(19)
(11)EP 2 164 684 B1

(12)EUROPEAN PATENT SPECIFICATION

(45)Mention of the grant of the patent:
06.05.2020 Bulletin 2020/19

(21)Application number: 08830754.1

(22)Date of filing:  14.05.2008
(51)International Patent Classification (IPC): 
B25J 9/04(2006.01)
B65G 47/90(2006.01)
G01N 35/00(2006.01)
G01N 35/02(2006.01)
B25J 18/04(2006.01)
B65H 1/04(2006.01)
G01N 35/04(2006.01)
(86)International application number:
PCT/IB2008/003099
(87)International publication number:
WO 2009/034474 (19.03.2009 Gazette  2009/12)

(54)

AUTOMATED OBJECT MOVER

AUTOMATISIERTER OBJEKTANTRIEB

APPAREIL AUTOMATISÉ DE DÉPLACEMENT D'OBJETS


(84)Designated Contracting States:
AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MT NL NO PL PT RO SE SI SK TR

(30)Priority: 14.05.2007 US 924403 P

(43)Date of publication of application:
24.03.2010 Bulletin 2010/12

(73)Proprietor: Thermo CRS Ltd.
Burlington, Ontario L7L 6A6 (CA)

(72)Inventors:
  • FINK, John
    Hamilton, Ontario L8P 4C8 (CA)
  • WITTCHEN, Jonathan, David
    Burlington, Ontario L7L 6V4 (CA)
  • RIFF, Michael, P.
    Burlington, Ontario L7T 1B1 (CA)
  • DARNEL, Gary
    Burlington, Ontario L7L 5E3 (CA)

(74)Representative: TBK 
Bavariaring 4-6
80336 München
80336 München (DE)


(56)References cited: : 
WO-A1-2004/055521
JP-A- 2004 090 186
US-A- 4 507 046
US-A- 4 909 701
JP-A- 1 228 787
US-A- 3 985 238
US-A- 4 652 204
  
      
    Note: Within nine months from the publication of the mention of the grant of the European patent, any person may give notice to the European Patent Office of opposition to the European patent granted. Notice of opposition shall be filed in a written reasoned statement. It shall not be deemed to have been filed until the opposition fee has been paid. (Art. 99(1) European Patent Convention).


    Description

    CROSS-REFERENCE TO RELATED APPLICATIONS



    [0001] This application claims priority to the provisional U.S. patent application entitled, Automated Object Mover, filed May 14, 2007, having a serial number 60/924,403.

    FIELD OF THE INVENTION



    [0002] The present invention relates generally to an automation system. More particularly, the present invention relates to an automation system with a robotic arm.

    BACKGROUND OF THE INVENTION



    [0003] Scientists have been using robotics and automation to solve problems in research, for example sample processing. Using robotics in automated sample handling is important because of sterility requirements and needs for efficiency. Miniaturization of components have also increased the need for automated sample handling as it is difficult for a researcher to manage small sample sizes in large quantities. Therefore, higher sample density storage is also a problem along with smaller sample volumes. When dealing with miniaturized and small sample volumes, it is difficult for researchers to efficiently manage and still maintain a sterile atmosphere.

    [0004] In laboratories and other research facilities, microplates are used as a storage medium for samples used in analysis. In a system of a laboratory, many samples are required to be handled. A large quantity of microplates are stored in a single area for handling by automated devices such as a robotic system. An arm of the robotic system is used to move samples from one area to another.

    [0005] Related robot devices and techniques include for example, U.S. Pat. No. 6,889,119 for ROBOTIC DEVICE FOR LOADING LABORATORY INSTRUMENTS by Riff, et. al., U.S. Pat. No. 7,096,091 for MODULAR ROBOTIC SYSTEM AND METHOD FOR SAMPLE PROCESSING by Haas, et al., and U.S. Pat. No. 7,013,198 for ROBOTIC CAROUSEL WORKSTATION by Haas.

    [0006] WO 2004/055521 A discloses a storage and retrieval apparatus including a robotic device capable of gripping items stored in the apparatus and delivering the item to a separate, proximate instrument. The items to be stored are loaded from the outside of the apparatus at each face of the hexagonal shaped storage carousel. The storage carousel is mounted on a stationary base, both structures including a hollow core. The robotic device includes slider bars within the core of the apparatus and is rotatable about the central axis of the apparatus. The robotic device is capable of translating vertically, telescoping horizontally, rotating and gripping an item stored at a desired location within the storage carousel. Upon retrieval of a desired item, the robotic device will proceed to retract and translate downward to an aperture within the base. The item is transferred to an adjacent instrument through the aperture using the telescopic arm of the robotic device.

    [0007] JP 2004 90186 A discloses a clean room transfer robot for substrates, the robot comprising a rotating column and a transfer unit that can move the substrates through a cavity of the column.

    [0008] However, the efficiency or throughput of such systems have been limited and also current systems take a large space in order to function to move samples from one area to another. The increased motion and size of such robotic systems, increase costs of the mechanism and thus reduce reliability. There is a need for increasing efficiency in the robotic systems, where they perform functions at a faster throughput and yet be reliable in the activities that they perform.

    SUMMARY OF THE INVENTION



    [0009] The present invention provides a technique and apparatus for faster and more efficient movement of samples, such as microplates from one instrument to another.

    [0010] The present invention also provides a technique and apparatus for reducing the footprint of the apparatus for automated movement of samples, while economizing the motions of the samples, through minimizing the cost of the mechanism, while increasing reliability.

    [0011] The automation system of the present invention is set out in claim 1.

    [0012] The first unit can also be a base column having rotational movement, the second unit can also be an arm for vertical and horizontal movement of the object, and the first unit can comprise a frame encasing the first unit with a cavity in between for movement of the second unit through the body of the first unit. The second unit can include an arm for horizontal and vertical motion about the first unit, a gripper connected to the arm for grasping and releasing the object, the gripper configurable for rotational motion about its axis, accommodating reorientation or placement of the object, and a motor accommodating the movement of the arm and gripper with a counter weight providing balance.

    [0013] In another aspect the invention sets out a method of an automation system according to claim 8.

    [0014] In another aspect of the disclosure, an automation system, includes a first means rotationally moving objects from one area to another, and a second means connected to the first means and holding the objects, and moving through or offset from the body of the first means from a first side of the first means to the other side the first means in a direction other than the rotational movement by the first means.

    [0015] In this respect, before explaining at least one embodiment of the invention in detail, it is to be understood that the invention is not limited in its application to the details of construction and to the arrangements of the components set forth in the following description or illustrated in the drawings. The invention is capable of embodiments in addition to those described and of being practiced and carried out in various ways. Also, it is to be understood that the phraseology and terminology employed herein, as well as the abstract, are for the purpose of description and should not be regarded as limiting.

    BRIEF DESCRIPTION OF THE DRAWINGS



    [0016] 

    FIG. 1 is a cylindrical plate mover robot according to an embodiment of the disclosure.

    FIG. 2 is another detailed view of the apparatus of FIG. 1 for moving plates.

    FIG. 3 is view of the arm portion of the plate mover robot.

    FIG. 4 is a close-up view of the arm portion of the plate mover robot of FIG. 3.

    FIG. 5 is a view of the motion of the robot.

    FIG. 6 is a flow diagram of the technique of the present disclosure.

    FIG. 7A is a top view of the arm portion of the plate mover robot, moving offset from the center axis.

    FIG. 7B is a side view of the arm portion of the plate mover robot of FIG. 7A.

    FIG. 8 illustrates another embodiment of the robot of the present disclosure.

    FIG. 9 is an example of a computer that accommodates the computer executable instructions of the present disclosure.

    FIG. 10 is a view of a robot of another embodiment of the present disclosure.

    FIG. 11 is another view of a motion of the robot of FIG. 10.

    FIG. 12 is a side view of the robot of FIG. 10 as the gripper and arm move through the body.

    FIG. 13 is a front view the hotel with open doors.


    DETAILED DESCRIPTION OF THE INVENTION



    [0017] In one embodiment of the present invention, a cylindrical plate mover robot 10 is shown in FIG. 1. The storage unit 30 includes a plurality of hotels 32 for storage of microplates. The robot 10 moves its arm 12 in order to move between the storage areas of the hotels 32 in order to transfer the microplates 34. The hotels 32 with shelves are located radially around the robot 10. The hotels 32, located radially around the robot, can be with or without shelves. The objects can be stacked in the hotels 32 without the shelves, or be placed within the hotels 32 with shelves.

    [0018] FIG. 5 is a view of the motion of the robot.

    [0019] FIG. 6 is a flow diagram of the technique of the present disclosure.

    [0020] FIG. 7A is a top view of the arm portion of the plate mover robot, moving offset from the center axis.

    [0021] FIG. 7B is a side view of the arm portion of the plate mover robot of FIG. 7A.

    [0022] FIG. 8 illustrates another embodiment of the robot of the present disclosure.

    [0023] FIG. 9 is an example of a computer that accommodates the computer executable instructions of the present disclosure.

    [0024] FIG. 10 is a view of a robot of another embodiment of the present disclosure.

    [0025] FIG. 11 is another view of a motion of the robot of FIG. 10.

    [0026] FIG. 12 is a side view of the robot of FIG. 10 as the gripper and arm move through the body.

    [0027] FIG. 13 is a front view the hotel with open doors.

    DETAILED DESCRIPTION OF THE INVENTION



    [0028] In one embodiment of the present invention, a cylindrical plate mover robot 10 is shown in FIG. 1. The storage unit 30 includes a plurality of hotels 32 for storage of microplates. The robot 10 moves its arm 12 in order to move between the storage areas of the hotels 32 in order to transfer the microplates 36. The hotels 32 with shelves are located radially around the robot 10. The hotels 32, located radially around the robot, can be with or without shelves. The objects can be stacked in the hotels 32 without the shelves, or be placed within the hotels 32 with shelves.

    [0029] Referring to FIGS. 1 and 2, the robot 10 is secured through a pedestal unit 14. The pedestal unit 14 is connected to a vertical extension or base column 16. The rotational movement of the base column 16 can be carried out have to rotate +/- 90 degrees in most cases. The arm 12 can pick up the microplate 36 through a gripper 34 and move through the chamber 20 to the other side the base column 16 of the robot 10, where the arm 12 is supported by the T-portion or the arm support 24. The T-portion or the arm support 24 is fixed to and stationary relative to the base column 16.

    [0030] The difference is the telescoping arm 12 that travels through the body of the robot 10, via the chamber 20, eliminates the need to rotate when accessing an opposite positioned instrument and/or rotates less to reach an instrument greater than 90 degrees to either side of the robot 10.

    [0031] The telescoping arm 12 is included in the present invention rather than just rotating around the robot base as the present invention actually moves through the base column 16 as well as rotates. This enables the robot 10 to rotate less and move microplates 34 from one side to the other more quickly and efficiently.

    [0032] Referring to FIG. 3, a prospective view of the robot 10 is shown detailing an example of the arm 40 and the movement through the chamber 20 of the base column 16. The arm 40 includes a support portion 24 that supports the movement of the telescoping arm portion 12 which includes a first part 12a and a second part 12b.

    [0033] A close-up view of the telescoping arm 12 is shown in more detail in FIG. 4. The first part of the telescoping arm 12a is attached to the support portion 24. The first part 12a includes a plurality of glides 42 accommodating movement approximately perpendicular to the base column 16, by the second part 12b of the telescoping arm 12. Other types of components can be used other than glides 42 to accommodate the movement of the telescoping arm 12. The angle between the arm 40 and the base column 16 can be any angle. For example, the angle can be about 90 degrees between the arm 40 and base column 16. The second part 12b of the telescoping arm 12 moves along the glide 42 on the first part 12a of the telescoping arm 12. In addition, the gripper 34 moves along the glide 44 on the second part 12b of the telescoping arm 12, thus accommodating a movement of the microplate or object 36 through the chamber 20 of the body of the base column 16. The gripper 34, also can incorporate a rotational movement accommodating a reorientation of the plate or object 38, after the gripper 34 moves to the other side of the base column 16. Another motor and gearbox can accommodate the motion of the telescoping arm 12.

    [0034] Referring to FIG. 5, the base column 16 can rotate along a y-axis, to accommodate the gripper 34 to seize the microplates 36 or other objects and move to another storage area. The telescoping arm 12 can move along the x-axis as shown by movement 44, from one side of the base column 16 to the other side as shown by position 212. The telescoping arm 12 can also move along the y-axis as shown by movement 46 to position 112, or other area along the length of the chamber 20.

    [0035] The gripper portion 34 of the telescoping arm 12 can also rotate about the y-axis as shown in movement 48, in order to reorient the microplate or object 36 held by the gripper portion 34, when moving from position 312 to position 212 through the base column 16 of the robot 10.

    [0036] Other embodiments are included that can move the gripper from one side of the robot 10 to the other side, by moving through the body of the robot 10 itself rather than rotating around the body to reach the objects 36. For example, the telescoping arm 12 could move through a different type of motion to get from position 312 to position 212. The chamber 20 can be a different shape to accommodate the motion of the gripper 34 and the telescoping arm 12. The telescoping arm 12 can also include different parts other than a first part 12a and the second part 12b, and the associated glides. The movement of the telescoping arm is not limited to a direction along the x-axis, but could be any type of movement as long as the telescoping arm can be on the other side of the base column. The shape of the base column 16, does not have to be a column, but can be any shape protruding from the pedestal unit 14. The pedestal unit 14 can also be removed, and the robot can include only the base column 16 that is fastened to a work area.

    [0037] The telescoping arm 12 connected to the base column 16 and holding the objects 36, moves through the body of the base column 16 from a first side of the base column 16 to the other side the base column in a direction other than the rotational movement by the base column 16.

    [0038] The robot 10 can reorient the microplate or object 36 in a number of different manners other than rotating the microplate. In an alternative embodiment, the arm 40 of the robot 10 can set down the microplate or object 36, and then while it is set down, then rotate the plate. Then the gripper 34 can pick the object 36 back up quickly in a different orientation, rather than rotating it within the gripper 34.

    [0039] In general as seen in FIGS. 1 through 5, the robot can be a cylindrical plate moving robot, but other configurations can be used. The base column 16 moves rotationally. The arm 40 travels vertically up and down the base column. The gripper 34 can rotate to reorient the plate, or set down and then reorient the plate 36. The hotels or plate feeders 32 can be used for the storage of the microplates 36, but other types of storage for the objects 36 can be used. The telescoping arm 12 with the plate gripper 34 can be used to grasp the objects 36. The gripper 34 travels through the tower (base column 16) of the plate mover. This movement through the body of the robot 10 accommodates a very fast plate delivery from one side to the other. Therefore, a movement through the body of the robot allows for less column base 16 rotation to reach 360 degrees.

    [0040] A variety of different motions and movements of the arm 40 can be used to accommodate the movement through the body of the robot 10.

    [0041] Referring to FIG. 6, the technique for moving the objects from one area to another can be shown by the following. First, the gripper 34 picks up the object from a first area, such as from a shelf from one of the hotels 32 (step 400). Secondly, the telescoping arm 12 portion of the arm 40 moves through the body of robot 10 to move the object 36 to the other side of the robot 10 (Step 402). For example, the telescoping arm 12 goes through the chamber 20 in the base column 16 and moves the object to the other side. The telescoping arm 12 can then move vertically, up or down to position the object, or rotate about the Y-axis to further position the object at a certain shelf of another hotel.

    [0042] The gripper 34 can then reorient the object 36, by for example, rotating the gripper or placing down and reorienting the object 36. Then, the gripper 34 relocates the object in a second area, such as another shelf in one of the hotels 32.

    [0043] The robot 10 can be instructed to go through the body, if a certain condition exists. For example, if it is faster for the robot to have the arm go through the body when having to move the object a certain rotational angle, then the robot will go through the body. For example, if the rotation needed is in excess of 90 degrees, then the arm 40 will go through the body of the robot 10, or if the movement necessary is a certain amount of degrees less than 180.

    [0044] Referring to FIGS. 7A and 7B, in another embodiment, the arm 12 can also move beside the body, rather than through the body of the robot 10, which also achieves the benefit of efficiency as when the arm is along the center axis. The arm does not have to move through the body of the robot 10, but can be actually going through the side of the base column 16 as seen in FIGS 7A and 7B.

    [0045] Referring to FIG. 8, in another embodiment, the arm 116 is offset from the center axis Y, which also achieves the benefit of efficiency as when the arm is along the center axis. Furthermore, the arm 116 can be not telescoping, but the object 36 or payload, such as a microplate, travels along a track or rail from one side of the robot to the other and still go through to the other side of base column 16 of the robot 10.

    [0046] The present invention can be realized as computer-executable instructions in computer-readable media. The computer-readable media includes all possible kinds of media in which computer-readable data is stored or included or can include any type of data that can be read by a computer or a processing unit. The computer-readable media include for example and not limited to storing media, such as magnetic storing media (e.g., ROMs, floppy disks, hard disk, and the like), optical reading media (e.g., CD-ROMs (compact disc-read-only memory), DVDs (digital versatile discs), re-writable versions of the optical discs, and the like), hybrid magnetic optical disks, organic disks, system memory (read-only memory, random access memory), non-volatile memory such as flash memory or any other volatile or non-volatile memory, other semiconductor media, electronic media, electromagnetic media, infrared, and other communication media such as carrier waves (e.g., transmission via the Internet or another computer). Communication media generally embodies computer-readable instructions, data structures, program modules or other data in a modulated signal such as the carrier waves or other transportable mechanism including any information delivery media. Computer-readable media such as communication media may include wireless media such as radio frequency, infrared microwaves, and wired media such as a wired network. Also, the computer-readable media can store and execute computer-readable codes that are distributed in computers connected via a network. The computer-readable medium also includes cooperating or interconnected computer readable media that are in the processing system or are distributed among multiple processing systems that may be local or remote to the processing system. and moves the object to the other side. The telescoping arm 12 can then move vertically, up or down to position the object, or rotate about the Y-axis to further position the object at a certain shelf of another hotel.

    [0047] The gripper 34 can then reorient the object 36, by for example, rotating the gripper or placing down and reorienting the object 36. Then, the gripper 34 relocates the object in a second area, such as another shelf in one of the hotels 32.

    [0048] The robot 10 can be instructed to go through the body, if a certain condition exists. For example, if it is faster for the robot to have the arm go through the body when having to move the object a certain rotational angle, then the robot will go through the body. For example, if the rotation needed is in excess of 90 degrees, then the arm 40 will go through the body of the robot 10, or if the movement necessary is a certain amount of degrees less than 180.

    [0049] Referring to FIGS. 7A and 7B, in another embodiment, the arm 12 can also move beside the body, rather than through the body of the robot 10, which also achieves the benefit of efficiency as when the arm is along the center axis. The arm does not have to move through the body of the robot 10, but can be actually going through the side of the base column 16 as seen in FIGS 7A and 7B.

    [0050] Referring to FIG. 8, in another embodiment, the arm 116 is offset from the center axis Y, which also achieves the benefit of efficiency as when the arm is along the center axis. Furthermore, the arm 116 can be not telescoping, but the object 36 or payload, such as a microplate, travels along a track or rail from one side of the robot to the other and still go through to the other side of base column 16 of the robot 10.

    [0051] The above can be realized as computer-executable instructions in computer-readable media. The computer-readable media includes all possible kinds of media in which computer-readable data is stored or included or can include any type of data that can be read by a computer or a processing unit. The computer-readable media include for example and not limited to storing media, such as magnetic storing media (e.g., ROMs, floppy disks, hard disk, and the like), optical reading media (e.g., CD-ROMs (compact disc-read-only memory), DVDs (digital versatile discs), re-writable versions of the optical discs, and the like), hybrid magnetic optical disks, organic disks, system memory (read-only memory, random access memory), non-volatile memory such as flash memory or any other volatile or non-volatile memory, other semiconductor media, electronic media, electromagnetic media, infrared, and other communication media such as carrier waves (e.g., transmission via the Internet or another computer). Communication media generally embodies computer-readable instructions, data structures, program modules or other data in a modulated signal such as the carrier waves or other transportable mechanism including any information delivery media. Computer-readable media such as communication media may include wireless media such as radio frequency, infrared microwaves, and wired media such as a wired network. Also, the computer-readable media can store and execute computer-readable codes that are distributed in computers connected via a network. The computer-readable medium also includes cooperating or interconnected computer readable media that are in the processing system or are distributed among multiple processing systems that may be local or remote to the processing system. The above can include the computer-readable medium having stored thereon a data structure including a plurality of fields containing data.

    [0052] Referring to FIG. 9, an example of a computer 10, but not limited to this example of the computer, that can read computer readable media that includes computer-executable instructions includes a processor 802 that controls the computer. The processor 802 uses the system memory 804 and a computer readable memory device 806 that includes certain computer readable recording media. A system bus connects the processor 802 to a network interface 808 , modem 812 or other interface that accommodates a connection to another computer or network such as the Internet. The system bus may also include an input and output interface 810 that accommodates connection to a variety of other devices. can include the rotational motion in the θ-axis (theta). There can also be slip rings underneath the center of the pedestal 1230 area.

    [0053] As seen in FIGS. 10-12, the arm 1012 can be telescoping to provide a greater flexibility in the movement and reach of the gripper 1034. The gripper 1034 can also include a motor 1220 for the movement of the gripper. The motor can allow for the gripping motion of the gripper 1034 in order to clasp and release the objects 36 or any other motion required by the gripper. Additionally, the gripper motor 1220 or other motor can be configured for rotational movement of the gripper 1034 for reorienting the objects 36.

    [0054] The second block 1210 can house optional devices while the first block 1200 has the motor encoder. The location of the motors, controllers and other devices for motion can be housed in other locations and this is given only as an example.

    [0055] A sensor 1222 can be attached to the gripper 1034 in order to sense the objects 36 for the gripper 1034. The sensor 1222 can be located on the bottom of the gripper 1034, for example, but is not limited to this location. The sensor can be an optical sensor or other type of sensor for sensing objects 36 and/or the movement of the gripper 1034. Additional sensors can also be mounted providing feedback to the control system of the robot 1000. The sensor 1222 can be located to provide feedback that the gripper 1034 is getting close to the plate or object 36. An external controller or computer can be used to control the robot 1000 and its movement, or the controller or processor for control can be housed in the robot 1000. Additionally a predetermined set of instructions can be programmed for movement of the robot 1000 for movement and positioning of the objects.

    [0056] The gripper 1034 can hold an object such as plate 1110 or other object for movement through the cavity between the walls 1016A and 1016B of the column 1016 for movement of the arm 1012 through the body of the robot 1000. The arm 1012 can move in the theta, R and Z axis for full flexibility of motion of the robot 1000. Additional devices or weight 1250 can be housed in the second block 1210 or nothing additional. The arm 1012 can include additional parts 1280 accommodating the movement in the R axis including for example a belt or other part.

    [0057] Referring to FIG. 13, additionally the hotel of 32 can be embodied as the hotel 2034 that allows access of the plates or other objects from both sides. FIG. 13 shows the hotel 2034 with the doors 2034B and 2034A in an open position. The access provided by the doors allows for a versatile and flexible access to the plates or other objects 36 stored in the storage area 2020. The doors can be attached to the storage area 2020 in a variety of ways including being hinged or being positioned in a sliding manner to allow both doors 2034A and B to open for access to the plates or objects 36. Different types of balancing measures can also be included to allow for the opening and closing of the doors 2034A and B and different types of fastening means for the doors 2034A and B can also be used. This would allow a more flexible way to access the stacked objects stored in the hotel 2034.

    [0058] The many features and advantages of the invention are apparent from the detailed specification, and thus, it is intended by the appended claims to cover all such features and advantages of the invention which fall within the scope of the claims.


    Claims

    1. An automation apparatus (10), comprising:

    a first unit (16, 1016), including a body having a cavity, for rotationally moving objects from one area to another; and

    a second unit (12, 1012), connected to the first unit (16), for holding and moving the objects through the cavity of the body of the first unit (16, 1016) from one side of the first unit (16, 1016) to the other side of the first unit (16, 1016); and

    a rotating pedestal (14), upon which the first unit is mounted,

    characterized in that

    the rotating pedestal (14) includes a stationary pedestal plate (1240) for accommodating a reorientation of the objects when the objects move through the cavity of the body of the first unit (16, 1016); and in that

    the stationary pedestal plate (1240) is arranged such that the second unit (12, 1012) can set the objects down inside the cavity on the stationary pedestal plate (1240).


     
    2. The automation apparatus of claim 1, wherein the apparatus is configured to move the objects through a vertical axis of the body of the first unit (16, 1016).
     
    3. The automation apparatus of claim 2, wherein the second unit (12, 1012) includes a telescoping portion.
     
    4. The automation apparatus of claim 2, wherein the second unit (12, 1012) comprises a rotatable gripper (34) for holding and reorienting the objects.
     
    5. The automation apparatus of claim 1, further comprising a counter weight on the second unit (12, 1012).
     
    6. The automation apparatus of claim 1, wherein: the first unit (16, 1016) is a base column, having rotational movement, that includes two panels (1016A, 1016B) defining the cavity therebetween, and the second unit (12, 1012) is an arm.
     
    7. The automation apparatus of claim 2, wherein the second unit (12,1012) comprises: an arm; a rotatable gripper, connected to the arm, for grasping, releasing and reorienting the objects; and a motor, accommodating the movement of the arm and gripper, with a counter weight providing balance.
     
    8. A method of an automation system, comprising:

    moving objects from one area to another using a first unit (16, 1016) mounted to a rotating pedestal (14, 1014) that includes a stationary pedestal plate (1240);

    holding and moving the objects through a cavity of the first unit (16, 1016) from one side of the first unit (16) to the other side of the first unit (16, 1016) using a second unit (12, 1012) connected to the first unit; and characterised in that the method comprises

    reorienting the objects, using the second unit (12, 1012) and the stationary pedestal plate (1240), when the objects move through the cavity of the first unit (16, 1016) by temporarily setting the objects down inside the cavity on the stationary pedestal plate (1240) and rotating the first and second unit around the object.


     
    9. The method of claim 8, further comprising moving the objects through a vertical axis of the first unit (16, 1016).
     
    10. The method of claim 9, further comprising telescoping the second unit (12, 1012) from and to a location to hold the object or release the object.
     
    11. The method of claim 9, wherein the second unit (12, 1012) is an arm with a rotatable gripper (34).
     
    12. The method of claim 8, further comprising providing a counter weight on the second unit (12, 1012).
     
    13. The method of claim 8, wherein: the first unit (16, 1016) is a base column, having rotational movement, that includes two panels (1016A, 1016B) defining the cavity therebetween, and the second unit (12, 1012) is an arm.
     
    14. The method of claim 9, wherein the second unit (12, 1012) is an arm, and further comprising:

    moving the arm in horizontal and vertical directions about the first unit (16, 1016);

    grasping and releasing the objects using a gripper connected to the arm, the gripper accommodating placement of the objects; and

    providing movement of the arm and gripper through a motor with a counter weight providing balance.


     


    Ansprüche

    1. Automatisierungsvorrichtung (10), umfassend:

    eine erste Einheit (16, 1016), die einen Körper mit einem Hohlraum b einhaltet, um Objekte drehend aus einem Bereich in einen anderen zu bewegen; und

    eine zweite Einheit (12, 1012), die mit der ersten Einheit (16) verbunden ist, um die Objekte zu halten und durch den Hohlraum des Körpers der ersten Einheit (16, 1016) von einer Seite der ersten Einheit (16, 1016) zur anderen Seite der ersteEP2748801 - German Translationn Einheit (16, 1016) zu bewegen; und

    einen Drehsockel (14), auf dem die erste Einheit montiert ist, dadurch gekennzeichnet, dass der Drehsockel (14) eine stationäre Sockelplatte (1240) beinhaltet, um eine Neuausrichtung der Objekte zu ermöglichen, wenn sich die Objekte durch den Hohlraum des Körpers der ersten Einheit (16, 1016) bewegen; und

    dass die stationäre Sockelplatte (1240) so angeordnet ist, dass die zweite Einheit (12, 1012) die Objekte innerhalb des Hohlraums auf der stationären Sockelplatte (1240) absetzen kann.


     
    2. Automatisierungsvorrichtung nach Anspruch 1, wobei die Vorrichtung so konfiguriert ist, dass sie die Objekte durch eine vertikale Achse des Körpers der ersten Einheit (16, 1016) bewegt.
     
    3. Automatisierungsvorrichtung nach Anspruch 2, wobei die zweite Einheit (12, 1012) einen Teleskopabschnitt beinhaltet.
     
    4. Automatisierungsvorrichtung nach Anspruch 2, wobei die zweite Einheit (12, 1012) einen drehbaren Greifer (34) zum Halten und Neuausrichten der Objekte umfasst.
     
    5. Automatisierungsvorrichtung nach Anspruch 1, ferner umfassend ein Gegengewicht an der zweiten Einheit (12, 1012).
     
    6. Automatisierungsvorrichtung nach Anspruch 1, wobei:
    die erste Einheit (16, 1016) eine Basissäule mit Drehbewegung ist, die zwei Platten (1016A, 1016B) beinhaltet, die den Hohlraum dazwischen definieren, und wobei die zweite Einheit (12, 1012) ein Arm ist.
     
    7. Automatisierungsvorrichtung nach Anspruch 2, wobei die zweite Einheit (12, 1012) umfasst: einen Arm; einen drehbaren Greifer, der mit dem Arm verbunden ist, um die Objekte zu greifen, loszulassen und neu auszurichten; und einen Motor, der die Bewegung des Arms und des Greifers ermöglicht, wobei ein Gegengewicht Ausgleich bereitstellt.
     
    8. Verfahren eines Automatisierungssystems, umfassend:

    Bewegen von Objekten aus einem Bereich zu einem anderen unter Verwendung einer ersten Einheit (16, 1016), die auf einem Drehsockel (14, 1014) montiert ist, der eine stationäre Sockelplatte (1240) beinhaltet;

    Halten und Bewegen der Objekte durch einen Hohlraum der ersten Einheit (16, 1016) von einer Seite der ersten Einheit (16) zur anderen Seite der ersten Einheit (16, 1016) unter Verwendung einer zweiten Einheit (12, 1012), die mit der ersten Einheit verbunden ist; und

    dadurch gekennzeichnet, dass das Verfahren das Neuausrichten der Objekte unter Verwendung der zweiten Einheit (12, 1012) und der stationären Sockelplatte (1240) umfasst, wenn sich die Objekte durch den Hohlraum der ersten Einheit (16, 1016) bewegen, indem die Objekte vorübergehend innerhalb des Hohlraums auf der stationären Sockelplatte (1240) abgesetzt und die erste und die zweite Einheit um das Objekt gedreht werden.


     
    9. Verfahren nach Anspruch 8, ferner umfassend das Bewegen der Objekte durch eine vertikale Achse der ersten Einheit (16, 1016).
     
    10. Verfahren nach Anspruch 9, ferner umfassend das Teleskopieren der zweiten Einheit (12, 1012) von und zu einer Stelle, um das Objekt zu halten oder das Objekt loszulassen.
     
    11. Verfahren nach Anspruch 9, wobei die zweite Einheit (12, 1012) ein Arm mit einem drehbaren Greifer (34) ist.
     
    12. Verfahren nach Anspruch 8, ferner umfassend das Bereitstellen eines Gegengewichts an der zweiten Einheit (12, 1012).
     
    13. Verfahren nach Anspruch 8, wobei:
    die erste Einheit (16, 1016) eine Basissäule mit Drehbewegung ist, die zwei Platten (1016A, 1016B) beinhaltet, die den Hohlraum dazwischen definieren, und wobei die zweite Einheit (12, 1012) ein Arm ist.
     
    14. Verfahren nach Anspruch 9, wobei die zweite Einheit (12, 1012) ein Arm ist, und ferner umfassend:

    Bewegen des Arms in horizontaler und vertikaler Richtung um die erste Einheit (16, 1016);

    Greifen und Loslassen der Objekte unter Verwendung eines mit dem Arm verbundenen Greifers, wobei der Greifer das Platzieren der Objekte ermöglicht;

    und

    Bereitstellen der Bewegung des Arms und des Greifers durch einen Motor, wobei ein Gegengewicht Ausgleich bereitstellt.


     


    Revendications

    1. Appareil d'automatisation (10), comprenant :

    une première unité (16, 1016), comportant un corps possédant une cavité, destinée à déplacer en rotation des objets d'une zone à une autre ; et

    une seconde unité (12, 1012), accouplée à la première unité (16), destinée à maintenir et à déplacer les objets à travers la cavité du corps de la première unité (16, 1016) d'un côté de la première unité (16, 1016) à l'autre côté de la première unité (16, 1016) ; et

    un socle rotatif (14), sur lequel la première unité est montée, caractérisé en ce que le socle rotatif (14) comporte une plaque de socle fixe (1240) pour permettre une réorientation des objets lorsque les objets se déplacent à travers la cavité du corps de la première unité (16, 1016) ; et

    en ce que la plaque de socle fixe (1240) est prévue de telle sorte que la seconde unité (12, 1012) peut déposer les objets à l'intérieur de la cavité sur la plaque de socle fixe (1240).


     
    2. Appareil d'automatisation selon la revendication 1, dans lequel l'appareil est conçu pour déplacer les objets à travers un axe vertical du corps de la première unité (16, 1016).
     
    3. Appareil d'automatisation selon la revendication 2, dans lequel la seconde unité (12, 1012) comporte une partie télescopique.
     
    4. Appareil d'automatisation selon la revendication 2, dans lequel la seconde unité (12, 1012) comprend une pince rotative (34) destinée à maintenir et à réorienter les objets.
     
    5. Appareil d'automatisation selon la revendication 1, comprenant en outre un contrepoids sur la seconde unité (12, 1012).
     
    6. Appareil d'automatisation selon la revendication 1, dans lequel :
    la première unité (16, 1016) est une colonne de base, présentant un mouvement de rotation, qui comporte deux panneaux (1016A, 1016B) définissant la cavité entre eux, et la seconde unité (12, 1012) est un bras.
     
    7. Appareil d'automatisation selon la revendication 2, dans lequel la seconde unité (12, 1012) comprend :

    un bras ;

    une pince rotative, accouplée au bras, destinée à saisir, libérer et réorienter les objets ; et

    un moteur, permettant le mouvement du bras et de la pince, avec un contrepoids assurant l'équilibre.


     
    8. Procédé d'un système d'automatisation, comprenant :

    le déplacement des objets d'une zone à une autre au moyen d'une première unité (16, 1016) montée sur un socle rotatif (14, 1014) qui comporte une plaque de socle fixe (1240) ;

    le maintien et le déplacement des objets à travers une cavité de la première unité (16, 1016) d'un côté de la première unité (16) à l'autre côté de la première unité (16, 1016) au moyen d'une seconde unité (12, 1012) accouplée à la première unité ; et

    caractérisé en ce que le procédé comprend la réorientation des objets, au moyen de la seconde unité (12, 1012) et de la plaque de socle fixe (1240), lorsque les objets se déplacent à travers la cavité de la première unité (16, 1016) en déposant temporairement les objets à l'intérieur de la cavité sur la plaque de socle fixe (1240) et en faisant tourner la première et la seconde unité autour de l'objet.


     
    9. Procédé selon la revendication 8, comprenant en outre le déplacement des objets à travers un axe vertical de la première unité (16, 1016).
     
    10. Procédé selon la revendication 9, comprenant en outre le télescopage de la seconde unité (12, 1012) d'un emplacement à un autre pour maintenir l'objet ou le libérer.
     
    11. Procédé selon la revendication 9, dans lequel la seconde unité (12, 1012) est un bras avec une pince rotative (34).
     
    12. Procédé selon la revendication 8, comprenant en outre la fourniture d'un contrepoids sur la seconde unité (12, 1012).
     
    13. Procédé selon la revendication 8, dans lequel :
    la première unité (16, 1016) est une colonne de base, présentant un mouvement de rotation, qui comporte deux panneaux (1016A, 1016B) définissant la cavité entre eux, et la seconde unité (12, 1012) est un bras.
     
    14. Procédé selon la revendication 9, dans lequel la seconde unité (12, 1012) est un bras, et comprenant en outre :

    le déplacement du bras dans les directions horizontale et verticale autour de la première unité (16, 1016) ;

    la saisie et la libération des objets au moyen d'une pince accouplée au bras, la pince permettant le placement des objets ;

    et

    le fait d'assurer le mouvement du bras et de la pince grâce à un moteur avec un contrepoids assurant l'équilibre.


     




    Drawing









































    Cited references

    REFERENCES CITED IN THE DESCRIPTION



    This list of references cited by the applicant is for the reader's convenience only. It does not form part of the European patent document. Even though great care has been taken in compiling the references, errors or omissions cannot be excluded and the EPO disclaims all liability in this regard.

    Patent documents cited in the description