(19)
(11)EP 2 195 831 B1

(12)EUROPEAN PATENT SPECIFICATION

(45)Mention of the grant of the patent:
20.01.2021 Bulletin 2021/03

(21)Application number: 08798380.5

(22)Date of filing:  21.08.2008
(51)Int. Cl.: 
H01L 21/60  (2006.01)
H01L 23/31  (2006.01)
H01L 21/56  (2006.01)
(86)International application number:
PCT/US2008/073878
(87)International publication number:
WO 2009/032539 (12.03.2009 Gazette  2009/11)

(54)

A METHOD OF MANUFACTURING A SEMICONDUCTOR DEVICE AND THE CORRESPONDING INTERMEDIATE PRODUCT

VERFAHREN ZUR HERSTELLUNG HALBLEITERANORDNUNGEN UND ENTSPRECHENDES ZWISCHENERZEUGNIS

PROCÉDÉ DE FABRICATION D'UN DISPOSITIF SEMICONDUCTEUR ET PRODUIT INTERMÉDIARE CORRESPONDANT


(84)Designated Contracting States:
AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MT NL NO PL PT RO SE SI SK TR

(30)Priority: 28.08.2007 SG 200706296

(43)Date of publication of application:
16.06.2010 Bulletin 2010/24

(73)Proprietor: Micron Technology, Inc.
Boise, ID 83707-0006 (US)

(72)Inventors:
  • CHUA, Swee, Kwang
    Singapore 549207 (SG)
  • BOON, Suan, Jeung
    Singapore 799499 (SG)
  • CHIA, Yong, Poo
    Singapore 679976 (SG)

(74)Representative: Small, Gary James et al
Carpmaels & Ransford LLP One Southampton Row
London WC1B 5HA
London WC1B 5HA (GB)


(56)References cited: : 
DE-A1-102004 041 889
JP-A- 11 274 354
US-A1- 2004 183 185
DE-A1-102005 003 125
US-A1- 2003 232 488
US-A1- 2007 126 091
  
      
    Note: Within nine months from the publication of the mention of the grant of the European patent, any person may give notice to the European Patent Office of opposition to the European patent granted. Notice of opposition shall be filed in a written reasoned statement. It shall not be deemed to have been filed until the opposition fee has been paid. (Art. 99(1) European Patent Convention).


    Description

    TECHNICAL FIELD



    [0001] The present invention relates to semiconductor devices, and methods for manufacturing such devices.

    BACKGROUND



    [0002] Semiconductor processing and packaging techniques are continually evolving to meet industry demands for improved performance with reduced size and cost. Electronic products require packaged semiconductor assemblies with a high density of devices in a relatively small space. For example, the space available for memory devices, processors, displays and other microfeature devices is continually decreasing in personal electronic devices such as cell phones, laptop computers and many other products. Accordingly, a need exists to decrease the overall size of the microfeature devices while still maintaining or improving performance and reducing cost.

    [0003] One technique used to improve the performance and reduce the size and cost of these microfeature devices involves wafer level packaging ("WLP"). WLP generally refers to the packaging of microfeature devices at the wafer level, rather than processing and packaging individual devices after dicing them from a wafer. One benefit of WLP is that it creates chip-sized packages having the smallest form factor. WLP achieves these small sizes by limiting components of the package, such as interconnect elements, to be within the footprint or fan-in area of the device. These components are limited within the device footprint because the components are formed at the wafer level before the devices are singulated. WLP also provides the benefit of producing packages having excellent electrical and thermal performance due to the overall reduced size of the package and relatively short length of the interconnects. Additional advantages provided by WLP include the ease of fabrication and reduced assembly cost due to simultaneous or parallel processing and testing at the wafer level. Even though WLP may provide the benefits listed above, it may not be suitable for devices having high pin counts or high input/output requirements. For example, the space limitation of the device footprint restricts the number and pitch of the interconnect elements in the package.

    [0004] To overcome this problem, the dies can be diced and plated in built-up packages that include interconnects which surround the die and extend through a molded polymer. Although positioning these interconnects outside of the footprint of the die can increase the number and/or pitch of the interconnects, it can significantly increase the cost and complexity of the processing. For example, in certain circumstances the filling process can trap air in the via that can cause the interconnect or package to crack as the fill material and the package harden. Such non-uniformities in the vias provide inconsistent electrical connections and compromise the integrity of the interconnects and performance of the package. Additionally, forming the vias by ablation or drilling processes typically requires forming individual vias in a sequential manner, thus increasing the processing time. Simultaneously forming the vias by an etching process can be much faster, but etching can result in inconsistent via sizes. It can also be difficult to achieve a dense distribution of the vias with an etching process. Moreover, the plating and filling processing steps following the via formation require additional processing time.

    [0005] US 2004/0183185 A1 describes a method of manufacturing a semiconductor package, wherein the external electrical connections are formed by forming a first set of parallel notches on a first side of the molded wafer and a second set of parallel notches orthogonal to said first set of parallel notches on the second side of the molded wafer. Metal contacts are then formed along the edges of the notches formed in said molded wafer.

    BRIEF DESCRIPTION OF THE DRAWINGS



    [0006] 

    Figure 1A is an isometric view of a conventional semiconductor wafer.

    Figure 1B is an isometric view of a molded wafer configured in accordance with an embodiment of the invention.

    Figure 2A is a side cross-sectional view of a semiconductor device configured in accordance with an embodiment of the invention.

    Figures 2B and 2C are side cross-sectional views illustrating various stages in a method of manufacturing a semiconductor device configured in accordance with an embodiment of the invention.

    Figure 2D is a top view illustrating a stage in a method of manufacturing a semiconductor device configured in accordance with an embodiment of the invention.

    Figures 2E-2I are side cross-sectional views illustrating various stages in a method of manufacturing a semiconductor device configured in accordance with an embodiment of the invention.

    Figure 2J is a top view illustrating a stage in a method of manufacturing a semiconductor device configured in accordance with an embodiment of the invention.

    Figure 3A is a side cross-sectional view of a semiconductor device configured in accordance with an embodiment of the invention.

    Figures 3B and 3C are side cross-sectional views illustrating various stages in a method of manufacturing a semiconductor device configured in accordance with an embodiment of the invention.

    Figure 4 is a flow diagram of a process of manufacturing a semiconductor device configured in accordance with still another embodiment of the invention.

    Figure 5 is a schematic view of a system that incorporates semiconductor devices configured in accordance with further embodiments of the invention.


    DETAILED DESCRIPTION



    [0007] Several embodiments of the present disclosure are directed toward packaged semiconductor devices and methods of forming such devices. Many details of the disclosure are described below with reference to specific structures and methods of forming the devices. The term "semiconductor device" is used throughout to include a variety of articles of manufacture including, for example, semiconductor wafers having active components, individual integrated circuit dies, packaged dies, and semiconductor devices. Many specific details of certain embodiments are set forth in Figures 1A-3C and the following text to provide a thorough understanding of these embodiments. Like reference characters refer to like components in Figures 1A-3C, 4 and 5 and thus the description of many of these components will not be repeated with reference to the Figures. Several other embodiments can have different configurations, components or processes than those described in this section.

    [0008] Figure 1A is an isometric view of a conventional semiconductor wafer 100 having a first side 102, a second side 104 and a plurality of semiconductor devices or dies 106. The dies 106 can include, for example, a dynamic or static random access memory, a flash memory, a microprocessor, an imager or another type of application specific integrated circuit. Individual dies 106 include a plurality of bond-sites 108 at the first side 102 to electrically connect the dies 106 with other components. As explained below, the bond-sites 108 can include a staggered configuration at the first side 102 of the dies 106. The dies 106 are delineated by boundary lines 107, and the dies 106 are processed and built up on the wafer 100 before dicing along the boundary lines 107 to singulate the dies 106.

    [0009] After singulating the dies 106 from the wafer 100, the dies 106 are embedded in a mold material configured in a wafer form as illustrated in Figure 1B. More specifically, Figure 1B is an isometric view of a molded wafer 110 including a first side 112 and a second side 114. The molded wafer 110 is composed of a mold material 116 that can include, for example, thermosets, thermoplastics, hybridized versions of thermosets and thermoplastics, or other suitable mold materials. The molded wafer 110 also includes the singulated dies 106 (individually identified as a first die 106a, a second die 106b, etc.). The bond-sites 108 are at the first side 112 of the molded wafer 110 and the dies 106 are positioned in a grid-like pattern and spaced apart from each other by lanes in the mold material 116. As illustrated in Figure 1B, for example, the lanes between the dies can include rows 118a that run in a first direction between the dies 106, and columns 118b that run in a second direction between the dies 106 generally transverse to the rows 118a. One skilled in the art will appreciate that describing the lanes or spacing between the dies as "rows" and "columns" is for the purposes of illustration and does not necessarily require a horizontal or vertical configuration of the rows and columns. The rows 118a and columns 118b in the mold material 116 provide additional space around the dies 106 to form interconnect structures or other components. These interconnect structures are not typically formed between the dies 106 at the wafer 100 level (shown in Figure 1A) due to cost restrictions of the wafer 100 material. Accordingly, the devices and methods described below utilize the molded wafer 110 configuration illustrated in Figure 1B to form interconnect structures associated with the dies 106.

    [0010] Figure 2A illustrates one embodiment of a semiconductor device 200 that is processed and singulated from the molded wafer 110. More specifically, Figure 2A is a side cross-sectional view of a semiconductor device 200 including one of the dies 106 embedded in the mold material 116. The device 200 includes interconnect structures or electrical connectors 248 (identified individually as a first electrical connector 248a and a second electrical connector 248b) that extend from a first side 202 of the device 200 to a second side 204. In this embodiment, the electrical connectors 248 can have wire bonds 250 that extend through depressions or openings 224 in the mold material 116.

    [0011] Individual wire bonds 250 can be composed of a conductive material, such as nickel, copper, gold, silver, platinum, alloys of these metals, and/or any other conductive material suitable for wire bonding or similar techniques. The characteristics of the wire bonds 250 can be selected based on device-specific processor or performance needs. For example, the wire bonds 250 can have a diameter, geometry (e.g., round cross-section or flat cross-section), and/or modulus of elasticity selected to satisfy performance and integration requirements. The wire bonds 250 connect individual corresponding bond-sites 108 (identified individually as a bond-site 108a and a second bond-site 108b shown in broken lines) at the first side 202 to corresponding contacts 230 at the second side 204. The second bond-site 108b illustrated in Figure 2A is out of the plane of Figure 2A but shown in broken lines for the purposes of illustration. As illustrated in Figures 2D and 2J, in certain embodiments, the bond-sites 108 can be staggered or aligned with each other.

    [0012] The contacts 230 can include a conductive material 232 (e.g., solder) that is disposed in the openings 224 proximate to the second side 204. In certain embodiments, the contacts 230 can be generally coplanar with the second side 204 as shown in Figure 2A. In other embodiments, however, the contacts 230 can be recessed from or project from the second side 204 and form bumps to facilitate stacking of the assembly. The contacts 230 can be disposed at an intersection between trenches 210 formed in the first side 202 and channels 220 (only one of which is shown in Figure 2A) formed in the second side 204. In the embodiment illustrated in Figure 2A, the trenches 210 run generally perpendicular to the plane of Figure 2A and the channel 220 runs generally parallel to the plane of Figure 2A. A first portion 252 of the wire bond 250 is attached or embedded in the contact 230, and a second portion 254 of the wire bond 250 is attached to the corresponding bond-site 108. The device 200 further includes a dielectric encapsulant 258 disposed over the first side 202 of the device 200 which at least partially covers the wire bonds 250 and bond-sites 108. The dielectric material 258 can electrically isolate the connectors 248 and support the wire bonds 250.

    [0013] As explained in detail below, the device 200 incorporates the processing benefits from WLP and the reconfigured molded wafer 110, while still providing high quality interconnects that can be formed with relatively simplified processing steps. For example, rather than ablating, etching or drilling individual vias, the openings 224 through the mold material 116 are formed at intersections of the first side trenches 210 and corresponding second side channels 220. In addition, in the embodiment shown in Figure 2A, the electrical connectors 248 include continuous wire bonds 250 that provide a uniform electrical connection through the device 200 without requiring the complex process of forming, plating and filling the vias associated with conventional interconnects.

    [0014] The device 200 and electrical connectors 248 have been completely formed in the embodiment illustrated in Figure 2A. Figures 2B-2J described below illustrate various techniques and stages in a method of forming the device 200 of Figure 2A. Figure 2B is a cross-sectional view of the device 200 along the line A-A of Figure 1B that illustrates a stage of processing the mold material 116 around the first and second dies 106a-b. At this stage, a portion of the mold material 116 is removed to form trenches 210 (identified individually as a first trench 210a and second trench 210b) in the row 118a between the first and second dies 106a-b. The trenches 210 are formed at the first side 202 and extend to an intermediate depth in the mold material. More specifically, the mold material 116 has a second thickness T1, and the first and second dies 106a-b each have a first thickness T2 less than the second thickness T1. The first and second trenches 210a-b each have a first depth D1 in the mold material 116 less than the second thickness T1 of the mold material 116 and equal to or greater than the first thickness T2 of the dies 106. Accordingly, the individual trenches 210 can extend deeper into the mold material 116 than the individual dies 106 without extending all the way through to the second side 204 of the device 200.

    [0015] In certain embodiments, forming the trenches 210 can include partially dicing the mold material 116 with a cutting device (not shown), such as a wafer saw, blade, laser, fluid jet, etchant, or other tool suitable for removing controlled portions of the mold material 116. For example, to form the first and second trenches 210a-b, two spaced apart cutting devices can remove the corresponding mold material 116 in a single pass in the row 118a. In other embodiments, a single cutting device can remove the mold material 116 by making multiple passes and repositioning the cutting device and/or the wafer between passes. In addition, although the trenches 210 illustrated in Figure 2B have a generally rectilinear cross-section, one skilled in the art will appreciate that that the trenches 210 can include other configurations including, but not limited to, curved sidewalls or smooth transitions between the sidewalls of the trenches 210.

    [0016] Figure 2C illustrates a stage after forming the trenches 210 in the first side 202 in which the mold material 116 is selectively removed from the second side 204 to form openings 224 at intersections with the trenches 210. More specifically, Figure 2C is a cross-sectional view of the device 200 along the line B-B of Figure 1B. For the purposes of illustration, the device 200 shown in Figure 2C is inverted so that the second side 204 is facing up. In addition, the dies 106 and the bond-sites 108 are out of the plane of Figure 2C and shown in broken lines for reference. In this configuration, multiple second side channels 220 are formed in a direction generally transverse to the trenches 210 described above (only the first trench 210a is shown in Figure 2C). The channels 220 can be formed in a manner generally similar to that described above with reference to the trenches 210. In certain embodiments the channels 220 can be generally similar to the trenches 210 and are called channels rather than trenches for the purposes of clarity in distinguishing between the two.

    [0017] In the embodiment illustrated in Figure 2C, the channels 220 are not formed in the column 118b between the first and second dies 106a-b, but rather at a preselected pitch within the footprint of the individual dies 106. The channels 220 have a second depth D2 into the mold material 116 from the second side 204 that does not intersect the dies 106. The combination of the first depth D1 of the trenches 210 and the second depth D2 of the channels 220, however, is equal to or greater than the second thickness T1 of the mold material 116. Accordingly, the intersections between the first side trenches 210 and the second side channels 220 form the openings 224 and provide access through the mold material 116.

    [0018] Figure 2D is a top view of the molded wafer 110 that illustrates the configuration of the trenches 210 and intersecting channels 220 with reference to the individual dies 106. At this stage in the processing, the openings 224 have been formed in the rows 118a between dies 106. In the embodiment illustrated in Figure 2D, the first side trenches 210 run parallel to and are spaced apart from one another in the rows 118a between the dies 106. The second side channels 220 (shown in broken lines) run generally perpendicular to the trenches 210 and within the footprints of individual dies 106. The intersections between the trenches 210 and channels 220 accordingly form the openings 224 in the rows 118a.

    [0019] The configuration and method of forming the openings described above provide a relatively fast and cost-effective method of forming the openings 224 through the mold material 116. For example, cutting a single second side channel 220 after forming the first side trenches 210 creates multiple openings 224 at the intersections with only a single pass through the mold material 116. In addition, removing the mold material 116 with the trenches 210 and channels 220 uses existing methods and avoids some of the challenges associated with conventional via techniques. For example, drilling with a laser can create non-uniform vias having an entry diameter that is larger than an exit diameter. Another challenge associated with drilling a via includes unwanted melted and resolidified mold material that can remain at the entry side of the via. Moreover, adequately plating and filling a via having a small aspect ratio formed by drilling techniques can also provide a significant challenge.

    [0020] After forming the trenches 210 and the channels 220, Figures 2E and 2F illustrate a stage in which the contacts 230 are formed at the second side 204 of the device 200. More specifically, Figure 2E is a side cross-sectional view of the device 200 along the line B-B of Figure 1B, and Figure 2F is a side cross-sectional view of the device 200 along the line A-A of Figure 1B. Referring to Figures 2E and 2F together, the contacts 230 are formed by disposing the conductive material 232 in the channels 220 aligned with corresponding openings 224.

    [0021] For the purposes of illustration, Figure 2E illustrates different methods of disposing the conductive material 232 in the same assembly 200. In certain embodiments, for example, the conductive material 232 can be deposited or embedded in the openings 224 by printing, disposing with a conductive inkjet, sputtering or other methods. As shown towards the left of Figure 2E, a printing assembly 236 deposits the conductive material 232 in the channels 220. The printing assembly 236 can include a squeegee blade 238 and a stencil 240 having holes 242 aligned with the channels 220 and corresponding openings 224. As the squeegee blade 238 passes over the stencil 240, discrete amounts of the conductive material 232 are disposed though corresponding holes 242 in the stencil 240 to form the contacts 230. In other embodiments and as shown toward the right side of Figure 2E, a conductive inkjet 234 can embed discrete amounts of the conductive material 232 in the openings 224 to form the contacts 230.

    [0022] As illustrated in Figure 2F, the conductive material 232 does not fill the entire channel 220 (one of which is shown in Figure 2F) and the contacts 230 are generally aligned with corresponding openings 224. As such, the contacts 230 are accessible for further processing through the trenches 210 from the first side 202. The conductive material 232 forming the contacts 230 can include a solder paste or other conductive material that can be configured to generally remain in the discrete locations at the openings 224. For example, to prevent the conductive material 232 from running or smearing into the trenches 210 or channels 220, the metallurgy of the conductive material 232 can be modified. Moreover, under bump metallization (not shown) can be applied to the sidewalls of the mold material 116 in the channels 220 to ensure that the conductive material 232 adheres with the mold material 116 and other metallization associated with the device 200.

    [0023] In the embodiments illustrated in Figures 2E and 2F, the contacts 230 are generally coplanar with the second side 204, and can accordingly provide external electrical access to the device 200. For example, in certain embodiments, conductive members such as solder balls (not shown), can be attached to the contacts 230. In other embodiments, however, the contacts 230 can be recessed into or protrude from the second side 204. For example, the contacts 232 can be bumps or raised contacts that protrude from the second side 204 to facilitate stacking of the device 200 with other devices or assemblies.

    [0024] After forming the contacts 230 proximate to the second side 204, processing of the electrical connectors 248 continues as illustrated in Figures 2G and 2H. Figures 2G and 2H, more specifically, are side cross-sectional views of the device 200 along the line A-A of Figure 1B, illustrating the process of connecting wire bonds 250 between the first side 202 and the second side 204. Referring to the second die 106b shown toward the right side of Figure 2G, the wire bond 250 is attached to the contact 230 and extends through the opening 224 and second trench 210b to connect to the bond-site 108. As shown towards the left side of Figure 2G, a wire bonding tool 256 is in the process of making this connection. For example, a necked portion 258 of the tool 256 can be inserted in the first trench 210a and through the opening 224 to attach the wire bond 250 directly to the contact 230. In certain embodiments, the tool 256 can embed a first portion 252 of the wire bond 250 in the contact 230. For example, the tool 256 can pierce the conductive material 232 with the first portion 252 of the wire bond 250. In other embodiments, however, the bonding tool 256 itself can pierce the conductive material 232 and then inject the first portion 252 of the wire bond 250 into the contact 230. The tool 256 then spools the wire bond 250 and attaches a second portion 254 of the wire bond 250 to the bond-site 108 of the die 106a.

    [0025] In certain embodiments, after attaching the wire bonds 250 between corresponding contacts 230 and bond-sites 108, the contacts 230 can be reflowed, as illustrated in Figure 2H. Reflowing the contacts 230 can help ensure an adequate attachment of the contact 230 and the inserted or embedded first portion 252 of the wire bond 250. After forming the electrical connectors 248, the dielectric encapsulant 258 can be disposed at the first side 202 as illustrated in Figure 2H. The encapsulant 258 can protect the dies 106 from contamination (e.g., due to moisture, particles, etc.). The encapsulant 258 can also stabilize and electrically isolate the wire bonds 250 and other conductive features at the first side 202. In certain embodiments, the encapsulant can be composed of a dielectric material and disposed on the assembly 200 in a molding process.

    [0026] Turning next to Figures 2I and 2J, individual devices 200 with corresponding dies 106 and components are singulated from the molded wafer 110. More specifically, Figure 2I is a side cross-sectional view of the singulated, device 200 along the line A-A of Figure 1B, and Figure 2J it a top view of the singulated device 200. For the purposes of illustration, however, Figure 2J does not show the encapsulant 258 at the first side 202 to better illustrate the individual electrical connectors 248. Referring to Figures 2I and 2J together, the device 200 can be singulated such that the electrical connectors 248 are either enclosed or exposed at a periphery of the device 200. The device 200 is singulated by cutting the molded wafer 110 of Figure 1B along the rows 118a and columns 118b between the individual dies 106. In certain embodiments, the rows 118a may be bisected between corresponding trenches 210. In other embodiments, however, individual dies 106 can be singulated along the rows 118a (or columns 118b) to leave a predetermined amount of molding material 116 around the periphery of the individual dies 106 and electrical connectors 248. As shown towards the left side of Figures 2I and 2J, for example, the singulated devices 200 include a side-wall portion 258 that encloses the wire bond 250 within the mold material 116 between the first and second sides 202, 204. In other embodiments, however, the devices 200 can be singulated such that the connectors are not enclosed by the mold material 116 and exposed at the periphery of the device 200. For example, as shown for the purposes of illustration on the same assembly 200 towards the right side of Figures 2I and 2J, the electrical connector 248 is exposed after the molding material 116 is removed during the singulation process. Exposing the electrical connector 248 at the sides of the device 200 provides the benefit of another location to electrically connect to in a later stage of the processing.

    [0027] Figure 3A is a cross-sectional side view of an device 300 configured in accordance with another embodiment. The device 300 is generally similar to the device 200 described above with reference to Figures 1A-2J; however in this embodiment the device 300 has electrical connectors 348 (individually identified as a first electrical connector 348a and a second electrical connector 348b) including wire bonds 350 with corresponding deformed first portions 352 that form contacts 330 at the second side 204. Rather than forming the contacts 230 described above by depositing the conductive material 232 in the openings 224, the contacts 330 illustrated in Figure 3A are formed with the first portion 352 of the wire bonds 350. Accordingly, the electrical connectors 348 include a continuous and uninterrupted wire bond 350 connecting the first side 202 to the second side 204.

    [0028] For the purposes of illustration, the first electrical connector 348a is shown towards the right side of Figure 3A, and the second electrical connector 348b is shown towards the left side of Figure 3A on the same assembly 300. The first electrical connector 348a includes a wire bond 350 extending through the assembly 300 and having a first portion 352 that is deformed generally into a hook-like member 358 having a generally curved or permanently deflected configuration. The wire bond 350 extends through the opening 224 at the intersection of the trench 210 and channel 220, and a second portion 354 of the wire bond 350 is attached to the corresponding bond-site 108a. The first portion 352 of the wire bond 350 is not required to form an actual hook, however the first portion 352 can be deformed and configured such that it will at least partially retain the wire bond 350 proximate to the second side 204. As such, the deformed first portion 352 of the wire bond 350 forms the contact 330 at the second side 204 and provides an external electrical access to the device 300.

    [0029] The second electrical connector 348b illustrated towards the left side of Figure 3A is generally similar to the first electrical connector 348a, except that the first portion 352 of the wire bond 350 is deformed to generally include a ball-like member 356. The ball-like member 356 is formed from the first portion 352 of the wire bond 350 and has a cross-sectional dimension that is at least as big as a cross-sectional dimension of the opening 224. Accordingly, the ball-like member 256 can be configured to at least partially retain the first portion 352 of the wire bond 350 proximate to the second side 204 to form the contact 330.

    [0030] In the embodiments described above and illustrated in Figure 3A, the contacts 330 can be substantially coplanar with or project from the second side 204. For example, the hook-like member 358 can be formed to be generally coplanar with the second side 204, and the ball-like member 356 can be formed to project from the second side 204. In other embodiments, however, the first portion 352 of the wire bond 350, including the hook like or ball-like members 358, 356, can be configured to form a contact 330 that is at least partially recessed into the second side 204 of the assembly 300.

    [0031] As explained bellow and described in more detail with reference to Figures 3B and 3C, the electrical connectors 348 can provide high quality interconnects through and within the device 300 that can be produced in a cost effective manner. For example, the electrical connectors 348 can be formed with existing semiconductor processing and wire bonding techniques. In addition, the electrical connectors 348 include continuous and solid wire bonds 350, including the contacts 330 at the first portions 352, to form the electrical connectors 348 extending from the first side 202 to the second side 204.

    [0032] Figure 3B illustrates a processing stage at which the first portion 352 of the wire bond 350 is deflected or otherwise deformed into the hook-like member 358 at the first portion 352 of the wire bond 350. As described above with reference to Figures 1A-2J, the openings 224 are formed at the intersections between the first side trenches 210 and the second side channels 220. Accordingly, the wire bonding tool 256 can be positioned in the trench 210 proximate to the opening 224 and extend the first portion 352 of the wire bond 350 to protrude from the second side 204. A deflecting member 370 can permanently deflect the first portion 352 to form the contact 330 at the second side 204. For example, the deflecting member 370 can move at the second side 204 in a direction indicated by an arrow 372 to bend the first portion 352 of the wire bond 350. In other embodiments, the deflecting member 370 can move in other directions to form the hook-like member 358 of the first portion 352. After deforming the first portion 352, the second portion 354 of the wire bond 350 is attached to a corresponding bond-site 108 at the first side 202.

    [0033] Figure 3C illustrates a processing stage of the electrical connector 348 in which the ball-like member 356 is formed at the first portion 352 of the wire bond 350. In this embodiment, an electronic flame off ("EFO") tool 360 is positioned proximate to the first portion 352 of the wire bond 350 protruding from the second side 204. The EFO tool 362 emits a spark 362 or other heat source proximate to the first portion 352 and forms a free air ball, or ball-like member 356 at the first portion 352. Subsequently, the wire bonding tool 256 attaches the second portion 354 of the wire bond 350 to a corresponding bond-site 108 at the first side 202. Accordingly the ball-like member 356 forms the contact 330 at the second side 204.

    [0034] Processing of the device 300 can continue in a manner similar to the techniques and embodiments described above with reference to Figures 1A-2J. For example, the encapsulant 258 can be disposed at the first side 202 of the assembly 300, and individual assemblies can be singulated from the molded wafer 110 (shown in Figure 1B) using the techniques described above.

    [0035] Figure 4 is a flow diagram of an embodiment of a method or process 500 for forming a semiconductor assembly. In this embodiment, the process 500 includes forming a plurality of first side trenches to an intermediate depth in a molded portion of a molded wafer having a plurality of dies arranged in rows and columns (block 505).

    [0036] This step includes forming two or more parallel and spaced apart trenches in each row or column between the dies.

    [0037] The process further includes removing material from a second side of the molded portion at areas aligned with the first side trenches (block 510). This step include forming second side trenches or channels to an intermediate depth. The second side channels are generally transverse to the first side trenches. The combination of the depths of the first side trenches and second side channels is greater than the thickness of the mold material of the molded wafer to form the openings through the mold material.

    [0038] The process further includes forming a plurality of electrical contacts at the second side of the molded portion at the openings (block 515). In certain embodiments, this step can include disposing discrete amounts of a conductive material (e.g., solder) in the openings from the second side. In other embodiments, however, this step can include inserting a portion of a wire bond through the opening and deforming the portion of a wire bond at the second side. The process further includes electrically connecting the second side contacts to corresponding bond-sites on the dies (block 520). In certain embodiments, this step can include attaching a wire bond to the contact at the second side and to a corresponding bond-site at the first side. In embodiments including the deformed portion of the wire bond at the second side, this step can include attaching a portion of the wire bond distal from the deformed portion to a corresponding bond-site at the first side.

    [0039] The process illustrated in Figure 4 can be accomplished in a relatively short period of time because individual vias do not have to be formed, plated and filled to create the electrical connections between the first and second sides of the assembly. Rather, the intersecting trenches and channels can quickly create multiple openings through the mold material. For example, after forming the first side trenches, forming a single second side channel creates multiple openings at the intersections in a single pass.

    [0040] Any one of the devices having the electrical connectors described above with reference to Figures 1A-3C and 4 can be incorporated into any of a myriad of larger and/ or more complex systems, a representative example of which is system 600 shown schematically in Figure 5. The system 600 can include a processor 602, a memory 604 (e.g., SRAM, DRAM, flash and/or other memory devices), input/output devices 606 and/or other subsystems or components 608. The devices having electrical connectors described above with reference to Figures 1A-5 may be included in any of the components shown in Figure 5. The resulting system 600 can perform any of a wide variety of computing, processing, storage, sensing, imaging and/or other functions. Accordingly, the representative systems 600 include, without limitation, computers and/or other data processors, for example, desktop computers, laptop computers, Internet appliances, hand-held devices (e.g., palm-top computers, wearable computers, cellular or mobile phones, personal digital assistants, music players, etc.), multi-processor systems, processor-based or programmable consumer electronics, network computers and minicomputers. Other representative systems 600 may be housed in a single unit or distributed over multiple interconnected units (e.g., through a communication network). The components of the system 600 can accordingly include local and/or remote memory storage devices, and any of a wide variety of computer readable media.

    [0041] For example, one or more additional devices may be stacked on the devices in any of the embodiments described above to form stacked assemblies. Where the context permits, singular or plural terms may also include the plural or singular terms, respectively. Moreover, unless the word "or" is expressly limited to mean only a single term exclusive from the other items in reference to a list or two or more items, then the use of "or" in such a list is to be interpreted as including (a) any single item in the list, (b) all of the items in the list, or (c) any combination of the items in the list.

    [0042] Additionally, the term "comprising" is used throughout to mean including at least the recited feature(s) such that any greater number of the same feature or additional types of features are not precluded.


    Claims

    1. A method of manufacturing a semiconductor device, comprising:

    forming at least a first trench (210a) in a molded wafer (110) at a first side (112, 202) of the molded wafer in a lane between a first semiconductor die (106a) of a first thickness (T2) and a second semiconductor die (106b) of the first thickness (T2), wherein the first and second semiconductor dies (106a, b) are arranged in a grid-like pattern and spaced apart by the lane and embedded in molding material (116) of a second thickness (T1) greater than the first thickness (T2), wherein the first and second dies (106a, b) have bond-sites (108a, b) at the first side of the molded wafer (110) and wherein the molded wafer (110) includes the molding material (116) shaped into a wafer;

    forming a second trench (210b) in the first side (112, 202) of the molded wafer (110) in the lane, wherein the second trench (210b) is spaced apart from and generally parallel to the first trench (210a), wherein each of the first and second trenches (210a, b) has a first depth (D1) less than the second thickness (T1) and equal to or greater than the first thickness (T2);

    removing material from a second side (204) of the molded wafer (110) opposite the first side (112, 202) at a portion overlapping the first and second trenches (210a, b), wherein removing material from the second side (204) includes forming multiple channels (220) in the second side of the molded wafer (110) at a predetermined pitch within a footprint of the first and second semiconductor dies (106 a, b) in a direction generally transverse to the first and second trenches (210a, b), and wherein forming the multiple channels (220) forms a first opening and a second opening through the molded wafer at intersections between each channel (220) and the first and second trenches (210a,b) respectively, wherein each channel (220) has a second depth (D2) such that the channel (220) does not intersect the first and second semiconductor dies (106a, b), wherein a combination of the first (D1) and second depths is equal to or greater than the second thickness (T1);

    forming electrical connectors (248, 348) extending from individual bond-sites (108a, b) of the first and second dies (106a, b) to the second side (204) of the molded wafer (110) via corresponding first and second openings (224) through the molded wafer (110); and

    singulating the first and second dies (106a, b) by cutting the molded wafer (110) between the first and second trenches (210a, b).


     
    2. The method of claim 1 wherein forming electrical connectors (248, 348) comprises coupling a corresponding bond-site (108a, b) of the first die (106a) to the second side (204) with a first wire bond (250, 350) through the first opening (224) and coupling a corresponding bond-site of the second die (106b) to the second side (204) with a second wire bond (250, 350) through the second opening.
     
    3. The method of claim 1, further comprising at least partially filling the first openings and the second openings (224) with a conductive material (230), and wherein electrically connecting the bond-sites (108a,b) of the first and second dies (106 a,b) to the second side (204) of the molded wafer (110) includes:embedding a first portion of a first wire bond (250, 350) in the conductive material (230) in a corresponding first opening and connecting a second portion (354) of the first wire bond opposite the first portion (252) through the first opening to a corresponding bond-site (108) of the first die (106 a); and embedding a first portion of a second wire bond (250, 350) in the conductive material (230) in a corresponding second opening and connecting a second portion (254) of the second wire bond (250, 350) opposite the first portion through the second opening to a corresponding bond-site(108) of the second die(106 b).
     
    4. The method of claim 3 wherein at least partially filling the first openings and the second openings includes disposing a discrete amount of the conductive material (230) in each of the first and second openings (224).
     
    5. The method of claim 1 wherein forming electrical connectors (248, 348) includes:inserting a first wire bond (250, 350) into one of the first openings (224) such that a first portion (252, 352) of the first wire bond (250) projects from the second side (204) through the molded wafer (110);deforming the first portion of the first wire bond (250), wherein the deformed first portion at least partially prevents the wire bond from retracting through the first opening; and connecting a second portion (254, 354) of the first wire bond (250, 350) opposite the first portion (252, 352) to a corresponding bond-site (108) of the first die (106a).
     
    6. The method of claim 5 wherein deforming the first portion of the first wire bond (350) includes forming a ball-like member (356) at the first portion (352) with an electronic flame off having a cross-sectional dimension greater than a cross-sectional dimension of the first and second openings (224).
     
    7. The method of claim 5 wherein deforming the first portion of the first wire bond (350) includes deflecting the first portion deflecting the first portion into a hook-like member (358) that retains the first end portion (352) of the wire proximate to the second side (204) of the molded wafer (110).
     
    8. An intermediate article of manufacture comprising:a molded wafer having a molding material (106) of a second thickness (T1) shaped into a wafer(110) having a first side (112, 202) and a second side (204), first and second semiconductor dies (106 a,b) of a first thickness (T2) embedded in the molding material (116) and having bond sites (108 a,b) at the first side (202) of the molded wafer (110), wherein the second thickness (T1) is greater than the first thickness (T2) in the molding material (116) wherein the first and second semiconductor dies (106 a,b) are arranged in a grid-like pattern and spaced apart by a lane; a first trench in the first side of the molded wafer (110) in the lane between the first and second dies (106 a,b), wherein the first trench (210a) has a first depth (D1) less than a second thickness (T1) and equal to or greater than the first thickness (T2); and a second trench (210b) in the first side (202) of the molded wafer(110) between the first and second dies (106 a, b), wherein the second trench (210b) is generally parallel to and spaced apart from the first trench (210a) and has a depth (D1) equal to the first depth (D1) of the first trench (210a); and multiple channels (220) in the second side (204) of the molded wafer (110) at a predetermined pitch within a footprint of the first and second semiconductor dies (106 a,b), wherein each channel (220) has a second depth (D2) that such that the channel (220) does not intersect the first and second semiconductor dies (106a,b), wherein a combination of the first (D1) and second (D2) depths is equal to or greater than the second thickness (T1), and forms openings (224) through the molded wafer (110) at intersections with the first and second trenches (210 a,b) between the first and second dies (106 a,b), wherein the multiple channels (220) are generally transverse to the first and second trenches (210a,b), wherein each channel (220) forms a first opening (224) at the intersection with the first trench (210a) and a second opening (224) at an intersection with the second trench (210b); and electrical connectors (248) extending from individual bond-sites (108) of the first and second dies (106a,b) to the second side (204) of the molded wafer (110) via corresponding first and second openings (224) through the molded wafer (110).
     
    9. The article of claim 8, wherein the electrical connectors comprises:a first contact (230) at the second side (204) of the molded wafer (110) positioned in the first opening (224);a second contact (230) at the second side (204) of the molded wafer (110) positioned in the second opening (224);a first wire bond (250) extending through the first opening (224) and connected to the first die (106a) and to the first contact (230); and a second wire bond (250) extending through the second opening (224) and connected to the second die (106b) and to the second contact (230).
     
    10. The article of claim 9 wherein:the first contact includes a conductive material (230) disposed in the first opening (224) proximate to the second side (204), and wherein the first wire bond (250) is embedded in the first conductive material (230); and the second contact includes the conductive material (230) disposed in the second opening (224) proximate to the second side (204), and wherein the second wire bond (250) is embedded in the second conductive material (230).
     
    11. The article of claim 8, wherein the electrical connector comprises:a first wire bond (350) connected to the first die (106a), wherein the first wire bond (350) extends through the first opening (224) and is deformed at an end portion(352) of the first wire bond (350) proximate to the second side (204) of the molded wafer (110) ;a second wire bond (350) connected to the second die (106b), wherein the second wire bond (350) extends through the second opening (224) and is deformed at an end portion(352) of the second wire bond (350) proximate to the second side (204) of the molded wafer (110); and wherein the deformed end portion(352) of the first wire bond (350) includes a ball-like member (356) having a cross-sectional dimension greater than a cross- sectional dimension of the first opening (224), and the deformed end portion of the second wire bond (350) includes a ball-like member (356) having a cross-sectional dimension greater than a cross- sectional dimension of the second opening (224); or the deformed end portion of the first wire bond (350) includes a hook-like member (358) that at least partially retains the end portion of the first wire (350) proximate to the second side (204) of the molded wafer (110), and the deformed end portion of the second wire bond (350) includes a hook-like member (358) that at least partially retains the end portion of the second wire bond (350) proximate to the second side of the molded wafer (110).
     


    Ansprüche

    1. Verfahren zum Herstellen einer Halbleitervorrichtung, Folgendes umfassend:

    Ausbilden mindestens eines ersten Grabens (210a) in einem geformten Wafer (110) auf einer ersten Seite (112, 202) des geformten Wafers in einer Bahn zwischen einem ersten Halbleiterchip (106a) mit einer ersten Dicke (T2) und einem zweiten Halbleiterchip (106b) mit der ersten Dicke (T2), wobei der erste und der zweite Halbleiterchip (106a, b) in einer gitterförmigen Struktur angeordnet sind und durch die Bahn voneinander beabstandet sind und in Formmaterial (116) mit einer zweiten Dicke (T1) eingebettet sind, die größer ist als die erste Dicke (T2), wobei der erste und der zweite Chip (106a, b) Bondstellen (108a, b) auf der ersten Seite des geformten Wafers (110) aufweisen und wobei der geformte Wafer (110) das Formmaterial (116) umfasst, das zu einem Wafer geformt ist;

    Ausbilden eines zweiten Grabens (210b) in der ersten Seite (112, 202) des geformten Wafers (110) in der Bahn, wobei der zweite Graben (210b) von dem ersten Graben (210a) beabstandet ist und im Allgemeinen parallel dazu ist, wobei jeder des ersten und des zweiten Grabens (210a, b) eine erste Tiefe (D1) aufweist, die geringer ist als die zweite Dicke (T1) und gleich oder größer ist als die erste Dicke (T2);

    Entfernen von Material von einer zweiten Seite (204) des geformten Wafers (110), die der ersten Seite (112, 202) gegenüberliegt, an einem Abschnitt, der den ersten und den zweiten Graben (210a, b) überlappt, wobei Entfernen von Material von der zweiten Seite (204) Ausbilden mehrerer Kanäle (220) in der zweiten Seite des geformten Wafers (110) in einem vorbestimmten Rastermaß innerhalb einer Grundfläche des ersten und des zweiten Halbleiterchips (106a, b) in einer Richtung umfasst, die im Allgemeinen transversal zu dem ersten und dem zweiten Graben (210a, b) ist, und wobei Ausbilden der mehreren Kanäle (220) eine erste Öffnung und eine zweite Öffnung durch den geformten Wafer an Schnittpunkten zwischen jedem Kanal (220) und dem ersten bzw. dem zweiten Graben (210a, b) ausbildet, wobei jeder Kanal (220) eine zweite Tiefe (D2) aufweist, so dass der Kanal (220) den ersten und den zweiten Halbleiterchip (106a, b) nicht schneidet, wobei eine Kombination der ersten (D1) und der zweiten Tiefe gleich oder größer ist als die zweite Dicke (T1);

    Ausbilden elektrischer Verbinder (248, 348), die sich aus einzelnen Bondstellen (108a, b) des ersten und des zweiten Chips (106a, b) zu der zweiten Seite (204) des geformten Wafers (110) über eine entsprechende erste und zweite Öffnung (224) durch den geformten Wafer (110) erstrecken; und

    Vereinzeln des ersten und des zweiten Chips (106a, b) durch Schneiden des geformten Wafers (110) zwischen dem ersten und dem zweiten Graben (210a, b).


     
    2. Verfahren nach Anspruch 1, wobei Ausbilden elektrischer Verbinder (248, 348) Koppeln einer entsprechenden Bondstelle (108a, b) des ersten Chips (106a) mit einer ersten Drahtbondverbindung (250, 350) durch die erste Öffnung (224) mit der zweiten Seite (204) und Koppeln einer entsprechenden Bondstelle des zweiten Chips (106b) mit einer zweiten Drahtbondverbindung (250, 350) durch die zweite Öffnung mit der zweiten Seite (204) umfasst.
     
    3. Verfahren nach Anspruch 1, weiterhin umfassend mindestens teilweises Füllen der ersten Öffnungen und der zweite Öffnungen (224) mit einem leitfähigen Material (230), und wobei elektrisches Verbinden der Bondstellen (108a, b) des ersten und des zweiten Chips (106a, b) mit der zweiten Seite (204) des geformten Wafers (110) Folgendes umfasst: Einbetten eines ersten Abschnitts einer ersten Drahtbondverbindung (250, 350) in dem leitfähigen Material (230) in einer entsprechenden ersten Öffnung und Verbinden eines zweiten Abschnitts (354) der ersten Drahtbondverbindung, der dem ersten Abschnitt (252) gegenüberliegt, durch die erste Öffnung mit einer entsprechenden Bondstelle (108) des ersten Chips (106a); und Einbetten eines zweiten Abschnitts einer ersten Drahtbondverbindung (250, 350) in dem leitfähigen Material (230) in einer entsprechenden zweiten Öffnung und Verbinden eines zweiten Abschnitts (254) der zweiten Drahtbondverbindung (250, 350), der dem ersten Abschnitt gegenüberliegt, durch die zweite Öffnung mit einer entsprechenden Bondstelle (108) des zweiten Chips (106b).
     
    4. Verfahren nach Anspruch 3, wobei mindestens teilweises Füllen der ersten Öffnungen und der zweiten Öffnungen Anordnen einer diskreten Menge des leitfähigen Materials (230) in jeder der ersten und der zweiten Öffnung (224) umfasst.
     
    5. Verfahren nach Anspruch 1, wobei Ausbilden elektrischer Verbinder (248, 348) Folgendes umfasst: Einführen einer ersten Drahtbondverbindung (250, 350) in eine der ersten Öffnungen (224), so dass ein erster Abschnitt (252, 352) der ersten Drahtbondverbindung (250) durch den geformten Wafer (110) aus der zweiten Seite (204) vorsteht; Deformieren des ersten Abschnitts der ersten Drahtbondverbindung (250), wobei der deformierte erste Abschnitt mindestens teilweise verhindert, dass die Drahtbondverbindung durch die erste Öffnung zurückgezogen wird; und Verbinden eines zweiten Abschnitts (254, 354) der ersten Drahtbondverbindung (250, 350), der dem ersten Abschnitt (252, 352) gegenüberliegt, mit einer entsprechenden Bondstelle (108) des ersten Chips (106a).
     
    6. Verfahren nach Anspruch 5, wobei Deformieren des ersten Abschnitts der ersten Drahtbondverbindung (350) Ausbilden eines ballförmigen Glieds (356) an dem ersten Abschnitt (352) mit einem elektronischen Abflammen umfasst, das eine Querschnittsabmessung aufweist, die größer ist als eine Querschnittsabmessung der ersten und der zweiten Öffnung (224).
     
    7. Verfahren nach Anspruch 5, wobei Deformieren des ersten Abschnitts der ersten Drahtbondverbindung (350) Ablenken des ersten Abschnitts zu einem hakenförmigen Glied (358) umfasst, das den ersten Endabschnitt (352) des Drahtes in der Nähe zu der zweiten Seite (204) des geformten Wafers (110) hält.
     
    8. Zwischenfertigungsgegenstand Folgendes umfassend: einen geformten Wafer mit einem Formmaterial (106) einer zweiten Dicke (T1), das zu einem Wafer (110) geformt ist, der eine erste Seite (112, 202) und eine zweite Seite (204), einen ersten und einen zweiten Halbleiterchip (106a, b) mit einer ersten Dicke (T2), die in dem Formmaterial (116) eingebettet sind, aufweist und Bondstellen (108a, b) auf der ersten Seite (202) des geformten Wafers (110) aufweist, wobei die zweite Dicke (T1) größer ist als die erste Dicke (T2) in dem Formmaterial (116), wobei der erste und der zweite Halbleiterchip (106a, b) in einer gitterförmigen Struktur angeordnet sind und durch eine Bahn voneinander beabstandet sind; einen ersten Graben in der ersten Seite des geformten Wafers (110) in der Bahn zwischen dem ersten und dem zweiten Chip (106a, b), wobei der erste Graben (210a) eine erste Tiefe (D1) aufweist, die geringer ist als eine zweite Dicke (T1) und gleich oder größer ist als die erste Dicke (T2); und einen zweiten Graben (210b) in der ersten Seite (202) des geformten Wafers (110) zwischen dem ersten und dem zweiten Chip (106a, b), wobei der zweite Chip (210b) im Allgemeinen parallel zu dem ersten Graben (210a) ist und davon beabstandet ist und eine Tiefe (D1) aufweist, die gleich der ersten Tiefe (D1) des ersten Grabens (210a) ist; und mehrere Kanäle (220) in der zweiten Seite (204) des geformten Wafers (110) in einem vorbestimmten Rastermaß innerhalb einer Grundfläche des ersten und des zweiten Halbleiterchips (106a, b), wobei jeder Kanal (220) eine zweite Tiefe (D2) aufweist, so dass der Kanal (220) den ersten und den zweiten Halbleiterchip (106a, b) nicht schneidet, wobei eine Kombination der ersten (D1) und der zweiten (D2) Tiefe gleich oder größer ist als die zweite Dicke (T1) und Öffnungen (224) durch den geformten Wafer (110) an Schnittpunkten mit dem ersten und dem zweiten Graben (210a, b) zwischen dem ersten und dem zweiten Chip (106a, b) ausbildet, wobei die mehreren Kanäle (220) im Allgemeinen transversal zu dem ersten und dem zweiten Graben (210a, b) sind, wobei jeder Kanal (220) eine erste Öffnung (224) an dem Schnittpunkt mit dem ersten Graben (210a) und eine zweite Öffnung (224) an einem Schnittpunkt mit dem zweiten Graben (210b) ausbildet; und elektrische Verbinder (248), die sich aus einzelnen Bondstellen (108) des ersten und des zweiten Chips (106a, b) über eine entsprechende erste und zweite Öffnung (224) durch den geformten Wafer (110) zu der zweiten Seite (204) des geformten Wafers (110) erstrecken.
     
    9. Gegenstand nach Anspruch 8, wobei die elektrischen Verbinder Folgendes umfassen: einen ersten Kontakt (230) auf der zweiten Seite (204) des geformten Wafers (110), der in der ersten Öffnung (224) positioniert ist; einen zweiten Kontakt (230) auf der zweiten Seite (204) des geformten Wafers (110), der in der zweiten Öffnung (224) positioniert ist; eine erste Drahtbondverbindung (250), die sich durch die erste Öffnung (224) erstreckt und mit dem ersten Chip (106a) und mit dem ersten Kontakt (230) verbunden ist; und
    eine zweite Drahtbondverbindung (250), die sich durch die zweite Öffnung (224) erstreckt und mit dem zweiten Chip (106b) und mit dem zweiten Kontakt (230) verbunden ist.
     
    10. Gegenstand nach Anspruch 9, wobei: der erste Kontakt ein leitfähiges Material (230) umfasst, das in der ersten Öffnung (224) in der Nähe zu der zweiten Seite (204) angeordnet ist, und wobei die erste Drahtbondverbindung (250) in dem ersten leitfähigen Material (230) eingebettet ist; und der zweite Kontakt das leitfähige Material (230) umfasst, das in der zweiten Öffnung (224) in der Nähe zu der zweiten Seite (204) angeordnet ist, und wobei die zweite Drahtbondverbindung (250) in dem zweiten leitfähigen Material (230) eingebettet ist.
     
    11. Gegenstand nach Anspruch 8, wobei der elektrische Verbinder Folgendes umfasst: eine erste Drahtbondverbindung (350), die mit dem ersten Chip (106a) verbunden ist, wobei sich die erste Drahtbondverbindung (350) durch die erste Öffnung (224) erstreckt und an einem Endabschnitt (352) der ersten Drahtbondverbindung (350) in der Nähe zu der zweiten Seite (204) des geformten Wafers (110) deformiert ist; eine zweite Drahtbondverbindung (350), die mit dem zweiten Chip (106b) verbunden ist, wobei sich die zweite Drahtbondverbindung (350) durch die zweite Öffnung (224) erstreckt und an einem Endabschnitt (352) der zweiten Drahtbondverbindung (350) in der Nähe zu der zweiten Seite (204) des geformten Wafers (110) deformiert ist; und wobei der deformierte Endabschnitt (352) der ersten Drahtbondverbindung (350) ein ballförmiges Glied (356) umfasst, das eine Querschnittsabmessung aufweist, die größer ist als eine Querschnittsabmessung der ersten Öffnung (224), und der deformierte Endabschnitt der zweiten Drahtbondverbindung (350) ein ballförmiges Glied (356) umfasst, das eine Querschnittsabmessung aufweist, die größer ist als eine Querschnittsabmessung der zweiten Öffnung (224); oder der deformierte Endabschnitt der ersten Drahtbondverbindung (350) ein hakenförmiges Glied (358) umfasst, das den Endabschnitt des ersten Drahtes (350) in der Nähe zu der zweiten Seite (204) des geformten Wafers (110) mindestens teilweise hält, und der deformierte Endabschnitt der zweiten Drahtbondverbindung (350) ein hakenförmiges Glied (358) umfasst, das den Endabschnitt der zweiten Drahtbondverbindung (350) in der Nähe zu der zweiten Seite des geformten Wafers (110) mindestens teilweise hält.
     


    Revendications

    1. Procédé de fabrication d'un dispositif semiconducteur, comprenant :

    la formation d'au moins une première tranchée (210a) dans une tranche moulée (110) sur un premier côté (112, 202) de la tranche moulée dans une ligne entre une première puce semi-conductrice (106a) d'une première épaisseur (T2) et une deuxième puce semi-conductrice (106b) de la première épaisseur (T2), les première et deuxième puces semi-conductrices (106a, b) étant disposées en un motif en forme de grille et espacées par la ligne, et incorporées dans un matériau de moulage (116) d'une deuxième épaisseur (T1) supérieure à la première épaisseur (T2), les première et deuxième puces semi-conductrices (106a, b) ayant des sites de connexion (108a, b) sur le premier côté de la tranche moulée (110), et la tranche moulée (110) comportant le matériau de moulage (116) façonné en une tranche ;

    la formation d'une deuxième tranchée (210b) dans le premier côté (112, 202) de la tranche moulée (110) dans la ligne, la deuxième tranchée (210b) étant espacée de et généralement parallèle à la première tranchée (210a), chacune des première et deuxième tranchées (210a, b) ayant une première profondeur (D1) inférieure à la deuxième épaisseur (T1) et égale ou supérieure à la première épaisseur (T2) ;

    le retrait de matière d'un deuxième côté (204) de la tranche moulée (110) à l'opposé du premier côté (112, 202) au niveau d'une portion chevauchant les première et deuxième tranchées (210a, b), le retrait de matière du deuxième côté (204) comportant la formation de multiples canaux (220) dans le deuxième côté de la tranche moulée (110) à un pas prédéterminé à l'intérieur d'une empreinte des première et deuxième puces semi-conductrices (106a, b) dans une direction généralement transversale aux première et deuxième tranchées (210a, b), et la formation des multiples canaux (220) formant une première ouverture et une deuxième ouverture à travers la tranche moulée à des intersections entre chaque canal (220) et les première et deuxième tranchées (210a, b), respectivement, chaque canal (220) ayant une deuxième profondeur (D2) telle que le canal (220) ne croise pas les première et deuxième puces semi-conductrices (106a, b), une combinaison des première (D1) et deuxième profondeurs étant égale ou supérieure à la deuxième épaisseur (T1) ;

    la formation de connecteurs électriques (248, 348) s'étendant depuis des sites de connexion individuels (108a, b) des première et deuxième puces (106a, b) jusqu'au deuxième côté (204) de la tranche moulée (110) par le biais de première et deuxième ouvertures correspondantes (224) à travers la tranche moulée (110) ; et

    la singulation des première et deuxième puces (106a, b) par découpe de la tranche moulée (110) entre les première et deuxième tranchées (210a, b).


     
    2. Procédé de la revendication 1 dans lequel la formation de connecteurs électriques (248, 348) comprend le couplage d'un site de connexion correspondant (108a, b) de la première puce (106a) au deuxième côté (204) avec une première connexion par fil (250, 350) à travers la première ouverture (224) et le couplage d'un site de connexion correspondant de la deuxième puce (106b) au deuxième côté (204) avec une deuxième connexion par fil (250, 350) à travers la deuxième ouverture.
     
    3. Procédé de la revendication 1, comprenant en outre le remplissage au moins partiel des premières ouvertures et des deuxièmes ouvertures (224) avec un matériau conducteur (230), et dans lequel la connexion électrique des sites de connexion (108a, b) des première et deuxième puces (106a, b) au deuxième côté (204) de la tranche moulée (110) comporte : l'incorporation d'une première portion d'une première connexion par fil (250, 350) dans le matériau conducteur (230) dans une première ouverture correspondante et la connexion d'une deuxième portion (354) de la première connexion par fil à l'opposé de la première portion (252) par la première ouverture à un site de connexion correspondant (108) de la première puce (106a) ; et l'incorporation d'une première portion d'une deuxième connexion par fil (250, 350) dans le matériau conducteur (230) dans une deuxième ouverture correspondante et la connexion d'une deuxième portion (254) de la deuxième connexion par fil (250, 350) à l'opposé de la première portion par la deuxième ouverture à un site de connexion correspondant (108) de la deuxième puce (106b).
     
    4. Procédé de la revendication 3 dans lequel le remplissage au moins partiel des premières ouvertures et des deuxièmes ouvertures comporte la mise en place d'une quantité discrète du matériau conducteur (230) dans chacune des premières et deuxièmes ouvertures (224).
     
    5. Procédé de la revendication 1 dans lequel la formation de connecteurs électriques (248, 348) comprend : l'insertion d'une première connexion par fil (250, 350) dans une des premières ouvertures (224) de telle sorte qu'une première portion (252, 352) de la première connexion par fil (250) se projette depuis le deuxième côté (204) à travers la tranche moulée (110) ; la déformation de la première portion de la première connexion par fil (250), la première portion déformée empêchant au moins partiellement la connexion par fil de se rétracter par la première ouverture ; et la connexion d'une deuxième portion (254, 354) de la première connexion par fil (250, 350) à l'opposé de la première portion (252, 352) à un site de connexion correspondant (108) de la première puce (106a).
     
    6. Procédé de la revendication 5 dans lequel la déformation de la première portion de la première connexion par fil (350) comporte la formation, au niveau de la première portion (352), par thermosoudage à la flamme, d'un élément en forme de bille (356) ayant une dimension en coupe transversale supérieure à une dimension en coupe transversale des première et deuxième ouvertures (224).
     
    7. Procédé de la revendication 5 dans lequel la déformation de la première portion de la première connexion par fil (350) comporte le pliage de la première portion en un élément en forme de crochet (358) qui retient la première portion d'extrémité (352) du fil à proximité du deuxième côté (204) de la tranche moulée (110).
     
    8. Article manufacturé intermédiaire comprenant : une tranche moulée ayant un matériau de moulage (106) d'une deuxième épaisseur (T1) façonné en une tranche (110) ayant un premier côté (112, 202) et un deuxième côté (204), des première et deuxième puces semi-conductrices (106a, b) d'une première épaisseur (T2) incorporées dans le matériau de moulage (116) et ayant des sites de connexion (108a, b) sur le premier côté (202) de la tranche moulée (110), la deuxième épaisseur (T1) étant supérieure à la première épaisseur (T2) dans le matériau de moulage (116), les première et deuxième puces semi-conductrices (106a, b) étant disposées en un motif en forme de grille et espacées par une ligne ; une première tranchée dans le premier côté de la tranche moulée (110) dans la ligne entre les première et deuxième puces (106a, b), la première tranchée (210a) ayant une première profondeur (D1) inférieure à la deuxième épaisseur (T1) et égale ou supérieure à la première épaisseur (T2) ; et une deuxième tranchée (210b) dans le premier côté (202) de la tranche moulée (110) entre les première et deuxième puces (106a, b), la deuxième tranchée (210b) étant généralement parallèle à et espacée de la première tranchée (210a) et ayant une profondeur (D1) égale à la première profondeur (D1) de la première tranchée (210a) ; et de multiples canaux (220) dans le deuxième côté (204) de la tranche moulée (110) à un pas prédéterminé à l'intérieur d'une empreinte des première et deuxième puces semi-conductrices (106a, b), chaque canal (220) ayant une deuxième profondeur (D2) telle que le canal (220) ne croise pas les première et deuxième puces semi-conductrices (106a, b), une combinaison des première (D1) et deuxième (D2) profondeurs étant égale ou supérieure à la deuxième épaisseur (T1), et formant des ouvertures (224) à travers la tranche moulée (110) à des intersections avec les première et deuxième tranchées (210a, b) entre les première et deuxième puces (106a, b), les multiples canaux (220) étant généralement transversaux aux première et deuxième tranchées (210a, b), chaque canal (220) formant une première ouverture (224) à l'intersection avec la première tranchée (210a) et une deuxième ouverture (224) à une intersection avec la deuxième tranchée (210b) ; et des connecteurs électriques (248) s'étendant depuis des sites de connexion individuels (108) des première et deuxième puces (106a, b) jusqu'au deuxième côté (204) de la tranche moulée (110) par le biais de première et deuxième ouvertures correspondantes (224) à travers la tranche moulée (110).
     
    9. Article de la revendication 8, dans lequel les connecteurs électriques comprennent : un premier contact (230) sur le deuxième côté (204) de la tranche moulée (110) positionné dans la première ouverture (224) ; un deuxième contact (230) sur le deuxième côté (204) de la tranche moulée (110) positionné dans la deuxième ouverture (224) ; une première connexion par fil (250) s'étendant à travers la première ouverture (224) et connectée à la première puce (106a) et au premier contact (230) ; et une deuxième connexion par fil (250) s'étendant à travers la deuxième ouverture (224) et connectée à la deuxième puce (106b) et au deuxième contact (230).
     
    10. Article de la revendication 9 dans lequel : le premier contact comporte un matériau conducteur (230) disposé dans la première ouverture (224) à proximité du deuxième côté (204), et dans lequel la première connexion par fil (250) est incorporée dans le premier matériau conducteur (230) ; et le deuxième contact comporte le matériau conducteur (230) disposé dans la deuxième ouverture (224) à proximité du deuxième côté (204), et dans lequel la deuxième connexion par fil (250) est incorporée dans le deuxième matériau conducteur (230).
     
    11. Article de la revendication 8, dans lequel le connecteur électrique comprend : une première connexion par fil (350) connectée à la première puce (106a), la première connexion par fil (350) s'étendant à travers la première ouverture (224) et étant déformée au niveau d'une portion d'extrémité (352) de la première connexion par fil (350) à proximité du deuxième côté (204) de la tranche moulée (110) ; une deuxième connexion par fil (350) connectée à la deuxième puce (106b), la deuxième connexion par fil (350) s'étendant à travers la deuxième ouverture (224) et étant déformée au niveau d'une portion d'extrémité (352) de la deuxième connexion par fil (350) à proximité du deuxième côté (204) de la tranche moulée (110) ; et dans lequel la portion d'extrémité déformée (352) de la première connexion par fil (350) comporte un élément en forme de bille (356) ayant une dimension en coupe transversale supérieure à une dimension en coupe transversale de la première ouverture (224), et la portion d'extrémité déformée de la deuxième connexion par fil (350) comporte un élément en forme de bille (356) ayant une dimension en coupe transversale supérieure à une dimension en coupe transversale de la deuxième ouverture (224) ; ou bien la portion d'extrémité déformée de la première connexion par fil (350) comporte un élément en forme de crochet (358) qui retient au moins partiellement la portion d'extrémité du premier fil (350) à proximité du deuxième côté (204) de la tranche moulée (110), et la portion d'extrémité déformée de la deuxième connexion par fil (350) comporte un élément en forme de crochet (358) qui retient au moins partiellement la portion d'extrémité de la deuxième connexion par fil (350) à proximité du deuxième côté de la tranche moulée (110).
     




    Drawing

































    REFERENCES CITED IN THE DESCRIPTION



    This list of references cited by the applicant is for the reader's convenience only. It does not form part of the European patent document. Even though great care has been taken in compiling the references, errors or omissions cannot be excluded and the EPO disclaims all liability in this regard.

    Patent documents cited in the description