(19)
(11)EP 2 198 215 B1

(12)EUROPEAN PATENT SPECIFICATION

(45)Mention of the grant of the patent:
22.05.2019 Bulletin 2019/21

(21)Application number: 07838285.0

(22)Date of filing:  14.09.2007
(51)International Patent Classification (IPC): 
F25B 39/00(2006.01)
F28D 1/053(2006.01)
F25B 13/00(2006.01)
F25B 45/00(2006.01)
F28D 21/00(2006.01)
(86)International application number:
PCT/US2007/020057
(87)International publication number:
WO 2009/035440 (19.03.2009 Gazette  2009/12)

(54)

HEAT EXCHANGER AND METHOD FOR A REFRIGERATION SYSTEM

WÄRMETAUSCHER UND VERFAHREN FÜR EINEN KÄLTEKREISLAUF

DISPOSITIF ÉCHANGEUR DE CHALEUR ET PROCÉDÉ POUR UN CIRCUIT DE RÉFRIGÉRATION


(84)Designated Contracting States:
AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LI LT LU LV MC MT NL PL PT RO SE SI SK TR

(43)Date of publication of application:
23.06.2010 Bulletin 2010/25

(73)Proprietor: Carrier Corporation
Farmington, CT 06034-4015 (US)

(72)Inventor:
  • MACRI, Salvatore
    I-20134 Milano (IT)

(74)Representative: Dehns 
St. Brides House 10 Salisbury Square
London EC4Y 8JD
London EC4Y 8JD (GB)


(56)References cited: : 
EP-A2- 1 150 076
FR-A1- 2 747 768
JP-A- 2004 069 272
US-A- 5 277 032
US-A1- 2001 004 935
CN-Y- 2 606 005
JP-A- 2003 014 336
US-A- 5 224 358
US-A1- 2001 004 935
  
      
    Note: Within nine months from the publication of the mention of the grant of the European patent, any person may give notice to the European Patent Office of opposition to the European patent granted. Notice of opposition shall be filed in a written reasoned statement. It shall not be deemed to have been filed until the opposition fee has been paid. (Art. 99(1) European Patent Convention).


    Description

    BACKGROUND OF THE INVENTION


    1.



    [0001] The present disclosure is related to a refrigeration circuit. More particularly, the present disclosure is related to a refrigeration circuit having a mini-channel heat-exchanger and a system charge tank.

    2. Description of Related Art



    [0002] Refrigeration circuits are typically used in a number of devices in order to condition (e.g., cool, dehumidify, etc) ambient air within a predefined space such as, but not limited to, a house, a building, a car, a refrigerator, a freezer, and other conditioned spaces. A typical refrigeration circuit contains at least a compressor, a condenser, a receiver, a series of valves, at least one evaporator, and a system charge of refrigerant, which circulates throughout the circuit.

    [0003] Periodically, various components of the circuit need to be serviced, repaired, and/or replaced. In order to do so, the system charge must be removed from the components that will need servicing. One method that is currently used to prepare the circuit for servicing is to drain all of the system charge from the circuit. The system charge can not be re-used and must be disposed of. Due to various environmental regulations, costs associated with the proper disposal of the spent system charge can be great. Therefore, this method may be undesirable.

    [0004] A second method commonly used to prepare a circuit for servicing involves a "system pumpdown". In a system pumpdown, the compressor is used to compress all of the system charge into a designated area within the circuit. This is advantageous in that it avoids having to remove and dispose of the system charge thereby, avoiding disposal costs and costs associated with new system charge.

    [0005] In order for a system pumpdown to be effective, the designated storage area must have sufficient volume in which to store the compressed charge. Problems arise, however, when modifications to the circuit are made within the designated area, that reduce the volume available for storage. For example, in some refrigeration circuits, the condenser is included in the designated storage area. Round tube and fin condenser ("RTF") coils are frequently used in condensers. RTF coils have large internal volumes and provide sufficient space so that the compressed system charge can be stored within the storage area. However, when mini-channel heat-exchanger ("MCHX") coils are substituted for the RTF coils, there is a reduction in storage volume. The heat transfer coefficient is higher for MCHX type construction than for RTF, so whenever this type of replacement is made for coils of equal capacity the internal volume (storage area) will be reduced. Problems will, therefore, arise during a system pumpdown as there is not sufficient space to store the compressed system charge.

    [0006] US 5224358 A discloses a modulator in a coolant recirculation line for a refrigerating apparatus, wherein the modulator is used for storing an excess amount of the coolant recirculated in the system.

    [0007] EP 1150076 A2 discloses a condenser comprising a gas-liquid separator between first and second heat exchange units.

    [0008] JP 2003 014336 A discloses a heat exchanger for a refrigerant circuit comprising a storage tank for storing an excess amount of coolant in the circuit.

    BRIEF SUMMARY OF THE INVENTION



    [0009] Viewed from a first aspect the invention provides a mini-channel heat-exchanger for a refrigeration circuit, comprising: an inlet manifold; a first return manifold defining a first storage area; a first heat exchange pass in fluid communication between said inlet manifold and said first return manifold, said first heat exchange pass including a plurality of mini-channels; a system charge tank in direct fluid communication with said first return manifold, said system charge tank defining a second storage area; a first conduit at or near the top of the first return manifold placing top portions of said first return manifold and said system charge tank in direct fluid communication with one another; and a second conduit at or near the bottom of the first return manifold placing bottom portions of said first return manifold and said system charge tank in direct fluid communication with one another; wherein the heat exchanger further comprises a second return manifold, a third return manifold, an outlet manifold, a second heat exchange pass between the first return manifold and the second return manifold; a third heat exchange pass between the second return manifold and the third return manifold; and a fourth heat exchange pass being in fluid communication between said third return manifold and said outlet manifold.

    [0010] This heat exchanger is used in a method of performing a system pumpdown in another aspect of the invention.

    [0011] In a still further aspect, the invention provides a refrigeration system, comprising: the above disclosed heat exchanger, wherein the heat exchanger is a condenser a compressor; and an evaporator.

    [0012] The above-described and other features and advantages of the present invention will be appreciated and understood by those skilled in the art from the following detailed description, drawings, and appended claims.

    BRIEF DESCRIPTION OF THE SEVERAL VIEWS OF THE DRAWINGS



    [0013] 

    FIG. 1 is a schematic representation of an exemplary embodiment of a refrigeration circuit according to the present disclosure.

    FIG. 2 is a side view of a mini-channel heat-exchanger with an integrated system charge tank in vertical orientation according to the present disclosure.

    FIG. 3 is a top view of a first exemplary embodiment of the heat-exchanger of FIG. 2 configured for use in a vertical orientation according to the present disclosure.

    FIG. 4 is a side view of a second exemplary embodiment of the heat-exchanger of FIG. 2 configured for use in a horizontal orientation according to the present disclosure.


    DETAILED DESCRIPTION OF THE INVENTION



    [0014] Referring to the drawings and in particular to FIG. 1, an exemplary embodiment of a refrigeration circuit according to the present disclosure, generally referred to by reference numeral 10, is shown. Refrigeration circuit 10 includes a system charge tank ("tank") 12 that can be used to store system charge during a system pump down. In the illustrated embodiment, tank 12 is shown in use with a mini-channel heat-exchanger, which for purposes of clarity is illustrated as a condenser 14. During normal cooling using circuit 10, tank 12 is full of flowing refrigerant in a gaseous state. However, tank 12 is configured to be filled with refrigerant in a liquid state during the system pump down.

    [0015] Refrigeration circuit 10 includes tank 12, condenser 14, a compressor 18, an evaporator 20, a first valve 22, a second valve 24, a system charge of refrigerant 30, and an expansion device 40. During operation, refrigeration circuit 10 operates in a known manner. Operation of refrigeration circuit 10 is made with reference to FIGS. 1, 2, and 3.

    [0016] Compressor 18 compresses system charge 30, which flows uninterrupted from the compressor to condenser 14. Condensor 14 includes a plurality of mini-channels 16 arranged in a plurality of heat-exchange passes.

    [0017] Compressed system charge 30 in a gaseous state flows into condenser 14 through first inlet 32 into an inlet manifold 32-1. Inlet manifold 32-1 distributes the flow of charge 30 into a first pass 16-1.

    [0018] Circuit 10 includes at least one condenser fan (not shown) that propels ambient outside air over condenser 14 enabling a heat-exchange between system charge 30 and the ambient outside air. During the heat-exchange between system charge 30 and the ambient outside air, the system charge begins to change from a gaseous state to a liquid state. After passing through the first pass 16, system charge 30 is collected in a first return manifold 36-1.

    [0019] Tank 12 is in fluid communication with first return manifold 36-1 through a plurality of conduits 38-1, 38-2. In one embodiment of the present disclosure, plurality of conduits 38 is a set of holes so that tank 12 is integral with condenser 14. In another embodiment, plurality of conduits 38 may be pipes so that tank 12 can be remote from condenser 14.

    [0020] Tank 12 has a length (LT) that is substantially equal to the length of first return manifold 36-1 (LM). In this manner, the upper conduit 38-1 is positioned at or near the top of the first return manifold, while the lower conduit 38-2 is positioned at or near the bottom of the first return manifold. Moreover, it is preferred that a floor (FT) of tank 12 is co-planar with or slightly higher than a floor (FM) of manifold 36-1.

    [0021] As seen in FIGS. 2 and 3, condenser 14 is configured for arrangement in a substantially vertical position in refrigeration circuit 10.

    [0022] Return manifold 36-1 distributes the flow of charge 30 into a second pass 16-2. After passing through the second pass 16-2, system charge 30 is collected in a second return manifold 36-2, which distributes the flow of charge 30 into a third pass 16-3. After passing through the third pass 16-3, system charge 30 is collected in a third return manifold 36-3, which distributes the flow of charge 30 into a fourth pass 16-4. After passing through the fourth pass 16-4, system charge 30 is collected in an outlet manifold 34-1, which passes the collected system charge out of condenser 14 at an outlet 34.

    [0023] Accordingly, condenser 14 is illustrated by way of example as a four-pass mini-channel heat-exchanger. However, it is contemplated by the present disclosure for condenser 14 to have as many passes as desired for the proper operation of circuit 10.

    [0024] Condenser 14 is fluidly connected to expansion device 40 such that system charge 30 flows from the condenser uninterrupted to the expansion device. In some embodiments, the position of expansion device 40 can be changed from a fully open position to a fully closed position, and any position therebetween. When expansion device 40 is in a fully closed position, system charge 30, in a liquid state, will collect at the expansion device until such time that the expansion device is opened. Expansion device 40 can be any known expansion device such as, but not limited to, a fixed expansion device (e.g., an orifice) or a controllable expansion device (e.g., a thermal expansion valve).

    [0025] When expansion device 40 is opened, system charge 30 flows uninterrupted to first valve 22. First valve 22 can be opened or closed either manually or by means of electrical communication from a controller (not shown). During normal operation of refrigeration circuit 10, first valve 22 is open such that system charge 30 can flow continuously to evaporator 20. As system charge 30 flows through evaporator 20, system charge 30 is in heat-exchange communication with a working fluid (not shown) to condition the working fluid. It is contemplated by the present disclosure that the working fluid can be ambient indoor air or a secondary loop fluid such as, but not limited to, chilled water or glycol.

    [0026] System charge 30 then exits evaporator 20 and flows continuously to second valve 24. Second valve 24 can be in either an open or closed position and its position can be changed either manually or via electrical communication from a controller (not shown). When second valve 24 is opened, system charge 30 flows uninterrupted from evaporator 20 to compressor 18.

    [0027] During a system pumpdown, first valve 22 is closed and compressor 18 is run. As compressor 18 runs, compressed system charge 30 flows through condenser 14 wherein the system charge is changed from a gaseous to liquid state. Liquid system charge 30 will then collect at first valve 22 and will then be collected in the condenser. As the level of liquid system charge 30 increases in condenser 14, the liquid system charge will flow through and be collected in the condenser in a reverse order to the normal direction of flow of the system charge. For example, the liquid system charge 30 will first be collected in outlet manifold 34-1, fourth pass 16-4, and third return manifold 36-3. The collection of liquid system charge 30 will continue until the liquid level reaches the bottom conduit 38-2. Once the fluid level reaches the bottom conduit 38-2, the liquid system charge 30 is collected in tank 12, as well as in the remaining portions of condenser 14.

    [0028] Thus, in the embodiment of FIGS. 2 and 3, tank 12 is positioned on first return manifold 36-1 so that flow of system charge 30 through first and second conduits 38-1, 38-2 is in a horizontal direction.

    [0029] Compressor 18 will continue to run until all of system charge 30 has been compressed at which time second valve 24 will be closed. Upon completion of the pumpdown, all of compressed system charge 30 will be stored in outside portion 28 of refrigeration circuit 10 between first and second valves 22, 24. Advantageously, outside portion 28 can be dissociated from inside portion 26 allowing for the inside portion to be serviced without replacing any of system charge 30.

    [0030] Once servicing of circuit 10 is completed, outside portion 28 and inside portion 26 can be reconnected. First valve 22 and second valve 24 can then be opened. It is contemplated that first and second valves 22, 24 can be either fully opened or partially opened either manually or through electrical communication from a controller (not shown). As such, system charge 30 can now flow freely throughout refrigeration circuit 10. Compressor 18 is turned on and system charge 30 circulates throughout circuit 10.

    [0031] As seen in FIG. 4, an alternate exemplary embodiment of condenser 14 is shown. Here, condenser 14 is configured for arrangement in a substantially horizontal position in refrigeration circuit 10. More particularly, tank 12 is arranged with respect to a flow direction through mini-channels 16 so that there is an approximately ninety-degree angle between the tank and the mini-channels.

    [0032] During a system pumpdown, liquid system charge 30 collects at first valve 22 and will then be collected in condenser 14. As the level of liquid system charge 30 increases in condenser 14, the liquid system charge will flow through and be collected in the condenser in a reverse order to the normal direction of flow of the system charge. For example, liquid system charge 30 will first be collected in outlet manifold 34-1, fourth pass 16-4, and third return manifold 36-3. The collection of liquid system charge 30 continues until the liquid level reaches bottom conduit 38-2. Once the fluid level reaches bottom conduit 38-2, the liquid system charge 30 is collected in tank 12, as well as the remaining portions of condenser 14.

    [0033] Thus, in FIG. 4, tank 12 is positioned on first return manifold 36-1 so that the flow of system charge 30 through first and second conduits 38-1, 38-2 is in a vertical direction.

    [0034] Thus, in the embodiment of FIG. 4, tank 12 is positioned on first return manifold 36-1 so that flow of system charge 30 through first and second conduits 38-1, 38-2 is in a vertical direction.

    [0035] It should be noted that tank 12 is described in use with condenser 14. However, it is contemplated by the present disclosure for tank 12 to find equal use with evaporator 20.

    [0036] It should also be noted that the terms "first", "second", "third", "upper", "lower", and the like may be used herein to modify various elements. These modifiers do not imply a spatial, sequential, or hierarchical order to the modified elements unless specifically stated.

    [0037] While the present disclosure has been described with reference to one or more exemplary embodiments, it will be understood by those skilled in the art that various changes may be made and equivalents may be substituted for elements thereof without departing from the scope of the present disclosure. In addition, many modifications may be made to adapt a particular situation or material to the teachings of the disclosure without departing from the scope thereof. Therefore, it is intended that the present disclosure not be limited to the particular embodiment(s) disclosed as the best mode contemplated, but that the disclosure will include all embodiments falling within the scope of the appended claims.


    Claims

    1. A mini-channel heat-exchanger (14) for a refrigeration circuit (10), comprising:

    an inlet manifold (32-1);

    a first return manifold (36-1) defining a first storage area;

    a first heat exchange pass (16-1) in fluid communication between said inlet manifold and said first return manifold, said first heat exchange pass including a plurality of mini-channels;

    a system charge tank (12) in direct fluid communication with said first return manifold, said system charge tank defining a second storage area;

    a first conduit (38-1) at or near the top of the first return manifold placing top portions of said first return manifold and said system charge tank in direct fluid communication with one another; and

    a second conduit (38-2) at or near the bottom of the first return manifold placing bottom portions of said first return manifold and said system charge tank in direct fluid communication with one another; wherein the heat exchanger further comprises:

    a second return manifold (36-2),

    a third return manifold (36-3),

    an outlet manifold (34-1),

    a second heat exchange pass (16-2) between the first return manifold (36-1) and the second return manifold (36-2);

    a third heat exchange pass (16-3) between the second return manifold (36-2) and the third return manifold (36-3); and

    a fourth heat exchange pass (16-4) being in fluid communication between said third return manifold (36-3) and said outlet manifold (34-1).


     
    2. The heat-exchanger (14) as in claim 1, wherein said system charge tank (12) is positioned on said first return manifold (36-1) so that said first (38-1) and second (38-2) conduits are configured for flow in a horizontal direction.
     
    3. The heat-exchanger (14) as in claim 1, wherein said system charge tank (12) is positioned on said first return manifold (36-1) so that said first (38-1) and second (38-2) conduits are configured for flow in a vertical direction.
     
    4. The heat-exchanger (14) as in claim 1, wherein said first return manifold (36-1) and said system charge tank (12) are integrally formed with one another and said first (38-1) and second (38-2) conduits comprise holes.
     
    5. The heat-exchanger (14) as in claim 4, wherein said system charge tank (12) has a tank floor (FT) and said first return manifold (36-1) has a manifold floor (FM), said second conduit (38-2) being substantially co-planar with said tank and manifold floors.
     
    6. The heat-exchanger (14) as in claim 1, wherein said first return manifold (36-1) and said system charge tank (12) are remote from one another and said first (38-1) and second (38-2) conduits comprise pipes.
     
    7. The heat-exchanger (14) as in claim 1 , wherein said system charge tank (12) has a tank length (LT) and said first return manifold (36-1) has a manifold length (LM), said tank length being substantially equal to said manifold length.
     
    8. The heat-exchanger (14) as in claim 1 , wherein said system charge tank (12) has a tank floor (FT) and said first return manifold (36-1) has a manifold floor (FM), said tank floor being co-planar with or slightly higher than said manifold floor.
     
    9. A method of performing a system pumpdown in an air conditioning system having a refrigeration circuit (10) comprising the heat-exchanger as in claim 1, the method comprising the steps of:

    closing a first valve (22);

    running a compressor (18) until all of a system charge (30) has been compressed to a liquid between said compressor and said first valve and said liquid fills a portion of said heat-exchanger (14) and the system charge tank (12), said system charge tank being fluidly connected to said heat-exchanger.


     
    10. The method of claim 9, further comprising closing a second valve (24) after said compressor (18) is turned off.
     
    11. The method of claim 10, further comprising opening said first (22) and second (24) valves so that said system charge (30) can be recirculated throughout the refrigeration circuit (10).
     
    12. A refrigeration system (10), comprising:

    a heat exchanger (14) according to claim 1, wherein the heat exchanger is a condenser (14);

    a compressor (18); and

    an evaporator (20).


     


    Ansprüche

    1. Minikanal-Wärmetauscher (14) für einen Kältekreislauf (10), umfassend:

    eine erste Einlasssammelleitung (32-1);

    eine erste Rücklaufsammelleitung (36-1), die einen ersten Speicherbereich definiert;

    einen ersten Wärmetauscherdurchgang (16-1) in Fluidverbindung zwischen der Einlasssammelleitung und der ersten Rücklaufsammelleitung, wobei der erste Wärmetauscherdurchgang eine Vielzahl von Minikanälen umfasst;

    einen Systemladetank (12) in direkter Fluidverbindung mit der ersten Rücklaufsammelleitung, wobei der Systemladetank einen zweiten Speicherbereich definiert;

    eine erste Leitung (38-1) an oder nahe der Oberseite der ersten Rücklaufsammelleitung, die die oberen Abschnitte der ersten Rücklaufsammelleitung und den Systemladetank in direkte Fluidverbindung miteinander setzt; und

    eine zweite Leitung (38-2) an oder nahe der Unterseite der ersten Rücklaufsammelleitung, die die unteren Abschnitte der ersten Rücklaufsammelleitung und den Systemladetank in direkte Fluidverbindung miteinander setzt; wobei der Wärmetauscher ferner Folgendes umfasst:

    eine zweite Rücklaufsammelleitung (36-2),

    eine dritte Rücklaufsammelleitung (36-3),

    eine Auslasssammelleitung (34-1),

    einen zweiten Wärmetauscherdurchgang (16-2) zwischen der ersten Rücklaufsammelleitung (36-1) und der zweiten Rücklaufsammelleitung (36-2);

    einen dritten Wärmetauscherdurchgang (16-3) zwischen der zweiten Rücklaufsammelleitung (36-2) und der dritten Rücklaufsammelleitung (36-3); und

    einen vierten Wärmetauscherdurchgang (16-4), der in Fluidverbindung zwischen der dritten Rücklaufsammelleitung (36-3) und der Auslasssammelleitung (34-1) steht.


     
    2. Wärmetauscher (14) nach Anspruch 1, wobei der Systemladetank (12) an der ersten Rücklaufsammelleitung (36-1) so angeordnet ist, dass die erste (38-1) und die zweite (38-2) Leitung zur Strömung in einer horizontalen Richtung konfiguriert sind.
     
    3. Wärmetauscher (14) nach Anspruch 1, wobei der Systemladetank (12) an der ersten Rücklaufsammelleitung (36-1) so angeordnet ist, dass die erste (38-1) und die zweite (38-2) Leitung zur Strömung in einer vertikalen Richtung konfiguriert sind.
     
    4. Wärmetauscher (14) nach Anspruch 1, wobei die erste Rücklaufsammelleitung (36-1) und der Systemladetank (12) einteilig miteinander ausgebildet sind und die erste (38-1) und die zweite (38-2) Leitung Löcher umfassen.
     
    5. Wärmetauscher (14) nach Anspruch 4, wobei der Systemladetank (12) einen Tankboden (FT) aufweist und die erste Rücklaufsammelleitung (36-1) einen Sammelleitungsboden (FM) aufweist, wobei die zweite Leitung (38-2) im Wesentlichen mit dem Tank- und dem Sammelleitungsboden in derselben Ebene liegt.
     
    6. Wärmetauscher (14) nach Anspruch 1, wobei die erste Rücklaufsammelleitung (36-1) und der Systemladetank (12) voneinander entfernt sind und die erste (38-1) und die zweite Leitung (38-2) Rohre umfassen.
     
    7. Wärmetauscher (14) nach Anspruch 1, wobei der Systemladetank (12) eine Tanklänge (LT) aufweist und die erste Rücklaufsammelleitung (36-1) eine Sammelleitungslänge (LM) aufweist, wobei die Tanklänge im Wesentlichen mit der Sammelleitungslänge identisch ist.
     
    8. Wärmetauscher (14) nach Anspruch 1, wobei der Systemladetank (12) einen Tankboden (FT) aufweist und die erste Rücklaufsammelleitung (36-1) einen Sammelleitungsboden (FM) aufweist, wobei der Tankboden mit dem Sammelleitungsboden in einer Ebene liegt oder leicht höher als dieser ist.
     
    9. Verfahren zum Durchführen einer Systemevakuierung in einer Klimaanlage, die einen Kühlkreislauf (10) aufweist, der den Wärmetauscher nach Anspruch 1 umfasst, wobei das Verfahren die folgenden Schritte umfasst:

    Schließen eines ersten Ventils (22);

    Betreiben eines Kompressors (18), bis eine gesamte Systemladung (30) zu einer Flüssigkeit zwischen dem Kompressor und dem ersten Ventil komprimiert wurde und die Flüssigkeit einen Abschnitt des Wärmetauschers (14) und den Systemladetank (12) füllt, wobei der Systemladetank in Fluidverbindung mit dem Wärmetauscher steht.


     
    10. Verfahren nach Anspruch 9, ferner umfassend das Schließen eines zweiten Ventils (24), nachdem der Kompressor (18) abgeschaltet wurde.
     
    11. Verfahren nach Anspruch 10, ferner umfassend das Öffnen des ersten (22) und des zweiten (24) Ventils, so dass die Systemladung (30) wieder durch den Kältekreislauf (10) zirkuliert werden kann.
     
    12. Kältesystem (10), umfassend:

    einen Wärmetauscher (14) nach Anspruch 1, wobei der Wärmetauscher ein Kondensator (14) ist;

    einen Kompressor (18); und

    einen Verdampfer (20).


     


    Revendications

    1. Échangeur de chaleur à mini-canaux (14) pour un circuit de réfrigération (10), comprenant :

    un collecteur d'entrée (32-1) ;

    un premier collecteur de retour (36-1) définissant une première zone de stockage ;

    un premier passage d'échange de chaleur (16-1) en communication fluidique entre ledit colleteur d'entrée et ledit premier collecteur de retour, ledit premier passage d'échange de chaleur comportant une pluralité de mini-canaux ;

    un réservoir de charge de système (12) en communication fluidique directe avec ledit premier collecteur de retour, ledit réservoir de charge de système définissant une seconde zone de stockage ;

    une première conduite (38-1) au niveau ou près du dessus du premier collecteur de retour plaçant des portions de dessus dudit premier collecteur de retour et dudit réservoir de charge de système en communication fluidique directe les unes avec les autres ; et

    une seconde conduite (38-2) au niveau ou près du dessous du premier collecteur de retour plaçant des portions de dessous dudit premier collecteur de retour et dudit réservoir de charge de système en communication fluidique directe les unes avec les autres ; dans lequel l'échangeur de chaleur comprend en outre :

    un deuxième collecteur de retour (36-2),

    un troisième collecteur de retour (36-3),

    un collecteur de sortie (34-1),

    un deuxième passage d'échange de chaleur (16-2) entre le premier collecteur de retour (36-1) et le deuxième collecteur de retour (36-2) ;

    un troisième passage d'échange de chaleur (16-3) entre le deuxième collecteur de retour (36-2) et le troisième collecteur de retour (36-3) ; et

    un quatrième passage d'échange de chaleur (16-4) étant en communication fluidique entre ledit troisième collecteur de retour (36-3) et ledit collecteur de sortie (34-1).


     
    2. Échangeur de chaleur (14) selon la revendication 1, dans lequel ledit réservoir de charge de système (12) est positionné sur ledit premier collecteur de retour (36-1) de sorte que lesdites première (38-1) et seconde (38-2) conduites sont configurées pour un écoulement dans une direction horizontale.
     
    3. Échangeur de chaleur (14) selon la revendication 1, dans lequel ledit réservoir de charge de système (12) est positionné sur ledit premier collecteur de retour (36-1) de sorte que lesdites première (38-1) et seconde (38-2) conduites sont configurées pour un écoulement dans une direction verticale.
     
    4. Échangeur de chaleur (14) selon la revendication 1, dans lequel ledit premier collecteur de retour (36-1) et ledit réservoir de charge de système (12) sont formés d'un seul tenant l'un avec l'autre et lesdites première (38-1) et seconde (38-2) conduites comprennent des trous.
     
    5. Échangeur de chaleur (14) selon la revendication 4, dans lequel ledit réservoir de charge de système (12) a un fond de réservoir (FT) et ledit premier collecteur de retour (36-1) a un fond de collecteur (FM), ladite seconde conduite (38-2) étant sensiblement coplanaire avec ledit réservoir et lesdits fonds de collecteur.
     
    6. Échangeur de chaleur (14) selon la revendication 1, dans lequel ledit premier collecteur de retour (36-1) et ledit réservoir de charge de système (12) sont éloignés l'un de l'autre et lesdites première (38-1) et seconde (38-2) conduites comprennent des tubes.
     
    7. Échangeur de chaleur (14) selon la revendication 1, dans lequel ledit réservoir de charge de système (12) a une longueur de réservoir (LT) et ledit premier collecteur de retour (36-1) a une longueur de collecteur (LM), ladite longueur de réservoir étant sensiblement égale à ladite longueur de collecteur.
     
    8. Échangeur de chaleur (14) selon la revendication 1, dans lequel ledit réservoir de charge de système (12) a un fond de réservoir (FT) et ledit premier collecteur de retour (36-1) a un fond de collecteur (FM), ledit fond de réservoir étant coplanaire avec ou légèrement plus élevé que ledit fond de collecteur.
     
    9. Procédé de réalisation d'une évacuation de système dans un système de climatisation ayant un circuit de réfrigération (10) comprenant l'échangeur de chaleur selon la revendication 1, le procédé comprenant les étapes de :

    fermeture d'un premier clapet (22) ;

    fonctionnement d'un compresseur (18) jusqu'à ce que la totalité d'une charge de système (30) ait été comprimée en un liquide entre ledit compresseur et ledit premier clapet et que ledit liquide remplisse une portion dudit échangeur de chaleur (14) et du réservoir de charge de système (12), ledit réservoir de charge de système étant raccordé fluidiquement audit échangeur de chaleur.


     
    10. Procédé selon la revendication 9, comprenant en outre la fermeture d'un second clapet (24) après que ledit compresseur (18) est désactivé.
     
    11. Procédé selon la revendication 10, comprenant en outre l'ouverture desdits premier (22) et second (24) clapets de sorte que ladite charge de système (30) peut être recirculée dans tout le circuit de réfrigération (10).
     
    12. Système de réfrigération (10), comprenant :

    un échangeur de chaleur (14) selon la revendication 1, dans lequel l'échangeur de chaleur est un condenseur (14) ;

    un compresseur (18) ; et

    un évaporateur (20).


     




    Drawing














    Cited references

    REFERENCES CITED IN THE DESCRIPTION



    This list of references cited by the applicant is for the reader's convenience only. It does not form part of the European patent document. Even though great care has been taken in compiling the references, errors or omissions cannot be excluded and the EPO disclaims all liability in this regard.

    Patent documents cited in the description