(19)
(11)EP 2 183 660 B1

(12)EUROPEAN PATENT SPECIFICATION

(45)Mention of the grant of the patent:
26.06.2019 Bulletin 2019/26

(21)Application number: 08782519.6

(22)Date of filing:  30.07.2008
(51)International Patent Classification (IPC): 
G06F 3/041(2006.01)
G06F 3/01(2006.01)
G06F 3/033(2013.01)
(86)International application number:
PCT/US2008/071574
(87)International publication number:
WO 2009/018330 (05.02.2009 Gazette  2009/06)

(54)

SHEAR TACTILE DISPLAY SYSTEM FOR COMMUNICATING DIRECTION AND OTHER TACTILE CUES

SCHERBERÜHRUNGSANZEIGESYSTEM FÜR DIE KOMMUNIKATIONSRICHTUNG UND ANDERE BERÜHRUNGSHINWEISE

SYSTÈME D'AFFICHAGE TACTILE PAR CISAILLEMENT POUR COMMUNIQUER UNE DIRECTION ET D'AUTRES REPÈRES TACTILES


(84)Designated Contracting States:
AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MT NL NO PL PT RO SE SI SK TR

(30)Priority: 30.07.2007 US 962649 P

(43)Date of publication of application:
12.05.2010 Bulletin 2010/19

(73)Proprietor: University of Utah Research Foundation
Salt Lake City, UT 84108 (US)

(72)Inventor:
  • PROVANCHER, William, R.
    Salt Lake City, UT 84121 (US)

(74)Representative: Walker, Ross Thomson 
Forresters IP LLP Skygarden Erika-Mann-Strasse 11
80636 München
80636 München (DE)


(56)References cited: : 
WO-A1-01/91100
KR-Y1- 200 222 674
US-A1- 2002 033 795
US-B1- 6 208 328
WO-A1-2006/115347
US-A- 5 631 861
US-A1- 2005 110 754
  
      
    Note: Within nine months from the publication of the mention of the grant of the European patent, any person may give notice to the European Patent Office of opposition to the European patent granted. Notice of opposition shall be filed in a written reasoned statement. It shall not be deemed to have been filed until the opposition fee has been paid. (Art. 99(1) European Patent Convention).


    Description

    PRIORITY



    [0001] Priority is claimed of U.S. Provisional Patent Application Serial No. 60/962,649, filed July 30, 2007.

    BACKGROUND



    [0002] The field of haptics is the science of interfacing with users via the sense of touch by applying forces, vibrations or motions to a user. Haptic devices are increasingly becoming used to provide sensory input to a user to provide information to the user: similar to the manner in which sights and sounds provide information to the user about a surrounding environment. As an example, one commonly available (albeit simplistic) haptic device is the game stick (or "joystick") controller sold by Nintendo under the trade name "Rumble Pak." This haptic device produces vibratory motion at various times during gameplay to provide the game player, through his or her sense of touch, with information relating to a scenario of the game: e.g., when he or she fires a weapon or receives damage in the game. Haptic devices are also recognized as an integral part of virtual reality systems, which attempt to simulate, through the application of forces to a participant, situations he or she "experiences" in the virtual environment.

    [0003] While haptic devices have been produced for a variety of uses, many technological hurdles remain.

    [0004] US 2002/0033795 A1 discloses a haptic feedback touch control used to provide input to a computer. US5631861 discloses a man-machine interface which provides various stimuli to sensing body parts. WO 01/91100 A1 discloses haptic feedback interface devices.

    SUMMARY OF THE INVENTION



    [0005] In accordance with one embodiment, the application provides a tactile display, including a contact pad, operable to engage a target area of a user's skin. A restraining system can be operable to restrain a portion of the user's skin distal from the target area of the skin. An actuation system can be operably coupled to one or both of: i) the contact pad and the ii) restraining system. The actuation system can be capable of moving the contact pad and the restraining system relative to one another to create a shear force or motion across the target area of the user's skin to thereby provide tactile information to the user.

    [0006] In accordance with another aspect a method of providing directional cues to a user is provided, including: restraining a portion of at least one of the user's fingers; engaging with a contact pad a target area of skin of the user; and moving the target area of skin and the contact pad relative one another to provide a shear force or motion across the target area of skin of the user to provide directional cues to the user.

    [0007] In accordance with another aspect a method of providing a user with directional cues while the user is operating an apparatus provided, including: restraining a finger of the user with a restraining structure coupled to or formed in the apparatus, to thereby at least partially restrain some skin of the finger; engaging a target area of skin of the finger with a contact pad; and moving the contact pad and the target area of skin relative to one another to thereby provide directional cues to the user, the directional cues being related to a directional aspect of the apparatus.

    [0008] The invention is defined by the features laid down in the independent claims 1 and 9. Further enhancements are provided by the dependent claims.

    BRIEF DESCRIPTION OF THE DRAWINGS



    [0009] Additional features and advantages of the invention will be apparent from the detailed description which follows, taken in conjunction with the accompanying drawings, which together illustrate, by way of example, features of the invention; and, wherein:

    FIG. 1 is a perspective view of a conceptual shear tactile display system in accordance with an embodiment of the invention;

    FIG. 2A is a side, partially sectioned view of a compact, shear tactile display actuator assembly in accordance with an embodiment of the invention;

    FIG. 2B is a perspective view of the display of FIG. 2A;

    FIG. 3 includes two schematic views illustrating exemplary manners of actuating the shear contact pad of the present invention;

    FIG. 4 is a schematic view illustrating the components of a compact shear tactile display in accordance with an embodiment of the invention;

    FIG. 5 is a schematic view of an exemplary sensing system in accordance with an aspect of the invention;

    FIG. 6 is a schematic view of an exemplary control/sensing system in accordance with an aspect of the invention;

    FIG. 7 is a schematic view of an exemplary compact shear display assembly in accordance with an aspect of the invention;

    FIG. 8A is an exemplary control/sensing circuit in accordance with an aspect of the invention for use with voltage-based sensors;

    FIG. 8B is an exemplary control/sensing circuit in accordance with an aspect of the invention for use with current-based sensors;

    FIG. 9 is a schematic representation of an application of the present invention in use with a finger well;

    FIG. 10 is a schematic representation of an application of the present invention in use with a finger well and a contact pad capable of selectively breaking contact with the skin surface (the skin surface shown is a portion of a finger or a palm in this example);

    FIG. 11 is a schematic representation of an application of the present invention in use with a finger well coupled to or integrated with a stylus;

    FIG. 12 illustrates an application of the present invention as incorporated into a vehicle steering wheel application; and

    FIG. 13 illustrates an application of the present invention as incorporated into an ambulatory assist (e.g., walking cane) application.



    [0010] Reference will now be made to the exemplary embodiments illustrated, and specific language will be used herein to describe the same. It will nevertheless be understood that no limitation of the scope of the invention is thereby intended.

    DETAILED DESCRIPTION OF EXAMPLE EMBODIMENTS



    [0011] The following detailed description of exemplary embodiments of the invention makes reference to the accompanying drawings, which form a part hereof and in which are shown, by way of illustration, exemplary embodiments in which the invention may be practiced.

    [0012] In describing and claiming the present invention, the following terminology will be used.

    [0013] As used herein, application of a shear force or motion to a user's skin is to be understood to refer to application of a force that results in a sliding motion or "skin stretch" being applied to the user's skin such that the user's skin is pulled (or tends to be pulled) in a transverse, as opposed to a normal, direction. Such an application will tend to create a tensile force on a trailing edge of the skin being targeted and a compressive force on a leading edge of the skin. Shear forces can be applied to the skin while sliding a contact pad across the skin (e.g., some slip between the contact pad and the targeted skin); or while moving the contact and the surface of the skin together (e.g., little or no slip between the contact pad and the targeted skin).

    [0014] Application of shear forces is to be understood to be distinct from application of kinesthetic forces, as that term is understood by those of ordinary skill in the art. As one example, the application of shear force to a user's finger pad by moving a shear plate transverse to the user's finger pad (thereby causing local skin deformations) is to be distinguished from the kinesthetic forces and motions experienced by a user as a stylus or other device is applied to a user's fingers or hand causing (or tending to cause) motion of the finger, hand, and/or arm joints. The local shear deformations in the skin from moving a shear plate transverse to the user's skin are also distinct from the forces experienced by a user when a device is merely vibrated to provide information to a user. Typically, application of a shear force requires relative movement of the user's target skin area (e.g., finger pad or palm) relative to a shear plate, which relationship can occur by way of movement of the target skin area, movement of the shear plate, or both. Typically speaking, however, relative transverse movement is required to apply the shear force that is reacted locally, whereas application of kinesthetic forces can be realized without locally reacted relative transverse motion, since the kinesthetic forces are reacted away from the target area of the skin.

    [0015] When reference is made herein to "a portion of a user's skin distal from a target area of the skin," it is to be understood that the distal portion of the skin can be immediately adjacent the target area of skin; or, the portion of the skin may be relatively far removed from the target area but is nonetheless restrained to enable application of a shear force across the target area of skin. This latter case can be realized, for example, by restraining a user's finger at or near the middle phalanx while moving the user's finger pad relative to a shear plate: in this case the distal portion of the user's skin is at or near the middle phalanx while the target area is at or near the finger pad.

    [0016] As used herein, the term "finger well" is to be understood to refer to a structure into which at least a portion of a user's finger can be disposed to partially immobilize portions of the user's skin in the finger well to enable or enhance the application of shear forces to the user's skin. Generally speaking, the finger well will include a "window" or other orifice through which a contact can be felt by the user's finger pad. Importantly, application of shear forces through a finger well can be accomplished by a contact pad that is larger in size than is the window formed in the finger well (for example, the edges of the contact pad may never appear in the window through the entire range of motion of the contact pad).

    [0017] As used herein, the term "directional aspect" is to be understood to refer to some characteristic of a system that relates to or involves movement or travel in optional directions. For example, when the system is a vehicle, the directional aspect may be related to the direction in which the vehicle is traveling; or to a direction in which it is desirable that the vehicle travel or turn. As another example, when the referenced system is a personal computing device, the directional aspect may relate to a direction of travel of a cursor, menu item, icon or similar component of the personal computing device.

    [0018] As used herein, the term "force or motion application pattern" is to be understood to refer to a characteristic, or set of characteristics, exhibited while shear forces or motions are applied to a user's skin. The force or motion application pattern can vary in aspects including, but not limited to, magnitude of the force applied, displacement of one or more components relative to another, velocity of one or more components relative to another, frequency of application of the force, repeating patterns of one or more of the other varying attributes, etc.

    [0019] As used herein, the term "personal computing device" is to be understood to refer to an electronic device useable by a consumer to perform some task. Examples of personal computing devices include, without limitation, notebook computers; desktop computers; hand-held devices such as cell phones, personal digital assistants, music players, global positioning devices, game controllers, etc.

    [0020] As used herein, relative terms, such as "upper," "lower," "upwardly," "downwardly," etc., are used to refer to various components of the systems discussed herein, and related structures with which the present systems can be utilized, as those terms would be readily understood by one of ordinary skill in the relevant art. It is to be understood that such terms in no way limit the present invention but are used to aid in describing the components of the present systems, and related structures generally, in the most straightforward manner.

    [0021] As used herein, the term "substantially" refers to the complete or nearly complete extent or degree of an action, characteristic, property, state, structure, item, or result. As an arbitrary example, when an object or group of objects is/are referred to as being "substantially" symmetrical, it is to be understood that the object or objects are either completely symmetrical or are nearly completely symmetrical. The exact allowable degree of deviation from absolute completeness may in some cases depend on the specific context. However, generally speaking the nearness of completion will be so as to have the same overall result as if absolute and total completion were obtained.

    [0022] The use of "substantially" is equally applicable when used in a negative connotation to refer to the complete or near complete lack of an action, characteristic, property, state, structure, item, or result. As an arbitrary example, an opening that is "substantially free of' material would either completely lack material, or so nearly completely lack material that the effect would be the same as if it completely lacked material. In other words, an opening that is "substantially free of' material may still actually contain some such material as long as there is no measurable effect as a result thereof.

    Invention



    [0023] The present invention provides systems and methods for displaying to a user tactile information by way of application of shear forces to, or motions across, the skin of the user. The invention can be utilized in a number of applications, including as a manner in which users of equipment can be provided with information relating to operation of the equipment. For example, in one aspect, a system in accordance with the invention can be incorporated into the steering wheel of a vehicle to provide information relating to operation of the vehicle in a manner that does not require that the operator perceive visual or auditory signals. Such an application can be beneficial in applications where ambient noises are problematic, or where it is not desirable to overload visual input to the operator/driver. Further, it has been found that certain types of information are more intuitively processed and understood by users, possibly with lower cognitive load, when provided in a tactile manner, as compared to visual and auditory presentation.

    [0024] A general aspect of the invention is illustrated at 10 in FIG 1, where it can be seen that the system 10 can typically include a contact pad 12 that can be suitable for engaging a target area of a user's skin (the target area of the skin in this example is the pad of the finger 13 in immediate contact with the contact pad). As the contact pad is moved transversely relative to the target area of skin, the person experiences the sensation of a shear force or stroking motion being applied to the user's skin. In most aspects of the invention, the force applied to the user's skin is applied primarily in a transverse direction: forces of any significance applied normally to the skin surface are neither necessary nor, generally, desirable. The force applied to the user's skin will generally be in the direction indicated by one of the directional indicators 11a, 11b, 11c, 11d: however, application of motions in between these indicated directions are also possible.

    [0025] Tactile feedback can be provided to a person's finger tip, hand, or other body surface in the form of shear motions and forces that can be sensed by cutaneous touch receptors of the skin. The contact pad can be stroked or slid over the finger, but when combined with a contact pad of sufficient friction these shear motions and forces induce skin stretch which results in increased perceived sensation. Either mode of feedback can be used to communicate information to the user, information including, but not limited to, cues such as slip, friction and direction.

    [0026] Depending upon the embodiment of the invention, the force can be applied in a variety of patterns. In the example where the invention is incorporated into a vehicle, the force or stroking motion may be applied in direction 11a to indicate to the user, for example, that he or she should navigate the vehicle in that direction. In this example, the contact pad 12 can be moved once in the direction 11a, or can be moved back-and-forth in directions 11a and 11b, with the movement in direction 11a differing in some aspect from the movement in direction 11b. In other words, the pad 12 might be moved in direction 11a at a relatively high rate, and "returned" to a null position by moving along direction 11b at a relatively slower, less perceptible rate. This force or motion application pattern can be repeated multiple times to provide the operator with the greatest opportunity to sense and correctly interpret the information being provided.

    [0027] Other exemplary force or motion application patterns can include moving the contact pad in direction 11a while the pad and the target area of skin are in contact, then breaking contact between the target area of skin and the pad to return the pad to a null position. This aspect of the invention is illustrated by example in FIG. 10, where contact pad 12a can move laterally to apply the shear force to the target area of skin 15, after which it can be moved normal to the skin (i.e., it can break contact with the skin), and return to a null position. Contact with the skin can be made again, and the shear force can again be applied to the skin (at either the same magnitude, velocity, etc., or at a differing magnitude, velocity, etc.). In this manner, the user does not necessarily sense the return movement of the pad, which otherwise may cause confusion on the direction being indicated. Contact between the pad and the target area of skin can be broken by either moving the pad normal to (and away from) the target area of skin; or by moving the target area of skin normal to (and away from) the contact pad. In other words, the contact pad may be capable of moving only in 2 axes (both tangentially to the skin surface), while a finger well (36, in FIGs. 9 and 11-12, for example) is capable of moving the skin surface normally away from the contact pad.

    [0028] A similar effect to that illustrated in FIG. 10 can be accomplished by actively varying the effective coefficient of friction of the contact pad by vibrating the contact pad with ultrasonic vibrations as recently demonstrated in the field of haptics. By actively varying the friction of the contact pad, the pad 12 might, for example, be moved in direction 11a at a relatively high friction level, and "returned" to a null position by moving along direction 11b at a relatively lower, less perceptible friction level. This force or motion application pattern can be repeated multiple times to provide the operator with the greatest opportunity to sense and correctly interpret the information being provided.

    [0029] It is also contemplated that the force or motion application pattern can be varied depending upon the urgency of the information being conveyed to the user. Again using the example of the vehicle application, in non-critical scenarios, a "low-key" signal can be provided to the user by using a relatively slower or shorter displacement of the contact pad relative to the target area of skin. Such might be the case, for example, if information were being provided to the operator that he or she had failed to disengage the turn signal of the vehicle after making a turn. If information of relatively higher importance were being provided to the operator, the intensity of the force or motion application pattern can be increased by increasing the magnitude or speed of the movement of the contact pad, for example.

    [0030] The invention can be incorporated into a variety of systems, some of which are explicitly shown and discussed herein. In one exemplary application, illustrated in FIG. 2, the system includes a contact pad 12, and a base 14. The base can be configured to be coupled to an external support structure over which, or adjacent to which, the user can place his or her finger. In the embodiment shown, the base is coupled to a thimble structure 16 that can be mountable over the finger (or thumb) of the user's hand. An actuation system 19 (shown generally in FIG. 2A, with more explicit examples provided in FIGs. 3, 4, 6 and 7) can be actuated to move the contact pad relative to the base and transversely to the target area of the user's skin.

    [0031] The contact pad can be formed in a variety of shapes and sizes, and can include a substantially planar surface that contacts the target area, or can include a rounded or curved or otherwise non-planar geometry. The contact pad can be smooth (or rolling) for presenting sliding motions, or can have high friction and/or texture to amplify the perceived sensation by applying skin stretch rather than sliding motion. The contact pad can include a series of spaced contact points extending therefrom (e.g. a textured surface), and the contact points can move relative to the user's skin while remaining substantially fixed relative to one another. In this embodiment, while the contact pad is generally continuous across its surface, the surface of the contact pad may be formed from a series of points, bumps, or other protrusions, due either to the natural undulation of the material used, or intentional landscape added to the pad. In the event the pad includes such points or bumps, the tips of the points or bumps that contact the user's skin will generally all move as an integral unit, e.g., a spacing relationship between the points or bumps will be maintained as the pad moves relative to the user's skin, hence constituting a textured surface.

    [0032] The target area of the user's skin can be sufficiently large to cause the user to experience the sense of shear forces acting upon the target area. While the size of the target area can vary, it must generally be large enough so that the user experiences more than a mere touching sensation: the user should be able to feel and discern that a shear force or stoking motion is being applied to his or her finger. In one aspect of the invention, a width of the contact pad can be at least about 3 millimeters. In compact applications, a width of the contact pad can be greater than a height of the contact pad (e.g., a total height of the device can be less than a total width of the device). In one embodiment, a distance from a bottom-most portion of the base to an uppermost portion (e.g., a "height" of the device) of the contact pad is less than about 0.50 inches. In other embodiments, a minimum height can be about 1.5 inches. In one embodiment, a total package size of the device can be on the order of 2x2 inches. Thus, the display system can be formed in a relatively small package so as to easily installable adjacent structures over which a user typically places his or her hands or fingers, yet be fully functional despite this small footprint.

    [0033] Various exemplary actuation systems are illustrated in a generalized manner in FIGs. 3, 4, 6 and 7. In the example shown in FIG. 3, the contact pad 12 can be coupled to a rod 50 which rests in spherical bearing 32 and can be actuated by Shape Memory Alloy ("SMA") devices known to those of ordinary skill in the art. In the embodiments illustrated in FIGs. 4, 6 and 7, the contact pad 12 is coupled to a bearing plate 18 that is moved to achieve movement of the contact pad 12. The bearing plate 18 can be supported by parallel plates that form a bearing housing 60. In the examples provided, various springs (shown with spring constants "k") and SMA devices coordinate to achieve movement of the contact pad. The embodiments illustrated as cross-sectional views in FIGs. 4 and 7 are similar in operation, with the embodiment of FIG. 6 including pulley 34 (or multiple pulleys) that enables use of the SMA while limiting an overall size of the package of the system.

    [0034] FIG. 5 illustrates one exemplary manner in which movement of the system can be measured using various emitters (E1, E2, etc.) and detectors (D1A, D1B, etc.). As the bearing plate 18 and contact pad 12 are moved, the pairs of detectors can register the movement and can provide a corresponding signal to a suitable data processing system (not shown). This concept is incorporated into the control/sensing system of FIG. 6. This embodiment utilizes principles similar to those outlined above, with the addition of a pair of springs opposing each SMA device to limit potential rotation of the bearing plate 18 during translational movement to reduce the potential of incorrect readings by the detectors and emitters.

    [0035] The examples illustrated in FIGs. 3-8B are provided merely to describe various implementations of the invention; these examples will be readily understandable to one having ordinary skill in the art and will not be expanded upon in detail herein. Many of the examples shown, however, enable provision of the unique features of the present invention in a very small, compact package that can be readily incorporated into various apparatuses, such as computing devices, vehicles, steering components of vehicles, etc. It is, of course, to be understood that these examples are provided only to illustrate various manners in which the invention can be implemented; many other suitable actuation and sensing systems can be utilized.

    [0036] While the specific structure utilized in the actuation system of the present display can vary, generally the tactile display is capable of a range of motion of from about +/-0.05 mm of travel on two axes to about +/- 5 mm of travel on two axes. In one embodiment, the contact pad and the target area of skin need move relative to one another by only about 0.05 mm to about 1 mm.

    [0037] FIG. 9 illustrates an embodiment of the invention that incorporates a finger well 36 including a recession 30 into a generalized structure 28. A contact pad 12 can be located or disposed within or adjacent the well. The well can serve as tactile indicator of the location of the contact pad so that a user can locate the contact pad by touch (note that the well need not, necessarily, coincide with the location of the contact pad). The well also serves as a restraining structure that restrains portions 15 of the user's skin adjacent the target area of skin, to better transmit the shear forces to the target area of skin. In addition, the well itself can also be independently actuated in two-dimensions relative to the generalized structure 28 (similar to the embodiment illustrated in FIG, 10, except that the well moves instead of, or in addition to, the contact pad).

    [0038] In those embodiments where the location of the well coincides with the location of the contact pad, the well can also serve to isolate the portion of skin that serves as the target area to aid a user in more clearly discerning movement of the contact pad across the target area. The general structure into which, or with which, the well can be associated can vary widely. In the embodiment shown in FIG. 11, two wells 36 are incorporated into a stylus 29 to enable contact pads 12 to provide directional instruction or information to a wielder of the stylus. FIG. 12 illustrates an exemplary application of the present invention in use with a vehicle. In this embodiment, the well 36 can be installed on (or in) a steering wheel 40 to enable contact pad 12 to provide directional commands to a driver through a tactile interface. Note that, in FIG. 12, the shear display is indicated as installed in a location on the steering wheel facing the driver. In other applications, the shear display will be installed on (or in) the steering wheel so as to face the dashboard and be accessible by fingertips of the user that are wrapped about the rear of the steering wheel. In this application, the shear display can be utilized to provide tactile information to the user relating to a variety of differing aspects of operating the vehicle, including information relating to a direction of travel of the vehicle (including a direction of travel different than a present direction of travel), a speed of the vehicle, the presence of an incoming call on a vehicle communications device, etc. Generally speaking, any type of information typically provided by way of auditory or visual stimulus can be presented to the vehicle's operator via the present tactile display.

    [0039] In a similar application illustrated in FIG. 13, the well 36 can be incorporated into a walking cane 42 utilized by the visually impaired to enable contact pad 12 to provide directional commands through a tactile interface, possibly alerting the visually-impaired user of the presence of an upcoming obstacle (and/or directing the user around the obstacle).

    [0040] The system can readily be adapted for a variety of applications, including many virtual reality applications. Also, the system can be readily adapted for use with many Global Positioning Systems ("GPS") to enable provision of information relating to position to users of vehicles, computing devices, ambulatory assistance devices, etc.

    [0041] Generally speaking, the invention is a compact device that can provide 2-dimensional or 3-dimensional tactile feedback to the skin (e.g., a fingerpad or palm) of a human. This device could employ a small tactile element or block placed against the user's fingerpad to convey shifting contact location or skin shear along the surface of the user's fingerpad. This motion can be imparted in the directions both along the length of the finger and laterally (and can be selectively removed from the finger by movement normal to the skin surface away from the skin surface). The device's package design is meant to be compact and modular such that it could be placed on the fingerpad of a thimble interface or embedded as part of other apparatuses such as a computer mouse, steering wheel, telesurgical robot control interface, walking aids used by sight impaired individuals, wheelchairs, etc.

    [0042] Methods of actuation will generally be compatible with a compact design and are also generally power efficient. Piezoelectric actuators or electromagnetic motors can be utilized in the actuation system; the use of Shape Memory Alloy (SMA) actuators is also particularly attractive from a packaging standpoint. The design of the shear displays can be miniaturized and optimized for two or three axes of motion. The minimum motion capability for the device can be in the range of +/- 0.050 mm of motion on 2 axes. In one aspect of the invention, the range of motion of can be on the order of 0.05 mm to about 2 mm. In another aspect, the range can vary from a minimum of about 0.05 mm to about 1 mm. In one aspect of the invention, the motion of the contact pad and the target area of skin is limited, restrained or restricted to less than 2 mm of total relative travel. In one aspect, the total relative travel is limited to 1 mm or less. In another embodiment, the total relative travel is limited to 4 mm or less.

    [0043] Contact pads utilized in the present invention can be relatively small relative to an orifice formed in finger well or other structure, as in the embodiment illustrated in FIG. 9. In other aspects, however, the contact pad can be much larger than the opening or orifice through which a user senses motion of the contact pad. The contact pad can also be carried by much larger underlying structure, and multiple contact pads can be utilized where appropriate. Also, multiple openings or finger wells can be utilized, with one or more contact pads being associated therewith.

    [0044] The device allows a person to receive touch (shear) feedback in a wide variety of applications where touch feedback is not currently possible. Current tactile (touch) feedback interfaces tend to have large package size making them inappropriate to be placed in a thimble or portable device.

    [0045] Furthermore, this device can be used to provide information about a computer interface or suggested direction cues to the operator of a computer, car, or various portable devices. The device has the potential to provide touch feedback in applications where audible or voice cues are solely given currently: this device hence provides the opportunity to reduce cognitive load by providing a more intuitive conduit for communicating spatial and/or directional information (e.g., directions by computer cursor location).

    [0046] The compact shear display can be used in a variety of manners. In one aspect, the device can be used to provide tactile feedback and to be used in combination with a commercial 3-D force feedback device, such as one sold under the trade name PHANToM, made by SensAble Technologies, or other similar commercial force feedback devices. For example, the present device could be used to replace PHANToM's current thimble interface.

    [0047] In other embodiments of the invention, the shear display can be added to enhance (or replace) the data input device used as the common computer "mouse." The display can be used in combination with a finger-based touchpad. The tactile feedback device could be used in at least two ways. The shear display could be used to represent the current location of the computer cursor. Alternatively, the device could be used to transmit shearing motions to the skin of the fingerpad to suggest which direction the user should move their finger to attend to a particular task or application, thus providing attention cueing capability to the user.

    [0048] Because of its compact design, the inventor's shear feedback device can be added to many current devices, and is suitable for applications in wearable or mobile computing. For example, it can be used as part of a gaming controller interface. The device is also well suited for applications which require communication of directional information. An example of this includes embedding several of the shear display devices into the steering wheel of an automobile (or other similar vehicle), to communicate information from a GPS navigation system. The shearing motion provided to the user's skin in each of these applications can provide suggested direction cues to greatly enhance the ability of the user to operate the vehicle.

    [0049] While the forgoing examples are illustrative of the principles of the present invention in one or more particular applications, it will be apparent to those of ordinary skill in the art that numerous modifications in form, usage and details of implementation can be made without the exercise of inventive faculty, and without departing from the principles and concepts of the invention. Accordingly, it is not intended that the invention be limited, except as by any claims.


    Claims

    1. A tactile feedback device (10), comprising:

    a contact pad (12), operable to engage a target area of a user's skin (15);

    a restraining system (36), operable to restrain a portion of the user's skin;

    an actuation system (19), operably coupled to one of: i) the contact pad (12) and the ii) restraining system (36); the actuation system being capable of moving the contact pad and the restraining system relative to one another in three dimensions; and

    characterised in that the restraining system comprises a finger well (36) capable of restraining the portion of the user's skin immediately adjacent to the target area of the skin and in doing so immobilize the target area so that the three dimensional movement of the contact pad (12) applies a shear force to the target area of the user's skin to thereby provide three-dimensional tactile feedback information to the user, wherein the three-dimensional tactile feedback information communicates direction cues or forces along the length of the target area of the user's skin, laterally across the target area of the user's skin, and forces normal to the target area of the user's skin.


     
    2. The device of claim 1, wherein said device (10) is placed on the fingerpad of a finger thimble (16).
     
    3. The device of claim 1, wherein the contact pad (12) is moved relative to the target area of the user's skin (15).
     
    4. The device of claim 1, wherein both the restraining system and the contact pad (12) are moveable relative to the other in at least three degrees of freedom.
     
    5. The device of claim 3, wherein the contact pad (12) is moveable in a direction normal to the target area of the user's skin (15).
     
    6. The device of claim 5, wherein the contact pad (12) is moveable in the normal direction at an ultrasonic rate to enable creation of a varying coefficient of friction between the contact pad and the target area of the user's skin (15).
     
    7. The device of claim 1, wherein the device is coupled to an external, operable apparatus, the external, operable apparatus being selected from the group consisting of: a vehicle, an ambulatory assistance device; a personal computing device or personal computing device accessory.
     
    8. The device of claim 1, wherein the restraining system restrains more than one portion of the user's skin.
     
    9. A method of providing a user with three dimensional feedback information while the user is operating an apparatus, said apparatus including a tactile feedback device (10) according to claim 1, said method comprising:

    restraining a finger of the user with the restraining system included in the apparatus, to thereby at least partially restrain a portion of skin on the user's finger (15);

    engaging a target area of skin of the finger with the contact pad (12); and moving the contact pad and the restraining structure relative to one another in at least one of three dimensions; and

    providing three-dimensional tactile feedback information to the user, wherein the three-dimensional tactile feedback information communicates direction cues or forces along the length of the target area of the user's skin, laterally across the target area of the user's skin, and forces normal to the target area of the user's skin.


     
    10. The method of claim 9, wherein the apparatus is selected from the group consisting of: a vehicle; an ambulatory assistance apparatus; a personal computing device; and a personal computing device accessory.
     
    11. The method of claim 10, wherein the apparatus is a vehicle, and wherein the tactile feedback device is coupled to or embedded within a steering component of the vehicle.
     
    12. The method of claim 11, wherein the steering component of the vehicle comprises a steering wheel (40).
     
    13. The method of claim 9, wherein the apparatus is a personal computing device, and wherein the tactile feedback device is associated with a data input of the personal computing device.
     
    14. The method of claim 9, wherein moving the contact pad (12) and the restraining system relative to one another comprises moving one of the contact pad and the restraining system in at least three degrees of freedom.
     
    15. The method of claim 9, further comprising actively varying a friction force between the contact pad (12) and the target area of skin of the finger (15).
     
    16. The method of claim 15, further comprising steps:

    a) moving the contact pad (12) laterally from a null position in a first direction to apply the shear force on the target area;

    b) moving the contact pad (12) in a direction normal to the target area so as to break contact with the skin; and

    c) moving the contact pad first laterally and then in a direct normal to the target area so as to return the contact pad to the null position.


     
    17. The method of claim 16, wherein steps a) to c) are repeated multiple times.
     


    Ansprüche

    1. Berührungsfeedbackvorrichtung (10), umfassend:

    einen Kontaktpad (12), der betätigbar ist, um einen Zielbereich der Haut eines Benutzers (15) in Eingriff zu nehmen;

    ein Rückhaltesystem (36), das wirksam ist, um einen Abschnitt der Haut des Benutzers zurückzuhalten;

    ein Betätigungssystem (19) in Wirkverbindung mit einem: i) des Kontaktpads (12) und des ii) Rückhaltesystems (36); wobei das Betätigungssystem fähig ist, den Kontaktpad und das Rückhaltesystem relativ zueinander in drei Dimensionen zu bewegen; und

    dadurch gekennzeichnet, dass das Rückhaltesystem eine Fingermulde (36) umfasst, die fähig ist, den Abschnitt der Haut des Benutzers unmittelbar neben dem Zielbereich der Haut zurückzuhalten und dabei den Zielbereich zu immobilisieren, sodass die dreidimensionale Bewegung des Kontaktpads (12) eine Scherkraft auf den Zielbereich der Haut des Benutzers anwendet, um dadurch dem Benutzer dreidimensionale Berührungsfeedbackinformationen bereitzustellen, worin die dreidimensionalen Berührungsfeedbackinformationen Richtungshinweise oder Kräfte entlang der Länge des Zielbereichs der Haut des Benutzers, seitlich über den Zielbereich der Haut des Benutzers, und zum Zielbereich der Haut des Benutzers senkrechte Kräfte übermitteln.


     
    2. Vorrichtung nach Anspruch 1, worin die Vorrichtung (10) auf dem Fingerpad eines Fingerhuts (16) platziert wird.
     
    3. Vorrichtung nach Anspruch 1, worin der Kontaktpad (12) relativ zum Zielbereich der Haut des Benutzers (15) bewegt wird.
     
    4. Vorrichtung nach Anspruch 1, worin sowohl das Rückhaltesystem als auch der Kontaktpad (12) relativ zueinander in mindestens drei Freiheitsgraden bewegbar sind.
     
    5. Vorrichtung nach Anspruch 3, worin der Kontaktpad (12) in einer Richtung senkrecht zum Zielbereich der Haut des Benutzers (15) bewegbar ist.
     
    6. Vorrichtung nach Anspruch 5, worin der Kontaktpad (12) in der senkrechten Richtung mit einer Ultraschallrate bewegbar ist, um die Erzeugung eines variierenden Reibungskoeffizienten zwischen dem Kontaktpad und dem Zielbereich der Haut des Benutzers (15) zu ermöglichen.
     
    7. Vorrichtung nach Anspruch 1, worin die Vorrichtung mit einem externen, betätigbaren Gerät verbunden ist, wobei das externe, betätigbare Gerät aus der aus Folgendem bestehenden Gruppe ausgewählt wird: einem Fahrzeug, einer Bewegungshilfe; einem Personalcomputergerät oder Personalcomputergerät-Zubehörteil.
     
    8. Vorrichtung nach Anspruch 1, worin das Rückhaltesystem mehr als einen Abschnitt der Haut des Benutzers zurückhält.
     
    9. Verfahren zum Versorgen eines Benutzers mit dreidimensionalen Feedbackinformationen, während der Benutzer ein Gerät bedient, wobei das Gerät eine Berührungsfeedbackvorrichtung (10) nach Anspruch 1 beinhaltet, wobei das Verfahren Folgendes umfasst:

    Zurückhalten eines Fingers des Benutzers mit dem im Gerät inbegriffenen Rückhaltesystem, um dadurch mindestens teilweise einen Hautabschnitt auf dem Finger des Benutzers (15) zurückzuhalten;

    Ineingriffnehmen eines Hautzielbereichs des Fingers mit dem Kontaktpad (12); und Bewegen des Kontaktpads und der Rückhaltestruktur relativ zueinander in mindestens einer von drei Dimensionen; und

    Bereitstellen von dreidimensionalen Berührungsfeedbackinformationen an den Benutzer, worin die dreidimensionalen Berührungsfeedbackinformationen Richtungshinweise oder Kräfte entlang der Länge des Zielbereichs der Haut des Benutzers, seitlich über den Zielbereich der Haut des Benutzers, und zum Zielbereich der Haut des Benutzers senkrechte Kräfte übermitteln.


     
    10. Verfahren nach Anspruch 9, worin das Gerät aus der aus Folgendem bestehenden Gruppe ausgewählt wird: einem Fahrzeug, einer Bewegungshilfe; einem Personalcomputergerät; und einem Personalcomputergerät-Zubehörteil.
     
    11. Verfahren nach Anspruch 10, worin das Gerät ein Fahrzeug ist und worin die Berührungsfeedbackvorrichtung mit einer Lenkungskomponente des Fahrzeugs verbunden oder in dieser eingebettet ist.
     
    12. Verfahren nach Anspruch 11, worin die Lenkungskomponente des Fahrzeugs ein Lenkrad (40) umfasst.
     
    13. Verfahren nach Anspruch 9, worin das Gerät ein Personalcomputergerät ist und worin die Berührungsfeedbackvorrichtung mit einer Dateneingabe des Personalcomputergeräts assoziiert ist.
     
    14. Verfahren nach Anspruch 9, worin das Bewegen des Kontaktpads (12) und des Rückhaltesystems relativ zueinander das Bewegen eines des Kontaktpads und des Rückhaltesystems in mindestens drei Freiheitsgraden umfasst.
     
    15. Verfahren nach Anspruch 9, ferner umfassend das aktive Variieren einer Reibungskraft zwischen dem Kontaktpad (12) und dem Hautzielbereich des Fingers (15).
     
    16. Verfahren nach Anspruch 15, ferner umfassend die folgenden Schritte:

    a) Bewegen des Kontaktpads (12) seitlich aus einer Nullposition in einer ersten Richtung, um die Scherkraft auf den Zielbereich anzuwenden;

    b) Bewegen des Kontaktpads (12) in einer Richtung senkrecht zum Zielbereich, um so den Kontakt mit der Haut aufzuheben; und

    c) Bewegen des Kontaktpads zuerst seitlich und dann in einer Richtung senkrecht zum Zielbereich, um so den Kontaktpad in die Nullposition zurückzustellen.


     
    17. Verfahren nach Anspruch 16, worin die Schritte a) bis c) mehrmals wiederholt werden.
     


    Revendications

    1. Dispositif d'information de rétroaction tactile (10), comprenant :

    un clavier de contact (12), pouvant être actionné pour mettre en prise une zone cible de la peau d'un utilisateur (15) ;

    un système de retenue (36), pouvant être actionné pour retenir une partie de la peau de l'utilisateur ;

    un système d'actionnement (19), accouplé de manière fonctionnelle à soit : i) le clavier de contact (12), soit ii) le système de retenue (36) ; le système d'actionnement pouvant déplacer le clavier de contact et le système de retenue l'un par rapport à l'autre dans trois dimensions ; et

    caractérisé en ce que le système de retenue comprend une cavité de doigt (36) pouvant retenir la partie de la peau de l'utilisateur immédiatement adjacente à la zone cible de la peau et, de ce fait, immobiliser la zone cible de telle sorte que le déplacement tridimensionnel du clavier de contact (12) applique une force de cisaillement à la zone cible de la peau de l'utilisateur afin de fournir ainsi une information de rétroaction tactile tridimensionnelle à l'utilisateur, dans lequel l'information de rétroaction tactile tridimensionnelle communique des indications ou des forces de direction le long de la longueur de la zone cible de la peau de l'utilisateur, latéralement sur la zone cible de la peau de l'utilisateur, et des forces perpendiculaires à la zone cible de la peau de l'utilisateur.


     
    2. Dispositif selon la revendication 1, dans lequel ledit dispositif (10) est placé sur le support de doigt d'un dé à coudre (16).
     
    3. Dispositif selon la revendication 1, dans lequel le clavier de contact (12) est déplacé par rapport à la zone cible de la peau de l'utilisateur (15).
     
    4. Dispositif selon la revendication 1, dans lequel le système de retenue et le clavier de contact (12) peuvent être déplacés l'un par rapport à l'autre d'au moins trois degrés de liberté.
     
    5. Dispositif selon la revendication 3, dans lequel le clavier de contact (12) peut être déplacé dans une direction perpendiculaire à la zone cible de la peau de l'utilisateur (15).
     
    6. Dispositif selon la revendication 5, dans lequel le clavier de contact (12) peut être déplacé dans la direction perpendiculaire à un débit ultrasonore pour permettre la création d'un coefficient de frottement variant entre le clavier de contact et la zone cible de la peau de l'utilisateur (15).
     
    7. Dispositif selon la revendication 1, dans lequel le dispositif est accouplé à un appareil actionnable externe, l'appareil actionnable externe étant sélectionné dans le groupe constitué de : un véhicule, un dispositif d'assistance ambulatoire ; un dispositif informatique personnel ou un accessoire de dispositif informatique personnel.
     
    8. Dispositif selon la revendication 1, dans lequel le système de retenue retient plusieurs parties de la peau de l'utilisateur.
     
    9. Procédé permettant de fournir à un utilisateur une information de rétroaction tridimensionnelle pendant que l'utilisateur utilise un appareil, ledit appareil incluant un dispositif d'information de rétroaction tactile (10) selon la revendication 1, ledit procédé consistant à :

    retenir un doigt de l'utilisateur par le système de retenue inclus dans l'appareil, afin d'ainsi retenir au moins partiellement une partie de la peau sur le doigt de l'utilisateur (15) ;

    mettre en prise la zone cible de la peau du doigt avec le clavier de contact (12) ; et déplacer le clavier de contact et la structure de retenue l'un par rapport à l'autre dans au moins une des trois dimensions ; et

    fournir une information de rétroaction tactile tridimensionnelle à l'utilisateur, dans lequel l'information de rétroaction tactile tridimensionnelle communique des indications ou des forces de direction le long de la longueur de la zone cible de la peau de l'utilisateur, latéralement sur la zone cible de la peau de l'utilisateur, et des forces perpendiculaires à la zone cible de la peau de l'utilisateur.


     
    10. Procédé selon la revendication 9, dans lequel l'appareil est sélectionné dans le groupe constitué de : un véhicule ; un dispositif d'assistance ambulatoire ; un dispositif informatique personnel et un accessoire de dispositif informatique personnel.
     
    11. Procédé selon la revendication 10, dans lequel l'appareil est un véhicule, et dans lequel le dispositif d'information de rétroaction tactile est accouplé ou intégré à un composant volant de direction du véhicule.
     
    12. Procédé selon la revendication 11, dans lequel le composant volant de direction du véhicule comprend un volant de direction (40).
     
    13. Procédé selon la revendication 9, dans lequel l'appareil est un dispositif informatique personnel, et dans lequel le dispositif d'information de rétroaction tactile est associé à une entrée de données du dispositif informatique personnel.
     
    14. Procédé selon la revendication 9, dans lequel le déplacement du clavier de contact (12) et du système de retenue l'un par rapport à l'autre consiste à déplacer soit le clavier de contact, soit le système de retenue dans au moins trois degrés de liberté.
     
    15. Procédé selon la revendication 9, consistant en outre à varier activement une force de frottement entre le clavier de contact (12) et la zone cible de la peau du doigt (15).
     
    16. Procédé selon la revendication 15, comprenant en outre les étapes consistant à :

    a) déplacer le clavier de contact (12) latéralement depuis une position zéro dans une première direction pour appliquer la force de cisaillement sur la zone cible ;

    b) déplacer le clavier de contact (12) dans une direction perpendiculaire à la zone cible de façon à interrompre le contact avec la peau ; et

    c) déplacer le clavier de contact d'abord latéralement, puis dans une direction perpendiculaire à la zone cible de façon à renvoyer le clavier de contact à la position zéro.


     
    17. Procédé selon la revendication 16, dans lequel les étapes a) à c) sont répétées plusieurs fois.
     




    Drawing





























    Cited references

    REFERENCES CITED IN THE DESCRIPTION



    This list of references cited by the applicant is for the reader's convenience only. It does not form part of the European patent document. Even though great care has been taken in compiling the references, errors or omissions cannot be excluded and the EPO disclaims all liability in this regard.

    Patent documents cited in the description