(19)
(11)EP 2 141 538 B1

(12)EUROPEAN PATENT SPECIFICATION

(45)Mention of the grant of the patent:
26.06.2019 Bulletin 2019/26

(21)Application number: 09164534.1

(22)Date of filing:  03.07.2009
(51)International Patent Classification (IPC): 
G03B 5/00(2006.01)
H04N 5/232(2006.01)

(54)

Vibration correcting device

Vibrationskorrekturvorrichtung

Dispositif de correction de vibration


(84)Designated Contracting States:
AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO SE SI SK SM TR

(30)Priority: 04.07.2008 JP 2008175912

(43)Date of publication of application:
06.01.2010 Bulletin 2010/01

(73)Proprietor: Canon Kabushiki Kaisha
Tokyo 146-8501 (JP)

(72)Inventor:
  • Ohta, Seiya
    Ohta-ku Tokyo (JP)

(74)Representative: Hitching, Peter Matthew 
Canon Europe Ltd European Patent Department 3 The Square Stockley Park
Uxbridge Middlesex UB11 1ET
Uxbridge Middlesex UB11 1ET (GB)


(56)References cited: : 
JP-A- 5 066 451
US-A- 5 852 749
US-A1- 2005 254 805
US-B1- 6 208 377
JP-A- 2004 248 309
US-A1- 2005 057 662
US-A1- 2006 233 539
US-B1- 6 233 009
  
      
    Note: Within nine months from the publication of the mention of the grant of the European patent, any person may give notice to the European Patent Office of opposition to the European patent granted. Notice of opposition shall be filed in a written reasoned statement. It shall not be deemed to have been filed until the opposition fee has been paid. (Art. 99(1) European Patent Convention).


    Description

    BACKGROUND OF THE INVENTION


    Field of the Invention



    [0001] The present invention relates to a vibration correcting device suitable for use in an optical apparatus, or a shooting device of, for example, a shooting apparatus.

    Description of the Related Art



    [0002] As a vibration correcting device, as in U.S. Patent No. 6,208,377 and U.S. Patent No. 6,233,009, there is a vibration correcting device including a frequency vibration detecting unit, which detects vibration frequency, and a vibration correcting unit. The vibration correcting device provides a suitable vibration correction effect by correcting a phase displacement of frequency characteristics.

    [0003] In recent years, maintenance of information infrastructure or security has increased the necessity of setting shooting devices. Among such shooting devices, there is an increasing need for shooting devices that can be used for high magnification. In addition, there is an increasing need for a vibration correction function.

    [0004] When a shooting device is set to, for example, a floor, a wall, or a ceiling, the shooting device may resonate at a frequency that is characteristic of the shooting device due to, for example, setting conditions or manufacturing errors of the shooting device. In particular, shooting devices provided with movable sections having pan/tilt driving mechanisms tend to resonate at their natural frequencies. Although the causes thereof depend upon the shooting devices, it may be said that there are various causes, such as the mass and rattling form in a gap of the movable section.

    [0005] Fig. 3 shows the result of setting a shooting device, inputting various frequencies having the same amplitude, and measuring the vibrations of the shooting device. The horizontal axis represents the frequency, and the vertical axis represents the amplitude. From Fig. 3, it can be understood that, when the input has a certain amplitude, the amplitude of the shooting device increases at a predetermined frequency. This means that the amplitude of the vibration of the shooting device is increasing with respect to the vibration at this frequency. It may be said that resonant frequency corresponds to the aforementioned natural frequency. In general, for example, ceilings are places where vibration is low. However, they are not places that do not vibrate at all. That is, they may undergo very small vibrations having various frequency components. It is known that, when a shooting device having a resonance characteristic is set, the amplitude of the vibration of the shooting device increases at a certain natural frequency, thereby causing an image to become blurred.

    [0006] JP 2004 248309 describes customizing a frequency characteristic of camera-shake correction of an imaging apparatus to a user of the imaging apparatus.

    [0007] US 2005/0057662 describes an image-taking apparatus which improves accuracy of taken images by correcting image blurring. The image-taking apparatus comprises an image pickup element which photoelectrically converts an object image formed by an image-taking optical system; a detection sensor which detects vibration; and a control circuit which controls driving of a correcting lens unit being disposed in the image-taking optical system and correcting image blurring by moving within a plane substantially orthogonal to the optical axis.

    [0008] US 2005/0254805 describes an image blur correcting device in which angular velocity signals of a vibration applied to an optical system are obtained from an angular velocity sensor having good drift characteristics and an angular velocity sensor having good frequency characteristics. The angular velocity signals are then synthesized by a synthesizing circuit.

    [0009] US 5852749 describes a vibration reduction device that includes a vibration detection device for detecting vibrations, a vibration reduction optical system for reducing the vibrations by its movement, a vibration reduction optical system drive device for driving the vibration reduction optical system on the basis of the detection result of the vibration detection device, a memory device for storing a predetermined frequency region, a comparison device for comparing the stored frequency region with the frequency of the vibrations detected by the vibration detection device, a lock device for locking the operation of the vibration reduction optical system, and a control device for controlling the lock device on the basis of the comparison result of the comparison device.

    SUMMARY OF THE INVENTION



    [0010] The present invention in its first aspect provides a vibration correcting device as specified in claims 1 to 4.

    [0011] The present invention in its second aspect provides an optical apparatus as specified in claims 5, 6, 9 and 10.

    [0012] The present invention in its third aspect provides a method as specified in claims 7 and 8.

    [0013] The present invention in its fourth aspect provides a program according to claim 11. Such a program can be provided by itself or carried by a carrier medium as specified in claim 12. The carrier medium may be a recording or other storage medium. The carrier medium may also be a transmission medium. The transmission medium may be a signal.

    [0014] Further features of the present invention will become apparent from the following description of examples with reference to the attached drawings.

    BRIEF DESCRIPTION OF THE DRAWINGS



    [0015] 

    Fig. 1 is a block diagram of Example 1, which is an example not forming part of the present invention.

    Fig. 2 is a flowchart of operations in the Example 1.

    Fig. 3 illustrates the results of measurements of natural vibration frequencies by a vibration tester in the Example 1 and with reference to the aforementioned situation.

    Fig. 4 illustrates Example 2, which is an exemplary embodiment of the present invention.

    Figs. 5A and 5B illustrate detection frequencies resulting from differences between frequency detection levels in the Example 2 of the present invention.

    Fig. 6 is a flowchart of operations in the Example 2 of the present invention.

    Fig. 7 is a flowchart of operations using frequency obtaining means in the Example 2.


    DESCRIPTION OF THE EMBODIMENTS


    Example 1: Not forming part of the present invention.



    [0016] Fig. 1 is a block diagram of a main structure of a vibration correcting device according to Example 1, which is an example not forming part of the present invention. As mentioned above, the vibration correcting device is built in an optical apparatus, such as a camera system, a camera body to which a lens unit is mountable, the lens unit, or an image pickup apparatus. The optical apparatus may optionally have a driving unit to change a shooting state.

    [0017] Reference numeral 1 denotes an angular-velocity detecting unit, and is mounted to a vibration correction shooting device of, for example, a shooting apparatus. The angular-velocity detecting unit includes an angular velocity sensor, such as a vibrating gyroscope. Reference numeral 2 denotes a DC cut filter that intercepts a direct-current component of a velocity signal, output from the angular-velocity detecting unit 1, and allows only an alternating-current component (that is, a vibration component) to pass therethrough. The DC cut filter may be a bypass filter (hereunder referred to as "HPF") that intercepts a signal at any bandwidth. Reference numeral 3 denotes an amplifier that amplifies an angular velocity signal, output from the DC cut filter, to one providing a suitable sensitivity.

    [0018] Reference numeral 4 denotes an A/D converter that converts the angular velocity signal output from the amplifier 3 into a digital signal. Reference numeral 5 denotes an integrator that integrates an output of the A/D converter 4 and outputs an angular displacement signal.

    [0019] Reference numeral 12 denotes a shooting-state determining circuit that determines, for example, panning/tilting from an integration signal of the angular velocity signal (that is, the angular displacement signal) output from the integration circuit 5.

    [0020] Reference numeral 7 denotes a D/A converter that converts the output of a phase-and-gain correcting circuit 11 into, for example, a PWM pulse output or an analog signal.

    [0021] The A/D converter 4, the integrator 5, the shooting-state determining circuit 12, and the D/A converter 7 are formed by, for example, a microcomputer COM1.

    [0022] Reference numeral 8 denotes a driving circuit that performs driving so that vibration of a following image correcting means is restricted on the basis of the displacement signal output from the microcomputer.

    [0023] Reference numeral 9 denotes the image correcting means, which uses, for example, optical correcting means for canceling vibration by displacing an optical axis, or electronic correcting means for canceling vibration by electronically shifting an image readout position using a memory in which an image is stored.

    [0024] In the microcomputer COM1, the A/D converter 4 converts the angular velocity signal output from the amplifier 3 into a digital signal. An HPF 10 is changeable at any bandwidth. The integration circuit 5 integrates a predetermined frequency-component signal extracted by the HPF 10, and determines an angular displacement signal at the frequency component. The phase-and-gain correcting circuit 11 corrects the phase and gain of the integration signal (that is, the angular displacement signal) output from the integration circuit 5. From the angular velocity signal and the angular displacement signal, a shooting-state determining circuit 12 determines a shooting state including, for example, stationary state/panning/tilting, and controls the characteristics of the HPF 10 in accordance with the shooting state.

    [0025] Storage means 14 for storing correction coefficients, which are correction information of the phase-and-gain correcting circuit 11 corresponding to natural vibration frequencies of the image pickup apparatus used in the example. During correction, the correction coefficients are read out to the phase-and-gain correcting circuit 11. Then, using the correction coefficients, the phase-and-gain correcting circuit 11 corrects the phase and gain of the angular displacement signal output from the integration circuit 5. The D/A converter 7 converts the output signal of the phase-and-gain correcting circuit 11 into, for example, a PWM pulse output or an analog signal, and outputs it.

    [0026] The phase and gain characteristics differ depending upon the frequency of the vibration applied to the apparatus. Therefore, when a shooting apparatus having a natural vibration frequency is used, if the frequency is previously known, a suitable vibration correction effect is obtained by suitably setting the phase and gain.

    [0027] A feature of the example is that the storage means 14 stores the correction information for correcting vibration at a particular frequency applied to the image pickup apparatus, and that, using the correction information, a suitable vibration correction is performed on the vibration at the particular frequency, without detecting the frequency of the vibration of the image pickup apparatus.

    [0028] Next, the operations of the microcomputer COM1 according to the example shown in Fig. 1 will be described with reference to the flowchart of Fig. 2. When control is started, in Step S201, a direct-current component is removed through the DC cut filter 2 and the amplifier 3. In addition, the angular velocity signal that is output from the angular velocity detecting means 1 and whose amplitude is increased to a predetermined level is converted into a digital signal by the A/D converter 4, and the digital signal is input to the microcomputer COM1.

    [0029] Next, in Step S202, the angular velocity signal and the angular displacement signal, obtained by integrating a predetermined high-region component (extracted from the angular velocity signal by the HPF 10) by the integration circuit 5, are used to determine a shooting state. In Step S203, in accordance with the determination result, as mentioned above, a coefficient for setting the characteristics of the HPF 10 is read out from a table (not shown) previously provided in the microcomputer COM1. That is, if the HPF 10 is a digital filter, when a predetermined coefficient is read out from the table (in which the coefficient is stored) and is set, the characteristics of the HPF 10 can be freely changed. In Step S204, using the coefficient for setting the characteristics, the HPF 10 performs a calculation to set the characteristics. In Step S205, the integration circuit 5 performs integration on the signal output from the HPF 10, and converts the signal to an angular displacement signal (vibration signal).

    [0030] In Step S206, a correction coefficient of the phase-and-gain correcting circuit 11 corresponding to the natural vibration frequency of the image pickup apparatus and stored in the storage means 14 is read out from the table (not shown) previously provided in the microcomputer COM1.

    [0031] The phase-and-gain correcting circuit 11 compensates for degradation of vibration correction characteristics resulting from a phase lag in a vibration correcting system. The phase-and-gain correcting circuit 11 includes, for example, a digital filter; reads out the correction coefficient of the digital filter; and sets phase and gain correction characteristics corresponding to the vibration frequency thereof.

    [0032] In Step S207, correction computation is performed using the coefficient obtained in Step S206. In Step S208, the obtained calculation result, that is, the corrected angular displacement signal, is converted into an analog signal by the D/A converter 7, or is formed as, for example, a PWM pulse, and is output by the microcomputer COM1 (S209).

    [0033] Accordingly, according to the example, since the correction information for correcting vibration at a particular frequency is stored, and the vibration is corrected on the basis of this information, it is possible to suitably correct the vibration at the particular frequency, such as vibration at a natural vibration frequency of the image pickup apparatus, or vibration characteristic of the environment in which the image pickup apparatus is set. As mentioned above, when a shooting device is set, in particular, when a shooting device provided with a movable section is set, the shooting device has the characteristic of resonating at its natural frequency. This natural frequency can be previously measured by vibrating the shooting device as a result of applying various frequencies at predetermined amplitudes.

    [0034] When the shooting device is secured to an apparatus, such as a vibration tester, which can vibrate at any frequency and amplitude, and measurement is performed, the natural frequency thereof can be previously determined. By storing the natural vibration frequency obtained in this way in the storage means 14, suitable vibration frequency control can be performed even if the shooting device vibrates at the natural frequency when the shooting device is set and secured.

    [0035] The storage means 14 that stores the correction coefficients for vibration at the natural vibration frequency may be rewritable storage means. By measuring the natural vibration frequency of the shooting device (for example, during shipment or in terms of lot unit), and writing the natural vibration frequency, it is possible to deal with variations in the natural vibration frequency of the device. In addition, the same effect can be obtained by storing possible correction coefficients for vibration at a plurality of frequencies, and selecting one of the possible correction coefficients. Further, the image pickup apparatus may be set at a place where vibration of the image pickup apparatus at a frequency that is equal to the natural vibration frequency of the image pickup apparatus is small, or at a place where the image pickup apparatus is affected by vibration at a particular frequency other than the natural vibration frequency. Even in such a case, it is possible to correct vibration so as to be suitable for the place where the image pickup apparatus is set, by previously specifying a main vibration frequency detected at the place where the image pickup apparatus is set and by storing a correction coefficient corresponding to this frequency in the storage means 14.

    Example 2: Exemplary embodiment of the present invention.



    [0036] Fig. 4 is a block diagram of a main structure of Example 2 of the present invention. In Fig. 4, parts corresponding to those of the Example 1 shown in Fig. 1 will be given the same reference numerals, and will not be described in detail below. In Fig. 4, reference numeral 15 denotes threshold value level setting means for setting a threshold value level a.

    [0037] In the Example 2, a setting method in which the setting means 15 for setting the threshold value level a of frequency obtaining means 13 is provided, and in which suitable detection of vibration applied to an image pickup apparatus at a location where a shooting device is set is allowed is proposed.

    [0038] Figs. 5A and 5B are graphs indicating levels "aH" and "aS", which are different threshold value levels "a" of the frequency obtaining means 13 and an output sample of vibration detecting means. The horizontal axis represents time, and the vertical axis represents angular velocity, which corresponds to amplitude. Fig. 5A is the graph for when a vibration sample that is held by a person's hand, and Fig. 5B is the graph for the vibration sample that is set. The numbers of vibrations exceeding the threshold levels aH and aS in a predetermined time become detection frequencies at their respective threshold value levels. In the figure, the threshold value level "aH" is, for example, a threshold value level of the frequency obtaining means 13 when the shooting device is held by a person's hand. Vibrations produced when the shooting device is held by a person's hand depend on individuals, and may include a combination of various frequencies.

    [0039] In correcting vibration of the shooting device that is being held by a person's hand, when vibration having a low frequency and a large amplitude is corrected, a certain effect may be provided. In this case, when the threshold value level is set as indicated by aH in Fig. 5A, the frequency can be properly detected. By setting the threshold value level in this way, a frequency having a relatively large amplitude can be selected even when the hand is shaking, so that a suitable vibration correction effect can be obtained during shooting with the shooting device that is held by a person's hand.

    [0040] When the shooting device is set, and the setting of the threshold value level "a" is made the same as that when the shooting device is held by a person's hand, a proper frequency detection result cannot be obtained. This is because, even if the shooting device resonates at a natural frequency due to being set or secured, the amplitude of the vibration is not necessarily large.

    [0041] As shown in Fig. 5B, the vibration of the shooting device mounted to a ceiling is very small compared to that of the shooting device that is being held by a person's hand. Here, for example, when the threshold value level in Fig. 5B is the threshold value level aH that is set when the shooting device is held by a person's hand, the frequency detection result becomes one in which the frequency is very low. For example, the frequency is 2 Hz.

    [0042] The set shooting device is actually vibrating at, for example, 20 Hz. Therefore, if phase and gain control is performed in accordance with the detected frequency of 2 Hz as described in the related art, phase displacement and gain are not suitable for the frequency of 20 Hz of the actual vibration. Therefore, residual vibration occurs.

    [0043] Accordingly, first, the threshold value level is set to the level "aS", which is smaller than the threshold value level "aH", so that a frequency having a small amplitude can be detected. The frequency can be read in terms of the vibration of the shooting device from the figure. As mentioned above, when the shooting device is set, it is known that the shooting device resonates at a natural vibration frequency. The natural vibration frequency of the shooting device can also be previously measured. Next, an optimal vibration correction effect can be obtained by previously setting the natural vibration frequency, mounting the shooting device in a predetermined environment in which resonance occurs, and adjusting the threshold value level so that the natural vibration frequency can be detected. For example, the threshold value aS of this frequency is adjusted to obtain an output of 20 Hz.

    [0044] First, an example of the process of detecting frequency, which is the center frequency of the vibration detected from the angular velocity detecting means, by the frequency obtaining means 13 will be described with reference to the flowchart of Fig. 7. This process is repeated once every predetermined amount of time.

    [0045] In Step S901, a frequency detection time T is read out (is loaded). Then, in Step S902, a read-out operation of a clock counter t is started, that is, the counter starts counting. In Step S903, the frequency detection time T and the clock counter t are compared with each other. A determination is made as to whether or not the count value t of the clock counter has reached the predetermined time T. If the clock counter t has reached the predetermined time T, the process proceeds to Step S919. If not, the process proceeds to Step S904.

    [0046] In Step S904, "1" is added to the clock counter. In Step S905, an increment flag 1 for checking whether or not there has previously been an increase in the level of the angular velocity signal is loaded. When there has previously been an increase, the increment flag is set to "H." In contrast, if not, the increment flag is set to "L."

    [0047] In Step S906, when the flag 1 is used to determine whether or not the level of the angular velocity signal has been previously increased, and when the flag 1 = "H," it is determined that the level of the angular velocity signal has been previously increased, and the process proceeds to Step S907. If the flag 1 = "L," it is determined that the level of the angular velocity signal has not been previously increased, and the process proceeds to Step S912. When, in Step S906, it is determined that the level of the angular velocity signal has been previously increased, then, in Step S907, a decrement flag 2 is loaded for checking whether or not the level of the angular velocity signal has been previously reduced. When the level of the angular velocity signal has been previously reduced, the decrement flag 2 is set to "H," whereas, when the level of the angular velocity signal has not been previously reduced, the decrement flag 2 is set to "L."

    [0048] When, in Step S908, the flag 2 is used to determine whether or not the level of the angular velocity signal has been previously reduced, and when the flag 2 = "H" (that is, when the level of the angular velocity signal has been previously reduced), the process proceeds to Step S909. When the flag 2 = "L" (that is, when the level of the angular velocity signal has not been previously reduced), the process proceeds to Step S912. In Step S909, a number-of-vibrations counter N1 that counts the number of vibrations is loaded. In Step S910, "1" is added to the number-of-vibrations counter N1. Then, the process proceeds to Step S911 to reset the increment flag 1 and the decrement flag 2, thereby ending the process.

    [0049] When, in Step S906, it is determined that the increment flag 1 is not "H," and, when, in Step S908, it is determined that the decrement flag 2 is not "H," that is, when it is determined that the level of the angular velocity signal has not been previously increased or reduced, the process proceeds to Step S912. Here, angular velocity data ω - 1 for one previous sample (previous processing) is loaded, and the process proceeds to Step S913 to load current angular velocity data ω detected by the angular velocity detecting means 1.

    [0050] In Step S914, a threshold value level "a" that is in correspondence with the amount of change for determining whether or not there is an increase or a decrease in the level of the angular velocity data in one sampling period is loaded. On the basis of the threshold value level "a" and the sampling time, it is possible to set a value that is in correspondence with the frequency and amplitude.

    [0051] In Step S915, the absolute value of the amount of change of the level of the angular velocity data in one sampling period is compared with the threshold value level "a". If the absolute value of the amount of change has not reached the threshold value level a, the process proceeds to Step S924 to end the process. If the absolute value of the amount of change has become greater than or equal to the threshold value level "a", the process proceeds to Step S916 to determine whether or not the amount of change in the angular velocity in the one sampling period is positive (has increased) or is negative (has decreased). If it is positive, the process proceeds to Step S917 to set the increment flag 1 to "H." If it is not positive (that is, has decreased), the process proceeds to Step S918 to set the decrement flag 2 to "H." Then, the process proceeds to Step S924 to end the process.

    [0052] When, in the aforementioned Step S903, the count value of the clock counter t has reached the frequency detection time T, the process proceeds to Step S919 to load the number-of-vibrations counter N1. Then, in Step S920, the number of vibrations N1 is divided by the detection time T, to determine the number of vibrations (vibration frequency F) in unit time (one second).

    [0053] Next, in Step S921, the number-of-vibrations counter N1 is set to 0. Then, in Step S922, the clock counter t is set to 0. Thereafter, in Step S923, the vibration frequency F is stored in a predetermined storage area. Then, the process proceeds to Step S904. The subsequent operations are the same as those described above. In this way, it is possible to detect the frequency that is in correspondence with amplitude by setting the threshold value level "a."

    [0054] Next, the flow of a setting and an adjustment operation will be described with reference to Fig. 6. In Step S601, a shooting device is set and secured in a predetermined environment. In Step S602, a previously measured natural vibration frequency of the shooting device is read. In Step S603, an output frequency of the frequency obtaining means 13 is read. In Step S604, a detection frequency is compared with the natural vibration frequency to determine whether it is equal to the natural vibration frequency. If it is not equal to the natural vibration frequency, the process proceeds to Step S606. If, in Step S606, the natural vibration frequency is less than the detection frequency, the process proceeds to Step S607.

    [0055] In Step S607, the threshold value level "a" is compared with a predetermined value. If it is less than the predetermined value, the process proceeds to Step S608 to increase the threshold value level "a." Then, the process returns to Step S604. If it is greater than the predetermined value, an error processing operation is performed in Step S611. The predetermined value at this time is an upper limit value. If, in Step S606, the natural vibration frequency is compared with the detection frequency, and is greater than the detection frequency, the process proceeds to Step S609.

    [0056] When, in Step S609, the threshold value level "a" is compared with a predetermined value, and is greater than the predetermined value, the process proceeds to Step S610 to reduce the threshold value level "a". Then, the process returns to Step S604. If it is less than the predetermined value, an error processing operation is performed in Step S611. The predetermined value at this time is a lower limit value. By setting the upper limit value and the lower limit value as the predetermined values, and comparing them with the threshold value level "a" in Steps S607 and S609, it is possible to prevent the process from not ending indefinitely when the shooting device is not actually vibrating or is vibrating abnormally.

    [0057] If, in Step S604, the natural vibration frequency is equal to the detection frequency, then, in Step S605, the threshold value level "a" at this time is stored. Although, in Step S604, it is determined whether the natural vibration frequency is equal to the detection frequency, it may be determined whether the natural vibration frequency is equivalent to the detection frequency. How the determination is carried out is determined in accordance with a performance and precision of the apparatus, so that, obviously, there may be a certain tolerance.

    [0058] Here, the error processing operation in Step S611 may be, for example, an operation indicating that the adjustment is not properly performed or an operation in which the threshold value level a is written as the predetermined value. Therefore, the error processing operation is not particularly limited in type. These operations may be manually or automatically performed.

    [0059] Accordingly, in the embodiment, by providing the threshold value level setting means 15 for setting the threshold value level a of the frequency obtaining means 13, it is possible to more precisely detect vibration at a particular frequency applied to the image pickup apparatus at a location where the shooting device is set.
    An embodiment of the present invention can provide an optical apparatus comprising: driving means arranged to change a shooting state; vibration detecting means arranged to detect vibration; vibration correcting means; shooting state detecting means arranged to obtain information about the shooting state; storage means (14) arranged to store correction information corresponding to the detected vibration; and controlling means arranged to, on the basis of the correction information, send a control signal to the vibration correcting means. In such an optical apparatus, the driving means can be arranged to change the shooting state from a stationary state to a panning state or a tilting state.

    [0060] While the present invention has been described with reference to Example 2, it is to be understood that the invention is not limited to the disclosed Example 2.


    Claims

    1. A vibration correcting device comprising:

    vibration detecting means (1) arranged to detect vibration of an image pickup apparatus;

    vibration correcting means (11) arranged to correct blur of an image caused by the vibration which is detected by the vibration detecting means (1);

    storage means (14) which stores correction information corresponding to the detected vibration used for correcting the blur of said image at and corresponding to a natural vibration frequency, wherein the natural vibration frequency corresponds to a vibration characteristic of an environment in which the image pickup apparatus is set;

    controlling means (COM1) arranged, on the basis of the correction information, to generate a control signal for use by the vibration correcting means (11) to correct the blur of said image;

    frequency obtaining means (13) arranged, using a threshold value of the frequency obtaining means (13) and an output vibration from the vibration detecting means (1), to obtain a frequency of the output vibration,

    the vibration correcting device being characterized in that:

    the threshold value is a threshold value level for an amplitude of vibration; and in that the device further comprises

    a threshold value level setting means (15) arranged to adjust the threshold value of the frequency obtaining means (13) so that:

    if a natural vibration frequency is greater than a detection frequency of the frequency obtaining means (13), the threshold value of the frequency obtaining means (13) is reduced (S610); and

    if a natural vibration frequency is smaller than a detection frequency of the frequency obtaining means (13), the threshold value of the frequency obtaining means (13) is increased (S608).


     
    2. The vibration correcting device according to Claim 1, wherein the image pickup apparatus is used while being secured to an external portion, and wherein the natural vibration frequency is a frequency of vibration applied to the external portion.
     
    3. The vibration correcting device according to Claim 1 or Claim 2, further comprising means to set the threshold value to a value greater than a predetermined lower limit value and less than a predetermined upper limit value.
     
    4. The vibration correcting device according to any one of Claims 1 to 3, wherein the storage means (14) includes a plurality of pieces of the correction information for a plurality of frequencies, and wherein the controlling means is configured to send the control signal to the vibration correcting means (11) on the basis of one of the plurality of the pieces of the correction information.
     
    5. An optical apparatus comprising:
    the vibration correcting device according to any one of Claims 1 to 4.
     
    6. The optical apparatus according to claim 5, being an image pickup apparatus further comprising an image pickup device.
     
    7. A method comprising:

    detecting vibration of an image pickup apparatus (S201);

    employing (S207) vibration correcting means (11) to correct blur of an image caused by the detected vibration;

    storing correction information corresponding to the detected vibration used for correcting the blur of said image at and corresponding to a natural vibration frequency, wherein the natural vibration frequency corresponds to a vibration characteristic of an environment in which the image pickup apparatus is set;

    generating (S206), on the basis of the correction information, a control signal for use by the vibration correcting means (11) to correct the blur of said image;

    obtaining (S901-S924), by a frequency obtaining means (13), a frequency of an output vibration of the vibration correcting means (11), using a threshold value of the frequency obtaining means (13) and the output vibration,

    the method being characterized in that:
    the threshold value is a threshold value level for an amplitude of vibration; and in that the method further comprises the step of adjusting (S601-S611) the threshold value of the frequency obtaining means (13) so that:

    if a natural vibration frequency is greater than a detection frequency of the frequency obtaining means (13), the threshold value of the frequency obtaining means (13) is reduced (S610); and

    if a natural vibration frequency is smaller than a detection frequency of the frequency obtaining means (13), the threshold value of the frequency obtaining means (13) is increased (S608).


     
    8. The method according to claim 7, further comprising setting (S607, S608, S609, S610) the threshold value to a value greater than a predetermined lower limit value and less than a predetermined upper limit value.
     
    9. The optical apparatus according to claim 5 or 6, further comprising:

    driving means (8) arranged to change a shooting state; and

    shooting state detecting means (12) arranged to obtain information about the shooting state.


     
    10. The optical apparatus according to Claim 9, wherein the driving means (8) is arranged to change the shooting state from a stationary state to a panning state or a tilting state.
     
    11. A program which, when executed by a computer or a processor, causes the computer or the processor to carry out the method of claim 7 or claim 8.
     
    12. A computer-readable storage medium storing the program according to claim 11.
     


    Ansprüche

    1. Vibrationskorrekturdevice, umfassend:

    eine Vibrationsdetektionseinrichtung (1), die dafür ausgebildet ist, eine Vibration einer Bildaufnahmevorrichtung zu detektieren;

    eine Vibrationskorrektureinrichtung (11), die dafür ausgebildet ist, eine durch die von der Vibrationsdetektionseinrichtung (1) detektierte Vibration verursachte Unschärfe eines Bildes zu korrigieren;

    eine Speichereinrichtung (14), die der detektierten Vibration entsprechende Korrekturinformation speichert, welche zur Korrektur der Unschärfe des Bildes bei und entsprechend einer natürlichen Vibrationsfrequenz verwendet wird, wobei die natürliche Vibrationsfrequenz einer Vibrationscharakteristik einer Umgebung entspricht, in welcher die Bildaufnahmevorrichtung eingerichtet ist;

    eine Steuereinrichtung (COM1), die dafür ausgebildet ist, auf der Grundlage der Korrekturinformation ein Steuersignal zur Verwendung durch die Vibrationskorrektureinrichtung (11) zu erzeugen, um die Unschärfe des Bildes zu korrigieren;

    eine Frequenzerfassungseinrichtung (13), die dafür ausgebildet ist, unter Verwendung eines Schwellenwerts der Frequenzerfassungseinrichtung (13) und einer Ausgabevibration der Vibrationsdetektionseinrichtung (1) eine Frequenz der Ausgabevibration zu erfassen,

    wobei das Vibrationskorrekturdevice dadurch gekennzeichnet ist, dass:

    der Schwellenwert ein Schwellenwertniveau für eine Vibrationsamplitude ist; und

    dadurch, dass das Device ferner umfasst:
    eine Schwellenwertniveau-Einstelleinrichtung (15), die dafür ausgebildet ist, den Schwellenwert der Frequenzerfassungseinrichtung (13) so anzupassen, dass:

    der Schwellenwert der Frequenzerfassungseinrichtung (13) reduziert wird (S610), falls eine natürliche Vibrationsfrequenz größer ist als eine Detektionsfrequenz der Frequenzerfassungseinrichtung (13); und

    der Schwellenwert der Frequenzerfassungseinrichtung (13) erhöht wird (S608), falls eine natürliche Vibrationsfrequenz kleiner ist als eine Detektionsfrequenz der Frequenzerfassungseinrichtung (13).


     
    2. Vibrationskorrekturdevice nach Anspruch 1, wobei die Bildaufnahmevorrichtung verwendet wird, während sie an einem externen Abschnitt befestigt ist, und die natürliche Vibrationsfrequenz eine Frequenz einer dem externen Abschnitt zugeführten Vibration ist.
     
    3. Vibrationskorrekturdevice nach Anspruch 1 oder Anspruch 2, ferner umfassend eine Einrichtung zum Einstellen des Schwellenwerts auf einen Wert, der größer als ein vorbestimmter unterer Grenzwert und kleiner als ein vorbestimmter oberer Grenzwert ist.
     
    4. Vibrationskorrekturdevice nach einem der Ansprüche 1 bis 3, wobei die Speichereinrichtung (14) mehrere Teile an Korrekturinformation für mehrere Frequenzen beinhaltet und die Steuereinrichtung konfiguriert ist, das Steuersignal an die Vibrationskorrektureinrichtung (11) auf der Grundlage eines der mehreren Teile der Korrekturinformation zu senden.
     
    5. Optische Vorrichtung, umfassend:
    das Vibrationskorrekturdevice nach einem der Ansprüche 1 bis 4.
     
    6. Optische Vorrichtung nach Anspruch 5, bei der es sich um eine Bildaufnahmevorrichtung handelt, die ferner ein Bildaufnahmedevice umfasst.
     
    7. Verfahren, umfassend:

    Detektieren einer Vibration einer Bildaufnahmevorrichtung (S201);

    Einsetzen (S207) einer Vibrationskorrektureinrichtung (11), um eine durch die detektierte Vibration verursachte Unschärfe eines Bildes zu korrigieren;

    Speichern von der detektierten Vibration entsprechender Korrekturinformation, welche zur Korrektur der Unschärfe des Bildes bei und entsprechend einer natürlichen Vibrationsfrequenz verwendet wird, wobei die natürliche Vibrationsfrequenz einer Vibrationscharakteristik einer Umgebung entspricht, in welcher die Bildaufnahmevorrichtung eingerichtet ist;

    Erzeugen (S206), auf der Grundlage der Korrekturinformation, eines Steuersignals zur Verwendung durch die Vibrationskorrektureinrichtung (11), um die Unschärfe des Bildes zu korrigieren;

    Erfassen (S901-S924), mithilfe einer Frequenzerfassungseinrichtung (13), einer Frequenz einer Ausgabevibration der Vibrationskorrektureinrichtung (11), unter Verwendung eines Schwellenwerts der Frequenzerfassungseinrichtung (13) und der Ausgabevibration,

    wobei das Verfahren dadurch gekennzeichnet ist, dass:

    der Schwellenwert ein Schwellenwertniveau für eine Vibrationsamplitude ist; und

    dadurch, dass das Verfahren ferner folgenden Schritt umfasst:
    Anpassen (S601-S611) des Schwellenwerts der Frequenzerfassungseinrichtung (13), sodass
    der Schwellenwert der Frequenzerfassungseinrichtung (13) reduziert wird (S610), falls eine natürliche Vibrationsfrequenz größer ist als eine Detektionsfrequenz der Frequenzerfassungseinrichtung (13); und
    der Schwellenwert der Frequenzerfassungseinrichtung (13) erhöht wird (S608), falls eine natürliche Vibrationsfrequenz kleiner ist als eine Detektionsfrequenz der Frequenzerfassungseinrichtung (13).


     
    8. Verfahren nach Anspruch 7, ferner umfassend Einstellen (S607, S608, S609, S610) des Schwellenwerts auf einen Wert, der größer als ein vorbestimmter unterer Grenzwert und kleiner als ein vorbestimmter oberer Grenzwert ist
     
    9. Optische Vorrichtung nach Anspruch 5 oder 6, ferner umfassend:

    eine Antriebseinrichtung (8), die dafür ausgebildet ist, einen Aufnahmezustand zu ändern; und

    eine Aufnahmezustand-Detektionseinrichtung (12), die dafür ausgebildet ist, Information über den Aufnahmezustand zu erfassen.


     
    10. Optische Vorrichtung nach Anspruch 9, bei der die Antriebseinrichtung (8) dafür ausgebildet ist, den Aufnahmezustand von einem stationären Zustand in einen Schwenkzustand oder einen Kippzustand zu ändern.
     
    11. Programm, welches bei Ausführung durch einen Computer oder Prozessor, den Computer oder Prozessor veranlasst, das Verfahren nach Anspruch 7 oder Anspruch 8 durchzuführen.
     
    12. Computerlesbares Speichermedium, welches das Programm nach Anspruch 11 speichert.
     


    Revendications

    1. Dispositif de correction de vibration, comprenant :

    un moyen de détection de vibration (1) conçu pour détecter une vibration d'un appareil de capture d'images ;

    un moyen de correction de vibration (11) conçu pour corriger un flou d'une image provoqué par la vibration qui est détectée par le moyen de détection de vibration (1) ;

    un moyen de mémorisation (14) qui mémorise des informations de correction correspondant à la vibration détectée, utilisées pour corriger le flou de ladite image à une fréquence de vibration naturelle et correspondant à cette dernière, dans lequel la fréquence de vibration naturelle correspond à une caractéristique de vibration d'un environnement dans lequel est placé l'appareil de capture d'images ;

    un moyen de commande (COM1) conçu, sur la base des informations de correction, pour générer un signal de commande à utiliser par le moyen de correction de vibration (11) pour corriger le flou de ladite image ;

    un moyen d'obtention de fréquence (13) conçu, au moyen d'une valeur seuil du moyen d'obtention de fréquence (13) et d'une vibration de sortie du moyen de détection de vibration (1), pour obtenir une fréquence de la vibration de sortie, le dispositif de correction de vibration étant caractérisée en ce que :

    la valeur seuil correspond à un niveau de valeur seuil d'une amplitude de vibration ; et en ce que le dispositif comprend en outre

    un moyen de fixation de niveau (15) de valeur seuil conçu pour ajuster la valeur seuil du moyen d'obtention de fréquence (13) de sorte que :

    si une fréquence de vibration naturelle est supérieure à une fréquence de détection du moyen d'obtention de fréquence (13), la valeur seuil du moyen d'obtention de fréquence (13) soit diminuée (S610) ; et

    si la fréquence de vibration naturelle est inférieure à une fréquence de détection du moyen d'obtention de fréquence (13), la valeur seuil du moyen d'obtention de fréquence (13) soit augmentée (S608).


     
    2. Dispositif de correction de vibration selon la revendication 1, dans lequel l'appareil de capture d'images est utilisé tandis qu'il est fixé à une partie externe, et dans lequel la fréquence de vibration naturelle est une fréquence de vibration appliquée à la partie externe.
     
    3. Dispositif de correction de vibration selon la revendication 1 ou la revendication 2, comprenant en outre un moyen destiné à fixer la valeur seuil à une valeur supérieure à une valeur limite basse prédéterminée et inférieure à une valeur limite haute prédéterminée.
     
    4. Dispositif de correction de vibration selon l'une quelconque des revendications 1 à 3, dans lequel le moyen de mémorisation (14) comprend une pluralité d'éléments des informations de correction d'une pluralité de fréquences, et dans lequel le moyen de commande est configuré pour envoyer le signal de commande au moyen de correction de vibration (11) sur la base d'un élément de la pluralité des éléments des informations de correction.
     
    5. Appareil optique, comprenant :
    le dispositif de correction de vibration selon l'une quelconque des revendications 1 à 4.
     
    6. Appareil optique selon la revendication 5, l'appareil étant un appareil de capture d'images comprenant en outre un dispositif de capture d'images.
     
    7. Procédé comprenant les étapes consistant à :

    détecter une vibration d'un appareil de capture d'images (S201) ;

    utiliser (S207) un moyen de correction de vibration (11) pour corriger un flou d'une image provoqué par la vibration détectée ;

    mémoriser des informations de correction correspondant à la vibration détectée, utilisées pour corriger le flou de ladite image à une fréquence de vibration naturelle et correspondant à cette dernière, dans lequel la fréquence de vibration naturelle correspond à une caractéristique de vibration d'un environnement dans lequel est placé l'appareil de capture d'images ;

    générer (S206), sur la base des informations de correction, un signal de commande à utiliser par le moyen de correction de vibration (11) pour corriger le flou de ladite image ;

    obtenir (S901-S924), par un moyen d'obtention de fréquence (13), une fréquence d'une vibration de sortie du moyen de correction de vibration (11), au moyen d'une valeur seuil du moyen d'obtention de fréquence (13) et de la vibration de sortie,

    le procédé étant caractérisé en ce que :

    la valeur seuil a un niveau de valeur seuil d'une amplitude de vibration ; et en ce que le procédé comprend en outre l'étape consistant à

    ajuster (S601-S611) la valeur seuil du moyen d'obtention de fréquence (13) de sorte que :

    si une fréquence de vibration naturelle est supérieure à une fréquence de détection du moyen d'obtention de fréquence (13), la valeur seuil du moyen d'obtention de fréquence (13) soit diminuée (S610) ; et

    si une fréquence de vibration naturelle est inférieure à une fréquence de détection du moyen d'obtention de fréquence (13), la valeur seuil du moyen d'obtention de fréquence (13) soit augmentée (S608).


     
    8. Procédé selon la revendication 7, comprenant en outre l'étape consistant à fixer (S607, S608, S609, S610) la valeur seuil à une valeur supérieure à une valeur limite basse prédéterminée et inférieure à une valeur limite haute prédéterminée.
     
    9. Appareil optique selon la revendication 5 ou 6, comprenant en outre :

    un moyen de pilotage (8) conçu pour changer un état de prise de vue ; et

    un moyen de détection d'état de prise de vue (12) conçu pour obtenir des informations concernant l'état de prise de vue.


     
    10. Appareil optique selon la revendication 9, dans lequel le moyen de pilotage (8) est conçu pour faire passer l'état de prise de vue d'un état d'immobilité à un état de panoramique ou à un état de travelling vertical.
     
    11. Programme qui, lorsqu'il est exécuté par un ordinateur ou par un processeur, amène l'ordinateur ou le processeur à mettre en oeuvre le procédé selon la revendication 7 ou la revendication 8.
     
    12. Support d'informations lisible par ordinateur contenant en mémoire le programme selon la revendication 11.
     




    Drawing


























    Cited references

    REFERENCES CITED IN THE DESCRIPTION



    This list of references cited by the applicant is for the reader's convenience only. It does not form part of the European patent document. Even though great care has been taken in compiling the references, errors or omissions cannot be excluded and the EPO disclaims all liability in this regard.

    Patent documents cited in the description