(19)
(11)EP 2 201 323 B1

(12)EUROPEAN PATENT SPECIFICATION

(45)Mention of the grant of the patent:
29.04.2020 Bulletin 2020/18

(21)Application number: 08838669.3

(22)Date of filing:  16.10.2008
(51)International Patent Classification (IPC): 
G01R 15/24(2006.01)
(86)International application number:
PCT/US2008/080110
(87)International publication number:
WO 2009/052253 (23.04.2009 Gazette  2009/17)

(54)

Accuracy enhancing mechanism and method for a fibre-optical current measuring apparatus

Präzisionserhöhungsmechanismus und -verfahren für ein faser-optisches Strommessgerät

Mécanisme et procédé permettant d'améliorer la précision d'un appareil de mesure de courant à fibre optique


(84)Designated Contracting States:
AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MT NL NO PL PT RO SE SI SK TR

(30)Priority: 19.10.2007 US 874944

(43)Date of publication of application:
30.06.2010 Bulletin 2010/26

(73)Proprietor: Dynamp LLC
Grove City, OH 43123-4849 (US)

(72)Inventors:
  • MASRI, Farid, E.
    Dublin, OH 43017 (US)
  • SHERMAN, Christopher, S.
    Dublin, OH 43017 (US)

(74)Representative: Götz, Georg Alois 
Intellectual Property IP-GÖTZ Patent- und Rechtsanwälte Postfach 35 45
90017 Nürnberg
90017 Nürnberg (DE)


(56)References cited: : 
EP-A2- 0 826 971
US-A- 4 491 795
US-A- 5 677 622
US-A1- 2004 150 830
WO-A1-2007/112600
US-A- 5 521 774
US-A- 5 715 080
US-A1- 2005 088 662
  
  • BOHNERT K ET AL: "Highly Accurate Fiber-Optic DC Current Sensor for the Electro-Winning Industry", PETROLEUM AND CHEMICAL INDUSTRY CONFERENCE, 2005. INDUSTRY APPLICATION S SOCIETY 52ND ANNUAL DENVER, CO, USA 12-14 SEPT. 2005, NEW YORK,IEEE, US, 12 September 2005 (2005-09-12), pages 121-128, XP010846487, ISBN: 978-0-7803-9272-4
  
Note: Within nine months from the publication of the mention of the grant of the European patent, any person may give notice to the European Patent Office of opposition to the European patent granted. Notice of opposition shall be filed in a written reasoned statement. It shall not be deemed to have been filed until the opposition fee has been paid. (Art. 99(1) European Patent Convention).


Description

BACKGROUND OF THE INVENTION


1. Field Of The Invention



[0001] This invention relates generally to a device and method for enhancing the accuracy of a current measuring apparatus, and more particularly where the current measuring apparatus uses optical sensing technology.

2. Description Of The Related Art



[0002] Conventional high current (up to about 500 KA) measurement equipment uses Hall effect technology to measure the magnetic field around a conductor. Electricity carried through a conductor produces a magnetic field that varies with current, and conventional measurement equipment uses an electronic sensor (Hall sensor) that varies its output voltage in response to changes in magnetic field density. A Hall sensor in close proximity to the conductor can thus be used to effectively measure the current without interrupting the circuit or making electrical contact with the conductor. Typically, the Hall sensor is integrated with a wound core that surrounds the conductor to be measured. Conventional Hall technology current measuring equipment has the disadvantages of being expensive, large, heavy and time-consuming to install.

[0003] Optical devices can also be used to measure current. Such devices are interferometers that utilize the Faraday effect, in which there is an interaction between light and the magnetic field produced around the conductor, to measure current. Existing technology for carrying out this measurement does not have sufficient accuracy under all circumstances. The reason for this is explained below.

[0004] An optical interferometer of the type described, such as the Fiber Optic Current Sensor made and sold by Nxtphase, works on the principle that the speeds of right handed circularly polarized (RHCP) and left handed circularly polarized (LHCP) light waves are oppositely affected by a magnetic field. A fiber optic circuit is arranged in such a way that two beams, one that is RHCP and one that is LHCP, are sent through an optical fiber that extends through the magnetic field around the conductor, and the total phase difference accumulated between the two beams is measured. The total phase difference is proportional to the line integral of the magnetic field along the path of the sensing fiber. Thus, by extending the optical fiber around the current carrying conductor an integral number of times, the sensor measures the closed path integral of the magnetic field around the conductor. By Ampere's Law, this is equal to the current carried in the conductor.

[0005] The principle of reciprocity ensures that common mode effects are cancelled, and thus path non-idealities cannot create a phase difference between the two beams. However, the influence of the magnetic field through the Faraday effect is non-reciprocal. This is because the sensing path is terminated in a mirror, at which a RHCP beam is converted to a LHCP beam upon reflection, and vice versa. Thus, the outbound RHCP light beam returns from the mirror as a LHCP beam, and vice versa. Both beams travel through the sensing path as both RHCP and LHCP beams, only in opposite directions. As the sense of circular polarization is reversed upon reflection at the mirror, so also is the direction of propagation relative to the magnetic field. Thus, when compared to a unidirectional sensor configuration, the "round trip" configuration provides that reciprocal non-idealities are cancelled and the magnetic field effect is doubled.

[0006] The phase shift caused by the magnetic field is a function of the current flowing in the conductor, and there are two main properties that affect how much phase shift is measured for a given current, also called the "scaling" of the current sensor. The first of these is the quality of the quarter wave plate. The quarter wave plate defines the beginning of the sensing region, where the beams are polarized, and the end of the sensing region for the returning light. An imperfect quarter wave plate gives rise to impure beams, and consequently a change in the scaling of the sensor.

[0007] The second property that affects the scaling of the sensor is the magnetic sensitivity of the sensing fiber itself. The sensitivity of the fiber to the effects of a magnetic field is described by the Verdet constant of the fiber.

[0008] The properties described above that affect the scaling of the sensor (the quarter wave plate quality and the Verdet constant of the fiber) are functions of temperature. Current sensors are used for the measurement of large DC currents, and the conductors that carry these currents are large and generate significant heat. Because of this, there can be large temperature gradients around the conductor, which reduces the ability of the current sensor to maintain an accurate scale factor.

[0009] It is currently known to measure the temperature of components of an optical current sensor, and correct any error in the current sensor output caused by an increase in temperature. However, there are still problems with accuracy in determining the measured current.

[0010] A known fibre-optic current sensor (BOHNERT K: ET AL; "Highly Accurate Fibre-Optic DC Current Sensor for the Electro-Winning Industry", PETROLEUM ANO CHEMICAL INOUSTRY CONFERENCE, 2005, INDUSTRY APPLICATION'S SOCIETY 52ND ANNUAL DENVER, CO, USA 12-14 SEPT. 2005, NEW YORK,IEEE, US, 12 September 2005 (2005-09-12), pages 121-128, XP010846487, ISBN: 978-0-7803-9272-4) exploits the Faraday effect in an optical fibre and measures the path integral of the magnetic field along a closed loop around current-carrying bus bars. Orthogonal linear polarisations are converted into left and right circular polarisations at the sensing fibre coil entrance by means of a short section of elliptical-core fibre acting as a quarter-wave retarder. The differential magneto-optic phase shift of left and right circular light waves propagating in the fibre is detected. At the far end of the coil the circular light waves are reflected and pass the coil a second time with swapped polarisations. The coil is installed in such a way that the retarder and reflector coincide resulting in a closed-loop integration of the magnetic field.

[0011] WO 2007/112600 A1 discloses a fibre-optic sensor also exploiting the Faraday effect. A retarder at the entrance end of the sensing fibre converts the linear light waves into left and right circularly polarised light waves. A phase shift between them depends on the currents through three conductors.

[0012] US 2005/088662 A1 discloses a temperature-stabilised sensor coil and current sensor. A reflective sensor is applied, and a phase delay element and a mirror are located alongside one another. The sensor fibre and the phase delay element as well as a portion of supply fibres are arranged within a capillary which contains a friction reducing means, for example a silicone oil.

[0013] EP 0 826 971 A2 describes an optical current transformer including a sensor arranged adjacent to a conductor, through which an electric current to be measured flows, a light source for generating measuring light, a detector for detecting the measuring light emitted from the sensor, a coupling optical system for optically connecting the sensor, the light source and the detector and a signal processing system for processing a signal transmitted from the detector so as to calculate the electric current flowed through the conductor by using a Faraday effect of light which passes through the sensor. An incidental/emission end and a reflection end of the sensor wound around the conductor are included in one member made of magnetic material. The magnetic field in the member is reduced because of its magnetic shield effect. The two ends of the sensor are disposed adjacently. The member of magnetic material shall serve to maintain a positional relationship between the two ends of the sensor.

[0014] For the solution of the problems considered above and for corresponding improvements, an optical interferometer as defined in claim 1 and a method of minimising error in an optical interferometer as defined in claim 5 is proposed. Optional embodiments of the invention are indicated in the dependent claims.

[0015] An improved optical interferometer includes an optical fiber for extending around a conductor. The optical fiber forms a path for a beam of light. A quarter wave plate is formed in the optical fiber, and a mirror is formed near an end of the optical fiber. The interferometer measures current through the conductor based upon the effect the magnetic field that is produced by current flowing through the conductor has on light passing through the optical fiber. The improvement comprises a gap formed between the quarter wave plate and the mirror, wherein the gap is smaller than a predetermined maximum gap for minimizing the magnetic field passing through the gap.

[0016] The maximum gap is preferably less than about 15 millimeters, more preferably less than about 12 millimeters, still more preferably less than about 6 millimeters, and most preferably less than about 2 millimeters. The maximum gap is preferably less than about 0.02 percent of the length of the optical fiber.

[0017] The optical interferometer includes a magnetic shield around a substantial portion of the gap for further minimizing a magnetic field passing through the gap. More preferably, a magnetic shield is formed around a substantial portion of a modulator. It is contemplated that magnetic shielding is formed around a substantial portion of a housing containing at least the gap, a modulator and a compensation coil. The magnetic shield preferably reduces the magnetic field at the gap to less than about 0,01 Tesla (100 Gauss), more preferably to less than about 0,005 Tesla (50 Gauss), and most preferably to less than about 0,0015 Tesla (15 Gauss).

[0018] By reducing the size of the gap between the quarter wave plate and the mirror, the amount of magnetic field (produced by the current flowing through the conductor) that passes through the loop formed by the optical fiber is increased. This produces improved accuracy in the measurement of the current flowing through the sensor. Additionally, by shielding the components of the interferometer from magnetic fields, including the field produced by the current carrying conductor, errors in current measurement are further minimized.

BRIEF DESCRIPTION OF THE SEVERAL VIEWS OF THE DRAWINGS



[0019] 

Fig. 1 is a plan view illustrating many of the components of the preferred embodiment of the invention.

Fig. 2 is a view in perspective illustrating the preferred embodiment of the present invention.

Fig. 3 is a view in perspective illustrating a plate component of a mirror block of the present invention.

Fig. 4 is a view in perspective illustrating a body component of the mirror block.

Fig. 5 is a view in perspective illustrating the body component of the mirror block from another perspective.

Fig. 6 is a view in perspective illustrating a coil frame of the present invention.

Fig. 7 is a schematic illustration of the gap between the quarter waveplate and the mirror of the present invention.

Fig. 8 is a view in perspective illustrating a lower shielding component of a modulator shield of the present invention.

Fig. 9 is a view in perspective illustrating a middle shielding component of the modulator shield.

Fig. 10 is an exploded view in perspective illustrating an upper shielding component of the modulator shield and its relationship to the middle and lower shielding components.



[0020] In describing the preferred embodiment of the invention that is illustrated in the drawings, specific terminology will be resorted to for the sake of clarity. However, it is not intended that the invention be limited to the specific term so selected and it is to be understood that each specific term includes all technical equivalents that operate in a similar manner to accomplish a similar purpose. For example, the word connected or terms similar thereto are often used. They are not limited to direct connection, but include connection through other elements where such connection is recognized as being equivalent by those skilled in the art.

DETAILED DESCRIPTION OF THE INVENTION



[0021] As shown in Fig. 1, a case 10 houses elements of the components of a current sensing apparatus. Many of the components of the apparatus are known in the art, and are not illustrated or described in detail herein. As a general principle, a light source sends light through a waveguide to a linear polarizer and then to a splitter to create two linearly polarized light waves that are then modulated by the modulator 20. The light goes out of the modulator 20 through an optical fiber 30 (see Fig. 2) in a loop around the current carrying conductor (not shown) after first passing through a quarter waveplate 36 (see Fig. 7) that creates right and left hand circularly polarized light from the two linearly polarized light waves. The two light waves traverse the fiber 30 loop, reflect off a mirror 50 at the end of the fiber 30 and return around the same path with opposite circular polarization.

[0022] As is known in the art, because the fiber encircles the conductor, the magnetic field induced by the current flowing in the conductor creates a differential optical phase shift between the two light waves due to the Faraday effect. The two optical waves travel back through the optical circuit and are examined for the phase shift in a conventional manner. Because the electrical current through the conductor creates a magnetic field that is proportional to the current, and because the phase shift is a function of the magnetic field, once the phase shift is known, the amount of current in the conductor can be determined.

[0023] The features of the invention relate to the new structures and new relationships between structures that reduce the error in the determination of current in the conductor that arises due to effects of magnetic fields. One feature of the invention is the relationship between the mirror 50 and the quarter wave plate 36.

[0024] In the embodiment shown in Figs. 1 and 2, the optical fiber 30 is coiled in the case 10 an integral number of times to form the coil 32. The quarter wave plate 36 (shown schematically in Fig. 7) is created in a conventional manner by creating a physical structure in the optical fiber 30, and the quarter wave plate is positioned in the coil 32 at the mirror block 40. The mirror block 40 is a preferably steel block having a plate 41 and a body 42 that enclose the coil housing 32', which is hollow and through which the fiber 30 extends. The body 42 has a channel 43 into which the coil housing 32' is inserted. The plate 41 clamps the coil housing 32' in the channel by fasteners inserted through apertures in the plate 41 and are fixed in the body 42.

[0025] The end of the fiber 30 at which the mirror 50 is formed, in a conventional manner such as by forming a film over the end of the optical fiber, is encased within a protective tube 34, as shown in Figs. 2 and 7. The tube 34 is attached to the outer sheathing of the optical fiber 30, as shown in Fig. 2, and the fiber 30 "floats" within the tube 34 with space on both sides and the end from the mirror 50, as illustrated schematically in Fig. 7.

[0026] The tube 34 is inserted into the mirror block 40 through the aperture 44 illustrated in Fig. 6. Once the tube 34 is inserted in the aperture 44, the position of the mirror 50 relative to the quarter wave plate 36 (see Fig. 7) is adjusted. Once the desired position is attained, as described below, the rotary clamp 46 is tightened around the sheathing of the fiber 30 to clamp the fiber 30 and, therefore, the mirror 50 in the desired position.

[0027] It is a feature of the invention to position the mirror 50 as close to the quarter wave plate 36 as is practical. This is accomplished by first positioning the quarter wave plate 36 within the channel 43 of the body 42, and as close to the axis of the aperture 44, as is possible. Then the tube 34 is mounted in the body 42 with the mirror 50 positioned as close to the quarter wave plate 36 as possible. Then the clamp 46 is tightened. Thus, any gap between the quarter wave plate 36 and the mirror 50 is as small as possible.

[0028] Because the mirror 50 is not visible due to the covering of the tube 34, this gap cannot typically be minimized by visual inspection. One way the proximity of the mirror 50 to the quarter wave plate 36 can be assessed is by trial and error. For example, the relative positions can be fixed and the device tested for accuracy. Then the relative positions can be modified and the device tested again. If improvements in accuracy are noticed, the tube 34 is moved and another test performed. This continues until the smallest error is recorded. Then the clamp 46 is fully tightened.

[0029] Alternatively, the positions of the mirror 50 and the quarter wave plate 36 can be marked, or otherwise detected, for example using x-ray, magnetic resonance imaging (MRI) or other inspection techniques, and mounted as close to one another as possible to reduce the gap therebetween. Still further, a magnetic test can be performed, such as by passing a strong magnet over any parts of the device that are sensitive to magnetic fields. The system is monitored for accuracy during the movement of the magnet. The mirror in the tube 34 is moved to each of a plurality of different positions in the block, and the magnet is again passed over the region. After the tube 34 has been placed at each possible position in the range, the tube 34 is mounted at that position at which the system shows optimal accuracy while the magnet is passed over the area being tested. Any method of positioning the mirror 50 as close to the quarter wave plate 36 as possible is contemplated in order to obtain a predetermined maximum gap size.

[0030] It is theorized that the accuracy of the current sensing device is improved by minimizing the gap between the mirror 50 and quarter wave plate 36 due to a portion of the magnetic field created by the current carrying conductor being measured passing through this gap. When the gap is large, a large amount of the magnetic field passes through the gap and does not have an effect, or has less of an effect, on the phase shift in the fiber 30 passing around the conductor. This causes the error detection to be less accurate. When the gap is small, less of the magnetic field passes through the gap, and therefore becomes a part of the correction of the invention. If the gap could be closed completely, then the measurement should be ideal. However, this is not possible in most practical situations, and therefore a maximum gap size, which is quite small, is permitted.

[0031] The size of the gap is as small as possible, and is preferably infinitesimal. Of course, it is known that there will essentially always be some finite gap size. However, the most benefit obtained is when the gap is less than 0.02 percent of the total length of the fiber, assuming that the fiber and the gap are exposed to essentially the same magnetic field levels. Thus, for a typical fiber in an apparatus with which the invention is used, a gap of 0.0 to 12 millimeters is preferred, a gap of 0.0 to 6 millimeters is more preferred, and a gap of 0.0 to 2 millimeters is most preferred. A gap of about 15 millimeters or greater is not a small enough gap to meet the requirements of the present invention. Thus, it is critical that the gap be smaller than about 15 millimeters for the apparatus used herein.

[0032] Minimizing gap alone obtains a substantial improvement. Howeveraccording to the invention, the body 42 and the plate 41 are made of magnetic shielding material, in order that they shield the gap from magnetic fields. For example, the body 42 and the plate 41 are preferably made of steel, which offers substantial magnetic shielding for low cost in a material that is relatively easily shaped. Other materials that are contemplated are low carbon steel, such as 1018, 1020, 1117, 1010, 1006 and pure steel. Of course, other steel compositions can be used. Additionally, higher permeability material can be used, such as nickel (78-80%) iron alloy, such as that sold under the trademarks HYMU80, HIPERNOM, PERMALLOY 80 and MUMETAL. Another nickel iron alloy (48-52% nickel) can be used, and is sold under the trademarks CARPENTER HIGH PERMEABILITY "49", ALLOY 48 and MAGNIFIER 50, among others. The latter group is considered medium permeability materials. Of course, these are only examples of suitable materials. A person having ordinary skill will be aware of other suitable materials currently in existence, or which may come into existence, that can substitute for the materials described herein.

[0033] The desired magnetic shields preferably have multiple layers of the shielding material with an air gap between each layer. The outermost layer is of the highest permeability material, the inner layer is of the lowest permeability and a middle layer is of a medium permeability material. Material thicknesses have not been optimized, although it is considered advantageous to have steel of between around 0,3175 cm to 0,635 cm (one-eighth to one-quarter of one inch) thick. Of course, other thicknesses are contemplated.

[0034] It is preferred that any holes in the shields be small enough to minimize the penetration of the magnetic field into the shields. Therefore, it is preferred that the holes 44, 45 and 56, through which the tube 36 and the wire (see Fig. 2) extend be as small as is practical.

[0035] The modulator 20 is also shielded by the shields 22, 24 and 28, as shown in Figs. 8, 9 and 10. The lower shield 22 mounts to the floor 8 of the case 10, and the middle shield 24 mounts to the lower shield 22. The upper shield 28 mounts to the top of the lower shield 22 as shown in Fig. 10. The apertures 25 and 26 permit exit of the fiber 30 as shown in Fig. 2.

[0036] The same desirable shielding characteristics described above for the body 42 and the plate 41 apply to the shields 22, 24 and 28, as do the minimization of the size of the apertures 25 and 26 and any other apertures. Of course, it is understood that not all advantageous features can be incorporated into every design, and therefore only one, two or a few of the advantageous features might be able to be incorporated. However, a limited improvement is still substantially improved over the prior art.

[0037] Another manner of quantifying the shielding that provides advantageous results is to describe the amount of magnetic field that is present inside the modulator shielding and at the gap between the quarter wave plate and the mirror. For example, the magnetic field in these critical locations is preferably less than 0,02 Tesla (200 Gauss), more preferably less than 0,01 Tesla (100 Gauss), and most preferably less than 0,003 Tesla (30 Gauss). Obviously, the lower limit of exposure is 0 Tesla (0.0 Gauss), but this is not normally feasible.

[0038] Additionally, if feasible, it is most preferred that the entire case 10, including a floor 8 and removable lid (not shown) be made of magnetic shielding material of the types described herein. This provides substantial shielding of the critical components of the apparatus by the very housing of those components. However, this has practical limitations, such as weight and cost that, unless overcome, would limit the ability of such shielding to be implemented.

[0039] This detailed description in connection with the drawings is intended principally as a description of the presently preferred embodiments of the invention, and is not intended to represent the only form in which the present invention may be constructed or utilized. The description sets forth the designs, functions, means, and methods of implementing the invention in connection with the illustrated embodiments.


Claims

1. An optical interferometer including an optical fiber (30) for extending around a conductor, thereby forming a path for a beam of light, a quarter wave plate (36) in the optical fiber (30) and a mirror (50) near an end of the optical fiber (30), for measuring current through the conductor based upon an effect of a magnetic field, produced by current flowing through the conductor, on light passing through the optical fiber (30), further including a gap formed between the quarter wave plate (36) and the mirror (50) being smaller than a predetermined maximum gap for minimizing the magnetic field passing through the gap, characterized by a magnetic shield (41,42) around a substantial portion of the gap for further minimizing a magnetic field passing through the gap, the magnetic shield (41,42) comprising:

(a) a mirror block (40) having a plate (41) and a body (42) enclosing a hollow coil housing (32') through which the fiber (30) extends, wherein the fiber (30) is coiled an integral number of times to form a coil (32),

(b) said body (42) having a channel (43) into which the coil housing (32') is inserted, and in said channel (43) a portion of the fiber (30) containing the quarter wave plate (36) being disposed;

(c) said plate (41) clamping said coil housing (32') in the channel (43) by fasteners inserted into the plate (41) and being fixed in the body (42), and

(d) an aperture (44) formed in the mirror block (40) extending adjacent the channel (43), in said aperture a protective tube (34) being inserted, the tube (34) encasing the end of the fiber (30), and the tube (34) and the fiber end extend through the aperture (44), thereby disposing the fiber end adjacent the quarter wave plate (36), wherein the aperture (44) is configured such that the position of the mirror (50) relative to the quarter wave plate (36) is adjustable, and wherein the mirror block (40) comprises a rotary clamp (46) configured to be tightened around a sheathing of the fiber (30) to clamp the fiber (30) and the mirror (50) in a desired position.


 
2. The optical interferometer in accordance with claim 1, further comprising a magnetic shield (41,42) formed around a substantial portion of a modulator (20).
 
3. The optical interferometer in accordance with claim 1, further comprising a magnetic shield (41,42) formed around a substantial portion of a housing containing at least the gap and a modulator (20) and a compensation coil.
 
4. The optical interferometer in accordance with claim 1, wherein a space is formed at least between the protective tube (34) and the fiber end.
 
5. A method of minimizing error in an optical interferometer including an optical fiber (30) extending around a conductor, thereby forming a path for a beam of light, a quarter wave plate (36) in the optical fiber and a mirror (50) near an end of the optical fiber (30), for measuring current through the conductor based upon an effect of a magnetic field, produced by current flowing through the conductor, on light passing through the optical fiber (30), the method including forming a gap between the quarter wave plate (36) and the mirror (50) being smaller than a predetermined maximum gap for minimizing the magnetic field passing through the gap, the method characterized by further minimizing a magnetic field passing through the gap by providing a magnetic shield (41, 42) around a substantial portion of the gap, the magnetic shield (41, 42) comprising:

(a) a mirror block (40) having a plate (41) and a body (42) enclosing a hollow coil housing (32') through which the fiber (30) extends, wherein the fiber (30) is coiled an integral number of times to form a coil (32),

(b) said body (42) having a channel (43) into which the coil housing (32') is inserted, and in said channel (43) a portion of the fiber (30) containing the quarter wave plate (36) being disposed;

(c) said plate (41) clamping said coil housing (32') in the channel (43) by fasteners inserted into the plate (41) and being fixed in the body (42), and

(d) an aperture (44) formed in the mirror block (40) extending adjacent the channel (43), in said aperture a protective tube (34) being inserted, the tube (34) encasing the end of the fiber (30), and the tube (34) and the fiber end extend through the aperture (44), thereby disposing the fiber end adjacent the quarter wave plate (36), wherein the aperture (44) is configured such that the position of the mirror (50) relative to the quarter wave plate (36) is adjustable and wherein the mirror block (40) comprises a rotary clamp (46) configured to be tightened around a sheathing of the fiber (30) to clamp the fiber (30) and the mirror (50) in a desired position.


 
6. The method in accordance with claim 5, further comprising an adjusting step which comprises:

(a) moving the optical fiber (30) to a first position;

(b) determining an error when the optical fiber (30) is at the first position;

(c) moving the optical fiber (30) to a second position;

(d) determining an error when the optical fiber (30) is at the second position;

(e) comparing the error when the optical fiber (30) is at the first position to the error when the optical fiber (30) is at the second position;

(f) moving the optical fiber (30) to a position that further minimizes error; and then

(g) fixing the optical fiber (30) in position.


 
7. The method in accordance with claim 5, further comprising tightening the rotary clamp (46) around the sheathing of the fiber to clamp the tube in the desired position.
 


Ansprüche

1. Optisches Interferometer umfassend eine optische Faser (30) zum Umlaufen um einen Leiter, um damit einen Weg für einen Lichtstrahl auszubilden, eine Viertel-Wellenplatte (36) in der optischen Faser (30) und einen Spiegel (50) in der Nähe eines Endes der optischen Faser (30) zum Messen eines Stroms durch den Leiter, der auf dem Effekt eines Magnetfeldes basiert, das durch einen durch den Leiter fließenden Strom erzeugt wird, basierend auf Licht, das durch die optische Faser (30) hindurchgeht, ferner umfassend eine Lücke, die zwischen der Viertelwellenplatte (36) und dem Spiegel (50) ausgebildet ist und kleiner als eine vorab festgelegte maximale Lücke ist, um das durch die Lücke hindurchtretende Magnetfeld zu minimieren,
gekennzeichnet durch
eine magnetische Abschirmung (41, 42) um einen wesentlichen Teil des Spalts, um ein durch den Spalt laufendes Magnetfeld weiter zu minimieren, wobei die magnetische Abschirmung (41, 42) umfasst:

(a) einen Spiegelblock (40) mit einer Platte (41) und einem Körper (42), der ein hohles Spulengehäuse (32') umgibt, durch das sich die Faser (30) erstreckt, wobei die Faser (30) ein ganzzahliges Vielfach gewickelt ist, um eine Spule (32) zu bilden,

(b) wobei besagter Körper (42) einen Kanal (43) aufweist, in den das Spulengehäuse (32') eingesetzt ist, und in besagtem Kanal (43) ein Teil der Faser (30) angeordnet ist, welche die Viertel-Wellenplatte (36) enthält;

(c) wobei besagte Platte (41) besagtes Spulengehäuse (32') in dem Kanal (43) durch in die Platte (41) eingesetzte und in dem Körper (42) befestigte Befestigungselemente einklemmt, und

(d) eine Öffnung (44), die in dem Spiegelblock (40) ausgebildet ist und sich neben dem Kanal (43) erstreckt, wobei in besagte Öffnung ein Schutzrohr (34) eingesetzt ist, wobei das Rohr (34) das Ende der Faser (30) umhüllt und das Rohr (34) und das Faserende sich durch die Öffnung (44) erstrecken, wodurch das Faserende benachbart zu der Viertel-Wellenplatte (36) angeordnet wird, wobei die Öffnung (44) so konfiguriert ist, dass die Position des Spiegels (50) relativ zur Viertel-Wellenplatte (36) einstellbar ist, und wobei der Spiegelblock (40) eine Drehklemme (46) aufweist, die konfiguriert ist, um um eine Ummantelung der Faser (30) festgezogen zu werden, um die Faser (30) und den Spiegel (50) in einer gewünschten Position festzuklemmen.


 
2. Optisches Interferometer nach Anspruch 1, ferner aufweisend eine magnetische Abschirmung (41, 42), die um einen wesentlichen Teil eines Modulators (20) herum ausgebildet ist.
 
3. Optisches Interferometer nach Anspruch 1, ferner aufweisend eine magnetische Abschirmung (41,42), die um einen wesentlichen Teil eines Gehäuses ausgebildet ist, das mindestens den Spalt und einen Modulator (20) und eine Kompensationsspule enthält.
 
4. Optisches Interferometer nach Anspruch 1, wobei ein Zwischenraum wenigstens zwischen dem Schutzrohr (34) und dem Faserende ausgebildet ist.
 
5. Verfahren zum Minimieren von Fehlern in einem optischen Interferometer, umfassend eine optische Faser (30), die sich um einen Leiter erstreckt um damit einen Weg für einen Lichtstrahl auszubilden, eine Viertel-Wellenplatte (36) in der optischen Faser und einen Spiegel (50) in der Nähe eines Endes der optischen Faser (30) zum Messen eines Stroms durch den Leiter, der auf dem Effekt eines Magnetfeldes basiert, das durch einen durch den Leiter fließenden Strom erzeugt wird, basierend auf Licht, das durch die optische Faser (30) hindurchgeht, das Verfahren ferner umfassend die Ausbildung einer Lücke zwischen der Viertel-Wellenplatte (36) und dem Spiegel (50), die kleiner als eine vorab festgelegte maximale Lücke ist, um das durch die Lücke hindurchtretende Magnetfeld zu minimieren, wobei das Verfahren gekennzeichnet ist durch weiteres Minimieren eines durch den Spalt laufenden Magnetfelds durch Bereitstellen einer magnetischen Abschirmung (41, 42) um einen wesentlichen Teil des Spalts, wobei die magnetische Abschirmung (41, 42) umfasst:

(a) einen Spiegelblock (40) mit einer Platte (41) und einem Körper (42), der ein hohles Spulengehäuse (32') umgibt, durch das sich die Faser (30) erstreckt, wobei die Faser (30) ein ganzzahliges Vielfach gewickelt ist, um eine Spule (32) zu bilden,

(b) wobei besagter Körper (42) einen Kanal (43) aufweist, in den das Spulengehäuse (32') eingesetzt ist, und in besagtem Kanal (43) ein Teil der Faser (30) angeordnet ist, der die Viertel-Wellenplatte (36) enthält;

(c) wobei besagte Platte (41) besagtes Spulengehäuse (32') in dem Kanal (43) durch in die Platte (41) eingesetzte und in dem Körper (42) befestigte Befestigungselemente einklemmt, und

(d) eine Öffnung (44), die in dem Spiegelblock (40) ausgebildet ist und sich neben dem Kanal (43) erstreckt, wobei in besagte Öffnung ein Schutzrohr (34) eingesetzt ist, wobei das Rohr (34) das Ende der Faser (30) umhüllt und das Rohr (34) und das Faserende sich durch die Öffnung (44) erstrecken, wobei das Faserende benachbart zu der Viertel-Wellenplatte (36) angeordnet wird, wobei die Öffnung (44) so konfiguriert ist, dass die Position des Spiegels (50) relativ zur Viertel-Wellenplatte (36) einstellbar ist, und wobei der Spiegelblock (40) eine Drehklemme (46) aufweist, die konfiguriert ist, um um eine Ummantelung der Faser (30) festgezogen zu werden, um die Faser (30) und den Spiegel (50) in einer gewünschten Position festzuklemmen.


 
6. Verfahren nach Anspruch 5, ferner aufweisend einen Einstellschritt, der aufweist:

(a) Bewegen der optischen Faser (30) in eine erste Position;

(b) Bestimmen eines Fehlers, wenn sich die optische Faser (30) an der ersten Position befindet;

(c) Bewegen der optischen Faser (30) in eine zweite Position;

(d) Bestimmen eines Fehlers, wenn sich die optische Faser (30) an der zweiten Position befindet;

(e) Vergleichen des Fehlers, wenn sich die optische Faser (30) an der ersten Position befindet, mit dem Fehler, wenn sich die optische Faser (30) an der zweiten Position befindet;

(f) Bewegen der optischen Faser (30) in eine Position, die den Fehler weiter minimiert; und dann

(g) Fixieren der optischen Faser (30) in Position.


 
7. Verfahren nach Anspruch 5, ferner aufweisend das Festziehen der Drehklemme (46) um eine Ummantelung der Faser, um das Rohr in der gewünschten Position festzuklemmen.
 


Revendications

1. Interféromètre optique comprenant une fibre optique (30) pour s'étendre autour d'un conducteur, formant ainsi un chemin pour un faisceau de lumière, une plaque de quart d'onde (36) dans la fibre optique (30) et un miroir (50) à proximité d'une extrémité de la fibre optique (30), pour mesurer le courant à travers le conducteur sur la base d'un effet de champ magnétique, produit par le courant s'écoulant à travers le conducteur, sur la lumière traversant la fibre optique (30), comprenant en outre un écart formé entre la plaque de quart d'onde (36) et le miroir (50) qui est plus petit qu'un écart maximum prédéterminé minimisant le champ magnétique traversant l'écart, caractérisé par un écran magnétique (41, 42) autour d'une portion substantielle de l'écart pour minimiser encore plus un champ magnétique traversant l'écart, l'écran magnétique (41, 42) comprenant :

(a) un bloc de miroir (40) ayant une plaque (41) et un corps (42) contenant un logement creux de bobine (32') à travers lequel s'étend la fibre (30), dans lequel la fibre (30) est bobinée selon un nombre de fois entier pour former une bobine (32),

(b) ledit corps (42) ayant un canal (43) dans lequel est inséré le logement de bobine (32'), et dans ledit canal (43) est disposée une portion de la fibre (30) contenant la plaque de quart d'onde (36) ;

(c) ladite plaque (41) verrouillant ledit logement de bobine (32') dans le canal (43) par des fixateurs insérés dans la plaque (41) et qui sont fixés dans le corps (42), et

(d) une ouverture (44) formée dans le bloc de miroir (40) et s'étendant adjacente au canal (43), un tube de protection (34) étant inséré dans ladite ouverture, le tube (34) enfermant l'extrémité de la fibre (30), et le tube (34) et l'extrémité de fibre s'étendant à travers l'ouverture (44), disposant ainsi l'extrémité de fibre de façon adjacente à la plaque de quart d'onde (36), dans lequel l'ouverture (44) est configurée de telle sorte que la position du miroir (50) par rapport à la plaque de quart d'onde (36) est ajustable, et dans lequel le bloc de miroir (40) comprend une pince rotative (46) configurée pour être serrée autour d'une enveloppe de la fibre (30) pour verrouiller la fibre (30) et le miroir (50) dans une position désirée.


 
2. Interféromètre optique selon la revendication 1, comprenant en outre un écran magnétique (41, 42) formé autour d'une portion substantielle d'un modulateur (20).
 
3. Interféromètre optique selon la revendication 1, comprenant en outre un écran magnétique (41, 42) formé autour d'une portion substantielle d'un logement contenant au moins l'écart et un modulateur (20) et une bobine de compensation.
 
4. Interféromètre optique selon la revendication 1, dans lequel un écart est formé au moins entre le tube protecteur (34) et l'extrémité de fibre.
 
5. Procédé pour minimiser l'erreur dans un interféromètre optique incluant une fibre optique (30) s'étendant autour d'un conducteur, formant ainsi un chemin pour un faisceau de lumière, une plaque de quart d'onde (36) dans la fibre optique et un miroir (50) à proximité d'une extrémité de la fibre optique (30), pour mesurer un courant traversant le conducteur sur la base d'un effet d'un champ magnétique, produit par le courant traversant le conducteur, sur la lumière traversant la fibre optique (30), le procédé comprenant l'étape de former un écart entre la plaque de quart d'onde (36) et le miroir (50) qui est plus petit qu'un écart maximum prédéterminé pour minimiser le champ magnétique traversant l'écart, le procédé étant caractérisé par la minimisation supplémentaire d'un champ magnétique traversant l'écart en prévoyant un écran magnétique (41, 42) autour d'une portion substantielle de l'écart, l'écran magnétique (41, 42) comprenant :

(a) un bloc de miroir (40) ayant une plaque (41) et un corps (42) enfermant un logement creux de bobine (32') à travers lequel s'étend la fibre (30), dans lequel la fibre (30) est bobinée selon un nombre de fois entier pour former une bobine (32),

(b) ledit corps (42) ayant un canal (43) dans lequel est inséré le logement de bobine (32'), et dans ledit canal (43) est disposée une portion de la fibre (30) contenant la plaque de quart d'onde (36) ;

(c) ladite plaque (41) verrouillant ledit logement de bobine (32') dans le canal (43) par des fixateurs insérés dans la plaque (41) et qui sont fixés dans le corps (42),
et

(d) une ouverture (44) formée dans le bloc de miroir (40) s'étendant adjacente au canal (43), un tube de protection (34) étant inséré dans ladite ouverture, le tube (34) enfermant l'extrémité de la fibre (30), et le tube (34) et l'extrémité de fibre s'étendant à travers l'ouverture (44), disposant ainsi l'extrémité de fibre de façon adjacente à la plaque de quart d'onde (36), dans lequel l'ouverture (44) est configurée de telle sorte que la position du miroir (50) par rapport à la plaque de quart d'onde (36) est ajustable, et dans lequel le bloc de miroir (40) comprend une pince rotative (46) configurée pour être serrée autour d'une enveloppe de la fibre (30) pour verrouiller la fibre (30) et le miroir (50) dans une position désirée.


 
6. Procédé selon la revendication 5, comprenant en outre une étape d'ajustage qu'il comprend :

(a) déplacer la fibre optique (30) jusqu'à une première position ;

(b) déterminer une erreur lorsque la fibre optique (30) est dans la première position ;

(c) déplacer la fibre optique (30) jusqu'à une seconde position ;

(d) déterminer une erreur lorsque la fibre optique (30) est dans la seconde position ;

(e) comparer l'erreur lorsque la fibre optique (30) est dans la première position par rapport à l'erreur lorsque la fibre optique (30) est dans la seconde position ;

(f) déplacer la fibre optique (30) jusqu'à une position qui minimise encore l'erreur ; et alors

(g) fixer la fibre optique (30) en position.


 
7. Procédé selon la revendication 5, comprenant en outre le serrage de la pince rotative (46) autour de l'enveloppe de la fibre pour verrouiller le tube dans la position désirée.
 




Drawing























Cited references

REFERENCES CITED IN THE DESCRIPTION



This list of references cited by the applicant is for the reader's convenience only. It does not form part of the European patent document. Even though great care has been taken in compiling the references, errors or omissions cannot be excluded and the EPO disclaims all liability in this regard.

Patent documents cited in the description




Non-patent literature cited in the description