(19)
(11)EP 2 201 334 B1

(12)EUROPEAN PATENT SPECIFICATION

(45)Mention of the grant of the patent:
24.11.2021 Bulletin 2021/47

(21)Application number: 08835741.3

(22)Date of filing:  30.09.2008
(51)International Patent Classification (IPC): 
G01F 1/00(2006.01)
G01H 1/00(2006.01)
(52)Cooperative Patent Classification (CPC):
G01H 1/003
(86)International application number:
PCT/US2008/078266
(87)International publication number:
WO 2009/046005 (09.04.2009 Gazette  2009/15)

(54)

COMPACT, SELF-CONTAINED CONDITION MONITORING DEVICE

KOMPAKTE SELBSTSTÄNDIGE ZUSTANDSÜBERWACHUNGSEINRICHTUNG

DISPOSITIF DE SURVEILLANCE D'ÉTAT AUTOCONTENU, COMPACT


(84)Designated Contracting States:
AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MT NL NO PL PT RO SE SI SK TR

(30)Priority: 05.10.2007 US 997911 P

(43)Date of publication of application:
30.06.2010 Bulletin 2010/26

(73)Proprietor: ITT Manufacturing Enterprises LLC
Wilmington, DE 19801 (US)

(72)Inventors:
  • HAUENSTEIN, Kenneth Lee
    Seneca Falls New York 13148 (US)
  • PADDOCK, Douglas
    Penn Yan New York 14527 (US)
  • PLAYFORD, Mark Alexander
    Seneca Falls New York 13148 (US)
  • QUILL, Jermiah Dennis
    Cayuga New York 13034 (US)
  • RICE, David A.
    Syracuse New York 13215 (US)
  • BRUSA, Patrick J.
    Syracuse New York 13215 (US)

(74)Representative: DREISS Patentanwälte PartG mbB 
Friedrichstraße 6
70174 Stuttgart
70174 Stuttgart (DE)


(56)References cited: : 
US-A- 5 847 658
US-A1- 2003 043 046
US-A1- 2005 231 350
US-A1- 2005 284 226
US-A1- 2002 140 566
US-A1- 2003 159 515
US-A1- 2005 231 350
US-A1- 2006 206 274
  
  • None
  
Note: Within nine months from the publication of the mention of the grant of the European patent, any person may give notice to the European Patent Office of opposition to the European patent granted. Notice of opposition shall be filed in a written reasoned statement. It shall not be deemed to have been filed until the opposition fee has been paid. (Art. 99(1) European Patent Convention).


Description

BACKGROUND OF THE INVENTION


1. Field of the Invention



[0001] The present invention relates a condition monitoring apparatus according to claim 1. According claim 10, the invention relates to a method for monitoring a device.

2. Brief Description of Related Art



[0002] US 2005/231350 A1 discloses a method and a system for generating automatic alarms based on trends detected in machine operation. US 2003/159515 A1 discloses machines having a drive member and a method for diagnosing the same. US 2006/206274 A1 discloses an apparatus for sensing impact events in reciprocating machinery. Temperature and vibration monitoring of rotation equipment is a known and accepted method to determining the health of rotating equipment.
  • Temperature measurement of equipment as a diagnostic tool is simple and relatively inexpensive to implement. Temperature information is useful only as a go/no go indication of equipment condition.
  • Vibration monitoring is an accepted proven diagnostic tool for accessing rotating equipment health. Periodic monitoring of machine vibration is a principle component of preventative maintenance programs in industry. The conditions that vibration monitoring can detect are bearing condition, shaft straightness, out of balance condition, out of alignment condition, wear, product buildup, process change, corrosion, and looseness. Vibration monitoring equipment can be expensive, in the tens of thousands of dollars. As such, only very expensive rotating equipment have monitors attached for continuous monitoring. A typical chemical plant has 1000 pumps installed and in operation. There may be less than 10 pumps or pieces of rotation equipment in a typical chemical plant that fit the criterion that would justify the expense of dedicated vibration monitors. For 99% of the rotating equipment that cannot justify the expense of continuous vibration monitoring, either, no vibration measurement is employed or a walk around vibration program is used employing expensive portable vibration equipment and manual labor expense. The periodic monitoring requires trained personnel to collect the vibration in a consistent manner and the timely analysis of the collected data to determine equipment health. Most plants that collect vibration data do not have the staffing to analyze the vibration data in a timely manner and don't catch problems before catastrophic failure occurs. The data gets analyzed as a post mortem event which is too late to prevent failures. The vibration analysis should be used as a predictive tool to give an early warning of impending failure so that maintenance can be performed to minimize equipment and production loss.


[0003] For example, periodic manual monitoring of equipment with portable hand held vibration and/or temperature instruments is known in the art. In particular, manual monitoring of equipment, such as pumps, is typically done, e. g. every 4 ― 6 weeks, based on a plant's maintenance schedule. However, this time period may vary. The shortcoming of manual monitoring is that it only provides a measure of the pump condition for the snap shot in time for which it is taken. The technician must be adequately trained to operate relatively expensive equipment and all units must be checked in order to determine if a problem exists. Pump health can change between walk-arounds due to system upsets and/or operator error. This type of manual system does not provide continuous monitoring and as such does not optimize preventive maintenance.

[0004] In view of this, there is a need in the industry for a technique or low cost, easy-to-use device for near continuously monitoring a pump and providing an indication of the condition of operation of the pump based on an evaluation of one or more sensed physical parameters.

SUMMARY OF THE INVENTION



[0005] The present invention provides a condition monitoring apparatus according to claim 1.

[0006] Moreover, as defined in claim 10, the present invention provides a method for monitoring a device

[0007] According to some embodiments of the present invention, the apparatus may take the form of one or more modules and/or a chipset for performing the steps and functionality of the aforementioned method.

[0008] According to some embodiments of the present invention, the apparatus may also take the form of a disposable, compact, self-contained, battery operated, warning and alarming condition monitoring device for monitoring a device, such as a pump, featuring one or more modules configured for performing the functionality set forth herein.

[0009] According to some embodiments of the present invention, the disposable, compact, self-contained, battery operated, warning and alarming condition monitoring device may e.g. be affixed on a bearing frame of the pump.

[0010] According to some embodiments of the present invention, the start-up vibration level may be determined based on a multiple of a sensed start-up vibration level measured along more axes of the second device, and may also be determined so as to be within a range having a lowest possible predetermined start-up vibration level and a highest possible predetermined start-up vibration level.

[0011] By way of example, the evaluation of the one or more sensed vibration levels may be made by one or more modules contained within the monitoring device itself, although embodiments are also envisioned in which one or more sensed vibration levels are provided to another device for evaluation, and in which one or more signals are received back from the other device containing information for providing the indication of the condition of operation of the device. The provisioning of the such signals between such devices may be done via a hardwired or wireless signalling configuration.

[0012] In effect, the present invention provides a novel and unique method and apparatus for monitoring vibration in a very low cost, compact configuration. This makes it economical to provide continuous monitoring on every pump or piece of rotating equipment in a chemical plant. The condition monitor may employ low cost Microelectromechanical system (MEMS) developed for the automotive industry, very low electrical power microprocessors, and the latest battery technology combined into a novel and economical device that provides early warning of equipment problems. The present invention brings down the cost of continuous monitoring equipment from tens of thousands of dollars to a few hundred dollars. The low cost makes it possible to mount this invention on every rotating machine in a plant and have the benefits of continuous monitoring without the prohibitive high cost. The low electrical power requirements allows for battery operation with long life. This allows for a small self contained sealed unit with no external wiring and a simple mechanical screw attachment to the equipment to be monitored.

[0013] The vast majority of rotating equipment and in particular centrifugal pumps rotate between 600 and 3600 revolutions per minute (rpm). The measure of vibration most useful in diagnosing equipment in this typical speed range is the measurement of velocity. The invention uses a circuit to convert the electrical output from the Microelectromechanical system (MEMS) to a voltage that is proportional to the vibration velocity of the pump. The vibration of the equipment measured as velocity is used universally to assess the machine condition. In addition to the low cost, the invention provides simple setup and operation with no special analysis skills required to determine equipment condition. The device does not require a trained equipment expert to interpret the equipment condition. Any person walking by the pump can immediately determine the pump condition by visual observation of the light emitting diodes on the monitor (green flashing OK, red flash alarm). This visual observation is not limited to light emitting diodes. Other embodiments for the visual observation can be a LCD display or other visual means. Setting the alarm level is as simple as turning the monitor on. The first function performed when the monitor is activated is to capture the current vibration level and use that baseline level to set the alarm vibration level. The alarm level is stored in the microprocessor's memory. Subsequent vibration level measurements are compared to the alarm level and the machine status is annunciated. The vibration alarm level is unique to the machine and operating conditions of the installation. The alarm level is not predetermined, but is uniquely determined at startup based on the particular installation.

[0014] Embodiments are also envisioned where the microprocessor processes the electrical waveform representing the machine vibration and also monitors the electrical output from the temperature sensor and triggers an alarm annunciation in the form of flashing red light emitting diodes when the alarm levels for either vibration or temperature is exceeded or flashes the green light emitting diode if the machine is below the alarm level.

BRIEF DESCRIPTION OF THE DRAWING



[0015] The drawing includes the following Figures:

Figure 1 is a block diagram of a first device for monitoring a second device according to some embodiments of the present invention.

Figure 2 is a functional block diagram of a disposable, compact, self-contained, battery operated, warning and alarming condition monitoring device according to some embodiments of the present invention.

Figures 3a and 3b are a logic flowchart having steps of a method according to examples which are not covered by the claimed invention.

Figure 4 is a logic flowchart having steps of a method according to some embodiments of the present invention.

Figure 4a is a flowchart having steps related to the flash of an LED in the method shown in Figure 4.

Figure 4b is a flowchart having steps related to the selection of the mode in the method shown in Figure 4.

Figure 4c is a flowchart having steps related to the measure of baseline vibration in the flowchart shown in Figure 4b.


DETAILED DESCRIPTION OF THE INVENTION


Figure 1: The basic Invention



[0016] Figure 1 shows the basic invention in the form of a first device 10 that monitors the operation of a second device 20, such as a pump, a fan, compressor, turbine or other rotating or reciprocating piece of machinery. As shown, the first device 10 may be affixed or mounted on the second device 20, e.g. the first device 10 may be affixed via some affixing member 18 on a bearing frame (not shown) of the second device 20, such as a pump. The first device 10 is designed to be a disposable, compact, self-contained, inexpensive, battery operated, warning and alarming condition monitoring device. The affixing member 18 may take the form of glue, epoxy, fasteners, etc., and the scope of the invention is not intended to be limited to any particular type or kind of affixing member either now known or later developed in the future, or the overall manner in which the first and second devices are coupled together.

[0017] The first device 10 includes a sensing module 12, a monitoring module 14 and other modules 16.

[0018] The sensing module 12 may include one or more modules configured for sensing in the first device both a start-up vibration at a start-up time after the first device is affixed to the second device to be monitored and a subsequent vibration level at a subsequent time after the start-up time, and providing both a start-up vibration level signal containing information about the start-up vibration level of the second device, and a subsequent vibration level signal containing information about the subsequent vibration level of the second device. Techniques for sensing vibrations levels are known in the art and the scope of the invention is not intended to be limited to any particular type or kind thereof either now known or later developed in the future. The technique according to the present invention ensures that the start-up vibration level is based on the operation of the second device at the start-up time so as to be unique to the second device, as opposed to some factory set, and/or predetermined level unrelated to the current operating conditions of the second device.

[0019] The monitoring module 14 may include one or more modules configured for monitoring in the first device the condition of operation of the second device based on a comparison of the start-up vibration level signal in relation to the subsequent vibration level signal. The monitoring of the second device by the first device may include one or more of the following: providing an indication containing information about the condition of operation of the second device, including an audio indication, or a visual indication, or some combination thereof; activating a start-up procedure in order to determine the start-up vibration level; activating a monitoring procedure in order to determine the subsequent vibration level and monitor the second device; periodically entering the first device into a low power mode in order to save power; or some combination thereof.

[0020] According to some embodiments of the present invention, the start-up vibration level may be determined based on a multiple of a sensed start-up vibration level measured along one or more axes of the second device. For example, if a start-up vibration level of 0,34290 cm/second is sensed, then the start-up vibration level may be determined to be 0,68580 cm/second, effectively making the multiple 2X (i.e. doubled the sensed vibration). In operation, when the subsequent vibration level is sensed, compared to and exceeds 0,68580 cm/second, then the monitoring module 14 may issue an indication of an alarm or warning condition. The scope of the invention is not intended to be limited to any particular multiple, and may include other multiples such as 1.5X, 1.75X, 2.5X, etc..

[0021] Moreover, according to some embodiments of the present invention, the start-up vibration level may also be determined so as to be within a range having a lowest possible predetermined start-up vibration level and a highest possible predetermined start-up vibration level. For example, if a start-up vibration level of 0,00254 cm/second is sensed (which is very low), then the start-up vibration level may be determined to be 0,3175 cm/second, effectively setting the value to a lowest possible predetermined start-up vibration level. Alternatively, if a start-up vibration level of 0,76200 cm/second is sensed (which is very high), then the start-up vibration level may be determined to be 1,27000 cm/second, effectively setting the value to a highest possible predetermined start-up vibration level.

[0022] The other modules 16 may include one or more modules that are known in the art, that are configured for performing other functionality that do not form part of the underlying invention, and thus that are not described in detail herein, including but not limited to, a power module for powering the first device, a other sensing modules configured for sensing one or more other parameters, e.g. temperature, and monitoring the second device 20 based on the same, as well as other modules either now known or later developed in the future.

[0023] The modules 12 and 14 may be implemented using hardware components, or a combination of hardware and software components.

[0024] In a typical implementation, such a module would be one or more microprocessor-based architectures having a microprocessor, a random access memory (RAM), a read only memory (ROM), input/output devices and control, data and address buses connecting the same. A person skilled in the art would be able to program such a microprocessor-based implementation to perform the functionality described herein without undue experimentation. Consistent with that described above, embodiments are envisioned in which the functionality of the modules 12 and 14 are implemented within one or more of the other modules 16.

[0025] Moreover, the scope of the invention is intended to include either module 12 or 14 being a stand alone module, or instead forming part of one or more of such other modules 16. In other words, the scope of the invention is not intended to be limited to where the functionality of the modules 12 or 14 is implemented.

[0026] According to some embodiments of the present invention, the modules 12 or 14 may take the form of a chipset for performing the functionality thereof.

Figure 2: Functional Block Diagram



[0027] Figure 2 shows, by way of example, a function block diagram of one embodiment of the first device 10 (Figure 1) in the form of a Compact, Self-Contained Monitoring device also generally indicated as 100, which may be secured to the pump bearing frame, measure the vibration and temperature, and indicate the status using light Emitting Diodes. The following is a description of the functional block diagram shown in Figure 2 working from the bottom up.

[0028] Accelerometers 102, 104 located in the monitoring device 100, measure the acceleration in g's. One accelerometer measures vibration in the vertical pump direction and the other sensor measures vibration in the horizontal pump direction. The device is not limited to two axis vibration as an embodiment for three axis vibration is also envisioned. A voltage proportional to the acceleration in g's is output to an associated operational amplifier 112, 114 which is configured as a filter. The associated operational amplifier 112, 114 convert the G's to inches/second and provide the same to a microprocessor unit 108 as a voltage output representing vibration in inches/second. In effect, the output of the op-amp/filter 112, 114 is an analog voltage that is proportional to the acceleration in inches per second. The output of each op-amp/filter 112, 114 is sampled by the microprocessor unit's analog to digital hardware. As shown, there is a separate op-amp/filter 112, 114 for each accelerometer 102, 104, although the scope of the invention is not intended to be limited to the same. Moreover, accelerometers and operational amplifiers are known in the art and the scope of the invention is not intended to be limited to any particular type or kind thereof either now known or later developed in the future.

[0029] The device 100 also has a sensor 106 for temperature that takes the form of an output of the temperature as an analog voltage proportional to the pump bearing frame temperature. The output of the temperature sensor 106 is also sampled by the microprocessor unit's analog to digital hardware.

[0030] The battery 110 powers the microprocessor unit 108, op-amps 112, 114, temperature sensor 106, light emitting diodes (LEDs) 120, 122, 124 and the magnetically activated switch 118. The device or unit 100 is totally self-contained within a housing for affixing to the second device 20 (Figure 1).

[0031] The magnetically activated switch 118 may be e.g., a Hall effect solid state switch which is used as the human-to-machine input device to wake the microprocessor unit 108 from it's low power mode (sleep) and to set modes and to put the microprocessor back to sleep. The invention is not limited to a Hall switch but may include other methods for turning the device "on" such as a photocell, infrared device, LED or a simple switch.

[0032] The microprocessor unit 108 monitors the magnetically activated switch 118, samples the signals from the filters 112, 114 and sensor 106, executes the logic algorithms and activates the LEDs to indicate pump status.

[0033] The LEDs 120, 122, 124 are the human-to-machine output device used to annunciate pump status and mode settings.

[0034] Figures 3a, 3b: One example which is not covered by the claimed invention Figures 3a and 3b show a logic flowchart generally indicated as 200 having steps 200a, 200b, ..., 200n1 200n2 of a method according to an example which is not covered by the claimed invention.

[0035] The small, self-contained condition monitoring device 10, 100 is typically secured to a pump bearing frame (thrust bearing end) of a pump, as well as another suitable location on a pump, and provides near continuous monitoring of bearing housing vibration and temperature. The disposable, compact, self-contained, battery operated, warning and alarming condition monitoring device may be mounted on the bearing frame such as a recess in a manner so as to protect the integrity of temperature readings from windage or physical damage and in an area which monitors temperature and 2 or more-axis vibration at the thrust bearing.

[0036] In general, in the monitoring device sampling may be done every couple minutes, e.g. three minutes. The monitoring device will flash an LED, e.g. a green LED, to indicate that the pump vibration/temperature are within the normal operating range. If either the vibration or temperature exceeds the alarm thresholds an LED, e.g. a red LED, will flash to indicate an alarm condition exists. An unskilled operator can then visually survey pump installations more frequently to determine which pumps are in distress so that preventive maintenance can be performed.

[0037] The overall operation of some examples is described below as follows:
Steps 200a, 200b are shown by way of example as basic routines for initialization.

[0038] Step 200c is a routine for entering the processor into the low power mode when either the Hall sensor is not activated or the Hall sensor is active for more than some number of LED flash sequences, e.g. 3 flashes.

[0039] Step 200d is a routine for determining if the hall sensor is activated. If the Hall sensor is activated and the processor is in the low power mode, then steps 200e, 200f, 200g, 200j, 200k are performed. If the Hall sensor is activated and the processor is running, then step 200h is perform, which is a routine for determining if the Hall sensor is active for more than some number of LED flash sequences, as discussed above. If the Hall sensor is active for less than some number of LED flash sequences and the processor is running, then sampling step 200i is performed.

[0040] Steps 200e, 200f, 200g, 200j are performed as part of the start-up routine to determine the start-up vibration level (also known herein as "the baseline" level) and provide an appropriate indication that it is set in step j.

[0041] Steps 200k, 2001 are performed as part of the sensing of the subsequent vibration level for providing the subsequent vibration level signal containing information about the subsequent vibration level.

[0042] Steps 200m, 200n, 200n1 200n2 are performed as part of the monitoring routine for making the comparison of the start-up vibration level and subsequent vibration level, and monitoring the second device based on the comparison.

[0043] It is important to note that the numerical values set forth in the steps in Figures 3a, 3b are provided only by way of example. For example, the step 200f provides for taking 8 samples period to establish an average baseline and setting the alarm level at a multiple of 200%. However, consistent with that discussed above, embodiments are envisioned using other numbers of samples like 4, 5, 6, 7, 9, 10, etc. or using other multiples like 150%, 250%, etc.

[0044] When operated in accordance with the aforementioned logic algorithm, the present invention provides a low cost, disposable, compact, self contained, battery operated warning and/or alarming device which provides an indication on the condition of operation based on the evaluation of the one or more physical parameters being sensed.
  • The monitoring device can sense both temperature and vibration rather than just temperature as in other known devices. Temperature is a relatively straight forward parameter to measure. Vibration measurement is more difficult to measure as it requires conditioning of the signal as to frequency range and conversion from g's acceleration to a velocity measurement in inches per second by the op-amp integrator.
  • The monitoring device is unique in the fact that the baseline measurement of vibration is tailored to the individual machine installation and application. These threshold values are not pre-determined in advance as in the other known devices but are determined for the particular installation and application. Each installation is unique.
  • The monitoring device also does not provide a control "cutoff switch" function as in the other known devices.
  • The monitoring device is mainly intended to monitor a pump although it can also monitor a fan, compressor or turbine or other rotating piece of equipment. The other known devices are specifically designed to monitor a motor.
  • The monitoring device does not have a data logging function as does other known devices.
  • Other known devices can be used in a variety of applications; i.e., any application which uses an electric motor; however, they do not monitor the driven equipment as does the monitoring device of the present invention. Monitoring of the driver alone does not predict the health of the driven equipment.

Figures 4-4c: Embodiment of the invention



[0045] Figures 4-4c show an embodiment of the logic algorithm generally indicated as 300 having steps 300a, 300b, 300c, ... 300w for implementing in the present technique as a disposable, compact, self-contained, battery operated, mems, analog/digital 2 axis vibration and temperature monitoring and warning/alarming device. When the logic algorithm in Figure 3a, 3b is compared to that in Figures 4-4c, it is evident that steps have been added to the LED flash routine in Figure 4a, and the select mode routine in Figure 4b has been added in its entirety. Other steps have also been modified slightly.

[0046] The overall operation of some embodiments of the present invention is described below, by way of example, as follows:
The monitoring device 10, 100 may be initially activated by passing a small magnet over the Hall Sensor. The monitoring device then enters the sampling mode for vibration and temperature. If the Hall Sensor is activated again while in the sampling mode, the monitoring device enters the Mode Selection process. The LED flashing pattern indicates status by various color and flashing schemes. For example, when alive and in monitoring mode (no alert or alarm exists), a green LED flashes once every 3 seconds. If a vibration condition exceeds a selectable 150% baseline setting, a default vibration alert setting, a LO HP vibration alert setting or a HI HP vibration alert setting, an alert will be initiated which consists of an LED single red flash each second. If a vibration condition exceeds a selectable 200% baseline setting, a default vibration alarm setting, a LO HP vibration alarm setting or a HI HP vibration alarm setting, an alarm will be initiated which consists of a LED double red flash each second. The flashing scheme for an alert or alarm will be initiated, e.g., if the sampled vibration exceeds the selected mode threshold for at least two consecutive samples, although the scope of the embodiment is not intended to be limited to the number of consecutive samples. If an Alert or Alarm condition is triggered, the next sample is taken after 60 seconds. Once in an Alert or Alarm mode, if a subsequent vibration or temperature reading falls below the trigger point the condition shall return to normal (green LED flashes once every three seconds). If both an Alert and an Alarm condition exist the blinking scheme shall be for the most severe "Alarm" condition. In this embodiment, there is no distinction made in the LED flashing sequence between a vibration and temperature condition, although embodiments are envisioned in which a distinction can be made in the LED flashing sequence between the vibration and temperature condition.

[0047] The flashing scheme for temperature may also be similar if the sampled temperature exceeds the threshold value for two consecutive samples. The thresholds for temperature alert/alarm conditions are fixed as follows:
An Alert shall be initiated if two successive samplings exceed, e.g. about 79,4°C. An Alarm shall be initiated if two successive samples exceed, e.g. about 85°C. Temperature and vibration are sampled every three minutes unless an alert/alarm exists in which case the next sample is taken after 60 seconds. Sampling time is 5-10 seconds.

[0048] The mode setting may be accomplished by passing a magnet over the Hall Sensor while in normal mode (green LED flashes every three seconds). Alternately, other types of sensors either now known or later developed in the future may be used in place of the Hall sensor to accomplish the desired triggering and setting of the device. During the Mode selection process sampling is turned off.

[0049] In one embodiment, there are five Modes shown in 4b which can be selected as follows:

▪ Mode 1 - Default vibration settings: Alert >0.381 cm/s, Alarm >0.762 cm/s

▪ Mode 2 - Low HP application settings: Alert > 0.3175 cm/s, Alarm > 0.635 cm/s

▪ Mode 3 - High HP application settings: Alert > 0.4445 cm/s, Alarm > 0.889 cm/s

▪ Mode 4 - Baseline Alert setting: Alert > Measured baseline value * 1.5, Alarm: > Measured baseline value * 2. Never alert if <0.3175 cm/s, never alarm if 0.42418 cm/s, always alarm if >1.27 cm/s.

▪ Mode 5 - Sleep: The processor is put to sleep (used when the pump is taken out of service to conserve battery power). In the sleep mode no settings or baseline values are saved.



[0050] Note the baseline setting for vibration is set after Mode 4 is selected in the device. Subsequent to the selection of Mode 4 the next vibration reading is set as the baseline.

[0051] The particular Mode setting is selected by observing flashes of the red LED as follows:

▪ One flash for Mode 1

▪ Two flashes for Mode 2

▪ Three flashes for Mode 3

▪ Four flashes for Mode 4

▪ Five flashes for Mode 5.



[0052] Other flash combinations and colors can also be used to accomplish the above. This would be obvious to one skilled in the art. Once the mode is selected by passing a magnet over the Hall Sensor, the green LED flashes to confirm the selection. If no selection is made after the device passes through three complete mode setting cycles, the selection will default to the mode which was previously in effect prior to activating the Mode set menu. Once the Mode set menu is exited the sampling mode is turned back on.

[0053] A battery save feature samples the battery voltage and green LED voltage every 30 minutes where if the LED voltage is less than 1 volt then the device is considered to have been installed in the dark (night) or if the LED voltage is greater than 1 volt then the device is considered to have been installed in the sun (day). If determined to have been installed in the dark (night), the LED "ON" duration time shall be cut by 50%. The green LED generated voltage in bright sunlight is approximately 1.5 volts. The battery voltage is 3 volts.

[0054] By way of example, an accelerometer may be housed on a separate board where this separate board has a projection (tenon) which is fitted into a slot (mortise) on a main board for mounting and soldering to the accelerometer/board. The mounting orientation of the accelerometer board is such that it is in a correct and stable plane (perpendicular to the main processor board) to measure both vertical and horizontal vibration at the thrust bearing (2 axis vibration). The two boards and accelerometer are soldered to achieve both electrical connection to the accelerometer and structural support between the two boards.

[0055] By way of example, the temperature measurement may be accomplished through an integrated circuit temperature measuring device where the output voltage is inversely proportional to temperature. The main board can have a circular hole which is lined with a heat conductive trace and is electrically connected to the temperature measuring device.

[0056] The circular hole with heat conductive trace in the main board accepts a stainless steel (or other conductive material) shouldered standoff which is in direct contact with the bearing frame and heat conductive trace. Heat is conducted from the bearing frame to the standoff and along the heat conductive trace to the integrated circuit temperature measuring device. Temperature compensation is achieved by software.

[0057] Consistent with that shown and described herein, the technique according to the present invention may include one or more of the following features: sampling the one or more physical parameters at predetermined intervals of time; providing a visual indication that the one or more physical parameters are within a normal range; flashing an light emitting diode (LED) with some predetermined color, such as red or green; providing an audio indication, or a visual indication, or some combination thereof, that the one or more physical parameters exceeds a predetermined threshold to indicate an alert or alarm condition exists; responding to a vibration and/or temperature alert or alarm condition by flashing LED colors, such as red, and a sequence pattern for the LED's to distinguish between alert or alarm conditions to the user; activating the disposable, compact, self-contained, battery operated, warning and alarming condition monitoring device by passing a magnet over a sensor; using multiple physical parameters for monitoring the vibration of the device; flashing a different visual indication for a respective predetermined number of time per second when the sensed vibration of the device exceed each of the multiple physical parameters; using multiple physical parameters for monitoring the temperature of the device; initiating an alert if a predetermined number of successive samplings exceeds a first predetermined threshold temperature value; initiating an alarm if a predetermined number of successive samplings exceeds a second predetermined threshold temperature value that is higher than the first predetermined threshold temperature value; sampling the one or more physical parameters at different frequencies depending on the state of the monitoring of the device; using multiple modes, including default vibration settings, low horsepower (HP) settings, high horsepower (HP) settings, baseline settings, a sleep setting, or some combination thereof; setting the modes by passing a magnet over a sensor; providing a respective visual indication for each of the multiple modes; using an accelerometer in the disposable, compact, self-contained, battery operated, warning and alarming condition monitoring device for sensing the vibration of the device; using an integrated circuit temperature measuring device in the disposable, compact, self-contained, battery operated, warning and alarming condition monitoring device for sensing the temperature of the device; making an evaluation by one or more modules contained within the disposable, compact, self-contained, battery operated, warning and alarming condition monitoring device; providing one or more sensed physical parameters to another device for evaluations; receiving one or more signals back from the other device containing information for providing the indication of the condition of operation of the device.

[0058] This present invention may also take the form of a system which consists of a disposable, compact, self-contained, battery operated, mems, analog/digital one and two axis vibration and temperature monitoring and warning/alarming device which is installed on a flat section of a pump bearing frame in a manner which is protected mechanically and from windage to maintain the integrity of the temperature readings and oriented to provide thrust bearing temperature and one and two axis vibration. Alternately, the device can be secured to a fan, compressor, turbine or other rotating or reciprocating piece of machinery. Moreover, although the present invention is described in relation to measuring vibration along two axes, the scope of the invention is not intended to be limited to the same, because embodiments are envisioned where three axis vibration can also be measured.

Possible Applications



[0059] Other possible applications include at least the following:
Two axis vibration and temperature monitoring in pumps, fans, compressors, turbines and any other rotating or reciprocating equipment where local vibration and/or temperature warning and alarming is desired.


Claims

1. A condition monitoring apparatus (10) for securing onto and monitoring a device (20) comprising:

means (12) for sampling vibrations of said device (20) to be monitored, along at least two substantially perpendicular X and Y axes;

means (16) for sensing the temperature of said device (20) to be monitored;

a signal processor configured to:

- sample, at the start up time of the device (20) being monitored, an X-axis start up vibration level input signal and a Y-axis start up vibration level input signal;

- define X-axis vibration and Y-axis vibration thresholds, based on said start up vibration level input signals;

- sample, at a subsequent time after the start up of the device (20) being monitored, an X-axis subsequent vibration level input signal and a Y-axis subsequent vibration level input signal from said means (12) for sampling vibrations, as well as a temperature input signal from said means (16) for sensing temperature;

- monitor the device (20) based on the following:

(i) making an X-axis comparison between said X-axis subsequent vibration level input signal and said X-axis vibration threshold; and

(ii) making a Y-axis comparison between said Y-axis subsequent vibration level input signal and said Y-axis vibration threshold; and

(iii) making a temperature comparison between the temperature sensor (106) input signal and a predetermined temperature threshold;

- after the monitoring,

- annunciate a high vibration or temperature indication for a high vibration or temperature condition associated with the device (20) if the result of the either the X-axis comparison or the Y-axis comparison indicates that the subsequent vibration level input signal exceeds said respective vibration threshold, for at least two successive samples, or

- annunciate a normal indication.


 
2. A condition monitoring apparatus according to claim 1, wherein if the high vibration or temperature indication is annunciated, then the signal processor is configured to re-sample the X-axis subsequent vibration level input signal and the Y-axis subsequent vibration level input signal at a next subsequent time that is a predetermined time less than a normal predetermined sampling time;

re-sample the temperature sensor (106) input signal at the next subsequent time; make the X-axis comparison, the Y-axis comparison and the temperature comparison; and

annunciate the normal indication if the X-axis comparison, the Y-axis comparison and the temperature comparison fall below the respective threshold value associated with the device (20) so as to reset the condition monitoring apparatus (10).


 
3. A condition monitoring apparatus according to claim 1, wherein the signal processor is configured to
annunciate a different high vibration or temperature indication if a next successive sampling of either the X-axis comparison, the Y-axis comparison or the temperature comparison exceeds a second threshold value.
 
4. A condition monitoring apparatus according to claim 1, wherein the device (20) is a pump having a bearing frame and a thrust bearing, and the condition monitoring apparatus (10) is mounted on a recess of the bearing frame of the pump so as to protect the integrity of temperature readings from windage and the condition monitoring apparatus (10) from physical damage and mounted in an area on the bearing frame which monitors temperature and X and Y axes vibration of the thrust bearing of the pump.
 
5. A condition monitoring apparatus according to claim 1, wherein the signal processor is configured to monitor the device (20) but not to cut-off or control the device (20).
 
6. A condition monitoring apparatus according to claim 1, wherein the annunciating includes an audio indication, or a visual indication, or some combination thereof.
 
7. A condition monitoring apparatus according to claim 1, wherein the signal processor is configured to periodically enter the condition monitoring apparatus (10) into a low power mode in order to save power.
 
8. A condition monitoring apparatus according to claim 1, wherein the signal processor is configured to determine a start-up vibration level threshold value based on a multiple of a sampled start-up vibration level measured along either the X or Y-axis of the device (20).
 
9. A condition monitoring apparatus according to claim 1, wherein the signal processor is configured to determine a range of start-up vibration level threshold values, including a lowest possible predetermined start-up vibration level value and a highest possible predetermined start-up vibration level value.
 
10. A method for monitoring a device (20) comprising:

- sampling vibrations of said device (20) to be monitored, along at least two substantially perpendicular X and Y axes;

- sensing the temperature of said device (20) to be monitored;

- sampling, at the start up of the device (20) being monitored, with a signal processor an X-axis start up vibration level input signal and a Y-axis start up vibration level input signal;

- defining X-axis vibration and Y-axis vibration thresholds, based on said start up vibration level input signals;

- sampling, at a subsequent time after the startup of the device (20) being monitored, with the signal processor an X-axis subsequent vibration level input signal and a Y-axis subsequent vibration level input signal for sampling vibrations, as well as a temperature input signal from said sensing of the temperature;

- sampling with the signal processor a temperature sensor (106) input signal at the subsequent time after the startup of the device (20) being monitored;

monitoring the device (20) based on the following:

(i) making an X-axis comparison between said X-axis subsequent vibration level input signal and said the X-axis vibration threshold; and

(ii) making a Y-axis comparison between said Y-axis subsequent vibration level input signal and the Y-axis vibration threshold; and

(iii) making a temperature comparison between the temperature sensor (106) input signal and a predetermined temperature threshold;

wherein the method comprises after the monitoring:

- annunciating a high vibration or temperature indication for a high vibration or temperature condition associated with the device (20) if the result of the either the X-axis comparison or the Y-axis comparison indicates that the subsequent vibration level input signal exceeds said respective vibration threshold, for at least two successive samples, or

- annunciating a normal indication.


 
11. A method according to claim 10, wherein the method further comprises, if the high vibration or temperature indication is annunciated, then

re-sampling with the signal processor the X-axis subsequent vibration level input signal and the Y-axis subsequent vibration level input signal at a next subsequent time that is less than a normal predetermined sampling time;

re-sampling with the signal processor the temperature sensor (106) input signal at the next subsequent time;

making the X-axis comparison, the Y-axis comparison and the temperature comparison; and

annunciating the normal indication if the X-axis comparison, the Y-axis comparison and the temperature comparison fall below the respective threshold value associated with the device (20) so as to reset a condition monitoring apparatus (10).


 
12. A method according to claim 10 wherein the method annunciates a different high vibration or temperature indication if a next successive sampling of either the X-axis comparison, the Y-axis comparison or the temperature comparison exceeds a second threshold value.
 
13. A method according to claim 10, wherein the device (20) is a pump having a bearing frame and a thrust bearing, and the method comprises mounting a condition monitoring apparatus (10) on a recess of the bearing frame of the pump so as to protect the integrity of temperature readings from windage and the condition monitoring apparatus (10) from physical damage and mounted in an area on the bearing frame which monitors temperature and X and Y axes vibration of the thrust bearing of the pump.
 
14. A method according to claim 10, wherein the method comprises monitoring with the signal processor the device (20) but not cutting-off or controlling the device (20).
 
15. A method according to claim 10, wherein the annunciating includes an audio indication, or a visual indication, or some combination thereof.
 
16. A method according to claim 10, wherein the method comprises periodically entering with the signal processor the condition monitoring apparatus (10) into a low power mode in order to save power.
 
17. A method according to claim 10, wherein the method comprises determining with the signal processor a start-up vibration level threshold value based on a multiple of a sampled start-up vibration level measured along either the X or Y axis of the device (20).
 
18. A method according to claim 10, wherein the method comprises determining with the signal processor a range of start-up vibration level threshold values, including a lowest possible predetermined start-up vibration level value and a highest possible predetermined start-up vibration level value.
 


Ansprüche

1. Zustandsüberwachungsvorrichtung (10) zum Befestigen auf einem und Überwachen eines Gerät/s (20), Folgendes umfassend:

Einrichtung (12) zum Abtasten von Schwingungen des zu überwachenden Geräts (20) entlang mindestens zweier im Wesentlichen senkrechter X- und Y-Achsen;

Einrichtung (16) zum Erfassen der Temperatur des zu überwachenden Geräts (20);

einen Signalprozessor, der konfiguriert ist, um:

- zum Startzeitpunkt des überwachten Geräts (20) ein X-Achsen-Startschwingungsniveau-Eingangssignal und ein Y-Achsen-Startschwingungsniveau-Eingangssignal abzutasten;

- X-Achsen-Schwingungs- und Y-Achsen-Schwingungsschwellenwerte basierend auf den Startschwingungsniveau-Eingangssignalen zu definieren;

- zu einem späteren Zeitpunkt nach dem Start des überwachten Geräts (20) ein nachfolgendes X-Achsen-Schwingungsniveau-Eingangssignal und ein nachfolgendes Y-Achsen-Schwingungsniveau-Eingangssignal von der Einrichtung (12) zum Abtasten von Schwingungen sowie ein Temperatureingangssignal von der Einrichtung (16) zum Erfassen der Temperatur abzutasten;

- das Gerät (20) basierend auf folgenden Schritten zu überwachen:

(i) Ausführen eines X-Achsenvergleichs zwischen dem nachfolgenden X-Achsen-Schwingungsniveau-Eingangssignal und dem X-Achsen-Schwingungsschwellenwert; und

(ii) Ausführen eines Y-Achsenvergleichs zwischen dem nachfolgenden Y-Achsen-Schwingungsniveau-Eingangssignal und dem Y-Achsen-Schwingungsschwellenwert; und

(iii)Ausführen eines Temperaturvergleichs zwischen dem Temperatursensor (106)-Eingangssignal und einem vorbestimmten Temperaturschwellenwert;

- nach der Überwachung,

- Anzeigen einer Anzeige über eine hohe Schwingung oder Temperatur bei einem mit dem Gerät (20) assoziierten Zustand einer hohen Schwingung oder Temperatur, wenn entweder das Ergebnis des X-Achsenvergleichs oder des Y-Achsenvergleichs anzeigt, dass das nachfolgende Schwingungsniveau-Eingangssignal den jeweiligen Schwingungsschwellenwert bei mindestens zwei aufeinanderfolgenden Abtastwerten überschreitet, oder

- Anzeigen einer normalen Anzeige.


 
2. Zustandsüberwachungsvorrichtung nach Anspruch 1, wobei, wenn die Anzeige über eine hohe Schwingung oder Temperatur angezeigt wird, der Signalprozessor konfiguriert ist, um das nachfolgende X-Achsen-Schwingungsniveau-Eingangssignal und das nachfolgende Y-Achsen-Schwingungsniveau-Eingangssignal zu einer nächstfolgenden Zeit, die um eine vorbestimmte Zeit kürzer als eine normale vorbestimmte Abtastzeit ist, erneut abzutasten;

das Eingangssignal des Temperatursensors (106) zur nächstfolgenden Zeit erneut abzutasten;

den X-Achsenvergleich, den Y-Achsenvergleich und den Temperaturvergleich auszuführen; und

die normale Anzeige anzuzeigen, wenn der X-Achsenvergleich, der Y-Achsenvergleich und der Temperaturvergleich unter den jeweiligen Schwellenwert fallen, der mit dem Gerät (20) assoziiert ist, um die Zustandsüberwachungsvorrichtung (10) zurückzusetzen.


 
3. Zustandsüberwachungsvorrichtung nach Anspruch 1, wobei der Signalprozessor konfiguriert ist, um
eine andere Anzeige über eine hohe Schwingung oder Temperatur anzuzeigen, wenn eine nächstfolgende Abtastung entweder des X-Achsenvergleichs, des Y-Achsenvergleichs oder des Temperaturvergleichs einen zweiten Schwellenwert überschreitet.
 
4. Zustandsüberwachungsvorrichtung nach Anspruch 1, wobei das Gerät (20) eine Pumpe mit einem Lagerrahmen und einem Drucklager ist und die Zustandsüberwachungsvorrichtung (10) an einer Aussparung des Lagerrahmens der Pumpe angebracht ist, um die Integrität der Temperaturanzeigen vor einer Beeinflussung und die Zustandsüberwachungsvorrichtung (10) vor physikalischen Beschädigungen zu schützen, und in einem Bereich am Lagerrahmen angebracht ist, der die Temperatur und X- und Y-Achsenschwingung des Drucklagers der Pumpe überwacht.
 
5. Zustandsüberwachungsvorrichtung nach Anspruch 1, wobei der Signalprozessor konfiguriert ist, um das Gerät (20) zu überwachen, aber nicht, um das Gerät (20) abzuschalten oder zu steuern.
 
6. Zustandsüberwachungsvorrichtung nach Anspruch 1, bei der das Anzeigen eine akustische Anzeige oder eine visuelle Anzeige oder eine Kombination davon beinhaltet.
 
7. Zustandsüberwachungsvorrichtung nach Anspruch 1, wobei der Signalprozessor konfiguriert ist, um die Zustandsüberwachungsvorrichtung (10) in regelmäßigen Abständen in einen Energiesparmodus zu bringen, um Energie zu sparen.
 
8. Zustandsüberwachungsvorrichtung nach Anspruch 1, wobei der Signalprozessor konfiguriert ist, um einen Startschwingungsniveau-Schwellenwert basierend auf einem Vielfachen eines abgetasteten Startschwingungsniveaus zu bestimmen, der entweder entlang der X- oder der Y-Achse des Geräts (20) gemessen wird.
 
9. Zustandsüberwachungsvorrichtung nach Anspruch 1, wobei der Signalprozessor konfiguriert ist, um einen Bereich von Startschwingungs-Schwellenwerten zu bestimmen, der einen niedrigstmöglichen vorbestimmten Startschwingungsniveauwert und einen höchstmöglichen vorbestimmten Startschwingungsniveauwert beinhaltet.
 
10. Verfahren zum Überwachen eines Geräts (20), Folgendes umfassend:

- Abtasten von Schwingungen des zu überwachenden Geräts (20) entlang mindestens zweier im Wesentlichen senkrechter X- und Y-Achsen;

- Erfassen der Temperatur des zu überwachenden Geräts (20);

- Abtasten, zum Start des überwachten Geräts (20) mit einem Signalprozessor eines X-Achsen-Startschwingungsniveau-Eingangssignals und eines Y-Achsen-Startschwingungsniveau-Eingangssignals;

- Definieren von X-Achsen-Schwingungs- und Y-Achsen-Schwingungsschwellenwerten basierend auf den Startschwingungsniveau-Eingangssignalen;

- Abtasten, zu einem späteren Zeitpunkt nach dem Start des überwachten Geräts (20) mit dem Signalprozessor eines nachfolgenden X-Achsen-Schwingungsniveau-Eingangssignals und eines nachfolgenden Y-Achsen-Schwingungsniveau-Eingangssignals zum Abtasten von Schwingungen, sowie eines Temperatureingangssignals von der Temperaturerfassung;

- Abtasten eines Temperatursensor (106)-Eingangssignals mit dem Signalprozessor zum späteren Zeitpunkt nach dem Start des überwachten Geräts (20);

Überwachen des Geräts (20) basierend auf Folgendem:

(i) Ausführen eines X-Achsenvergleichs zwischen dem nachfolgenden X-Achsen-Schwingungsniveau-Eingangssignal und dem X-Achsen-Schwingungsschwellenwert; und

(ii) Ausführen eines Y-Achsenvergleichs zwischen dem nachfolgenden Y-Achsen-Schwingungsniveau-Eingangssignal und dem Y-Achsen-Schwingungsschwellenwert; und

(iii) Ausführen eines Temperaturvergleichs zwischen dem Temperatursensor (106)-Eingangssignal und einem vorbestimmten Temperaturschwellenwert;

wobei das Verfahren nach der Überwachung Folgendes umfasst:

- Anzeigen einer Anzeige über eine hohe Schwingung oder Temperatur bei einem mit dem Gerät (20) assoziierten Zustand einer hohen Schwingung oder Temperatur, wenn entweder das Ergebnis des X-Achsen-Vergleichs oder des Y-Achsen-Vergleichs anzeigt, dass das nachfolgende Schwingungsniveau-Eingangssignal den jeweiligen Schwingungsschwellenwert bei mindestens zwei aufeinanderfolgenden Abtastwerten überschreitet, oder

- Anzeigen einer normalen Anzeige.


 
11. Verfahren nach Anspruch 10, wobei das Verfahren dann, wenn die Anzeige über eine hohe Vibration oder Temperatur angezeigt wird, Folgendes umfasst:

erneutes Abtasten mit dem Signalprozessor des nachfolgenden X-Achsen-Schwingungsniveau-Eingangssignals und des nachfolgenden Y-Achsen-Schwingungsniveau-Eingangssignals zu einer nächstfolgenden Zeit, die kürzer als eine normale vorbestimmte Abtastzeit ist;

erneutes Abtasten des Temperatursensor (106)-Eingangssignals mit dem Signalprozessor zum nächstfolgenden Zeitpunkt;

Ausführen des X-Achsenvergleichs, des Y-Achsenvergleichs und des Temperaturvergleichs; und

Anzeigen der normalen Anzeige, wenn der X-Achsenvergleich, der Y-Achsenvergleich und der Temperaturvergleich unter den jeweiligen Schwellenwert fallen, der mit dem Gerät (20) assoziiert ist, um eine Zustandsüberwachungsvorrichtung (10) zurückzusetzen.


 
12. Verfahren nach Anspruch 10, wobei das Verfahren eine andere Anzeige über eine hohe Schwingung oder Temperatur anzeigt, wenn eine nächstfolgende Abtastung entweder des X-Achsenvergleichs, des Y-Achsenvergleichs oder des Temperaturvergleichs einen zweiten Schwellenwert überschreitet.
 
13. Verfahren nach Anspruch 10, wobei das Gerät (20) eine Pumpe mit einem Lagerrahmen und einem Drucklager ist und das Verfahren das Anbringen einer Zustandsüberwachungsvorrichtung (10) an einer Aussparung des Lagerrahmens der Pumpe umfasst, um die Integrität der Temperaturanzeigen vor einer Beeinflussung und die Zustandsüberwachungsvorrichtung (10) vor physikalischen Beschädigungen zu schützen, und in einem Bereich am Lagerrahmen angebracht ist, der die Temperatur und X- und Y-Achsenschwingung des Drucklagers der Pumpe überwacht.
 
14. Verfahren nach Anspruch 10, wobei das Verfahren das Überwachen des Geräts (20) mit dem Signalprozessor, aber nicht das Abschalten oder Steuern des Geräts (20) umfasst.
 
15. Verfahren nach Anspruch 10, bei der das Anzeigen eine akustische Anzeige oder eine visuelle Anzeige oder eine Kombination davon beinhaltet.
 
16. Verfahren nach Anspruch 10, wobei das Verfahren umfasst, mit dem Signalprozessor die Zustandsüberwachungsvorrichtung (10) in regelmäßigen Abständen in einen Energiesparmodus zu bringen, um Energie zu sparen.
 
17. Verfahren nach Anspruch 10, wobei das Verfahren das Bestimmen eines Startschwingungsniveau-Schwellenwertes mit dem Signalprozessor basierend auf einem Vielfachen eines abgetasteten Startschwingungsniveaus umfasst, das entweder entlang der X- oder der Y-Achse des Geräts (20) gemessen wird.
 
18. Verfahren nach Anspruch 10, wobei das Verfahren das Bestimmen eines Bereichs von Startschwingungsniveau-Schwellenwerten mit dem Signalprozessor umfasst, der einen niedrigstmöglichen vorbestimmten Startschwingungsniveauwert und einen höchstmöglichen vorbestimmten Startschwingungsniveauwert beinhaltet.
 


Revendications

1. Appareil de surveillance d'état (10) pour la fixation sur et la surveillance d'un dispositif (20) comprenant :

des moyens (12) pour l'échantillonnage de vibrations dudit dispositif (20) à surveiller, le long d'au moins deux axes X et Y sensiblement perpendiculaires ;

des moyens (16) pour la détection de la température dudit dispositif (20) à surveiller ;

un processeur de signaux configuré pour :

- échantillonner, au moment du démarrage du dispositif (20) surveillé, un signal d'entrée de niveau de vibration de démarrage d'axe X et un signal d'entrée de niveau de vibration de démarrage d'axe Y ;

- définir des seuils de vibration d'axe X et de vibration d'axe Y, sur base desdits signaux d'entrée de niveau de vibration de démarrage ;

- échantillonner, à un moment ultérieur après le démarrage du dispositif (20) surveillé, un signal d'entrée de niveau de vibration ultérieur d'axe X et une vibration ultérieur d'axe Y un signal d'entrée de niveau provenant desdits moyens (12) pour l'échantillonnage de vibrations, ainsi qu'un signal d'entrée de température provenant desdits moyens (16) pour la détection de la température ;

- surveiller le dispositif (20) sur base de ce qui suit :

(i) la réalisation d'une comparaison d'axe X entre ledit signal d'entrée de niveau de vibration ultérieur d'axe X et ledit seuil de vibration d'axe X ; et

(ii) la réalisation d'une comparaison d'axe Y entre ledit signal d'entrée de niveau de vibration ultérieur d'axe Y et ledit seuil de vibration d'axe Y ; et

(iii) la réalisation d'une comparaison de température entre le signal d'entrée de capteur de température (106) et un seuil de température prédéterminé ;

- après la surveillance,

- annoncer une indication de vibration ou de température élevée pour une condition de vibration ou de température élevée associée au dispositif (20) si le résultat de soit la comparaison d'axe X ou la comparaison d'axe Y indique que le signal d'entrée de niveau de vibration ultérieur dépasse ledit seuil de vibration respectif, pour au moins deux échantillons successifs, ou

- annoncer une indication normale.


 
2. Appareil de surveillance d'état selon la revendication 1, dans lequel si l'indication de vibration ou de température élevée est annoncée, alors le processeur de signaux est configuré pour rééchantillonner le signal d'entrée de niveau de vibration ultérieur d'axe X et le signal d'entrée de niveau de vibration ultérieur d'axe Y à un moment ultérieur suivant qui est un moment prédéterminé inférieur à un moment d'échantillonnage prédéterminé normal ;

rééchantillonner le signal d'entrée de capteur de température (106) au moment ultérieur suivant ;

réaliser la comparaison d'axe X, la comparaison d'axe Y et la comparaison de température ;
et

annoncer l'indication normale si la comparaison d'axe X, la comparaison d'axe Y et la comparaison de température tombent au-dessous de la valeur seuil respective associée au dispositif (20) afin de réinitialiser l'appareil de surveillance d'état (10).


 
3. Appareil de surveillance d'état selon la revendication 1, dans lequel le processeur de signaux est configuré pour annoncer une indication de vibration ou de température élevée différente si un échantillonnage successif suivant soit de la comparaison d'axe X, de la comparaison d'axe Y, ou de la comparaison de température dépasse une deuxième valeur seuil.
 
4. Appareil de surveillance d'état selon la revendication 1, dans lequel le dispositif (20) est une pompe ayant un corps de palier et un palier de butée, et l'appareil de surveillance d'état (10) est monté sur un évidement du corps de palier de la pompe afin de protéger l'intégrité des mesures de température du vent et l'appareil de surveillance d'état (10) d'un endommagement physique et est monté dans une zone sur le corps de palier qui surveille la température et les vibrations d'axes X et Y du palier de butée de la pompe.
 
5. Appareil de surveillance d'état selon la revendication 1, dans lequel le processeur de signaux est configuré pour surveiller le dispositif (20) mais pas pour couper ou commander le dispositif (20).
 
6. Appareil de surveillance d'état selon la revendication 1, dans lequel l'annonce comprend une indication audio, ou une indication visuelle, ou une combinaison de celles-ci.
 
7. Appareil de surveillance d'état selon la revendication 1, dans lequel le processeur de signaux est configuré pour faire entrer périodiquement l'appareil de surveillance d'état (10) dans un mode de faible puissance de sorte à économiser de l'énergie.
 
8. Appareil de surveillance d'état selon la revendication 1, dans lequel le processeur de signaux est configuré pour déterminer une valeur seuil de niveau de vibration de démarrage sur base d'un multiple d'un niveau de vibration de démarrage échantillonné mesuré le long de l'un ou l'autre des axes X ou Y du dispositif (20).
 
9. Appareil de surveillance d'état selon la revendication 1, dans lequel le processeur de signaux est configuré pour déterminer une plage de valeurs seuil de niveau de vibration de démarrage, comprenant une valeur de niveau de vibration de démarrage prédéterminée la plus basse possible et une valeur de niveau de vibration de démarrage prédéterminée la plus haute possible.
 
10. Procédé pour la surveillance d'un dispositif (20) comprenant :

- l'échantillonnage de vibrations dudit dispositif (20) à surveiller, le long d'au moins deux axes X et Y sensiblement perpendiculaires ;

- la détection de la température dudit dispositif (20) à surveiller ;

- l'échantillonnage, au démarrage du dispositif (20) surveillé, avec un processeur de signaux d'un signal d'entrée de niveau de vibration de démarrage d'axe X et d'un signal d'entrée de niveau de vibration de démarrage d'axe Y ;

- la définition de seuils de vibration d'axe X et de vibration d'axe Y, sur base desdits signaux d'entrée de niveau de vibration de démarrage ;

- l'échantillonnage, à un moment ultérieur après le démarrage du dispositif (20) surveillé, avec le processeur de signaux d'un signal d'entrée de niveau de vibration ultérieur d'axe X et d'un signal d'entrée de niveau de vibration ultérieur d'axe Y pour l'échantillonnage de vibrations, ainsi qu'un signal d'entrée de température à partir de ladite détection de la température ;

- l'échantillonnage avec le processeur de signaux d'un signal d'entrée de capteur de température (106) au moment ultérieur après le démarrage du dispositif (20) surveillé ; la surveillance du dispositif (20) sur base de ce qui suit :

(i) la réalisation d'une comparaison d'axe X entre ledit signal d'entrée de niveau de vibration ultérieur d'axe X et ledit seuil de vibration d'axe X ; et

(ii) la réalisation d'une comparaison d'axe Y entre ledit signal d'entrée de niveau de vibration ultérieur d'axe Y et le seuil de vibration d'axe Y ; et

(iii) la réalisation d'une comparaison de température entre le signal d'entrée de capteur de température (106) et un seuil de température prédéterminé ;

dans lequel le procédé comprend après la surveillance :

- l'annonce d'une indication de vibration ou de température élevée pour une condition de vibration ou de température élevée associée au dispositif (20) si le résultat de soit la comparaison d'axe X ou la comparaison d'axe Y indique que le signal d'entrée de niveau de vibration ultérieur dépasse ledit seuil de vibration respectif, pour au moins deux échantillons successifs, ou

- l'annonce d'une indication normale.


 
11. Procédé selon la revendication 10, dans lequel le procédé comprend en outre, si l'indication de vibration ou de température élevée est annoncée, alors

le rééchantillonnage avec le processeur de signaux du signal d'entrée de niveau de vibration ultérieur d'axe X et du signal d'entrée de niveau de vibration ultérieur d'axe Y à un moment ultérieur suivant qui est inférieur à un moment d'échantillonnage prédéterminé normal ;

le rééchantillonnage avec le processeur de signaux du signal d'entrée de capteur de température (106) au moment ultérieur suivant ;

la réalisation de la comparaison d'axe X, de la comparaison d'axe Y et de la comparaison de température ; et

l'annonce de l'indication normale si la comparaison d'axe X, la comparaison d'axe Y et la comparaison de température tombent en dessous de la valeur seuil respective associée au dispositif (20) afin de réinitialiser un appareil de surveillance d'état (10).


 
12. Procédé selon la revendication 10, dans lequel le procédé annonce une indication de vibration ou de température élevée différente si un échantillonnage successif suivant de soit la comparaison d'axe X, la comparaison d'axe Y ou la comparaison de température dépasse une deuxième valeur seuil.
 
13. Procédé selon la revendication 10, dans lequel le dispositif (20) est une pompe ayant un corps de palier et un palier de butée, et le procédé comprend le montage d'un appareil de surveillance d'état (10) sur un évidement du corps de palier de la pompe afin de protéger l'intégrité des mesures de température du vent et l'appareil de contrôle d'état (10) d'un endommagement physique et le montage dans une zone sur le corps de palier qui surveille la température et les vibrations des axes X et Y du palier de butée de la pompe.
 
14. Procédé selon la revendication 10, dans lequel le procédé comprend la surveillance avec le processeur de signaux du dispositif (20) mais pas la coupure ou la commande du dispositif (20).
 
15. Procédé selon la revendication 10, dans lequel l'annonce comprend une indication audio, ou une indication visuelle, ou une combinaison de celles-ci.
 
16. Procédé selon la revendication 10, dans lequel le procédé comprend l'entrée périodique avec le processeur de signaux de l'appareil de surveillance d'état (10) dans un mode de faible puissance afin d'économiser de l'énergie.
 
17. Procédé selon la revendication 10, dans lequel le procédé comprend la détermination avec le processeur de signaux d'une valeur seuil de niveau de vibration de démarrage sur base d'un multiple d'un niveau de vibration de démarrage échantillonné mesuré le long de l'un ou l'autre des axes X ou Y du dispositif (20).
 
18. Procédé selon la revendication 10, dans lequel le procédé comprend la détermination avec le processeur de signaux d'une plage de valeurs de seuil de niveau de vibration de démarrage, comprenant une valeur de niveau de vibration de démarrage prédéterminée la plus basse possible et une valeur de niveau de vibration de démarrage prédéterminée la plus haute possible.
 




Drawing





























Cited references

REFERENCES CITED IN THE DESCRIPTION



This list of references cited by the applicant is for the reader's convenience only. It does not form part of the European patent document. Even though great care has been taken in compiling the references, errors or omissions cannot be excluded and the EPO disclaims all liability in this regard.

Patent documents cited in the description