(19)
(11)EP 2 199 758 B1

(12)EUROPEAN PATENT SPECIFICATION

(45)Mention of the grant of the patent:
04.12.2019 Bulletin 2019/49

(21)Application number: 09178991.7

(22)Date of filing:  11.12.2009
(51)Int. Cl.: 
G01F 5/00  (2006.01)
G01F 1/72  (2006.01)
G01F 1/684  (2006.01)

(54)

Flow sensing device including a tapered flow channel

Flussmessvorrichtung mit einem konischen Strömungskanal

Dispositif de détection d'écoulement incluant une voie d'écoulement conique


(84)Designated Contracting States:
AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO SE SI SK SM TR

(30)Priority: 19.12.2008 US 339856

(43)Date of publication of application:
23.06.2010 Bulletin 2010/25

(73)Proprietor: Honeywell International Inc.
Morris Plains, NJ 07950 (US)

(72)Inventor:
  • Speldrich, Jamie W.
    Freeport, IL 61032 (US)

(74)Representative: Hutchison, James 
Haseltine Lake Kempner LLP Lincoln House, 5th Floor 300 High Holborn
London WC1V 7JH
London WC1V 7JH (GB)


(56)References cited: : 
WO-A1-2007/095528
US-A1- 2002 078 744
WO-A2-01/61282
  
      
    Note: Within nine months from the publication of the mention of the grant of the European patent, any person may give notice to the European Patent Office of opposition to the European patent granted. Notice of opposition shall be filed in a written reasoned statement. It shall not be deemed to have been filed until the opposition fee has been paid. (Art. 99(1) European Patent Convention).


    Description

    TECHNICAL FIELD



    [0001] Embodiments are generally related to flow sensing devices and methods. Embodiments are also related to airflow sensors. Embodiments are additionally related to an improved flow channel for controlling flow eddies.

    BACKGROUND OF THE INVENTION



    [0002] Several flow systems utilizes fluid flow rate control mechanisms for controlling the amount of fluid, which may be in gaseous (e.g., air) or liquid form passing through a flow channel. Flow control mechanisms might also be utilized to regulate flow rates in systems such as ventilators and respirators for maintaining a sufficient flow of breathable air or providing sufficient anesthetizing gas to a patient in preparation for surgery. Typically, flow rate control occurs through the utilization of control circuitry responsive to measurements obtained from fluid flow sensors. Such flow sensors can apparently measure the flow rate of the fluid by sampling the fluid along the wall of the flow channel.

    [0003] In one implementation, flow sensors are positioned between upstream and downstream sides of the flow channel relative to the direction of the fluid flow to be measured. Airflow sensing devices generally have flow channels with constant up and downstream channel height. These upstream and downstream sides of the flow channel can create a difference in pressure and flow velocity of the fluid across the flow sensors, which leads to turbulent flow effects and flow eddies in the flow channel. The flow eddies can create instability in the fluid flow, which results in unstable output by the flow sensors. Further, the flow sensors may require additional flow restriction in the flow path of the flow channel, especially in a bypass of the flow channel, in order to limit the amount of fluid flow through the sensor and avoid output saturation.

    [0004] The majority of prior flow sensors require precise and accurate alignment of the fluid flow path across sensing components of the flow sensors in order to avoid flow eddies in the flow channel. The precise and accurate alignment of the fluid flow path can increase the optimal performance of the flow sensors. Such approach requires extra precision can lead to extra design or set up time, and thus extra expensive, during the manufacturing of the flow sensors. Additionally, the flow channel may not produce uniform, laminarizing flow of the fluid due to non-uniformities in a cross-sectional area and position of the upstream and downstream channels in the flow channel.

    [0005] In an effort to address the foregoing difficulties, it is believed that a need exists for an improved and inexpensive flow channel that reduces flow eddies and stabilizes a sensor output signal. It is believed that the improved flow channel disclosed herein can address these and other continuing needs.

    [0006] US2002/078744 A1 discloses a system for sensing or measuring the motion of a fluid such as air. The system typically has a two-part plastic body containing an internal flow passage. The parts of the body may snap together or attach with an adhesive. A transducer or an electronic sensor is typically located within the flow passage, which may measure mass flow rate and may have two resistive thermal devices (RTDs) located on either side of a heat source. The body may have two elongated port tubes configured to attach to tubing. The port tubes may contain venturis, and may be substantially straight and substantially parallel, forming a U shape. A metal lead frame may be provided in electrical communication with the sensor. The lead frame may be integrally molded within the body, and may have a lower coefficient of thermal expansion than the body. The internal flow passage and the sensor may be substantially symmetrical and measure the flow rate of the fluid substantially equally in either flow direction. The system may be configured for surface mounting or for through-hole mounting, and may be a dual in-line type.

    BRIEF SUMMARY



    [0007] The present invention is as set out in the appended claims. The following summary is provided to facilitate an understanding of some of the innovative features unique to the embodiments disclosed and is not intended to be a full description. A full appreciation of the various aspects of the embodiments can be gained by taking the entire specification, claims, drawings, and abstract as a whole.

    [0008] It is, therefore, one aspect of the present invention to provide improved fluid flow sensing device according to claim 1.

    [0009] It is another aspect of the present invention to provide a fluid flow sensor with an improved flow channel that can reduce or prevent unwanted flow eddies from forming within fluid flowing through the flow path leading to a sensor.

    [0010] The aforementioned aspects and other objectives and advantages can now be achieved as described herein. A flow sensing device comprises a main flow channel defining a fluid (e.g., gas or liquid) flow path, through which a fluid flows. An upstream flow channel and a downstream flow channel can be molded into the main flow channel, with a sensor region bypassing the flow path of the main flow channel. A fluid flow sensor can be placed between the upstream flow channel and the downstream flow channel for measuring a flow rate of the fluid in the flow channel. In the present invention, the upstream flow channel is tapered in a direction toward the airflow sensor. The downstream flow channel can also be tapered. Tapered upstream and downstream flow channels reduce flow eddies across the flow sensor, and thereby enhancing flow stability and stabilizing a sensor output signal, which leads to optimal sensing performance of the flow sensor.

    [0011] In accordance with the present invention, at least one tapered flow channel with a first tapered region and a second tapered region is formed into a main flow channel defining a plastic flow tube as an alternate fluid flow path, wherein said at least one tapered flow channel bypasses some fluid flow from the main flow channel into said alternate fluid flow path. The first and second tapered regions of the at least one tapered flow channel are tapered from a larger inner dimension to a smaller inner dimension in a direction of fluid flow through the alternate flow channel, wherein the first tapered region is tapered at a first taper rate and the second tapered region is tapered at a second taper rate, wherein the second taper rate forms the passage into the plastic flow tube and is greater in magnitude than the first taper rate. A flow sensor disposed within said alternate fluid flow path downstream of the first and second tapered regions, wherein said tapered flow channel is tapered in a direction of fluid flow toward said flow sensor to thereby reduce flow eddies and enables optimal sensing performance by said flow sensor.

    [0012] Furthermore, the sensing device can also include a set of narrow flow restrictors, which can be arranged within the main flow channel in order to limit the flow rate of the fluid across the flow sensor by limiting flow in the main flow channel and the flow tube and/or alternate flow path. The main flow channel can preferably exhibit a cross-sectional shape and size compatible with flow systems. The upstream and downstream flow channels and the alternate flow path, are tapered by increasing a height at a flow inlet and reducing it when the upstream and downstream flow channels approach towards the airflow sensor as defined in claim 1. Therefore, the flow velocity of the fluid can be more stable when the fluid flow changes direction from the main flow channel into the upstream flow channel. Hence, the sensing device can produce uniform flow of the fluid across the airflow sensor for more accurate flow measurements.

    BRIEF DESCRIPTION OF THE DRAWINGS



    [0013] The accompanying figures, in which like reference numerals refer to identical or functionally-similar elements throughout the separate views and which are incorporated in and form a part of the specification, further illustrate the embodiments and, together with the detailed description, serve to explain the embodiments disclosed herein.

    FIG. 1 illustrates a general perspective view of a flow sensing device, which can be adapted for use in implementing a preferred embodiment;

    FIG. 2 illustrates a schematic cross-sectional view of the flow sensing device, in accordance with features of the present invention;

    FIG. 3 illustrates a schematic cross-sectional view of a flow sensing device, without being in accordance with features of the present invention; and

    FIG. 4 illustrates another schematic cross-sectional view of an airflow sensor with tapered upstream and downstream flow channels as shown in FIG. 3, without being in accordance with features of the present invention.


    DETAILED DESCRIPTION



    [0014] The particular values and configurations discussed in these non-limiting examples can be varied and are cited merely to illustrate at least one embodiment and are not intended to limit the scope thereof. Note that in FIGS. 1-5 identical parts or elements are generally indicated by identical reference numerals.

    [0015] Referring to FIG. 1, a general perspective view of a flow sensing device 100 is illustrated, which can be adapted for use in implementing a preferred embodiment. The flow sensing device 100 can be disposed in a flow path 121 defined by a main flow channel 120, so that a fluid 150, as illustrated in FIG. 2, can enter and exit the main flow channel 120. Note that as utilized herein the term "fluid" can refer to a gas or a liquid. Thus, the flow sensing device 100 disclosed herein can be utilized in a flow system (not shown) for measuring a flow rate of the fluid (e.g., air or gas) flow 150. Note that the embodiments discussed herein generally relate to an airflow sensing system or apparatus. It can be appreciated, however, that such embodiments can be implemented in the context of other sensing systems and designs, and are not limited to the airflow sensing technique. The discussion of airflow sensing systems, as utilized herein, is presented for exemplary purposes.

    [0016] Referring to FIG. 2, a schematic cross-sectional view of the flow sensing device 100 is illustrated, in accordance with a preferred embodiment. The main flow channel 120 can be integrally arranged with an upstream flow channel 130 and a downstream flow channel 140 connecting the main flow channel 120 to a flow tube 210, which are completely covered by a body 110 of the flow sensing device 100. The upstream flow channel 130 and the downstream flow channel 140 form a passage into a plastic flow tube 210. The plastic flow tube 210 contains a flow sensor 230. The upstream and downstream flow channels 130 and 140 are parallel with each other. The main flow channel 120 can direct the fluid 150 to flow across a flow sensor 230, as illustrated in FIG. 2, by passing it through the upstream and downstream flow channels 130 and 140. Therefore, the flow of fluid 150 passes from the upstream flow channel 130 to the downstream flow channel 140 in the main flow channel 120.

    [0017] The body 110 of the flow sensing device 100 can generally comprise a cylindrical shape with the upstream and downstream flow channels 130 and 140. The flow sensor 230 of the sensing device 100 can be implemented by means of semiconductor and integrated circuit fabrication techniques. The main flow channel 120 and the upstream and downstream flow channels 130 and 140 can preferably exhibit a cross-sectional shape and size compatible with the flow system including tapered entry into the flow tube 210. Such sensing device 100 can quantify mass flow rates of the fluid 150 with a greater signal-to-noise ratio in order to achieve an improvement in accuracy and resolution in fluid flow rate measurements.

    [0018] The flow sensing device 100 can be utilized in numerous flow systems, such as reactors, ventilators and respirators, for accurately measuring the flow rate of the fluid 150 along the flow path 121 of the main flow channel 120. The direction of the fluid 150 in the main flow channel 120 and a plastic flow tube 210 is clearly illustrated in FIG. 2.

    [0019] Flow sensing device 100 can also include flow restrictors 220 that are placed within the main flow channel 120. In particular, these flow restrictors 220 can be positioned adjacent to the upstream and downstream flow channels 130 and 140, respectively. The flow restrictors 220 can include a set of cutout orifices 221 formed therein in order to control the flow of fluid 150 through the main flow channel 120. The flow restrictors 220 can especially manage the flow of the fluid 150 along the upstream and downstream flow channels 130 and 140. At least the upstream flow channel 130 is tapered in direction towards the flow sensor 230. Both the upstream and downstream flow channels 130 and 140 can be tapered, as illustrated in FIG. 2. Both flow channels 130, 140 being tapered allows for the possibility of receiving and controlling bi-directional flow through the main flow channel 121 of the sensor 100 in order to allow the management of flow into the flow tube 210 and over the sensor 230. Such tapered upstream and downstream flow channels 130 and 140 can be provided easily and inexpensively, since it can be molded into the main flow channel 120.

    [0020] In operation, a portion of the fluid 150 can flow through the tapered upstream flow channel 130 when the fluid 150 flows through the main flow channel 120 in the direction more clearly indicated in a cross-sectional side view of a flow sensor. A tapered upstream flow channel 130 can restrict the flow rate of the fluid 150 to provide uniform flow of the fluid 150 across the airflow sensor 230. Therefore, the airflow sensor 230 can measure the flow rate of the fluid 150 in an accurate manner. The airflow sensor 230 can be displaced on a substrate 240 provided with a cover 250. The cover 250 can be disposed against a rear side of the substrate 240 to protect the airflow sensor 230 from environmental effects. Thereafter, the fluid 150 in the flow tube 210 can again flow through the main flow channel 120 via the tapered downstream flow channel 140, after measuring the flow rate of the fluid 150.

    [0021] Referring to FIGS. 3-4, cross sectional side views of flow sensors 200, 300, which are not part of the invention, are illustrated. The flow channel can include sharp, standard corners 310 where through fluid is able to flow. The sharp edges can cause restriction of fluid flowing, therefore rounded corners 410 are shown in the flow sensor 300 shown in FIG. 4. The rounded corner within the flow path enable fluid to flow smother than that shown in FIG 3.

    [0022] The features of the present invention can be simply provided as defined in claim 1. In this configuration, the sensing device can include at least one narrow flow restrictor arranged within the main flow channel in order to limit the flow rate of the fluid across the flow sensor by limiting flow in the main flow channel and the flow tube and/or alternate flow path.

    [0023] Various presently unforeseen or unanticipated alternatives, modifications, variations or improvements therein may be subsequently made by those skilled in the art which are also intended to be encompassed by the following claims.


    Claims

    1. A fluid flow sensing device (100) for use in sensing a flow of a fluid through a main channel (120), the fluid flow sensing device (100) comprising:
    a housing (110) defining:

    an input port configured to be in fluid communication with the main channel (120);

    an outlet port configured to be in fluid communication with the main channel (120) downstream of the input port;

    a flow channel extending between the input port and the output port, the flow channel including an upstream fluid flow channel (130) connected to the input port and a downstream fluid flow channel (140) connected to the outlet port that are generally parallel with each other with an interconnecting fluid flow channel extending therebetween, the upstream flow channel (130) forms a passage into a plastic flow tube (210), wherein the interconnecting fluid flow channel includes a first tapered region and a second tapered region,

    wherein the first and second tapered regions are tapered from a larger inner dimension to a smaller inner dimension in a direction of fluid flow through the flow channel, wherein the first tapered region is tapered at a first taper rate and the second tapered region is tapered at a second taper rate, wherein the second taper rate forms the passage into the plastic flow tube (210) and is greater in magnitude than the first taper rate and

    a fluid flow sensor (230) positioned in the interconnecting fluid flow channel downstream of the first and second tapered regions and exposed to the flow channel of the housing for measuring the flow of a fluid flowing through the flow channel of the housing.


     
    2. The flow sensing device (100) of claim 1, further comprising:
    at least one fluid flow restrictor (220) arranged within said main channel (120) upstream of the input port of the housing (110), said at least one fluid flow restrictor (220) restricting a fluid flow rate within said main channel (120) and said flow channel of the housing.
     
    3. The flow sensing device (100) of claim 1, wherein said first tapered region is tapered by reducing a dimension of the first tapered region as said first tapered region approaches the fluid flow sensor (230).
     
    4. The flow sensing device (100) of claim 3, wherein said dimension of the first tapered region is continuously reduced along at least part of the first tapered region.
     
    5. The flow sensing device (100) of claim 1, wherein the downstream flow channel (140) includes a second tapered region that is tapered from a smaller inner dimension to a larger inner dimension in a direction of fluid flow through the flow channel.
     
    6. The flow sensing device (100) of claim 1, wherein said main channel (120) has a cross-sectional shape selected from a group comprising triangle, square, rectangle, semi-circle and semi-oval.
     
    7. The flow sensing device (100) of claim 1, wherein the fluid comprises a gas or a liquid.
     
    8. The flow sensing device (100) of claim 1, wherein the first tapered region of the flow channel is positioned upstream of the fluid flow sensor (230), the flow channel further having another tapered region downstream of the fluid flow sensor (230), wherein the tapered region downstream of the fluid flow sensor (230) is tapered from a smaller inner dimension to a larger inner dimension in a direction of fluid flow through the flow channel.
     


    Ansprüche

    1. Fluiddurchflusserfassungsvorrichtung (100) für die Verwendung bei der Erfassung eines Durchflusses eines Fluids durch einen Hauptkanal (120), wobei die Fluiddurchflusserfassungsvorrichtung (100) Folgendes umfasst:
    eine Gehäuse (110), das Folgendes definiert:

    einen Eingangsanschluss, der konfiguriert ist, mit dem Hauptkanal (120) in Fluidkommunikation zu sein;

    einen Auslassanschluss, der konfiguriert ist, mit dem Hauptkanal (120) stromabseitig des Eingangsanschlusses in Fluidkommunikation zu sein;

    einen Durchflusskanal, der sich zwischen dem Eingangsanschluss und dem Ausgangsanschluss erstreckt, wobei der Durchflusskanal einen stromaufseitigen Fluiddurchflusskanal (130), der mit dem Eingangsanschluss verbunden ist, und einen stromabseitigen Fluiddurchflusskanal (140), der mit dem Auslassanschluss verbunden ist, die im Allgemeinen zueinander parallel sind, umfasst, wobei sich zwischen ihnen ein verbindender Fluiddurchflusskanal erstreckt, wobei der stromaufseitige Durchflusskanal (130) einen Übergang in ein Kunststoff-Durchflussrohr (210) bildet und wobei der verbindende Fluiddurchflusskanal einen ersten konischen Bereich und einen zweiten konischen Bereich aufweist,

    wobei der erste und der zweite konische Bereich von einer größeren Innenabmessung zu einer kleineren Innenabmessung in Richtung des Fluiddurchflusses durch den Durchflusskanal konisch zulaufen, wobei der erste konische Bereich mit einer ersten Konusrate konisch zuläuft und der zweite konische Bereich mit einer zweiten Konusrate konisch zuläuft, wobei die zweite Konusrate den Übergang in das Kunststoff-Durchflussrohr (210) formt und größer als die erste Konusrate ist; und

    einen Fluiddurchflusssensor (230), der in dem verbindenden Fluiddurchflusskanal stromabseitig des ersten und des zweiten konischen Bereichs positioniert ist und zu dem Durchflusskanal des Gehäuses freiliegt, um den Durchfluss eines Fluids, das durch den Durchflusskanal des Gehäuses fließt, zu messen.


     
    2. Durchflusserfassungsvorrichtung (100) nach Anspruch 1, die ferner Folgendes umfasst:
    wenigstens eine Fluiddurchflusses-Einschnürung (220), die in dem Hauptkanal (120) stromaufseitig des Eingangsanschlusses des Gehäuses (110) angeordnet ist, wobei die wenigstens eine Fluiddurchflusses-Einschnürung (220) eine Fluiddurchflussrate in dem Hauptkanal (120) und in dem Durchflusskanal des Gehäuses beschränkt.
     
    3. Durchflusserfassungsvorrichtung (100) nach Anspruch 1, wobei der erste konische Bereich durch Verringern einer Abmessung des ersten konischen Bereichs bei Annäherung an den Fluiddurchflusssensor (230) konisch zuläuft.
     
    4. Durchflusserfassungsvorrichtung (100) nach Anspruch 3, wobei die Abmessung des ersten konischen Bereichs wenigstens entlang eines Teils des ersten konischen Bereichs ununterbrochen abnimmt.
     
    5. Durchflusserfassungsvorrichtung (100) nach Anspruch 1, wobei der stromabseitige Durchflusskanal (140) einen zweiten konischen Bereich aufweist, der von einer kleineren Innenabmessung zu einer größeren Innenabmessung in Richtung des Fluiddurchflusses durch den Durchflusskanal konisch zuläuft.
     
    6. Durchflusserfassungsvorrichtung (100) nach Anspruch 1, wobei der Hauptkanal (120) eine Querschnittsform hat, die aus einer Gruppe gewählt ist, die ein Dreieck, ein Quadrat, ein Rechteck, einen Halbkreis und ein Halboval enthält.
     
    7. Durchflusserfassungsvorrichtung (100) nach Anspruch 1, wobei das Fluid ein Gas oder eine Flüssigkeit umfasst.
     
    8. Durchflusserfassungsvorrichtung (100) nach Anspruch 1, wobei der erste konische Bereich des Durchflusskanals stromaufseitig des Fluiddurchflusssensors (230) positioniert ist, wobei der Durchflusskanal ferner einen weiteren konischen Bereich stromabseitig des Fluiddurchflusssensors (230) besitzt, wobei der konische Bereich stromabseitig des Fluiddurchflusssensors (230) von einer kleineren Innenabmessung zu einer größeren Innenabmessung in Richtung des Fluiddurchflusses durch den Durchflusskanal konisch zuläuft.
     


    Revendications

    1. Dispositif de détection d'écoulement de fluide (100) destiné à être utilisé dans la détection d'un écoulement d'un fluide à travers une voie principale (120), le dispositif de détection d'écoulement de fluide (100) comprenant :
    un boîtier (110) définissant :

    un orifice d'entrée configuré pour être en communication fluidique avec la voie principale (120) ;

    un orifice de sortie configuré pour être en communication fluidique avec la voie principale (120) en aval de l'orifice d'entrée ;

    une voix d'écoulement s'étendant entre l'orifice d'entrée et l'orifice de sortie, la voie d'écoulement comportant une voie d'écoulement de fluide amont (130) connectée à l'orifice d'entrée et une voie d'écoulement de fluide aval (140) connectée à l'orifice de sortie qui sont généralement parallèles l'une à l'autre avec une voix d'écoulement de fluide d'interconnexion entre elles, la voie d'écoulement amont (130) formant un passage à l'intérieur d'un tube d'écoulement plastique (210), dans lequel la voie d'écoulement de fluide d'interconnexion comporte une première région conique et une seconde région conique,

    dans lequel les première et seconde régions coniques sont coniques d'une dimension interne plus grande à une dimension interne plus petite dans un sens d'écoulement de fluide à travers la voie d'écoulement, dans lequel la première région conique présente une première conicité et la seconde région conique présente une seconde conicité, dans lequel la première conicité forme le passage à l'intérieur du tube d'écoulement plastique (210) et est supérieure en taille à la première conicité et

    un capteur d'écoulement de fluide (230) positionné dans la voie d'écoulement de fluide d'interconnexion en aval des première et seconde régions coniques et exposé à la voix d'écoulement du boîtier pour mesurer l'écoulement d'un fluide s'écoulant à travers la voie d'écoulement du boîtier.


     
    2. Dispositif de détection d'écoulement (100) selon la revendication 1, comprenant en outre :
    au moins un restricteur d'écoulement de fluide (220) disposé à l'intérieur de ladite voie principale (120) en amont de l'orifice d'entrée du boîtier (110), ledit au moins un restricteur d'écoulement de fluide (220) restreignant un débit d'écoulement de fluide à l'intérieur de ladite voie principale (120) et de ladite voie d'écoulement du boîtier.
     
    3. Dispositif de détection d'écoulement (100) selon la revendication 1, dans lequel ladite première région conique est rendue conique en réduisant une dimension de la première région conique lorsque ladite première région conique approche du capteur d'écoulement de fluide (230).
     
    4. Dispositif de détection d'écoulement (100) selon la revendication 3, dans lequel ladite dimension de la première région conique est réduite continûment le long d'au moins une partie de la première région conique.
     
    5. Dispositif de détection d'écoulement (100) selon la revendication 1, dans lequel la voie d'écoulement aval (140) comporte une seconde région conique qui est conique d'une dimension interne plus petite vers une dimension interne plus grande dans un sens d'écoulement de fluide à travers la voie d'écoulement.
     
    6. Dispositif de détection d'écoulement (100) selon la revendication 1 , dans lequel ladite voie principale (120) présente une forme en coupe transversale sélectionnée dans un groupe comprenant une forme triangulaire, carrée, rectangulaire, semi-circulaire et semi-ovale.
     
    7. Dispositif de détection d'écoulement (100) selon la revendication 1, dans lequel le fluide comprend un gaz ou un liquide.
     
    8. Dispositif de détection d'écoulement (100) selon la revendication 1, dans lequel la première région conique de la voie d'écoulement est positionnée en amont du capteur d'écoulement de fluide (230), la voie d'écoulement comportant en outre une autre région conique en aval du capteur d'écoulement de fluide (230), dans lequel la région conique en aval du capteur d'écoulement de fluide (230) est conique depuis une dimension interne plus petite jusqu'à une dimension interne plus grande dans un sens d'écoulement de fluide à travers la voie d'écoulement.
     




    Drawing












    REFERENCES CITED IN THE DESCRIPTION



    This list of references cited by the applicant is for the reader's convenience only. It does not form part of the European patent document. Even though great care has been taken in compiling the references, errors or omissions cannot be excluded and the EPO disclaims all liability in this regard.

    Patent documents cited in the description