends between the inner diameter 502, and the outer diameter 504. The inner diameter 502, the outer diameter 504 and the body are concentric with the central axis 216. The inner diameter 502 defines a central aperture formed to accommodate the magnet housing 202. Accordingly, the body of the magnetic flux collector 106 may uniformly extend outward from the magnet housing 202 to the outer diameter 504. In FIG. 5, the magnetic flux collector 106 is coupled with the magnet housing 202 to form a one piece machined component formed as a single unitary structure. As previously discussed, in other examples, other manufacturing configurations in which the magnetic flux collector 106 is formed separately and coupled with the separately formed magnet housing 202 are possible.

    [0027] FIG. 6 is a cutaway view of the magnetic flux collector 106 and the magnet housing 202 of FIG. 5. In FIG. 6, the magnetic flux collector 106 and the magnet housing 202 are coupled at a periphery of the magnet housing 202 that is opposite the base of the magnet housing 202. In other examples, the magnetic flux collector 106 and magnet housing 202 may be coupled at any location along the wall of the magnet housing 202. At whatever location the magnetic flux collector 106 and magnet housing 202 are coupled, both the magnetic flux collector 106 and the magnet housing 202 may be formed with sufficient magnetically conductive material to channel the magnetic flux of the first and second magnets 206 and 208 to the air gap 220 without oversaturation.

    [0028] In FIGs. 5 and 6, the magnetic flux collector 106 includes a plurality of mounting flanges 508. The mounting flanges may be any mechanism or member that enables coupling of the magnetic flux collector 106 to the support frame 102 (FIG. 1). The mounting flanges 508 may be positioned proximate the outer diameter 504. Alternatively, the mounting flanges 508 may be located elsewhere on the body of the magnetic flux collector 106. In FIGs. 5 and 6, each of the mounting flanges 508 includes an aperture 510. The aperture 510 may be formed to accommodate a fastener, such as a machine screw. In other examples, any other form of mounting mechanism may be used with the mounting flanges 508, such as clips, snaps, or other mechanisms to fixedly couple the magnetic flux collector 106 and the support frame 102. Thus, the magnetic flux collector 106 may be operable as structural member to fixedly maintain the position of the magnet housing 202 with respect to the support frame 102. In one example, the magnetic flux collector 106 may be the only structural member that maintains the fixed position of the magnet housing 202 with respect to the support frame 102.

    [0029] The magnetic flux collector 106 also includes a plurality of vent apertures 512 and a spider platform 514. The vent apertures 512 penetrate the magnetic flux collector 106 to provide air flow. The air flow allows the spider 108 to move freely as the voice coil reciprocates during operation of the loudspeaker 100. The vent apertures 512 may be sized and positioned to minimize air pressure or vacuum pressure being asserted on the spider 108 as the voice coil 222 reciprocates in the air gap 220. The spider platform 514 may provide a coupling mechanism, such as a planar surface to receive an adhesive, to fixedly couple the spider 108 (FIG. 2) to the magnetic flux collector 106. As illustrated in FIGs. 2 and 3, the spider 108 may be coupled at an outer perimeter of the spider 108 to the spider platform 514. The spider 108 may be coupled with the spider platform 514, with an adhesive, such as glue, with a mechanical mechanism, such as a clamp, and/or with a holding mechanism, such as a slot or channel.

    [0030] During manufacturing, the spider 108 may be coupled with the spider platform 514 before or after the magnetic flux collector 106 is coupled with the support frame 102 (FIG. 1). The spider platform 514 may support and fixedly maintain the position of the outer perimeter of the spider 108. Accordingly, the spider 108 may support and constrain the voice coil 222 to reciprocate axially with respect to not only the flux collector 106, but also the support frame 102, and the magnet housing 202 that is rigidly coupled with the magnetic flux collector 106.

    [0031] Thus, the magnet housing 202 and the magnetic flux collector 106 of a loudspeaker 100 are utilized as a structural first half of the loudspeaker assembly. The magnet housing 202 and magnetic flux collector 106 support the spider 108, the voice coil 222, and the motor assembly 104 of the loudspeaker 100. Thus, the combination of the magnet housing 202 and magnetic flux collector 106 maintain the positional relationship of the spider 108, the voice coil 222, and the motor assembly 104 of the loudspeaker 100 while also providing a channel for magnetic flux of the magnets in the motor assembly. The magnetic flux collector 106 may be attached to a second half of the loudspeaker assembly by fasteners, such as bolts, screws, or other fasteners, or by overmolding the magnetic flux collector 106 into a plastic mold of the support frame 102 to form a complete assembly.

    [0032] Use of the spider platform 514 to support the spider 108 advantageously reduces the overall depth of the assembled loudspeaker 100 in comparison to conventional loudspeaker designs. In one example, the overall depth of the loudspeaker 100 is reduced by several millimeters. The magnitude of savings in the depth of a loudspeaker may vary depending on the size of loudspeaker. In addition, significant manufacturing advantages may be achieved by having the spider 108 coupled with the spider platform 514. For example, the spider 108 may be manufactured as part of a separate assembly representing the first half of the loudspeaker assembly that includes the motor assembly 104 and the flux collector 106, while the cone 304, support frame 102, etc. may be separately manufactured as the second half of the loudspeaker assembly. Thus, when the magnetic flux collector 106 is coupled with the support frame 102, assembly of the loudspeaker 100 is complete. The assembly that includes the cone 304 and support frame 102 may be supplied as a replaceable part so that the spider 108, motor assembly 104 and the magnetic flux collector 106 assembly may be reused.

    [0033] FIG. 7 is another example of a magnetic flux collector 106 that is coupled with a magnet housing 202. FIG. 8 is a partial cutaway view illustrating a cross-section of the magnetic flux collector 106 and the magnet housing 202 of FIG. 7. In FIGs. 7 and 8, the magnetic flux collector 106 and the magnet housing 202 are formed as three separate pieces that are coupled together (three-piece design).. In another example, a two piece design may be implemented in which the magnet housing 202 may be forged and machined, and the magnetic flux collector 106 may be a stamped part. Similar to the example of FIGs. 5 and 6, the magnetic flux collector 106 may include vent apertures 512 to allow air flow as the spider 108 reciprocates.

    [0034] The magnetic flux collector 106 may also be overmolded. For example, a plastic support frame 102 may be molded in a plastic mold. The magnetic flux collector 106 may be inserted in the plastic mold prior to the molding process such that liquid plastic forming the support frame 102, will envelope a portion of the magnetic flux collector 106 prior to curing. Accordingly, when the molding process is complete, the magnetic flux collector 106 will be fixedly mounted to the support frame 102. In that regard, the magnetic flux collector 106 may include a plurality of retention apertures 702 formed in the magnetic flux collector 106. When the liquid plastic enters the plastic mold, the plastic may flow through the retention apertures 702 and form a single unitary plastic structure that fills the retention apertures 702 and covers a radial edge of the magnetic flux collector 106.

    [0035] In another example, the magnetic flux collector 106 may be formed as magnetically conductive bars, such as steel bars, formed in/on the support frame 102, In this example, the support frame 102 may be coupled directly with the magnet housing 202 as in conventional loudspeakers. However, the conductive bars may be coupled with the support frame 102 to contact the magnet housing 202 when the support frame 102 is coupled to the magnet housing 202 in order to form a channel through which magnetic flux may flow. The conductive bars may be coupled externally to the support frame 102, such as by mechanical coupling, adhesive, fasteners, etc. Alternatively, the conductive bars may be overmolded into the support frame 102 to provide sufficient magnetic flux carrying capacity. If the conductive bars are overmolded, at least a portion of each of the magnetic bars may include retention apertures. In addition, a portion of the conductive bars may not be overmolded with plastic in order to form a magnetically conductive flow path between each of the conductive flow paths and the magnet housing 202. In still other examples, the plastic used to form the support frame may include magnetically conductive particles dispersed throughout the plastic for form a magnetically conductive path through the support frame 102.

    [0036] In FIG. 8, the three piece design includes the flux collector 106 as a first piece, and the magnet housing 202 includes the second and third pieces. Specifically, the second piece is the wall of the magnet housing 202 that forms a hollow housing 802, and the third piece is the base of the magnet housing 202 that forms a base plate 804. The hollow housing 802 may include open ends. The base plate 804 may be formed to fit within one of the open ends of the hollow housing 802. The hollow housing 802 may include a flange 806 that allows the base plate 804 to extend a predetermined distance into a cavity 808 formed in the hollow housing 802. The flange 806 may circumvent at least a portion of an internal surface of the hollow housing 802 and form a shelf upon which the base plate 804 may rest. The base plate 804 may be coupled with the hollow housing 802 by welding, glue, friction fit, one or more fasteners, or any other coupling mechanism to fixedly couple the hollow housing 802 and the base plate 804. In FIG. 8, the base plate 804 includes a central aperture 810 formed to accommodate the centering pin 204 (FIG. 2) and a plurality of adjacent apertures 812 to accommodate the fasteners, such as the machine screws 402 (FIG. 4). In other examples, no apertures, fewer apertures, or additional apertures may be included in the base plate 804.

    [0037] In FIG. 8, an example coupling mechanism in the form of a stake on 814 is illustrated for coupling the magnetic flux collector 106 to the magnet housing 202. The magnet housing 202 includes a shoulder 816. The shoulder 816 may concentrically surround the magnet housing 202 and be formed integral with the magnet housing 202, or as a separate structure coupled with the magnet housing 202 by welding, glue, press fit, or other coupling mechanism.

    [0038] During manufacturing, the stake on 814 is created by inserting the magnet housing 202 into a central aperture concentrically formed in the magnetic flux collector 106. The magnet housing 202 may be inserted into the magnetic flux collector 106 until a portion of the magnetic flux collector 106 proximate the inner diameter of the magnetic flux collector 106 is resting on the shoulder 816. A portion of the hollowing housing 802 extending through the aperture in the magnet housing 202 may be bent downward onto the body of the magnetic flux collector 106 to compress the portion of the magnetic flux collector 106 between the shoulder 804 and the bent portion of hollowing housing 802. Thus, the magnetic flux collector 106 may be fixedly held in position with respect to the magnet housing 202. In other examples, other forms of coupling mechanisms are possible, as previously discussed. Following overmolding and coupling(if needed), the combination of the magnetic flux collector 106 and the magnet housing 202 may be mechanically coupled with the support frame 102 (FIG. 1).

    [0039] FIG. 9 is a cutaway side view of a portion of the loudspeaker 100 of FIG. 2 that includes the magnet housing 202 and magnetic flux collector 106, with the support frame 102 and the spider 108 removed for clarity. In FIG. 9, example modeling of the paths of the magnetic flux included in the magnetic fields produced by the magnets 206 and 208 is depicted as a plurality of magnetic flux lines.

    [0040] The magnetic flux of the first magnet 206 is illustrated with primary magnetic flux lines 902. The primary magnetic flux lines illustrate that the magnetic flux from the first magnet 206 is channeled through the magnet housing 202 to the air gap 220 and then to the first core cap 210. The air gap 220 is formed between the magnet housing 202 and the motor assembly 104 to concentrate the magnetic flux of the magnets 206 and 208 in a predetermined location with respect to the voice coil 222 (FIG. 2).

    [0041] The magnetic flux of the second magnet 208 is illustrated with bucking magnetic flux lines 904. A first bucking magnetic flux line 904a, exits the second core cap 212 and travels through air until it reaches the outer diameter, or outer peripheral edge, of the magnetic flux collector 106. The first bucking magnetic flux line 904a is received with the magnetically conductive magnetic flux collector 106, is channeled to the air gap 220 formed between the magnet housing 202 and the magnets 206 and/or 208. Similarly, other bucking magnetic flux lines 904b-904f enter the magnetic flux collector 106 at various points, or diameters, along the length of the body of the magnetic flux collector 106 and are channeled to the air gap 220 via the magnet housing 202.

    [0042] The magnetic flux of the first and second magnets 206 and 208 is concentrated in the air gap 220 in a predetermined location proximate the voice coil. In FIG. 9, the predetermined location is adjacent to the first core cap 210, such that the majority of the magnetic flux from both the first and second magnets 206 and 208 (substantially all the magnetic flux) is also channeled through the first core cap 210. However, some of the magnetic flux from the first magnet 206 may be channeled only through the magnet housing 202, and some of the magnetic flux from the second magnet 208 may not be channeled through the magnetic flux collector 106.

    [0043] In FIG. 9, the magnetic flux collector 106 is coupled with the magnet housing 202 at a proximal end 910 proximate the inner diameter 502 (FIG. 5), and extends away from the magnet housing 202 at a determined angle to a distal end 912 proximate the outer diameter of the magnetic flux collector 106. The determined angle forms a clearance area between the second magnet 208 and the magnetic flux collector 106, within which the spider 108 may reciprocate with the voice coil 222 (FIG. 2) without contacting the magnetic flux collector 106, or the magnet housing 202. Thus, the determined angle may be any angle that forms a volume of air space sufficient to allow excursions of the spider 108 and voice coil 222 assembly without contact with the flux collector 106, or any other structure included in the loudspeaker 100.

    [0044] The magnitude of the magnetic flux increases closer to the proximal end 910 due to an increase in the number of bucking magnetic flux lines 904 entering the magnetic flux collector 106. Accordingly, the magnetic flux carrying capacity of the magnetic flux collector 106 may be greatest nearest the magnet housing 202. The magnetic flux carrying capacity of the magnetic flux collector 106 may be lower closer to the distal end 912. Thus, the thickness of the magnetic flux collector 106 may taper to be thickest proximate the inner diameter of the magnetic flux collector 106, and thinnest proximate the outer diameter of the magnetic flux collector 106. In FIG. 9, one of the vent apertures 512 is illustrated. Since there is less magnetically conductive material in the vicinity of the vent aperture 512, the density of the magnetic flux channeled in the magnetic flux collector 106 correspondingly increases. In addition to the magnetic flux collector 106, the support frame 102 also may be made of ferromagnetic material to enable channeling of the magnetic flux from the motor assembly 104 (FIG. 1). Alternatively, or in addition, a ferromagnetic grill may be used with the loudspeaker 100 to enable additional channeling of the magnetic flux. The ferromagnetic grill may be concentric with the central axis 216 (FIG. 2) and may provide a barrier over the cone 304 (FIG. 3) to protect the cone 304 from damage by external objects and/or to provide an attractive cover over the loudspeaker 100. Stray magnetic flux of the magnetic field from at least the second magnet 208 may be directed and channeled to the air gap 220 (FIG. 2) with the support frame 102 and/or the grill. In addition, the ferromagnetic material of the support frame 102 and/or the grill my provide magnetic shielding of components positioned external to the loudspeaker in the vicinity of the first and second magnets 206 and 208 so that the affect of the magnetic field of the first and second magnets 206 and 208 on such components is minimized. In addition, or alternatively, the support frame 102 and/or the grill may be made from a material of high thermal conductivity to enhance heat dissipation of the loudspeaker 100.

    [0045] In another example, a thickness of the second core cap 212 (FIG. 2) may be increased. The increased thickness of the core cap 212 may be in the form of a ferromagnetic extension member that is coupled to the second core cap 212. Alternatively, the second core cap 212 may be formed with additional material to increase the thickness, or multiple core caps may be stacked to provide increased thickness. The increase in thickness of the second core cap 212 may be sufficient to form one or more magnetically conductive channels to the support frame 102 and/or the grill to enable efficient channeling of the magnetic flux to the air gap 220 (FIG. 2). If the extension of the second core cap 212 is made from a material that is also of high thermal conductivity, the heat dissipation of the loudspeaker also may be enhanced.

    [0046] FIG. 10 is another cross section of a portion of the loudspeaker of FIG. 2 that includes the magnet housing 202 and magnetic flux collector 106, with the support frame 102 and the spider 108 removed for clarity. In FIG. 10, the magnetic flux collector 106 is shown in a cross section that is between the vent apertures 512 (FIG. 5) to further illustrate that the thickness of the magnetic flux collector 106 is tapered to be thickest near the proximal end 160 and progressively becomes thinner toward the distal end 162 in accordance with the reduction in the number of magnetic flux lines in the magnetic flux collector 106. In FIG. 10, the taper is a uniform taper, in other examples, the taper may be a curved taper, stepwise taper, or other non-linear taper. In still other examples, the thickness may be uniform between the proximal end 910 and the distal end 912.

    [0047] In FIGs. 9 and 10, the magnetic flux carrying capacity of the magnetic flux collector 106 may be sufficient to maintain the magnetic flux density, measured in teslas, T, through the magnetic flux collector 106 at or below a determined magnitude. The magnetic flux carrying capacity of the magnetic flux collector 106 is affected by the diametric surface area and/or cross sectional area of the magnetic flux collector 106. The larger the diametric surface area and/or the cross sectional area, the more magnetic flux may flow through the magnetic flux collector 106 without exceeding a desired magnitude of teslas of magnetic flux density. Thus, the number of apertures 512, the size of the magnetic flux collector 106, the magnetic conductivity of the material from which the magnetic flux collector 106 is made, and the thickness of the material forming the magnetic flux collector 106 may change the magnetic flux carrying capacity.

    [0048] In one example, the desired magnitude of the magnetic flux density of the magnetic flux collector 106 is about 2 T or less. In another example, the magnetic flux density of the magnetic flux collector 106 may be maintained in a range from about 1 T to about 2 T. In still another example, the magnetic flux density of the magnetic flux collector 106 may be maintained less than about 2.2 T.

    [0049] A diametric surface area of the magnetic flux collector 106 may be determined at any diameter point (p) between a determined outer diameter of the magnetic flux collector 106 (the distal end 912) and a determined inner diameter of the magnetic flux collector 106 (the proximal end 910). Thus, the minimum volume of material, such as steel, needed to form the magnetic flux collector 106 and maintain less than the desired magnitude of teslas may be determined taking into consideration the apertures 512 formed in the magnetic flux collector 106, other materials included in the construction of the magnetic flux collector 106, and/or any other variables in the diametric surface area of the magnetic flux collector 106 by selecting a diameter point (p) that does not include the variable. In one example, the diametric surface area (Ds) may be determined at any diameter point (p) between the proximal end 910 and a variable, such as a circular row of apertures 512, by:

    Where Mod is the outside diameter of the second magnet 208, Fdp is the diameter of the magnetic flux collector 106 at the diameter point (p), SPod is the magnet housing outside diameter at the proximal end 910 of the magnetic flux collector 106, and Me is the magnet energy product in Mega Gauss x Oersted (MgO) of the second magnet 208.

    [0050] The intensity of the magnetic flux in the magnetic flux collector 106 may be based on the configuration of the motor assembly 104. Specifically, the strength of the magnetic fields produced by the magnets 206 and 208, the position of the magnets 206 and 208 with respect to the magnet housing 202 and/or the magnetic flux collector 106, the point at which the magnet housing 202 and the magnetic flux collector 106 are coupled, and/or the diameter of the magnet housing 202 and/or the magnets 206 and 208. An example formula to determine a minimum thickness (Tinside) of the magnetic flux collector 106 at the proximal end 160 that maintains less than an optimal magnitude of teslas, such as 2 T, may be:



    [0051] The outer diameter of the magnetic flux collector 106 may be selected to optimize the effectiveness of channeling the magnetic energy to the magnet housing 202. In one example, the outer diameter of the magnetic flux collector 106 may be about three times an outside diameter of the second magnet 208. In another example, when the outer diameter of the magnetic flux collector 106 is less than or equal to three times the outside diameter of the second magnet 208, the minimum thickness (Toutside) of the magnetic flux collector 106 at the outer diameter in order to maintain less than the optimal magnitude of teslas, such as 2 T, may be:

    Where the Fod is the outer diameter of the magnetic flux collector 106. It is to be noted that since Equation 3 is used to determine a minimum acceptable value to maintain less than [?] the desired magnitude of Teslas, if the outer diameter (Fod) is greater than three times the diameter of the second magnet 208, Equation 3 will produce a negative number, and thus does not provide a valid result. For the same reason, Equation 1 will similarly produce a negative number that is not a valid result when the diameter of the magnetic flux collector 106 at the diameter point (p) (Fdp) is selected to be greater than three times the diameter of the second magnet 208.

    [0052] Any material formed as part of the magnetic flux collector 106 that is beyond the optimal range, such as extra thickness and/or an extended outer diameter of the magnetic flux collector 106, is not detrimental to the performance of the magnetic flux collector 106 as an efficient channel for magnetic energy, but can add material costs, weight and size. In addition, a magnetic flux collector 106 that includes less material will still offer benefits, but to a lesser degree than if the thickness and diametric surface area were at least at the minimum amounts to optimize performance as determined from Equations 1-3. Further, the constant of 1.55 indicated in Equations 1-3 may change depending on the material from which the magnetic flux collector 106 is constructed. In the examples of Equations 1-3, the magnetic flux collector 106 is formed with 1010 steel.

    [0053] Thus, by varying the diametric surface area and/or the thickness of the magnetic flux collector 106, the magnetic flux density of the magnetic flux collector 106 may be maintained below a predetermined desired magnitude. In one example, the thickness of the magnetic flux collector 106 may be selected to be in a range of between about 1 mm to about 4 mm thick.

    [0054] The thickness of the magnetic flux collector 106 may also be tapered to be thickest near the proximal end 910 and gradually become thinner toward the distal end 912 in accordance with the reduction in the number of magnetic flux lines in the magnetic flux collector 106 toward the distal end 912. In one example the proximal end 910 may be greater than 1.2 mm thick, for example 2.4 mm thick. In FIG. 9, one of the apertures 512 is also depicted, as previously discussed. The apertures 512 may be formed in the magnetic flux collector 106 to be spaced away from the proximal end 910 by a determined distance in order to avoid too much reduction in the volume of material in the magnetic flux collector 106 through which the magnetic energy may flow. As previously discussed, if the area of material from which magnetic flux collector 106 is formed becomes less than a certain amount, the magnetic flux density may increase beyond a determined threshold limit, such as 2 T. Accordingly, apertures 512 may be advantageously spaced away from the proximal end 910 in order take advantage of the larger surface area of the magnetic flux collector 106, and the fewer lines of magnetic flux flowing in the magnetic flux collector 106.

    [0055] Without the magnetic flux collector 106, the paths of the magnetic flux lines for the second magnet 208 would be considerably longer and include significantly more travel through air than the magnetic flux lines illustrated in FIGs. 9 and 10. Since the magnetic energy from the magnets is traveling through more air, less magnetic energy is available to interact with the voice coil. Thus, due to the lower magnetic energy, more power is needed from the electrical signal to produce a similar magnitude of movement in the cone 304 (FIG. 3) when compared to the example of FIGs. 9 and 10. In other words, using the magnetic flux collector 106 may reduce the amount of power required to drive the loudspeaker to produce audible sound at a decibel level similar in magnitude to a loudspeaker that did not include the magnetic flux collector 106.

    [0056] While various embodiments of the invention have been described, it will be apparent to those of ordinary skill in the art that many more embodiments and implementations are possible within the scope of the attached claims.


    Claims

    1. A loudspeaker (100) comprising:

    a support frame (102) constructed of a magnetically non-conductive material;

    a plurality of magnets (206, 208) configured in a motor assembly to each produce a magnetic flux;

    a magnet housing (202) configured to at least partially surround at least one of the magnets (206, 208), the magnet housing (202) is a magnetically conductive material; and

    a magnetic flux collector (106) coupled with the magnet housing (202) and extending outwardly away from the magnet housing (202);

    where the magnetic flux collector (106) is a magnetically conductive material configured to receive and channel the magnetic flux of at least one of the magnets (206, 208) to an air gap formed between the magnet housing (202) and the motor assembly, and where a distal end of the magnetic flux collector (106) is coupled to the support frame (102) and a proximal end of the magnetic flux collector (106) is coupled with the magnet housing (202), and the magnetic flux collector (106) is operable as a structural member to maintain a position of the magnet housing (202) with respect to the support frame (102).


     
    2. The loudspeaker (100) of claim 1, where the magnet housing (202) is concentrically positioned with respect to a central axis of the loudspeaker (100), and the magnetic flux collector (106) is concentrically positioned with respect to the magnet housing (202) and the central axis of the loudspeaker (100).
     
    3. The loudspeaker (100) of claim 1 or 2 further comprising:

    a cone (304) coupled to the support frame (102);

    a voice coil (222) coupled with the cone (304) and positioned proximate the magnets (206, 208); and

    a spider (108) coupled with the voice coil (222) at an inner periphery, and coupled with the magnetic flux collector (106) at an outer periphery, the magnetic flux collector (106) also coupled with the support frame (102).


     
    4. The loudspeaker (100) of claims 1, 2, or 3, where the plurality of magnets (206, 208) comprise a first magnet and a second magnet, where the first magnet is at least partially surrounded by the magnet housing (202) and the second magnet is outside the magnet housing (202), and where a first magnetic flux of the first magnet is channeled with the magnet housing (202) to the air gap, and a second magnetic flux of the second magnet is channeled with the magnetic flux collector (106) to the air gap.
     
    5. The loudspeaker (100) of claims 1, 2, 3 or 4, where the magnetic flux collector (106) comprises a spider (108) platform coupled with a spider (108), the spider (108) coupled with a voice coil (222) positioned in the air gap, where the spider (108) is rigidly coupled with the spider (108) platform and configured to allow the voice coil (222) to reciprocate axially along a central axis of the loudspeaker (100), where the magnetic flux collector (106) is positioned adjacent the spider (108) and comprises a plurality of vent apertures formed in the magnetic flux collector (106), the vent apertures operable to provide air flow to the spider (108) as the voice coil (222) reciprocates.
     
    6. The loudspeaker (100) of claims 1, 2, 3, 4 or 5, where the magnetic flux collector (106) comprises a plurality of magnetically conductive bars.
     
    7. The loudspeaker (100) of claims 1, 2, 3, 4, 5, or 6, where the magnetic flux collector (106) includes an inner diameter forming a central aperture and an outer diameter forming a periphery of the magnetic flux collector (106), the inner diameter and the outer diameter concentric with a central axis of the loudspeaker (100).
     
    8. The loudspeaker (100) of claim 7, where the outer diameter of the magnetic flux collector (106) is about three times larger than an outside diameter of the second magnet.
     
    9. The loudspeaker (100) of claim 4, where a magnetic flux density of the second magnetic flux channeled with the magnetic flux collector (106) is greater than or equal to about 1.0 teslas and less than or equal to about 2.2 teslas.
     
    10. The loudspeaker (100) of claims 1, 2, 3, 4, 5, 6, 7, 8, or 9, where a thickness of the magnetic flux collector (106) is tapered between a first thickness proximate the magnet housing (202) and a second thickness spaced away from the magnet housing (202), where the first thickness is greater than the second thickness.
     
    11. The loudspeaker (100) of claim 10, where the thickness of the magnetic flux collector (106) is configured to taper between the first thickness and the second thickness at a rate that maintains the magnetic flux density in the magnetic flux collector (106) below a predetermined magnitude of flux density.
     
    12. The loudspeaker (100) of claims 7 or 10, where a minimum thickness (Tinside) of the magnetic flux collector (106) proximate the inner diameter is determined by:

    where Mod is a second magnet outside diameter of the second magnet,

    SPod comprises a housing outside diameter of the magnet housing (202) proximate the inner diameter of the body, and

    Me comprises a magnet energy product in Mega Gauss x Oersted (MgO),
    and

    where a minimum thickness (Toutside) of the magnetic flux collector (106) proximate the outer diameter is determined by:

    where Fod comprises the outer diameter of the body.


     
    13. A method of collecting magnetic flux in a loudspeaker (100) with a support frame (102) constructed of a magnetically non-conductive material, the method comprising:

    producing a first magnetic flux with a first magnet included in a motor assembly, where the first magnet is at least partially surrounded with a magnet housing (202) that is magnetically conductive;

    producing a second magnetic flux with a second magnet included in the motor assembly, where the second magnet is at least partially outside the magnet housing (202);

    receiving the first magnetic flux with the magnet housing (202);

    receiving the second magnetic flux with a magnetic flux collector (106), the magnetic flux collector (106) coupled with the magnet housing (202) such that the magnetic flux collector (106) extends away from the magnet housing (202), the magnetic flux collector (106) magnetically conductive; and

    channeling the first magnetic flux and the second magnetic flux to an air gap formed between the magnet housing (202) and the motor assembly with the magnetic flux collector (106) and the magnet housing (202), where a distal end of the magnetic flux collector (106) is coupled to the support frame (102) and a proximal end of the magnetic flux collector (106) is coupled with the magnet housing (202), and the magnetic flux collector (106) is operable as a structural member to maintain a position of the magnet housing (202) with respect to the support frame (102).


     


    Ansprüche

    1. Lautsprecher (100), umfassend:

    einen Stützrahmen (102), der aus einem magnetisch nicht leitenden Material gefertigt ist;

    eine Vielzahl von Magneten (206, 208), die in einer Motorbaugruppe ausgelegt sind, um jeweils einen Magnetfluss zu erzeugen;

    ein Magnetgehäuse (202), das ausgelegt ist, um zumindest einen der Magneten (206, 208) zumindest teilweise zu umgeben, wobei das Magnetgehäuse (202) ein magnetisch leitendes Material ist; und

    einen Magnetflusssammler (106), der mit dem Magnetgehäuse (202) gekoppelt ist und sich nach außen weg von dem Magnetgehäuse (202) erstreckt;

    wobei der Magnetflusssammler (106) ein magnetisch leitendes Material ist, das ausgelegt ist, um den Magnetfluss von zumindest einem der Magneten (206, 208) aufzunehmen und zu einem zwischen dem Magnetgehäuse (202) und der Motorbaugruppe gebildeten Luftspalt zu kanalisieren, und wobei ein distales Ende des Magnetflusssammlers (106) an den Stützrahmen (102) gekoppelt ist und ein proximales Ende des Magnetflusssammlers (106) mit dem Magnetgehäuse (202) gekoppelt ist und der Magnetflusssammler (106) als ein strukturelles Element bedienbar ist, um eine Position des Magnetgehäuses (202) in Bezug auf den Stützrahmen (102) zu halten.


     
    2. Lautsprecher (100) nach Anspruch 1, wobei das Magnetgehäuse (202) konzentrisch in Bezug auf eine Mittelachse des Lautsprechers (100) positioniert ist und der Magnetflusssammler (106) konzentrisch in Bezug auf das Magnetgehäuse (202) und die Mittelachse des Lautsprechers (100) positioniert ist.
     
    3. Lautsprecher (100) nach Anspruch 1 oder 2, ferner umfassend:

    eine Membran (304), die an den Stützrahmen (102) gekoppelt ist;

    eine Schwingspule (222), die mit der Membran (304) gekoppelt und neben den Magneten (206, 208) positioniert ist; und

    eine Sicke (108), die mit der Schwingspule (222) an einem Innenumfang gekoppelt ist und mit dem Magnetflusssammler (106) an einem Außenumfang gekoppelt ist, wobei der Magnetflusssammler (106) auch mit dem Stützrahmen (102) gekoppelt ist.


     
    4. Lautsprecher (100) nach Anspruch 1, 2 oder 3, wobei die Vielzahl von Magneten (206, 208) einen ersten Magneten und einen zweiten Magneten umfasst, wobei der erste Magnet zumindest teilweise von dem Magnetgehäuse (202) umgeben ist und sich der zweite Magnet außerhalb des Magnetgehäuses (202) befindet, und wobei ein erster Magnetfluss des ersten Magneten mit dem Magnetgehäuse (202) zu dem Luftspalt kanalisiert wird und ein zweiter Magnetfluss des zweiten Magneten mit dem Magnetflusssammler (106) zu dem Luftspalt kanalisiert wird.
     
    5. Lautsprecher (100) nach Anspruch 1, 2, 3 oder 4, wobei der Magnetflusssammler (106) eine Plattform einer Sicke (108) umfasst, die mit einer Sicke (108) gekoppelt ist, wobei die Sicke (108) mit einer in dem Luftspalt positionierten Schwingspule (222) gekoppelt ist, wobei die Sicke (108) fest mit der Plattform der Sicke (108) gekoppelt und ausgelegt ist, um der Schwingspule (222) zu ermöglichen, sich axial entlang einer Mittelachse des Lautsprechers (100) hin- und herzubewegen, wobei der Magnetflusssammler (106) neben der Sicke (108) positioniert ist und eine Vielzahl von in dem Magnetflusssammler (106) gebildeten Lüftungsblenden umfasst, wobei die Lüftungsblenden bedienbar sind, um der Sicke (108) Luftstrom bereitzustellen, während sich die Schwingspule (222) hin- und herbewegt.
     
    6. Lautsprecher (100) nach Anspruch 1, 2, 3, 4 oder 5, wobei der Magnetflusssammler (106) eine Vielzahl von magnetisch leitenden Stäben umfasst.
     
    7. Lautsprecher (100) nach Anspruch 1, 2, 3, 4, 5 oder 6, wobei der Magnetflusssammler (106) einen Innendurchmesser, der eine Mittelblende bildet und einen Außendurchmesser, der einen Umfang des Magnetflusssammlers (106) bildet, beinhaltet, wobei der Innendurchmesser und der Außendurchmesser mit einer Mittelachse des Lautsprechers (100) konzentrisch sind.
     
    8. Lautsprecher (100) nach Anspruch 7, wobei der Außendurchmesser des Magnetflusssammlers (106) etwa dreimal größer als ein Außendurchmesser des zweiten Magneten ist.
     
    9. Lautsprecher (100) nach Anspruch 4, wobei eine Magnetflussdichte des zweiten Magnetflusses kanalisiert mit dem Magnetflusssammler (106) größer als oder gleich ungefähr 1,0 Tesla und weniger als oder gleich ungefähr 2,2 Tesla ist.
     
    10. Lautsprecher (100) nach Anspruch 1, 2, 3, 4, 5, 6, 7, 8 oder 9, wobei sich eine Dicke des Magnetflusssammlers (106) zwischen einer ersten Dicke neben dem Magnetgehäuse (202) und einer zweiten Dicke, die von dem Magnetgehäuse (202) beabstandet ist, verjüngt, wobei die erste Dicke größer als die zweite Dicke ist.
     
    11. Lautsprecher (100) nach Anspruch 10, wobei die Dicke des Magnetflusssammlers (106) ausgelegt ist, um sich zwischen der ersten Dicke und der zweiten Dicke in einer Rate zu verjüngen, die die Magnetflussdichte in dem Magnetflusssammler (106) unterhalb einer zuvor festgelegten Größe der Flussdichte hält.
     
    12. Lautsprecher (100) nach Anspruch 7 oder 10, wobei eine Mindestdicke (Tinside) des Magnetflusssammlers (106) neben dem Innendurchmesser bestimmt wird durch:

    wobei Mod ein zweiter Magnetaußendurchmesser des zweiten Magneten ist,

    SPod einen Gehäuseaußendurchmesser des Magnetgehäuses (202) neben dem Innendurchmesser des Körpers umfasst, und

    Me ein Magnetenergieprodukt in Megagauss x Oersted (MgO) umfasst, und

    wobei eine Mindestdicke (Toutside) des Magnetflusssammlers (106) neben dem Außendurchmesser bestimmt wird durch:

    wobei Fod den Außendurchmesser des Körpers umfasst.


     
    13. Verfahren zum Sammeln von Magnetfluss in einem Lautsprecher (100) mit einem Stützrahmen (102), der aus einem magnetisch nicht leitenden Material gefertigt ist, wobei das Verfahren Folgendes umfasst:

    Erzeugen eines ersten Magnetflusses mit einem ersten Magneten, der in einer Motorbaugruppe enthalten ist, wobei der erste Magnet zumindest teilweise von einem Magnetgehäuse (202) umgeben ist, das magnetisch leitend ist;

    Erzeugen eines zweiten Magnetflusses mit einem zweiten Magneten, der in der Motorbaugruppe enthalten ist, wobei sich der zweite Magnet zumindest teilweise außerhalb des Magnetgehäuses (202) befindet;

    Aufnehmen des ersten Magnetflusses mit dem Magnetgehäuse (202);

    Aufnehmen des zweiten Magnetflusses mit einem Magnetflusssammler (106), wobei der Magnetflusssammler (106) mit dem Magnetgehäuse (202) gekoppelt ist, sodass sich der Magnetflusssammler (106) weg von dem Magnetgehäuse (202) erstreckt, wobei der Magnetflusssammler (106) magnetisch leitend ist; und

    Kanalisieren des ersten Magnetflusses und des zweiten Magnetflusses zu einem zwischen dem Magnetgehäuse (202) und der Motorbaugruppe gebildeten Luftspalt mit dem Magnetflusssammler (106) und dem Magnetgehäuse (202), wobei ein distales Ende des Magnetflusssammlers (106) an den Stützrahmen (102) gekoppelt ist und ein proximales Ende des Magnetflusssammlers (106) mit dem Magnetgehäuse (202) gekoppelt ist und der Magnetflusssammler (106) als ein strukturelles Element bedienbar ist, um eine Position des Magnetgehäuses (202) in Bezug auf den Stützrahmen (102) zu halten.


     


    Revendications

    1. Haut-parleur (100) comprenant :

    un châssis de support (102) composé d'un matériau magnétiquement non conducteur ;

    une pluralité d'aimants (206, 208) conçus dans un ensemble moteur pour produire chacun un flux magnétique ;

    un boîtier d'aimant (202) conçu pour entourer au moins partiellement au moins un des aimants (206, 208), le boîtier d'aimant (202) étant un matériau magnétiquement conducteur ; et

    un collecteur de flux magnétique (106) couplé au boîtier d'aimant (202) et s'étendant vers l'extérieur à l'écart du boîtier d'aimant (202) ;

    où le collecteur de flux magnétique (106) est un matériau magnétiquement conducteur conçu pour recevoir et acheminer le flux magnétique d'au moins un des aimants (206, 208) jusqu'à un entrefer formé entre le boîtier d'aimant (202) et l'ensemble moteur, et où une extrémité distale du collecteur de flux magnétique (106) est couplée au châssis de support (102) et une extrémité proximale du collecteur de flux magnétique (106) est couplée au boîtier d'aimant (202), et le collecteur de flux magnétique (106) peut être utilisé comme un élément structurel pour maintenir une position du boîtier d'aimant (202) par rapport au châssis de support (102).


     
    2. Haut-parleur (100) selon la revendication 1, où le boîtier d'aimant (202) est positionné de manière concentrique par rapport à un axe central du haut-parleur (100), et le collecteur de flux magnétique (106) est positionné de manière concentrique par rapport au boîtier d'aimant (202) et à l'axe central du haut-parleur (100).
     
    3. Haut-parleur (100) selon la revendication 1 ou 2 comprenant en outre :

    un cône (304) couplé au châssis de support (102) ;

    une bobine acoustique (222) couplée au cône (304) et positionnée à proximité des aimants (206, 208) ; et

    un croisillon (108) couplé à la bobine acoustique (222) à une périphérie interne, et couplé au collecteur de flux magnétique (106) à une périphérie externe, le collecteur de flux magnétique (106) étant également couplé au châssis de support (102) .


     
    4. Haut-parleur (100) selon les revendications 1, 2 ou 3, où la pluralité d'aimants (206, 208) comprend un premier aimant et un second aimant, où le premier aimant est au moins partiellement entouré par le boîtier d'aimant (202) et le second aimant est à l'extérieur du boîtier d'aimant (202), et où un premier flux magnétique du premier aimant est acheminé avec le boîtier d'aimant (202) jusqu'à l'entrefer, et un second flux magnétique du second aimant est acheminé avec le collecteur de flux magnétique (106) jusqu'à l'entrefer.
     
    5. Haut-parleur (100) selon les revendications 1, 2, 3 ou 4, où le collecteur de flux magnétique (106) comprend une plateforme de croisillon (108) couplée à un croisillon (108), le croisillon (108) étant couplé à une bobine acoustique (222) positionnée dans l'entrefer, où le croisillon (108) est couplé de manière rigide à la plateforme de croisillon (108) et conçu pour permettre à la bobine acoustique (222) d'effectuer un mouvement de va-et-vient axial le long d'un axe central du haut-parleur (100), où le collecteur de flux magnétique (106) est positionné de manière adjacente au croisillon (108) et comprend une pluralité d'ouvertures d'évent formées dans le collecteur de flux magnétique (106), les ouvertures d'évent pouvant être utilisées pour fournir un flux d'air au croisillon (108) tandis que la bobine acoustique (222) effectue un mouvement de va-et-vient.
     
    6. Haut-parleur (100) selon les revendications 1, 2, 3, 4 ou 5, où le collecteur de flux magnétique (106) comprend une pluralité de barres magnétiquement conductrices.
     
    7. Haut-parleur (100) selon les revendications 1, 2, 3, 4, 5 ou 6, où le collecteur de flux magnétique (106) comprend un diamètre interne formant une ouverture centrale et un diamètre externe formant une périphérie du collecteur de flux magnétique (106), le diamètre intérieur et le diamètre externe étant concentriques par rapport à un axe central du haut-parleur (100).
     
    8. Haut-parleur (100) selon la revendication 7, dans lequel le diamètre externe du collecteur de flux magnétique (106) est environ trois fois plus grand qu'un diamètre externe du second aimant.
     
    9. Haut-parleur (100) selon la revendication 4, où une densité de flux magnétique du second flux magnétique acheminée avec le collecteur de flux magnétique (106) est supérieure ou égale à environ 1,0 tesla et inférieure ou égale à environ 2,2 teslas.
     
    10. Haut-parleur (100) selon les revendications 1, 2, 3, 4, 5, 6, 7, 8 ou 9, où une épaisseur du collecteur de flux magnétique (106) est effilée entre une première épaisseur proche du boîtier d'aimant (202) et une seconde épaisseur espacée du boîtier d'aimant (202), où la première épaisseur est supérieure à la seconde épaisseur.
     
    11. Haut-parleur (100) selon la revendication 10, où l'épaisseur du collecteur de flux magnétique (106) est conçue pour s'effiler entre la première épaisseur et la seconde épaisseur à un taux qui maintient la densité de flux magnétique dans le collecteur de flux magnétique (106) en deçà d'une amplitude prédéterminée de densité de flux.
     
    12. Haut-parleur (100) selon les revendications 7 ou 10, où une épaisseur minimale (Tintérieur) du collecteur de flux magnétique (106) proche du diamètre interne est déterminée par

    Mod est un second diamètre extérieur d'aimant du second aimant,

    SPod comprend un diamètre extérieur de boîtier du boîtier d'aimant (202) proche du diamètre intérieur du corps, et

    Me comprend un produit d'énergie magnétique en Méga Gauss x Oersted (MgO), et

    où une épaisseur minimale (Textérieur) du collecteur de flux magnétique (106) proche du diamètre extérieur est déterminée par :

    Fod comprend le diamètre extérieur du corps.


     
    13. Procédé de collecte de flux magnétique dans un haut-parleur (100) avec un châssis de support (102) composé d'un matériau magnétiquement non conducteur, le procédé comprenant :

    la production d'un premier flux magnétique avec un premier aimant inclus dans un ensemble moteur, où le premier aimant est au moins partiellement entouré d'un boîtier d'aimant (202) qui est magnétiquement conducteur ;

    la production d'un second flux magnétique avec un second aimant inclus dans l'ensemble moteur, où le second aimant est au moins partiellement à l'extérieur du boîtier d'aimant (202) ;

    la réception du premier flux magnétique avec le boîtier d'aimant (202) ;

    la réception du second flux magnétique avec un collecteur de flux magnétique (106), le collecteur de flux magnétique (106) étant couplé au boîtier d'aimant (202) de sorte que le collecteur de flux magnétique (106) s'étend à l'écart du boîtier d'aimant (202), le collecteur de flux magnétique (106) étant magnétiquement conducteur ; et

    l'acheminement du premier flux magnétique et du second flux magnétique jusqu'à un entrefer formé entre le boîtier d'aimant (202) et l'ensemble moteur avec le collecteur de flux magnétique (106) et le boîtier d'aimant (202), où une extrémité distale du collecteur de flux magnétique (106) est couplée au châssis de support (102) et une extrémité proximale du collecteur de flux magnétique (106) est couplée au boîtier d'aimant (202), et le collecteur de flux magnétique (106) peut être utilisé comme un élément structurel pour maintenir une position du boîtier d'aimant (202) par rapport au châssis de support (102).


     




    Drawing


























    Cited references

    REFERENCES CITED IN THE DESCRIPTION



    This list of references cited by the applicant is for the reader's convenience only. It does not form part of the European patent document. Even though great care has been taken in compiling the references, errors or omissions cannot be excluded and the EPO disclaims all liability in this regard.

    Patent documents cited in the description