(19)
(11)EP 2 183 945 B1

(12)EUROPEAN PATENT SPECIFICATION

(45)Mention of the grant of the patent:
17.06.2020 Bulletin 2020/25

(21)Application number: 08795359.2

(22)Date of filing:  15.08.2008
(51)International Patent Classification (IPC): 
H05B 41/288(2006.01)
(86)International application number:
PCT/US2008/009775
(87)International publication number:
WO 2009/029174 (05.03.2009 Gazette  2009/10)

(54)

METAL HALIDE LAMP BALLAST CONTROLLED BY REMOTE ENABLE SWITCHED BIAS SUPPLY

DURCH EIN REMOTE EINSCHALTBARES VORSPANNUNGSNETZTEIL GESTEUERTE METALLHALIDLAMPENLADUNG

BALLAST DE LAMPE À HALOGÉNURE MÉTALLIQUE COMMANDÉ PAR UNE ALIMENTATION DE POLARISATION COMMUTÉE ACTIVÉE À DISTANCE


(84)Designated Contracting States:
AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MT NL NO PL PT RO SE SI SK TR

(30)Priority: 29.08.2007 US 847004

(43)Date of publication of application:
12.05.2010 Bulletin 2010/19

(73)Proprietor: Osram Sylvania Inc.
Danvers, Massachusetts 01923 (US)

(72)Inventors:
  • BATZ, Walter
    82404 Sindelsdorf (DE)
  • CROSS, John
    Needham, MA 02494 (US)
  • ERTL, Bernhard
    82178 Puchheim (DE)
  • KUSKE, Torsten
    83607 Grosshartpenning (DE)

(74)Representative: Raiser, Franz 
OSRAM GmbH Intellectual Property IP Postfach 22 13 17
80503 München
80503 München (DE)


(56)References cited: : 
EP-A2- 1 330 016
US-A- 4 240 009
US-A- 4 298 939
US-A- 6 140 770
US-B1- 6 181 077
DE-A1- 19 748 007
US-A- 4 240 009
US-A- 4 298 939
US-A- 6 140 770
  
      
    Note: Within nine months from the publication of the mention of the grant of the European patent, any person may give notice to the European Patent Office of opposition to the European patent granted. Notice of opposition shall be filed in a written reasoned statement. It shall not be deemed to have been filed until the opposition fee has been paid. (Art. 99(1) European Patent Convention).


    Description

    BACKGROUND



    [0001] Metal halide lamps are preferred over halogen lamps in vehicle lighting systems (e.g., automotive headlight systems) because they emit more visible light per watt and have a longer life expectancy. Metal halide lamps can also be designed to emit visible light with a frequency profile similar to sunlight which improves visibility for a given amount of light. However, unlike halogen lamps, metal halide lamps cannot be driven directly from a vehicle power supply (i.e., a vehicle's charging system) and require the use of a ballast. The ballast, strikes the lamp, and adjusts the frequency and current applied to the lamp such that the lamp emits light of the proper intensity to achieve its design life.

    [0002] Electronic ballasts include a controller which controls operation of a power stage for driving the metal halide lamp. The controller can be placed in a sleep state such that the ballast does not power the lamp which allows a low power switch or electronic signal (e.g. a signal provided by a vehicle's electronic control module) to turn the lamp on and off. However, in the sleep state a relatively simple and inexpensive bias circuit which provides bias power to the controller draws a current large enough to drain the power supply of the vehicle over a relatively short period of time. For example, an electronic ballast with the controller in the sleep state can drain an automobile's battery over a weekend such that the vehicle's owner could not start the car at the beginning of the week without providing additional power to the battery. A bias circuit and controller (e.g., microcontroller) which reduce this sleep state bias power drain to an acceptable level can be designed into the electronic ballast, but are relatively complex and expensive.

    [0003] Generally, there are three types of lighting control modules used in vehicles that may be used to control an electronic ballast. The first type is a relatively bulky and expensive high power switch, actuated by the vehicle operator, which provides power directly from the vehicle power supply to a lamp. The second type is a cheaper and smaller low power switch, actuated by the vehicle operator, which provides power from the power supply to an electromechanical relay. The low power switch can only provide enough power to the relay to actuate the relay; the relay provides substantially more power from the vehicle power supply to the lamp.

    [0004] The third type of lighting control module is electronic. The electronic lighting control module receives user input and/or input from sensors (e.g., ambient light sensors) and other sources to determine when to light a lamp. When the electronic lighting control module determines that a lamp should be lit (e.g., the vehicle engine is running, the transmission is in drive, and there is little ambient light), it either provides power directly to the ballast or energizes an electromechanical relay which provides power from the vehicle power supply to the lamp ballast. Thus, the electronic lighting control module can be built into an existing electrical component of the vehicle such as an electronic control module. However, the electronic lighting control module must either be designed with the capacity to provide a relatively high source current required to power the ballast directly or must utilize an electromechanical relay to provide power to the ballast. Either solution (high current electronic lighting control module or the addition of an electromechanical relay), adds a cost to the vehicle lighting system.

    [0005] FIG. 1 shows an example of a vehicle lighting using a vehicle lighting control module (e.g. a low power switch, a high power switch, or an electronic control) to control a relay which provides power to an electronic ballast as is known in the prior art. Referring to FIG. 1, a prior art electronic ballast 102 of a vehicle lighting system 100 provides power to a lamp 104 in response to receiving power from a relay 106. In this prior art system, a power supply 108 (i.e., a vehicle charging system) of a vehicle comprises a battery and an alternator for providing power to electrical systems of the vehicle, including the vehicle lighting system 100. In operation, an operator of the vehicle provides input to a vehicle lighting control module 110 (e.g., a headlight switch of the vehicle). Based on the operator provided input, the vehicle lighting control module 110 selectively energizes the relay 106. That is, the vehicle lighting control module 110 receives power from the vehicle power supply 108 and provides the received power to the relay 106 when the operator turns the headlight switch on. Conversely, the vehicle lighting control module 110 receives power from the vehicle power supply 108 but does not energize the relay 106 when the operator turns the headlight switch off.

    [0006] When the vehicle lighting control module 110 energizes the relay 106, the relay 106 provides a supply voltage from the vehicle power supply 108 to an input filter 112 of the ballast 102. The input filter 112 filters noise from the supply voltage provided by the relay 106 and provides the filtered supply voltage to a bias regulator 114 and a power stage 116 of the ballast 102. The bias regulator 114 receives the filtered supply voltage and generates a first bias voltage for a controller 118 of the ballast 102, and a second bias voltage for the power stage 116 of the ballast 102. The controller 118 controls the power stage 116 to lamp 104 in response to receiving a supply voltage from the power supply 108 via the relay 106.

    [0007] US 6 181 077 B1 discloses a power supply for a xenon arc lamp that will automatically shut down if the lamp current is too high, the lamp voltage is too high or the lamp requires too many trigger pulses to ignite it.

    [0008] DE 197 48 007 discloses an interface device that receives an external control signal intended for the lamp operating device and supplies relevant information on lamp operation to the lamp operating device which can be connected to the interface device on the output side of said control signal.

    [0009] US 2003 133 315 A1 discloses a circuit for providing a secondary output voltage from an input voltage. The circuit comprises power supply circuitry for creating an unregulated DC bus voltage line, a regulator circuit connected to the DC bus voltage line for controlling a first switch in series with a transformer winding, the control circuit sampling an output voltage to control the output voltage by cycling the switch, a pulse generator circuit connected to the regulator circuit for controlling start and stop cycles of the regulator circuit, and a comparator circuit connected to the pulse generator circuit, for monitoring the secondary output voltage and disabling the pulse generator circuit during normal operation of the power supply circuit.

    SUMMARY



    [0010] In one embodiment of the invention, a vehicle lighting system includes a lamp, a lighting control module, and a ballast having a bias control circuit. The bias control circuit energizes a bias regulator of the ballast with power from a power supply as a function of a remote enable signal provided by the lighting control module. When the bias regulator receives power from the bias control circuit, it provides a first bias voltage to a controller of the ballast. The controller controls a power stage of the ballast to provide power to the lamp from the vehicle power supply. The bias control circuit includes a first switch and resistive pathways from an input of the first switch to ground and a low side of the first switch to ground. The first switch selectively energizes a first portion of the bias regulator which generates the first bias voltage for the controller. The bias control circuit may also include a second switch and resistive pathways from an input of the second switch to ground and a low side of the second switch to ground. The second switch selectively energizes a second portion of the bias regulator which generates a second bias voltage which is provided to the power stage.

    [0011] In one embodiment, the invention includes a method of selectively providing power from a power supply to a lamp as a function of a remote enable signal. A bias control circuit selectively energizes a bias regulator in response to the remote enable signal provided in an enable state. The bias regulator provides a first bias voltage and a second bias voltage when energized by the bias control circuit. The generated first bias voltage is received at a controller which controls operation of a power stage. The generated second bias voltage is received at the power stage along with a supply voltage from the power supply, and the power stage is controlled by the controller to provide power to the lamp.

    [0012] This summary is provided to introduce a selection of concepts in a simplified form that are further described below in the Detailed Description. This Summary is not intended to identify key features or essential features of the claimed subject matter, nor is it intended to be used as an aid in determining the scope of the claimed subject matter.

    [0013] Other features will be in part apparent and in part pointed out hereinafter.

    BRIEF DESCRIPTION OF THE DRAWINGS



    [0014] 

    FIG. 1 is a block diagram of a vehicle lighting system configured to selectively provide power from a power supply to a ballast as known is in the PRIOR ART.

    FIG. 2 is a block diagram of a vehicle lighting system configured to selectively enable a ballast receiving a supply voltage from a power supply according to one embodiment of the invention.

    FIG. 3 is a schematic diagram of a bias control circuit of the ballast shown in FIG. 2 according to one embodiment of the invention.

    FIG. 4 is a flow chart of a method for selectively providing power to a lamp from a power supply as a function of a remote enable signal according to one embodiment of the invention.



    [0015] Corresponding reference characters indicate corresponding parts throughout the drawings.

    DETAILED DESCRIPTION



    [0016] Referring to FIG. 2, a ballast 204 includes a bias control circuit 202 for energizing a bias regulator 114 (e.g., a bias regulator circuit) in response to receiving a remote enable signal from the lighting control module 110 according to one embodiment of the invention. A vehicle operated by an operator has a vehicle lighting system 208 including the ballast 204, a lamp 104 and the lighting control module 110. In operation, a power supply 108 provides a continuous supply voltage to the lighting control module 110 and the ballast 204. An input filter 112 of the ballast 204 receives the supply voltage provided by the power supply 108 to the ballast 204 and filters noise from the supply voltage. The input filter 112 continuously provides the filtered supply voltage to the bias control circuit 202 and a power stage 116 of the ballast 204. Thus, the input filter 112, power stage 116, and bias control circuit 202 continuously receive power from the vehicle power supply 108, independent of whether the ballast 204 is providing power to the lamp 104. In one embodiment, the supply voltage is a 9-16 volt DC voltage, and the input filter 112 comprises a capacitive and inductive network for providing power to the bias control circuit 202 and to the power stage 116.

    [0017] The vehicle lighting control module 110 receives an input and provides a remote enable signal to the bias control circuit 202 of the ballast 204 as a function of the received input. The input may be a sensor signal and/or input from the operator. For example, in one embodiment, the vehicle lighting control module 110 provides the remote enable signal to the ballast 204 if a signal from an ambient light sensor indicates a low light condition, or if the operator turns a headlight switch of the vehicle to an on position. In one embodiment, the remote enable signal is a digital signal having two states and is continuously provided to the ballast 204. In an enable state, the remote enable signal is a 12 volts direct current (DC) voltage, and in a disable state, the remote enable signal is a 0 volts DC voltage. It is contemplated that in other embodiments of the invention, the enable state may be 0 volts DC while the disable state is 12 volts DC if the bias control circuit 202 is configured accordingly. Additionally, the lighting control module 110 may be a high power switch, a low power switch, or implemented in an integrated circuit.

    [0018] The bias control circuit 202 energizes a bias regulator 114 (e.g., a bias regulator circuit) in response to receiving the remote enable signal from the lighting control module 110. When energized, the bias regulator 114 generates a first bias voltage and a second bias voltage from the filtered supply voltage provided by the input filter 112. The first bias voltage (e.g., 8.5 volts DC) energizes a controller 118 of the ballast, and the second bias voltage (e.g., 12 volts DC) enables the power stage 116. The controller 118 controls the power stage 116 to provide power from the power supply 108 to the lamp 104. In one embodiment, the power stage 116 supplies the lamp 104 with a square wave 500 Hertz nominal signal at about 35 watts of power, and the lamp 104 is a type D3 metal halide lamp. In another embodiment of the invention, the bias regulator 114 generates a bias voltage that energizes both the controller 118 and enables the power stage 116.

    [0019] The power stage 116 comprises a DC to DC converter 224 and an H bridge 226. The DC to DC converter 224 receives the filtered supply voltage from the input filter 112 and provides a stepped up DC voltage to the H bridge 226 in accordance with a control signal from the controller 118. In operation, the DC to DC converter 224 only provides the stepped up DC voltage to the H bridge 226 when the bias regulator 114 is energized by the bias control circuit 202 (i.e., when the ballast 204 is providing power to the lamp 104). The control signal dictates the voltage of the stepped up DC voltage provided to the H Bridge 226 by the DC to DC converter 224. The H bridge 226 switches the stepped up DC voltage provided by the DC to DC converter 224 in accordance with a reference frequency provided by the controller 118. Thus, the H bridge 226 provides the lamp 104 with a relatively high voltage square wave alternating current power signal.

    [0020] The controller 118 comprises a microprocessor 220 and a pulse width modulation (PWM) controller 222. The microprocessor 220 and PWM controller 222 cooperate to sense the voltage and current provided by the input filter 112 and the voltage and current of the stepped-up DC voltage provided to the H bridge 226 by the DC to DC converter 224. Based on these sensed inputs, the PWM controller 222 adjusts the control signal provided to the DC to DC converter 224 in order to adjust the voltage of the waveform supplied to the lamp 104 and the microprocessor 220 adjusts the reference frequency provided to the H bridge 226 in order to adjust the frequency of the waveform provided to the lamp 104. In steady-state operation, the waveform provided to the lamp 104 is a square wave 40-90 volt AC signal at 500 hertz nominal. One skilled in the art will recognize that the frequency and voltage of the waveform will vary in order to control the amount of power provided to the lamp 104 and to achieve striking and warm-up of the lamp 104.

    [0021] Referring to FIG. 3, one embodiment of the bias control circuit 202 is shown. In the illustrated embodiment, the bias control circuit 202 receives a drain voltage VDS from a switching transistor of the DC to DC converter 224 in addition to the supply voltage VSUPPLY via the input filter 112. When the supply voltage VSUPPLY is low, diode D15 and capacitor C5 cooperate to provide a voltage higher than VSUPPLY (i.e., the drain voltage VDS) to a buffer circuit 302 of the bias control circuit 202 such that the bias control circuit 202 operates properly. The buffer circuit 302 receives the remote enable signal at jumper 310 from the lighting control module 110 and selectively enables a first switch 304 and a second switch 306. That is, when the remote enable signal is in the enable state, the buffer circuit 302 enables the first switch 304 and the second switch 306 to conduct electricity, and when the remote enable signal is in the disable state, the buffer circuit 302 disables the first switch 304 and the second switch 306 such that the first switch 304 and the second switch 306 do not conduct electricity. The first switch 304 has a high side 312 connected to the supply voltage VSUPPLY from the input filter 112, an input 314 connected to the buffer circuit 302, and a low side 316 connected to a first portion of the bias regulator 114 which generates the first bias voltage when receiving electricity from the first switch 304. An output from the bias control circuit 202 to the first portion of the bias regulator is shown at VCC. The second switch 306 has a high side 322 connected to the rectified drain voltage VDS from the switching transistor of the DC to DC converter 224, an input 324 connected to the buffer circuit 302, and a low side 326 connected to a second portion of the bias regulator 114 which generates the second bias voltage when receiving electricity from the second switch 306. An output from the bias control circuit 202 to the second portion of the bias regulator is shown at VOUT.

    [0022] In one embodiment of the invention, the controller 118, when receiving the first bias voltage (e.g., 8.5 volts DC), provides the first bias voltage to bias voltage to the PWM controller 222 and regulates the first bias voltage down to a third voltage (e.g., 5 volts DC) for the microprocessor 220. The first bias voltage is also used by the controller 118 to drive a gate of the switching transistor of the DC to DC converter 224. The second bias voltage is provided to the H drive of the power stage. The bias control circuit 202 is also configured such that the second bias voltage (e.g., 12 volts DC) back-feeds the first bias voltage (e.g., 8.5 volts DC) when the first bias voltage droops by a predetermined amount. This may be accomplished, for example, by connecting a zener diode between the bias control circuit 202 outputs VCC and VOUT in the appropriate orientation as known by those skilled in the art.

    [0023] An input resistance of the buffer circuit 302 and the voltage of the remote enable signal determine a source current capacity required of the lighting control module 110 to enable the bias control circuit 202. In the embodiment shown in FIG. 3, the total resistance of input resistors R103, R15, and R104 is 8.8kOhms which means that the source current capacity for a 12 volt remote enable signal is less than 1.25 milliamperes. The relatively low source current requirement on the lighting control module 110 means that any type of lighting control module 110 may be used to generate the remote enable signal including a direct digital output from an integrated circuit (e.g., an electronic control module of the vehicle).

    [0024] In operation, when the remote enable signal is in the disable state, the bias control circuit 202 draws a current substantially equal to zero amperes. Resistors R94 and R97 provide a resistive pathway from the low side 316 of the first switch 304 to ground and from the input 314 of the first switch 304 to ground. These resistive pathways prevent charge accumulation at the input 314 and low side 316 of the first switch 304, which prevents the first switch 304 from conducting electricity when the remote enable signal is in the disable state. Similarly, resistors R96 and R95 provide a resistive pathway from the low side 326 of the second switch 306 to ground and from the input 324 of the second switch 306 to ground. These resistive pathways prevent charge accumulation at the input 324 and low side 326 of the second switch 306, which prevents the second switch 306 from conducting electricity when the remote enable signal is in the disable state. Thus, the bias control circuit 202 draws a minimal current when the remote enable signal is in the disable state, allowing the ballast 204 to be continuously connected to the power supply 108, eliminating the need for a high power capacity device to selectively connect the ballast 204 to the power supply 108 such as relay 106 as shown in prior art FIG. 1.

    [0025] In one embodiment of the invention, the first switch 304 and the second switch 306 are dual bipolar transistors, and the second portion of the bias regulator 114 is a capacitive network for reducing transients at the output VOUT of the second switch 306. In another embodiment of the invention, the second portion of the bias regulator 114 is an integrated circuit regulator. Additionally, other embodiments of the bias control circuit 202 may receive only the supply voltage, or may receive voltages from sources within the vehicle lighting system other than the drain of the switching transistor in the DC to DC converter 224.

    [0026] Referring to FIG. 4, a method for selectively providing power to a lamp from a power supply as a function of a remote enable signal is illustrated. The method starts at 402 with a power supply providing a supply voltage. At 404, a remote enable signal in an enable state is received at a bias control circuit, and at 406, the bias control circuit energizes a bias regulator. At 408, the bias regulator generates a first bias voltage and a second bias voltage. The first bias voltage is received at a controller at 410, and the second bias voltage is received at a power stage along with the supply voltage at 412. At 414, the controller controls the power stage to provide power to a lamp.


    Claims

    1. A ballast (204) providing power to a lamp (104) from a power supply (108) providing a supply voltage, said ballast (204) responsive to a remote enable signal from a lighting control module (110), said ballast (204) comprising:

    a bias regulator circuit (114) generating a first bias voltage and a second bias voltage;

    a controller (118) receiving the generated first bias voltage from the bias regulator circuit (114);

    a power stage (116) controlled by the controller (118) receiving the second bias voltage from the bias regulator circuit (114) and the supply voltage from the power supply (108) and providing power to the lamp (104);

    characterized in

    a bias control circuit (202) receiving the remote enable signal and energizing the bias regulator circuit (114) in response to the received remote enable signal, wherein said bias regulator circuit (114), when energized by said bias control circuit (202), generates the first bias voltage to energize the controller (118) and the second bias voltage to enable the power stage (116).


     
    2. The ballast (204) of claim 1, wherein the remote enable signal is a digital signal having a disable state of about 0 volts and an enable state of about 12 volts wherein the ballast (204) provides power to the lamp (104) when the remote enable signal is in the enable state, and said ballast (204) does not provide power to the lamp (104) when the remote enable signal is in the disable state.
     
    3. The ballast (204) of claim 1, wherein, when the bias regulator circuit (114) is not energized by the bias control circuit (202), said bias regulator circuit (114) draws a leakage current substantially equal to zero amperes and the ballast does not provide power to the lamp (104).
     
    4. The ballast (204) of claim 1, wherein the controller (118) includes a microprocessor (220) receiving the first bias voltage and wherein the first bias voltage is substantially equal to zero volts when the bias regulator circuit (114) is not energized by the bias control circuit (202).
     
    5. The ballast (204) of claim 1, wherein the bias control circuit (202) comprises:

    a first switch (304) having a high side connected to the power supply (108), a low side connected to the bias regulator circuit (114), and an input for receiving the remote enable signal, said first switch (304) providing power from the power supply (108) to a first portion of the bias regulator circuit (114) in response to the remote enable signal, wherein said first portion of the bias regulator circuit (114) generates the first bias voltage from the power received from the low side (316) of the first switch (304); and

    a base current interrupt circuit providing a resistive path from the low side (316) of the first switch (304) to a ground and from the input (314) of the first switch (304) to the ground.


     
    6. The ballast (204) of claim 5, wherein the bias control circuit (202) further comprises:

    a second switch (306) having a high side connected to the power supply (108), a low side (326) connected to the bias regulator circuit (114), and an input (324) receiving the remote enable signal, said second switch (306) providing power from the power supply (108) to a second portion of the bias regulator circuit (114) in response to the remote enable signal, wherein the second portion of the bias regulator circuit (114) generates the second bias voltage from the power received from the low side (326) of the second switch (306); and

    a second base current interrupt circuit providing a resistive path from the low side (326) of the second switch (306) to the ground and from the input (324) of the second switch (306) to the ground.


     
    7. The ballast (204) of claim 6 wherein:

    the first switch (304) is a first dual bipolar transistor;

    the second switch (306) is a second dual bipolar transistor;

    the power supply (108) is a vehicle charging system, said vehicle charging system comprising a battery and an alternator;

    the lamp (104) is a metal halide lamp;

    the ballast receives the supply voltage from the power supply (108) independent of a state of the remote enable signal; and

    the second portion of the bias regulator circuit (114) energized by the bias control circuit (202) producing the second bias voltage comprises a capacitive network.


     
    8. A method for providing power to a lamp (104) from a power supply (108) as a function of a remote enable signal, said power supply (108) providing a supply voltage, characterized in said method comprising:

    energizing a bias regulator circuit (114) via a bias control circuit (202) in response to the remote enable signal;

    generating a first bias voltage and a second bias voltage when said bias regulator circuit (114) is energized by said bias control circuit (202); and

    receiving the generated first bias voltage at a controller (118), said controller (118) controlling a power stage (116), said power stage (116) receiving the second bias voltage from the bias regulator circuit (114) and the supply voltage from the power supply (108) and providing power to the lamp (104).


     
    9. The method of claim 8, wherein the remote enable signal is a digital signal having a disable state of about 0 volts and an enable state of about 12 volts wherein the power stage (116) provides power to the lamp (104) when the remote enable signal is in the enable state, and said power stage (116) does not provide power to the lamp (104) when the remote enable signal is in the disable state.
     
    10. The method of claim 8, wherein, when the bias regulator circuit (114) is not energized by the bias control circuit (202), said bias regulator circuit (114) draws a leakage current substantially equal to zero amperes, and the ballast (204) does not provide power to the lamp (104).
     
    11. The method of claim 8, wherein said receiving the generated first bias voltage comprises receiving the generated first bias voltage at a microprocessor (220) of the controller (118), and wherein the first bias voltage is substantially equal to zero volts when the bias regulator circuit (114) is not energized by the bias control circuit (202).
     
    12. The method of claim 8, wherein energizing the bias regulator circuit (114) comprises:

    providing power from the power supply (108) to a first portion of the bias regulator circuit (114) in response to the remote enable signal via a first switch (304) of the bias control circuit (202), said first switch (304) having a high side connected to the power supply (108), a low side (316) connected to the bias regulator circuit (114), and an input for receiving the remote enable signal, wherein said first portion of the bias regulator circuit (114) generates the first bias voltage from the power provided by the low side (316) of the switch; and

    providing a resistive path from the low side (316) of the first switch (304) to a ground and from the input (314) of the first switch (304) to the ground via a first base current interrupt circuit.


     
    13. The method of claim 12, wherein energizing the bias regulator circuit (114) further comprises:

    providing power from the power supply (108) to a second portion of the bias regulator circuit (114) in response to the remote enable signal via a second switch (306) of the bias control circuit (202), said second switch (306) having a high side connected to the power supply (108), a low side (326) connected to the bias regulator circuit (114), and an input for receiving the remote enable signal, wherein the second portion of the bias regulator circuit (114) generates the second bias voltage from the power provided by the low side (326) of the second switch (306); and

    providing a second resistive path from the low side (326) of the second switch (306) to the ground and from the input of the second switch (306) to the ground via a second base current interrupt circuit.


     
    14. The method of claim 13, wherein:

    the first switch (304) is a first dual bipolar transistor;

    the second switch (306) is a second dual bipolar transistor;

    the power supply (108) is a vehicle charging system, said vehicle charging system comprising a battery and an alternator;

    the lamp (104) is a metal halide lamp;

    the bias control circuit (202) and the power stage (116) receive the supply voltage from the power supply (108) independent of a state of the remote enable signal; and

    the second portion of the bias regulator circuit (114) powered by the second switch (306) of the bias control circuit (202) for producing the second bias voltage comprises a capacitive network.


     
    15. A vehicle lighting system for providing light as a function of an input, said vehicle lighting system comprising:

    a lamp (104) for providing light in response to receiving power;

    a vehicle power supply (108) for providing a supply voltage;

    a vehicle lighting control module (110) for receiving the input and providing a remote enable signal as a function of the received input;

    a ballast (204) according to one of the claims 1 to 7.


     


    Ansprüche

    1. Vorschaltgerät (204), das Energie an eine Lampe (104) aus einem Netzteil (108) liefert, das eine Versorgungsspannung bereitstellt, wobei das Vorschaltgerät (204) auf ein Remote-Einschaltsignal aus einem Beleuchtungssteuermodul (110) reagiert, wobei das Vorschaltgerät (204) umfasst:

    eine Vorspannungsreglerschaltung (114), die eine erste Vorspannung und eine zweite Vorspannung erzeugt;

    eine Steuervorrichtung (118), die die erzeugte erste Vorspannung aus der Vorspannungsreglerschaltung (114) empfängt;

    eine durch die Steuervorrichtung (118) gesteuerte Leistungsstufe (116), die die zweite Vorspannung aus der Vorspannungsreglerschaltung (114) und die Versorgungsspannung aus dem Netzteil (108) empfängt und Energie an die Lampe (104) liefert;

    gekennzeichnet durch

    eine Vorspannungssteuerschaltung (202), die das Remote-Einschaltsignal empfängt und die Vorspannungsreglerschaltung (114) als Reaktion auf das empfangene Remote-Einschaltsignal aktiviert, wobei die Vorspannungsreglerschaltung (114), wenn sie durch die Vorspannungssteuerschaltung (202) eingeschaltet ist, die erste Vorspannung zum Aktivieren der Steuervorrichtung (118) und die zweite Vorspannung zum Aktivieren der Leistungsstufe (116) erzeugt.


     
    2. Vorschaltgerät (204) nach Anspruch 1, wobei das Remote-Einschaltsignal ein digitales Signal mit einem Sperrzustand von etwa 0 Volt und einem Einschaltzustand von etwa 12 Volt ist, wobei das Vorschaltgerät (204) Energie an die Lampe (104) liefert, wenn sich das Remote-Einschaltsignal im Einschaltzustand befindet, und das Vorschaltgerät (204) keine Energie and die Lampe (104) liefert, wenn sich das Remote-Einschaltsignal im Sperrzustand befindet.
     
    3. Vorschaltgerät (204) nach Anspruch 1, wobei, wenn die Vorspannungsreglerschaltung (114) nicht durch die Vorspannungssteuerschaltung (202) eingeschaltet ist, die Vorspannungsreglerschaltung (114) einen Leckstrom zieht, der im Wesentlichen gleich null Ampere ist, und das Vorschaltgerät keine Energie an die Lampe (104) liefert.
     
    4. Vorschaltgerät (204) nach Anspruch 1, wobei die Steuervorrichtung (118) einen Mikroprozessor (220) enthält, der die erste Vorspannung empfängt, und wobei die erste Vorspannung im Wesentlichen gleich null Volt ist, wenn die Vorspannungsreglerschaltung (114) nicht durch die Vorspannungssteuerschaltung (202) aktiviert ist.
     
    5. Vorschaltgerät (204) nach Anspruch 1, wobei die Vorspannungssteuerschaltung (202) umfasst:

    einen ersten Schalter (304) mit einer mit dem Netzteil (108) verbundenen High-Seite, einer mit der Vorspannungsreglerschaltung (114) verbundenen Low-Seite und einem Eingang zum Empfangen des Remote-Einschaltsignals, wobei der erste Schalter (304) als Reaktion auf das Remote-Einschaltsignal Energie an einen ersten Abschnitt der Vorspannungsreglerschaltung (114) aus dem Netzteil (108) liefert, wobei der erste Abschnitt der Vorspannungsreglerschaltung (114) die erste Vorspannung aus der von der Low-Seite (316) des ersten Schalters (304) empfangenen Energie erzeugt; und

    eine Basisstromunterbrechungsschaltung, die einen Widerstandspfad von der Low-Seite (316) des ersten Schalters (304) zu einer Masse und vom Eingang (314) des ersten Schalters (304) zur Masse bereitstellt.


     
    6. Vorschaltgerät (204) nach Anspruch 5, wobei die Vorspannungssteuerschaltung (202) ferner umfasst:

    einen zweiten Schalter (306) mit einer mit dem Netzteil (108) verbundenen High-Seite, einer mit der Vorspannungsreglerschaltung (114) verbundenen Low-Seite (326) und einem Eingang (324), der das Remote-Einschaltsignal empfängt, wobei der zweite Schalter (306) als Reaktion auf das Remote-Einschaltsignal Energie an einen zweiten Abschnitt der Vorspannungsreglerschaltung (114) aus dem Netzteil (108) liefert, wobei der zweite Abschnitt der Vorspannungsreglerschaltung (114) die zweite Vorspannung aus der von der Low-Seite (326) des zweiten Schalters (306) empfangenen Energie erzeugt; und

    eine zweite Basisstromunterbrechungsschaltung, die einen Widerstandspfad von der Low-Seite (326) des zweiten Schalters (306) zur Masse und vom Eingang (324) des zweiten Schalters (306) zur Masse bereitstellt.


     
    7. Vorschaltgerät (204) nach Anspruch 6, wobei:

    der erste Schalter (304) ein erster Dual-Bipolartransistor ist;

    der zweite Schalter (306) ein zweiter Dual-Bipolartransistor ist;

    das Netzteil (108) ein Fahrzeugladesystem ist, wobei das Fahrzeugladesystem eine Batterie und einen Wechselstromgenerator umfasst;

    die Lampe (104) eine Halogen-Metalldampflampe ist;

    das Vorschaltgerät die Versorgungsspannung aus dem Netzteil (108) unabhängig von einem Zustand des Remote-Einschaltsignals empfängt; und

    der zweite Abschnitt der Vorspannungsreglerschaltung (114), der durch die Vorspannungssteuerschaltung (202) aktiviert ist und die zweite Vorspannung erzeugt, ein kapazitives Netzwerk umfasst.


     
    8. Verfahren zum Liefern von Energie an eine Lampe (104) aus einem Netzteil (108) in Abhängigkeit von einem Remote-Einschaltsignal, wobei das Netzteil (108) eine Versorgungsspannung bereitstellt, dadurch gekennzeichnet, dass das Verfahren umfasst:

    Aktivieren einer Vorspannungsreglerschaltung (114) über eine Vorspannungssteuerschaltung (202) als Reaktion auf das Remote-Einschaltsignal;

    Erzeugen einer ersten Vorspannung und einer zweiten Vorspannung, wenn die Vorspannungsreglerschaltung (114) durch die Vorspannungssteuerschaltung (202) aktiviert ist; und

    Empfangen der erzeugten ersten Vorspannung an einer Steuervorrichtung (118), wobei die Steuervorrichtung (118) eine Leistungsstufe (116) steuert, wobei die Leistungsstufe (116) die zweite Vorspannung aus der Vorspannungsreglerschaltung (114) und die Versorgungsspannung aus dem Netzteil (108) empfängt und Energie an die Lampe (104) liefert.


     
    9. Verfahren nach Anspruch 8, wobei das Remote-Einschaltsignal ein digitales Signal mit einem Sperrzustand von etwa 0 Volt und einem Einschaltzustand von etwa 12 Volt ist, wobei die Leistungsstufe (116) Energie an die Lampe (104) liefert, wenn sich das Remote-Einschaltsignal im Einschaltzustand befindet, und die Leistungsstufe (116) keine Energie an die Lampe (104) liefert, wenn sich das Remote-Einschaltsignal im Sperrzustand befindet.
     
    10. Verfahren nach Anspruch 8, wobei, wenn die Vorspannungsreglerschaltung (114) nicht durch die Vorspannungssteuerschaltung (202) aktiviert ist, die Vorspannungsreglerschaltung (114) einen Leckstrom zieht, der im Wesentlichen gleich null Ampere ist, und das Vorschaltgerät (204) keine Energie an die Lampe (104) liefert.
     
    11. Verfahren nach Anspruch 8, wobei das Empfangen der erzeugten ersten Vorspannung das Empfangen der erzeugten ersten Vorspannung an einem Mikroprozessor (220) der Steuervorrichtung (118) umfasst, und wobei die erste Vorspannung im Wesentlichen gleich null Volt ist, wenn die Vorspannungsreglerschaltung (114) nicht durch die Vorspannungssteuerschaltung (202) aktiviert ist.
     
    12. Verfahren nach Anspruch 8, wobei das Aktivieren der Vorspannungsreglerschaltung (114) umfasst:

    Liefern von Energie aus dem Netzteil (108) an einen ersten Abschnitt der Vorspannungsreglerschaltung (114) über einen ersten Schalter (304) der Vorspannungssteuerschaltung (202) als Reaktion auf das Remote-Einschaltsignal, wobei der erste Schalter (304) eine mit dem Netzteil (108) verbundene High-Seite, eine mit der Vorspannungsreglerschaltung (114) verbundene Low-Seite (316) und einen Eingang zum Empfangen des Remote-Einschaltsignals aufweist, wobei der erste Abschnitt der Vorspannungsreglerschaltung (114) die erste Vorspannung aus der durch die Low-Seite (316) des Schalters gelieferten Energie erzeugt; und

    Bereitstellen eines Widerstandspfads von der Low-Seite (316) des ersten Schalters (304) zu einer Masse und vom Eingang (314) des ersten Schalters (304) zur Masse über eine erste Basisstromunterbrechungsschaltung.


     
    13. Verfahren nach Anspruch 12, wobei das Aktivieren der Vorspannungsreglerschaltung (114) ferner umfasst:

    Liefern von Energie aus dem Netzteil (108) an einen zweiten Abschnitt der Vorspannungsreglerschaltung (114) über einen zweiten Schalter (306) der Vorspannungssteuerschaltung (202) als Reaktion auf das Remote-Einschaltsignal, wobei der zweite Schalter (306) eine mit dem Netzteil (108) verbundene High-Seite, eine mit der Vorspannungsreglerschaltung (114) verbundene Low-Seite (326) und einen Eingang zum Empfangen des Remote-Einschaltsignals aufweist, wobei der zweite Abschnitt der Vorspannungsreglerschaltung (114) die zweite Vorspannung aus der durch die Low-Seite (326) des zweiten Schalters (306) gelieferten Energie erzeugt; und

    Bereitstellen eines zweiten Widerstandspfads von der Low-Seite (326) des zweiten Schalters (306) zur Masse und vom Eingang des zweiten Schalters (306) zur Masse über eine zweite Basisstromunterbrechungsschaltung.


     
    14. Verfahren nach Anspruch 13, wobei:

    der erste Schalter (304) ein erster Dual-Bipolartransistor ist;

    der zweite Schalter (306) ein zweiter Dual-Bipolartransistor ist;

    das Netzteil (108) ein Fahrzeugladesystem ist, wobei das Fahrzeugladesystem eine Batterie und einen Wechselstromgenerator umfasst;

    die Lampe (104) eine Halogen-Metalldampflampe ist;

    die Vorspannungssteuerschaltung (202) und die Leistungsstufe (116) die Versorgungsspannung aus dem Netzteil (108) unabhängig von einem Zustand des Remote-Einschaltsignals erhalten; und

    der zweite Abschnitt der Vorspannungsreglerschaltung (114), die durch den zweiten Schalter (306) der Vorspannungssteuerschaltung (202) zum Erzeugen der zweiten Vorspannung gespeist wird, ein kapazitives Netzwerk umfasst.


     
    15. Fahrzeugbeleuchtungssystem zum Bereitstellen von Licht in Abhängigkeit von einer Eingabe, wobei das Fahrzeugbeleuchtungssystem umfasst:

    eine Lampe (104) zum Bereitstellen von Licht als Reaktion auf das Empfangen von Energie;

    ein Fahrzeugnetzteil (108) zum Bereitstellen einer Versorgungsspannung;

    ein Fahrzeugbeleuchtungssteuermodul (110) zum Empfangen der Eingabe und zum Bereitstellen eines Remote-Einschaltsignals in Abhängigkeit von der empfangenen Eingabe;

    ein Vorschaltgerät (204) nach einem der Ansprüche 1 bis 7.


     


    Revendications

    1. Ballast (204) fournissant de l'énergie à une lampe (104) à partir d'un bloc d'alimentation (108) fournissant une tension d'alimentation, ledit ballast (204) réagissant à un signal d'activation à distance provenant d'un module de commande d'éclairage (110), ledit ballast (204) comprenant :

    un circuit régulateur de polarisation (114) générant une première tension de polarisation et une deuxième tension de polarisation ;

    une unité de commande (118) recevant la première tension de polarisation générée à partir du circuit régulateur de polarisation (114) ;

    un étage d'alimentation (116) commandé par l'unité de commande (118) recevant la deuxième tension de polarisation à partir du circuit régulateur de polarisation (114) et la tension d'alimentation à partir du bloc d'alimentation (108) et fournissant de l'énergie à la lampe (104) ; caractérisé en ce que

    un circuit de commande de polarisation (202) recevant le signal d'activation à distance et excitant le circuit régulateur de polarisation (114) en réponse au signal d'activation à distance reçu, dans lequel ledit circuit régulateur de polarisation (114), lorsqu'il est excité par ledit circuit de commande de polarisation (202), génère la première tension de polarisation pour exciter l'unité de commande (118) et la deuxième tension de polarisation pour activer l'étage d'alimentation (116).


     
    2. Ballast (204) de la revendication 1, dans lequel le signal d'activation à distance est un signal numérique ayant un état de désactivation d'environ 0 volt et un état d'activation d'environ 12 volts dans lequel le ballast (204) fournit de l'énergie à la lampe (104) lorsque le signal d'activation à distance est dans l'état d'activation, et ledit ballast (204) ne fournit pas de l'énergie à la lampe (104) lorsque le signal d'activation à distance est dans l'état de désactivation.
     
    3. Ballast (204) de la revendication 1, dans lequel, lorsque le circuit régulateur de polarisation (114) n'est pas excité par le circuit de commande de polarisation (202), ledit circuit régulateur de polarisation (114) tire un courant de fuite essentiellement égal à zéro ampère et le ballast ne fournit pas de l'énergie à la lampe (104).
     
    4. Ballast (204) de la revendication 1, dans lequel l'unité de commande (118) comporte un microprocesseur (220) recevant la première tension de polarisation et dans lequel la première tension de polarisation est essentiellement égale à zéro volt lorsque le circuit régulateur de polarisation (114) n'est pas excité par le circuit de commande de polarisation (202).
     
    5. Ballast (204) de la revendication 1, dans lequel le circuit de commande de polarisation (202) comprend :

    un premier commutateur (304) ayant un côté haut relié au bloc d'alimentation (108), un côté bas relié au circuit régulateur de polarisation (114), et une entrée pour recevoir le signal d'activation à distance, ledit premier commutateur (304) fournissant de l'énergie à partir du bloc d'alimentation (108) à une première partie du circuit régulateur de polarisation (114) en réponse au signal d'activation à distance, dans lequel ladite première partie du circuit régulateur de polarisation (114) génère la première tension de polarisation à partir de l'énergie reçue du côté bas (316) du premier commutateur (304) ; et

    un circuit d'interruption de courant de base fournissant un chemin résistif depuis le côté bas (316) du premier commutateur (304) vers une masse et depuis l'entrée (314) du premier commutateur (304) vers la masse.


     
    6. Ballast (204) de la revendication 5, dans lequel le circuit de commande de polarisation (202) comprend en outre :

    un deuxième commutateur (306) ayant un côté haut relié au bloc d'alimentation (108), un côté bas (326) relié au circuit régulateur de polarisation (114), et une entrée (324) recevant le signal d'activation à distance, ledit deuxième commutateur (306) fournissant de l'énergie à partir du bloc d'alimentation (108) à une deuxième partie du circuit régulateur de polarisation (114) en réponse au signal d'activation à distance, dans lequel la deuxième partie du circuit régulateur de polarisation (114) génère la deuxième tension de polarisation à partir de l'énergie reçue du côté bas (326) du deuxième commutateur (306) ; et

    un deuxième circuit d'interruption de courant de base fournissant un chemin résistif depuis le côté bas (326) du deuxième commutateur (306) vers la masse et depuis l'entrée (324) du deuxième commutateur (306) vers la masse.


     
    7. Ballast (204) de la revendication 6, dans lequel :

    le premier commutateur (304) est un premier transistor bipolaire double ;

    le deuxième commutateur (306) est un deuxième transistor bipolaire double ;

    le bloc d'alimentation (108) est un système de charge de véhicule, ledit système de charge de véhicule comprenant une batterie et un alternateur ;

    la lampe (104) est une lampe d'halogénure métallique ;

    le ballast reçoit la tension d'alimentation à partir du bloc d'alimentation (108) indépendamment d'un état du signal d'activation à distance ; et

    la deuxième partie du circuit régulateur de polarisation (114) excité par le circuit de commande de polarisation (202) produisant la deuxième tension de polarisation comprend un réseau capacitif.


     
    8. Procédé pour fournir de l'énergie à une lampe (104) à partir d'un bloc d'alimentation (108) en fonction d'un signal d'activation à distance, ledit bloc d'alimentation (108) fournissant une tension d'alimentation, caractérisé en ce que ledit procédé comprend :

    exciter un circuit régulateur de polarisation (114) par l'intermédiaire d'un circuit de commande de polarisation (202) en réponse au signal d'activation à distance ;

    générer une première tension de polarisation et une deuxième tension de polarisation lorsque ledit circuit régulateur de polarisation (114) est excité par ledit circuit de commande de polarisation (202) ; et

    recevoir la première tension de polarisation générée au niveau d'une unité de commande (118), ladite unité de commande (118) commandant un étage d'alimentation (116), ledit étage d'alimentation (116) recevant la deuxième tension de polarisation à partir du circuit régulateur de polarisation (114) et la tension d'alimentation à partir du bloc d'alimentation (108) et fournissant de l'énergie à la lampe (104).


     
    9. Procédé de la revendication 8, dans lequel le signal d'activation à distance est un signal numérique ayant un état de désactivation d'environ 0 volt et un état d'activation d'environ 12 volts dans lequel l'étage d'alimentation (116) fournit de l'énergie à la lampe (104) lorsque le signal d'activation à distance est dans l'état d'activation, et ledit étage d'alimentation (116) ne fournit pas de l'énergie à la lampe (104) lorsque le signal d'activation à distance est dans l'état de désactivation.
     
    10. Procédé de la revendication 8, dans lequel, lorsque le circuit régulateur de polarisation (114) n'est pas excité par le circuit de commande de polarisation (202), ledit circuit régulateur de polarisation (114) tire un courant de fuite essentiellement égal à zéro ampère, et le ballast (204) ne fournit pas de l'énergie à la lampe (104).
     
    11. Procédé de la revendication 8, dans lequel ladite réception de la première tension de polarisation générée comprend la réception de la première tension de polarisation générée au niveau d'un microprocesseur (220) de l'unité de commande (118), et dans lequel la première tension de polarisation est essentiellement égale à zéro volt lorsque le circuit régulateur de polarisation (114) n'est pas excité par le circuit de commande de polarisation (202).
     
    12. Procédé de la revendication 8, dans lequel l'excitation du circuit régulateur de polarisation (114) comprend :

    la fourniture de l'énergie à partir du bloc d'alimentation (108) à une première partie du circuit régulateur de polarisation (114) en réponse au signal d'activation à distance par l'intermédiaire d'un premier commutateur (304) du circuit de commande de polarisation (202), ledit premier commutateur (304) ayant un côté haut connecté au bloc d'alimentation (108), un côté bas (316) connecté au circuit régulateur de polarisation (114), et une entrée pour recevoir le signal d'activation à distance, dans lequel ladite première partie du circuit régulateur de polarisation (114) génère la première tension de polarisation à partir de l'énergie fournie par le côté bas (316) du commutateur ; et

    la fourniture d'un chemin résistif depuis le côté bas (316) du premier commutateur (304) vers une masse et depuis l'entrée (314) du premier commutateur (304) vers la masse par l'intermédiaire d'un premier circuit d'interruption de courant de base.


     
    13. Procédé de la revendication 12, dans lequel l'excitation du circuit régulateur de polarisation (114) comprend en outre :

    la fourniture de l'énergie à partir du bloc d'alimentation (108) à une deuxième partie du circuit régulateur de polarisation (114) en réponse au signal d'activation à distance par l'intermédiaire d'un deuxième commutateur (306) du circuit de commande de polarisation (202), ledit deuxième commutateur (306) ayant un côté haut connecté au bloc d'alimentation (108), un côté bas (326) connecté au circuit régulateur de polarisation (114), et une entrée pour recevoir le signal d'activation à distance, dans lequel la deuxième partie du circuit régulateur de polarisation (114) génère la deuxième tension de polarisation à partir de l'énergie fournie par le côté bas (326) du deuxième commutateur (306) ; et

    la fourniture d'un deuxième chemin résistif depuis le côté bas (326) du deuxième commutateur (306) vers la masse et depuis l'entrée du deuxième commutateur (306) vers la masse par l'intermédiaire d'un deuxième circuit d'interruption de courant de base.


     
    14. Procédé de la revendication 13, dans lequel :

    le premier commutateur (304) est un premier transistor bipolaire double ;

    le deuxième commutateur (306) est un deuxième transistor bipolaire double ;

    le bloc d'alimentation (108) est un système de charge de véhicule, ledit système de charge de véhicule comprenant une batterie et un alternateur ;

    la lampe (104) est une lampe d'halogénure métallique ;

    le circuit de commande de polarisation (202) et l'étage d'alimentation (116) reçoivent la tension d'alimentation à partir du bloc d'alimentation (108) indépendamment d'un état du signal d'activation à distance ; et

    la deuxième partie du circuit régulateur de polarisation (114) excité par le deuxième commutateur (306) du circuit de commande de polarisation (202) pour produire la deuxième tension de polarisation comprend un réseau capacitif.


     
    15. Système d'éclairage de véhicule pour fournir de la lumière en fonction d'une entrée, ledit système d'éclairage de véhicule comprenant :

    une lampe (104) pour fournir de la lumière en réponse à la réception de l'énergie ;

    un bloc d'alimentation de véhicule (108) pour fournir une tension d'alimentation ;

    un module de commande d'éclairage de véhicule (110) pour recevoir l'entrée et fournir un signal d'activation à distance en fonction de l'entrée reçue ;

    un ballast (204) selon l'une des revendications 1 à 7.


     




    Drawing

















    Cited references

    REFERENCES CITED IN THE DESCRIPTION



    This list of references cited by the applicant is for the reader's convenience only. It does not form part of the European patent document. Even though great care has been taken in compiling the references, errors or omissions cannot be excluded and the EPO disclaims all liability in this regard.

    Patent documents cited in the description