(19)
(11)EP 2 203 590 B2

(12)NEW EUROPEAN PATENT SPECIFICATION
After opposition procedure

(45)Date of publication and mention of the opposition decision:
06.05.2020 Bulletin 2020/19

(45)Mention of the grant of the patent:
24.08.2011 Bulletin 2011/34

(21)Application number: 08833447.9

(22)Date of filing:  26.09.2008
(51)Int. Cl.: 
D21D 5/02  (2006.01)
D21D 5/06  (2006.01)
(86)International application number:
PCT/FI2008/000107
(87)International publication number:
WO 2009/040464 (02.04.2009 Gazette  2009/14)

(54)

APPARATUS FOR SCREENING FIBROUS SUSPENSIONS

VORRICHTUNG ZUM SIEBEN VON FASERSTOFFSUSPENSIONEN

APPAREIL POUR CRIBLER DES SUSPENSIONS FIBREUSES


(84)Designated Contracting States:
AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MT NL NO PL PT RO SE SI SK TR

(30)Priority: 28.09.2007 FI 20070741

(43)Date of publication of application:
07.07.2010 Bulletin 2010/27

(73)Proprietor: Andritz Oy
00180 Helsinki (FI)

(72)Inventors:
  • HARJU, Petri
    FI-49490 Neuvoton (FI)
  • SIIK, Sami
    FIN-49490 Neuvoton (FI)
  • KIERO, Simo
    FI-48601 kotka (FI)
  • TERÄVÄ, Ville
    FI-48410 Kotka (FI)

(74)Representative: Hoffmann Eitle 
Patent- und Rechtsanwälte PartmbB Arabellastraße 30
81925 München
81925 München (DE)


(56)References cited: : 
EP-A2- 1 143 065
WO-A-02/064884
US-A- 3 174 622
US-A- 4 193 865
US-A- 5 000 842
US-A- 5 172 813
US-A- 5 192 438
US-B1- 6 311 850
WO-A-94/23848
CA-A1- 2 186 328
US-A- 4 097 374
US-A- 4 776 957
US-A- 5 147 543
US-A- 5 176 261
US-A- 5 547 083
  
      


    Description

    BACKGROUND OF THE INVENTION



    [0001] The present invention relates to a screen for treating fibrous suspensions, such as pulps, of the wood processing industry. Especially it relates to the construction of a rotor element for the screen.

    [0002] Pressure screens are essential devices in the production of pulp and paper. They remove from the pulp suspension mainly impurities, over-sized pieces of wood and fiber bundles as well as other undesired substances. The screen can also fractionate fibers according to their length for improving the properties of the pulp. The precise function of the screen is dependent on the location in the process where it is used. In the screening process the water suspension of the pulp fibers is typically pumped into a cylindrical chamber, wherein the suspension is brought to contact with the screen surface and a rotor moving at high velocity. The rotational velocity of the rotor pushes the fibrous material into movement, whereby part of it is passed as accept through apertures in the screen surface. The high-speed rotor applies positive and negative impact pulses to the suspension. The positive impact pulses push the fibers through the apertures in the screen and may fractionate the fibers. The negative impact pulses provide for a regular flush-back of the apertures in the screen surface so that the fibers do not plug the apertures.

    [0003] The pulp suspension consists of millions of elastic fibers that easily attach to each other forming so-called fiber flocks. Even at a low consistency such as 0.01% the fibers form unstable flocs. In a typical screening consistency, 1-3% the fibers form stable flocks and fiber networks hamper the screening. The fibers and undesired solid matter are periodically removed from the net in order to enable the screening the remaining fibers from the flocks and fiber networks into reject and accept fibers. When the pulp consistency increases, the force required for decomposing the fiber network increases intensively and finally a process limit is reached, where the apertures in the screen surface or the reject line is clogged. A large number of various rotor solutions has been developed with the aim of ensuring a continuous screening operation.

    [0004] In principle, the rotors can be divided into two basic groups, open and closed rotors. Both are being used and their purpose is, as known, to keep the screening surface clean, i.e. to prevent the formation of a fiber mat on the screening surface. The first group is characterized in that the interior of the screen drum is provided with a rotary shaft or a rotor, whereto blades are attached by means of arms. An example of this kind is the rotor solution according to US patent 4193865, where the rotor is arranged rotatably inside a cylindrical stationary screen drum, said rotor comprising blades located in the vicinity of the screen drum surface, which blades in the construction according to said patent form an angle with the drum axis i.e. the blades extend obliquely from one end of the screen drum to another. When moving, the blades impact pressure pulses on the screen surface, which pulses open the surface apertures. There are also solutions, in which the blades have been located on both sides of the screen drum. In that case, the suspension to be treated is fed to the inside or to the outside of the drum and the accept is, respectively, discharged from the outside or inside of the drum.

    [0005] In stationary rotors the rotor is an essentially closed cylindrical piece, the surface of which is provided with pulsation members, for instance almost hemispherical protrusions, so-called bulges. In this kind of an apparatus the pulp is fed into a treatment space located between the rotor cylinder and the screen drum outside thereof, whereby the purpose of the rotor protrusions, e.g., the bulges, is both to press the pulp against the screen drum and by means of its trailing edge to withdraw the fiber mat off the screen drum apertures. The bulges can be replaced by other kinds of protrusions.

    [0006] A solution widely used in the market is a represented by a method according to FI patent 77279 (US 5,000,842) and the solution developed for the implementation thereof. The method according to said patent is characterized in that the fiber suspension is subjected to axial forces with varying intensity and effective direction, the direction and intensity of which are determined based on the mutual axial positioning of the point of application and the countersurface of the screen drum and by means of which the axial velocity profile of the fiber suspension is changed while maintaining the flow direction continuously towards the discharge end. Preferably the surface of the rotor is divided into four zones: feed, feed and mixing, mixing, and efficient mixing. The rotor surface is typically provided with 10-40 protrusions, the shape of which varies according to the zone i.e. the axial part of the rotor that they are located on. The protrusions on the housing surface of the rotor are mainly formed of front surfaces facing the flow, preferably surfaces parallel to the housing surface and back surfaces that descend towards the housing surface of the rotor. The housing surface of the rotor is provided with protrusions of several different forms, which have been arranged onto the rotor housing so that two or more circumferential zones are formed separated from each other in the axial direction of the rotor, such as e.g. 4 zones. At least part of the front surfaces of the protrusions forms an angle with the axial direction. The front surface of the protrusions can be divided into two parts that form with the axial direction angles of different size. The variation interval of the angles is -45° - +45°compared to the axial direction. However, the functioning principle of the protrusions is the same as in other corresponding devices. The abrupt front surface imparts a strong pressure shock to the fiber mat on the screen drum, whereby the accept is pressed through the apertures of the drum. The sloping back surface of the protrusion withdraws some water back to the screening zone and thus releases from the grooves and apertures major particles and fiber flocks thus cleaning the screen drum.

    [0007] US Patent 5,192,438 describes a rotor which provides high intensity axial shear stress in addition to high positive pulses and negative pulses. The rotor has a contoured surface including a plurality of protrusions. A protrusion has a front plane, an upper plane, an inclined plane and edge surfaces, which may converge. The trailing surface of the protrusion is abrupt.

    [0008] So, in prior known solutions the functional prerequisite of pressure screens starts from the presumption that the rotor element is to develop an adequate pressure impulse on the interface to make the fiber particles flow through the screening surface and that the rotor element is to create by its trailing edge a negative pressure impulse to generate a turbulence that cleans the apertures clogged by the previous positive impulse. It has also been generally presented in the field that a negative impulse withdraws liquid back towards the feeding space preventing excess thickening of the fiber suspension in the feeding space and in its part cleaning the apertures of the screening surface. For enabling to create these conditions, the rotor must have an adequate rotational speed, which is, however, limited by energy consumption and mechanical durability of the screen, a typical speed for a rotor described in FI-patent 77279 (US 5,000,842) is 24 m/s.

    [0009] In the present industrially used pressure screen applications the rotor solutions have enabled to reach the maximum feed consistency level of pulp. The consistency level is almost the same for different rotor types, for instance for softwood (SW)-pulp approximately 2-3 %. Thus, there is a need in the field to develop a screen rotor that will allow higher feed consistencies.

    [0010] The present invention provides an apparatus for screening a fibrous suspension in accordance with claim 1, having a rotor element construction such that thicker pulp than before can be treated and thus essentially increase the feed consistency of the pulp compared to known solutions.

    [0011] The screen apparatus, in one embodiment, comprises a housing, conduits therein at least for the fiber suspension being fed in, for reject and accept, as well as a rotor and a cylindrical screen drum installed in the housing, at least one of which is rotatable, whereby the rotor surface is provided with rotor elements that are in proximity to the screen drum surface, whereby a rotor element mainly comprises a front surface facing the flow, an upper surface and a descending trailing surface. The trailing surface of the rotor element is curved and the sidewalls thereof converge at least along a part of their length towards the back point of the element. The length of the element, i.e. the distance between the front surface and the back point, is essentially greater than the greatest width of the element, i.e. the distance between the opposite sidewalls.

    [0012] The sidewalls of the trailing surface converge towards the back point such that the opposite sidewalls converge at the back point or substantially converge such that the back point is a narrow back section that may be curved.

    [0013] The trailing surface of the rotor element allows the pulp to flow without stalling, as smoothly as possible and without causing a strong turbulence on the screening surface. In the rotor elements disclosed herein, a positive pulse is first created, but after that by the design of the trailing surface of the rotor element a situation is generated where the trailing surface releases the pulp fibers as calmly as possible, minimizing turbulence on the screening surface. In the rotational direction of the rotor, the pulp first contacts the front surface of the rotor element, which guides the pulp to a capacity zone where the flow-through of the pulp is generated. The capacity zone is formed by a zone in the vicinity of the surface of the screen basket, where fibers enter the accept side. The front surface can be planar. It can be perpendicular or inclined in relation to the rotor surface. The front surface can be formed of two pieces positioned symmetrically or asymmetrically in relation to the longitudinal centre axis of the element forming a wedge to receive the flow. The front surface of the rotor element can also be curved. The front end, i.e. the front surface of the rotor element, the upper surface or plane parallel to the rotor surface and optionally a shoulder are designed so that the pulp is led as an essentially smooth film into the space between the screening surface and the rotor element, wherefrom the accepted pulp fibers are run and pressed through the screening surface into the accept side. According to an embodiment, the rotor element can also be devoid of a shoulder, such that the pulp may as well contact directly a front surface and a trailing surface that curves therefrom towards the back point. A rotor element's planar upper surface devoid of a shoulder can have an advantageous influence on energy consumption.

    [0014] Preferred optional features are recited in the dependent claims.

    [0015] The trailing surface of the rotor element is curved and the sidewalls thereof converge at least along a part of their length towards and at the back point of the element. According to the invention, the trailing surface has at least a first part and a second part, whereby the first part is closest to the front surface or the possible shoulder and its sidewalls are substantially parallel to each other, i.e. the width does not change, while the sidewalls of the second part converge towards and to the back point.

    [0016] In the initial point of the curved trailing surface of the rotor element a lag angle is preferably less than 10°, whereby the angle is formed between a tangential plane intersecting said initial point of the of the trailing surface curve and a tangential plane of a curvature radius of the trailing surface curve.

    [0017] According to an embodiment the front part and/or back part of a novel rotor element can also be hydrofoil-like. One end of the rotor element is a stationary piece, whereby the element can e.g. be constructed as a stationary piece, but the front portion's part facing the rotor body has been cut away. That way, the front part's surface receiving the pulp flow is hydrofoil-like and guides the pulp smoothly. Preferably, the front edge of the hydrofoil-like front portion is curved.

    [0018] The rotor elements disclosed herein allow the fiber suspension to be led as a film-like flow into the narrow space between the element and the screening surface, in which space the fiber suspension is pressed through the apertures in the screen surface. The gently curved trailing surface the sidewalls of which converge towards the back point guides the flow towards the back point and minimizes stalling of the flow, increase of flow resistance caused by cavitation, and decreases turbulence that prevents water from being removed to the accept side and the reject from thickening. Thus, the escape of small impurities and first of all water into accept is prevented, as the retention capacity of the fiber net is improved due to calm flow conditions. Thus, the thickening of the reject is decreased compared to known screens.

    [0019] The design of rotor element disclosed herein is hydro-dynamically efficient, and it allows a greater rotational speed without remarkable increase in energy. Simultaneously, the mechanical stress of the device is decreased. The rotor having the elements according to the invention operates at low circumferential speeds as well, which results in remarkable saving in energy.

    [0020] The rotor elements disclosed herein may be applied in connection with a closed rotor, most usually having a cylindrical shape, but it can also be e.g. conical. The rotor can also be open, whereby the rotor elements are supported by arms or other supporting members.

    SUMMARY OF DRAWINGS:



    [0021] The present invention is described in more detail with reference to the appended figures, in which

    Figures 1a, 1b, 1c and 1d illustrate schematically the flow conditions surrounding a known rotor element (Figs. 1 a and 1 b) and an embodiment of novel rotor element according (Figs 1c and 1d);

    Figures 2a to 2d illustrate preferred embodiments of the rotor element;

    Figure 3 illustrates a schematic cross section of a screen;

    Figures 4a and 4b illustrate a top view of a plurality of rotor elements arranged on a surface of the rotor, where the rotor is shown in planar form for illustrative purposes, Figures 5a to 5f illustrate preferred embodiments of the novel rotor element, and

    Figure 6 is a graph that illustrates the capacity of a screen device having a rotor with the novel rotor elements as disclosed herein and that of a prior art screen device having a rotor with conventional rotor elements, such as shown in Figures 1a and 1b.


    DETAILED DESCRIPTION OF THE INVENTION



    [0022] Figures 1a and 1b illustrate a conventional rotor element 10 in side view and as seen from above, respecttively. The rotor element has a front surface 11, a plane surface 12 parallel to the rotor surface, a shoulder 13 and a trailing surface 14 descending angularly towards the rotor surface. The front surface 11 is perpendicular towards the rotor surface and divided into two parts, which together form a plow-like surface. The abrupt front surface imparts a pressure shock to the pulp flow in the screen drum, by means of which the accept is pressed through the screen drum. After the shoulder, an intensive turbulence starts in the pulp flow under the effect of the suction impulse resulting as the taper of the trailing edge causes the surface of the rotor element to move radially away from the screen. The turbulence keeps the screen surface open and thus allows water to flow into the accept, contributing to thickening of the reject.

    [0023] Of the embodiments described in the following and illustrated in the drawings, only those are in accordance with the invention which include rotor elements having trailing surfaces as defined in claim 1.

    [0024] Figures 1c and 1d illustrate a novel rotor element 20 on the surface of a cylindrical rotor. The element has a front surface 21, an upper plane 22 parallel to the rotor surface, a shoulder 23 and a trailing surface 24 descending curvedly towards the rotor surface. The sidewalls 27 and 28 of the trailing surface converge towards and at the back point 29. The front surface 21 of the rotor element 20 is perpendicular towards the rotor surface and divided into two parts 25 and 26, which together form a plow-like front surface 21. The front surface and the upper plane 22 assist in guiding the pulp as a thin smooth film onto the screening surface, from where the accepted fiber fraction is passed to the accept side of the screen drum in a zone where the clearance between the screen drum and the rotor element is the smallest. After the shoulder the curved trailing surface 24 has a long gentle slope which minimizes the turbulence of the pulp flow to promote a homogeneous pulp flow that conforms to the curvature of the screening surface. The homogeneous pulp flow reduces the amount of water entering the accept side and thus minimizes the thickening disturbing the screening of the reject.

    [0025] Figures 2a to 2d illustrate schematically preferred forms of a novel rotor element, both in side view (Figs. 2a and 2c) and from above (Figs. 2b and 2d). Figure 2a shows a rotor element 30 in the form of a protrusion on the surface 31 of the rotor, which protrusion can be formed on said surface or the element is attached to the surface by appropriate means known per se, such as by welding, with a screw and other attachment means. The views from above (Fig. 2b and 2d) each show two differrent embodiments of the novel rotor element. The first rotor element embodiment is shown by a continuous line in Figs. 2b and 2d, the front surface 32 is perpendicular in relation to the rotor surface, but the front edge 33 is curved, so that the energy consumption is decreased. After the front surface follows a plane 34 parallel to the rotor surface, which plane ends in a shoulder 35. The trailing surface 36 is curved to promote laminar and smooth pulp flow between the screen and trailing surface and downstream of the shoulder. In this embodiment (continuous lines in Figs 2b and 2d), the trailing surface has at least a first part 37 and a second part 38, whereby the first part is closest to the shoulder and its sidewalls are substantially parallel to each other, while the sidewalls of the second part converge towards the back point 39,' 54, such that the opposite sidewalls converge at the back point or substantially converge such that the back point is a narrow back section that may be curved.

    [0026] In the initial point of the curved trailing sidewalls of the rotor element the lag angle is preferably less than 10°, whereby an angle a is formed between a tangential plane T2 intersecting said initial point of the curve and a tangential plane T1 of the radius of curvature r1.

    [0027] Another embodiment of the novel rotor element is shown by the dash lines in Figures 2b and 2d. In this another embodiment, the front surface of the rotor element is divided into two parts 40 and 41 or 56 and 57 (dash line), which together form a plow-like surface. Then the front edge has a wedge-like form. The sidewalls 42 or 58 of the trailing surface converge towards and to one of the back points 39,39', 54 and 54' essentially as early as starting from the shoulder 35 or 55. A trailing surface converging starting from the shoulder can also be arranged in connection with a curved front surface or a wedge-like front surface, or a two-part trailing surface described in connection with the first embodiment can be arranged in connection to a wedge-like front surface.

    [0028] According to an embodiment the rotor element can also be devoid of a shoulder, i.e. the pulp may as well contact directly a front surface and a trailing surface that curves therefrom towards the back point. This alternative is illustrated with dash lines 44 or 59 on the rotor's upper surface in Figs 2a and 2b. A rotor element's planar upper surface devoid of a shoulder can have an advantageous influence on energy consumption.

    [0029] Figures 2c and 2d show a rotor element 50 is attached to surface 52 of the rotor via a support member 51. The rotor element 50 is similar to the rotor element 30 illustrated in Figures 2a and 2b, except the front surface 53 is curved, as shown in the side view of Figure 2c and the element is supported by a post 51 on the rotor surface 52..

    [0030] In accordance with Figure 3, a screen device 60 comprises an outer housing 62, conduit 63 therein for incoming pulp and discharge conduits for accept 64 and reject 65, a stationary screen drum 67 and an essentially cylindrical rotor 66 therein. The screen drum 67 can in principle be of any type, but the best results are obtained if a profiled screen drum is used. The operation of the screen device 60 is essentially the following: the fiber suspension is fed via conduit 63 inside the device, wherein the fiber suspension is passed into the gap between the screen drum 67 and rotor 66. The accept flown through the apertures of the screen drum is discharged from conduit 64, and the pulp flown to the lower end of the gap between the screen drum 67 and rotor 66 and thereout is discharged from reject conduit 65.

    [0031] Further, Figure 3 shows that the surface of rotor 66 on the side of the screen drum 67 is provided with rotor elements 68 (not in accordance with the invention) in the form of protrusions on the rotor surface. The rotor elements each have curved trailing surface with sidewalls that converge at a back point.

    [0032] Figure 4a and 4b illustrates rotor elements 68, 68' arranged on the surface of a rotor 66 bent, whereby the rotor surface is shown in planar form for purposes of illustration. The novel rotor element 68 (such as shown in Figures 1 c and 1 d, and figure 2 a to 2d and 5a to 5f) allows using a greater number of rotor elements 68 on one and the same circumferential sector without decreasing the goodness criteria of screening. Additional screening capacity can be obtained by locating more rotor elements on the same circumferential line around the rotor. Adding rotor elements may increase the feeding consistency. In contrast, conventional rotor elements cause strong cavitations and flow stall in the pulp flow over and after the trailing surfaces. The cavitations and stalling results in turbulence in the pulp flow that interferes with pulp flow over downstream rotor elements. The cavitation and stalling of the pulp flow, limits the number of conventional rotor elements that can be positioned on the same circumferential line around a rotor while providing effecttive screening..

    [0033] Figure 4b illustrates a rotor element 68' embodiment (the lower drawing), in which the novel rotor element is elongated in the circumferential direction. The arcuate length of the elongated element can be at least 35°, even 50° -200°. The number of elements on the same circumferential segment can be e.g. two.

    [0034] Figs. 5a-5f show additional embodiments of a rotor element according to the invention in a way similar to that in connection with Figs. 2a-2d, as well as in side view (Figs. 5a, 5c and 5e) and from above (Fig. 5b, 5d and 5f).

    [0035] In Figs. 5a and 5b, a rotor element 70 is on the surface 71 of the rotor in form of a protrusion that can be formed in the said surface, or the element is fixed onto the surface by means known perse, such as by welding, with a screw etc. However, the front part 74 of the rotor element is clear of the rotor surface, so that there is a gap 75 between the rotor element and the rotor surface and that the front part is similar to a hydrofoil. Thus the pulp flow can pass it smoothly, i.e. without a major pressure shock. At the same time, the rotor element penetrates the pulp flow smoothly, whereby the flow is distributed more evenly to the capacity zone. This facilitates a smooth and efficient flow of the pulp onto the rotor element. The view from above (Fig. 5b) illustrates two different embodiments. In the first embodiment (continuous line) the front edge 73 of the front surface 72 is curved. In the other embodiment the front surface is divided into two parts 75 and 75' (dash line) that together form a wedge-like surface. Thus the front surface has a wedge-like shape. In accordance with the invention the trailing surface 77 is curved and its sidewalls 78 and 79 or 78' and 79' converge towards the back point 76 or 76', respectively.

    [0036] Figs. 5c and 5d illustrate an alternative shape of a front part 82 of rotor element 80 on the rotor surface 81. The rotor element is machined or gouged at the sides 83 of the front part 82 so that the flow is smoothly directed under the front part to the sides of the element. The purpose is to pierce the pulp flow with the rotor element so that a smooth flow onto the element is achieved. Otherwise the shape of the rotor element is similar to that of Figs. 5a-5b.

    [0037] Figs. 5e and 5f illustrate on alternative embodiment, wherein both the front part 85 and the back part 86 of the rotor element 84 are machined or gouged so that they are clear of the rotor surface 87. The trailing surface 88 of the element is curved and its sidewalls converge towards the back point 89. The view from above (Fig. 5f) illustrates two different embodiments, in which the front edge 90 (continuous line) of the front surface is curved or the front surface is divided into two parts 91 and 91' (dash line) that together form a wedge-like surface.

    [0038] Figure 6 illustrates the maximum functional capability of a screen having the novel rotor elements disclosed herein and a prior art screen in a pulp production line with normal equipment. The dash line illustrates the consistency of the reject as a function of feeding consistency, and the continuous line the specific energy consumption (OEK) of the rotor as a function of feeding consistency. The pulp in question is oxygen-delignified SW-SA (softwood sulphate)pulp. Lines 1 illustrate a screen with the novel rotor elements and lines 2 a prior art screen. The device with the novel rotor elements operates at a significantly higher feeding consistency than the prior art device, and still the energy consumption is lower. Also, the thickening of the reject is lower in the device with the novel rotor elements, although it is operated at the same or a higher feeding consistency as the device with the prior art screen. The device with the novel rotor elements is further characterized in that lower rotor speeds can be used at the required feeding consistency, which decreases energy consumption.

    [0039] The screen with novel rotor elements disclosed herein may provide at least the following advantages:
    • low thickening tendency of the reject
    • high feeding consistencies can be used, e.g. in the apparatus disclosed herein had a feeding consistency of SW-pulp of 1.5 % higher than the prior art device. As a result of this, the number of water cycles in the mill is decreased, need for pumping is decreased, apparatuses, such as containers, are required in decreased numbers, sizes of the apparatuses are decreased, pipe lines become shorter, the overall space requirement is decreased
    • decreased energy consumption compared to prior art
    • better running security of the screen, because cavitation is decreased.
    • more reserve capacity.


    [0040] While the invention has been described in connection with what is presently considered to be the most practical and preferred embodiment, it is to be understood that the invention is not to be limited to the disclosed embodiment, but on the contrary, is intended to cover various modifications and equivalent arrangements included within the scope of the appended claims.


    Claims

    1. An apparatus for screening a fibrous suspension comprising:

    a housing (62), a conduit (63) therein for fiber suspension being fed, an outlet (65) for reject and an outlet (64) for accept, and a rotor (66) and a cylindrical screen drum (67) installed in the housing, at least one of which is rotatable,

    whereby a surface of the rotor is provided with rotor elements (20, 30, 50, 70, 80, 84, 68) in proximity to the surface of the screen drum,

    whereby each rotor element includes a front surface (21, 32, 53, 72) facing a flow of the fiber suspension, an upper surface (22, 34, 44, 59) and a trailing surface (24, 36, 77, 88) sloping from the upper surface towards the surface (31, 71, 81, 87) of the rotor,

    wherein the trailing surface of the rotor element is curved,

    wherein sidewalls (27, 28; 42; 58; 78, 79) of the trailing surface converge towards a back point (29, 39, 39', 54, 76, 89) of the rotor element, and

    wherein the trailing surface (36) comprises at least a first part (37) and a second part (38), whereby the sidewalls of the first part are essentially parallel to each other and the sidewalls of the second part converge towards the back point (39).


     
    2. An apparatus according to claim 1, wherein the sidewalls (27, 28; 42; 58; 78, 79) of the trailing surface converge essentially symmetrically in relation to a longitudinal centre axis of the element towards the back point (29, 39, 54, 76, 89) of the element.
     
    3. An apparatus according to claim 1 or 2, wherein the upper surface (22, 34) includes a shoulder (23, 35) forming a step on the upper surface.
     
    4. An apparatus according to any of the preceding claims, wherein the front surface of the rotor element (20, 30) is planar and formed of two pieces (25, 26; 40, 41) located symmetrically in relation to a longitudinal axis (L) of the rotor element and the front surfaces form a wedge facing the flow.
     
    5. An apparatus according to any of the preceding claims 1-4, wherein the front surface of the rotor element is planar and formed of two portions located asymmetrically in relation to the longitudinal centre axis of the element forming a wedge for receiving the flow.
     
    6. An apparatus according to any of the preceding claims 1-4, wherein the front surface (33, 53) of the rotor element (30, 50) is curved.
     
    7. An apparatus according to any of the preceding claims, wherein the upper surface (22) of the element is parallel to the surface of the rotor.
     
    8. An apparatus according to any of the preceding claims, wherein the rotor is cylindrical and the rotor element is formed as a protrusion from the rotor surface, said protrusion comprising at least a front surface (32), an upper surface (34, 44) and a trailing surface (36) sloping to the surface (31) of the rotor.
     
    9. An apparatus according to any of the preceding claims 1-7, wherein the rotor element (70) is formed as a protrusion from the rotor surface (71), so that a front part (74) of the rotor element is clear of the rotor surface (71) and it is hydrofoil-like.
     
    10. An apparatus according to any of the preceding claims 1-7, wherein the rotor element is formed as a protrusion from the rotor surface, so that a front part and a back part of the rotor element are machined or gouged so that they are clear of the rotor surface.
     
    11. An apparatus according to any of the preceding claims 1-7, wherein the rotor element (50) is supported onto the surface (52) of the rotor via a support member (51).
     
    12. An apparatus according to any of the preceding claims, wherein in an axial direction of the rotor, a plurality of rotor elements (68) are arranged in a staggered pattern in which rotor elements at least partially overlap along the axial direction.
     
    13. An apparatus according to any of the preceding claims, wherein the rotor elements (68) are arranged sequentially a distance from each other on essentially a common same circumferential line around the rotor.
     
    14. An apparatus according to any of the preceding claims, wherein each rotor element (30) includes a lag angle (α) in an upstream point of the curved trailing surface (36) which is less than 10°, whereby the lag angle (α) is formed between a tangential plane T2 intersecting said initial point of the trailing surface curve and a tangential plane T1 of a curvature radius r1 of the trailing surface curve.
     
    15. An apparatus according to any of the preceding claims, wherein the opposite sidewalls (27, 28; 42; 58; 78, 79) of the trailing surface each include straight sections which taper towards the back point.
     
    16. An apparatus according to claim 15, wherein the opposite sidewalls of the trailing surface each include a gradually curved portion proximate to the back point (29, 39, 39', 54, 54',76, 89), wherein the curved portions merge into the back point.
     
    17. An apparatus according to claim 15 or 16, wherein the opposite sidewalls of the trailing surface each include straight and parallel sections (37), and straight and converging sections (38) downstream of the straight and parallel sections.
     
    18. An apparatus according to any of the preceding claims, wherein the trailing surface tapers to the surface (31, 71, 81) of the rotor and meets the surface of the rotor at the back point (39, 39', 76).
     


    Ansprüche

    1. Gerät zum Filtern einer faserigen Suspension mit:

    einem Gehäuse (62), einer Leitung (63) darin zum Zuführen einer faserigen Suspension, einem Auslass (65) zum Abführen und einem Auslass (64) zur Annahme und einem Rotor (66) und einer zylindrischen Filtertrommel (67), von welchen mindestens eines rotierbar ist,

    bei dem eine Oberfläche des Rotors mit Rotorelementen (20, 30, 50, 70, 80, 84, 68) in der Nähe der Oberfläche der Filtertrommel versehen ist,

    bei dem jedes Rotorelement eine vordere Oberfläche (21, 32, 53, 72), die einem Fluss der faserigen Suspension gegenüberliegt, eine obere Oberfläche (22, 34, 44, 59) und eine rückliegende Oberfläche (24, 36, 77, 88) aufweist, die von der oberen Oberfläche zu der Oberfläche (31, 71, 81, 87) des Rotors hin abgeschrägt zuläuft,

    bei dem die rückliegende Oberfläche des Rotorelements gekrümmt ist,

    bei dem Seitenwände (27, 28; 42; 58; 78, 79) der rückliegenden Oberfläche zu einem hinteren Punkt (29, 39, 39', 54, 76, 89) des Rotorelements hin zusammenlaufen und

    bei dem die rückliegende Oberfläche (36) mindestens einen ersten Teil (37) und einen zweiten Teil (38) aufweist, wobei die Seitenwände des ersten Teils im Wesentlichen parallel zueinander sind und die Seitenwände des zweiten Teils in dem hinteren Punkt (39) zusammenlaufen.


     
    2. Gerät nach Anspruch 1, bei dem die Seitenwände (27, 28; 42; 58; 78, 79) der rückliegenden Oberfläche im Wesentlichen symmetrisch in Bezug auf eine longitudinale Zentralachse des Elements zu dem hinteren Punkt (29, 39, 54, 76, 89) des Elements hin zusammenlaufen.
     
    3. Gerät nach Anspruch 1 oder 2, bei dem die obere Oberfläche (22, 34) einen Absatz (23, 35) aufweist, der eine Stufe an der oberen Oberfläche bildet.
     
    4. Gerät nach einem der vorhergehenden Ansprüche, bei dem die vordere Oberfläche des Rotorelements (20, 30) eben ist und aus zwei Stücken (25, 26; 40, 41) gebildet ist, die symmetrisch in Bezug auf eine longitudinale Achse (L) des Rotorelements angebracht sind, und die vorderen Oberflächen einen Keil bilden, der dem Fluss gegenüberliegt.
     
    5. Gerät nach einem der vorhergehenden Ansprüche 1-4, bei dem die vordere Oberfläche des Rotorelements eben ist und aus zwei Teilbereichen gebildet ist, die asymmetrisch in Bezug auf die longitudinale Zentralachse des Elements angebracht sind, das einen Keil bildet, um den Fluss aufzunehmen.
     
    6. Gerät nach einem der vorhergehenden Ansprüche 1-4, bei dem die vordere Oberfläche (33, 53) des Rotorelements (30, 50) gekrümmt ist.
     
    7. Gerät nach einem der vorhergehenden Ansprüche, bei dem die obere Oberfläche (22) des Elements parallel zu der Oberfläche des Rotors ist.
     
    8. Gerät nach einem der vorhergehenden Ansprüche, bei dem der Rotor zylindrisch ist und das Rotorelement als Vorsprung von der Rotoroberfläche gebildet ist, wobei der Vorsprung mindestens eine vordere Oberfläche (32), eine obere Oberfläche (34, 44) und eine rückliegende Oberfläche (36) aufweist, die zu der Oberfläche (31) des Rotors hin abgeschrägt zuläuft.
     
    9. Gerät nach einem der vorhergehenden Ansprüche 1-7, bei dem das Rotorelement (70) als Vorsprung von der Rotoroberfläche (71) gebildet ist, sodass ein vorderer Teil (74) des Rotorelements einen Abstand zu der Rotoroberfläche (71) hat, und es tragflächenartig ist.
     
    10. Gerät nach einem der vorhergehenden Ansprüche 1-7, bei dem das Rotorelement als Vorsprung von der Rotoroberfläche gebildet ist, sodass ein vorderer Teil und ein hinterer Teil des Rotorelements so gefertigt oder ausgehöhlt werden, dass sie einen Abstand zu der Rotoroberfläche haben.
     
    11. Gerät nach einem der vorhergehenden Ansprüche 1-7, bei dem das Rotorelement (50) auf der Oberfläche (52) des Rotors mittels eines Stützglieds (51) gelagert ist.
     
    12. Gerät nach einem der vorhergehenden Ansprüche, bei dem in axialer Richtung des Rotors eine Vielzahl von Rotorelementen (68) in einem zueinander versetzten Muster angeordnet sind, bei dem die Rotorelemente zumindest teilweise in der axialen Richtung überlappen.
     
    13. Gerät nach einem der vorhergehenden Ansprüche, bei dem die Rotorelemente (68) nachfolgend in einem Abstand zueinander auf einer im Wesentlichen gemeinsamen, selben Umfangslinie um den Rotor herum angeordnet sind.
     
    14. Gerät nach einem der vorhergehenden Ansprüche, bei dem jedes Rotorelement (30) einen Nacheilwinkel (α) in einem vorgelagerten Punkt der gekrümmten rückliegenden Oberfläche (36) aufweist, der weniger als 10° beträgt, wobei der Nacheilwinkel (α) zwischen einer Tangentialebene T2, die den Ausgangspunkt der Krümmung der rückliegenden Oberfläche schneidet, und einer Tangentialebene T1 eines Krümmungsradius r1 der Krümmung der rückliegenden Oberfläche gebildet ist.
     
    15. Gerät nach einem der vorhergehenden Ansprüche, bei dem die gegenüberliegenden Seitenwände (27, 28; 42; 58; 78, 79) der rückliegenden Oberfläche jeweils gerade Abschnitte aufweisen, die sich zum hinteren Punkt hin verjüngen.
     
    16. Gerät nach Anspruch 15, bei dem die gegenüberliegenden Seitenwände der rückliegenden Oberfläche jeweils einen fortschreitend gekrümmten Teilbereich nahe des hinteren Punkts (29, 39, 39', 54, 54', 76, 89) aufweisen, wobei die gekrümmten Teilbereiche in den hinteren Punkt münden.
     
    17. Gerät nach Anspruch 15 oder 16, bei dem die gegenüberliegenden Seitenwände der rückliegenden Oberflächen jeweils gerade und parallele Abschnitte (37) und gerade und zusammenlaufende Abschnitte (38) aufweisen, die den geraden und parallelen Abschnitten nachgelagert sind.
     
    18. Gerät nach einem der vorhergehenden Ansprüche, bei dem sich die rückliegenden Oberflächen zu der Oberfläche (31, 71, 81) des Rotors hin verjüngen und die Oberfläche des Rotors im hinteren Punkt (39, 39', 76) treffen.
     


    Revendications

    1. Appareil de criblage d'une suspension fibreuse, comprenant :

    un boîtier (62), un conduit (63) placé à l'intérieur dudit boîtier et destiné à introduire la suspension fibreuse, une sortie (65) destinée à la réjection et une sortie (64) destinée à l'acceptation, et un rotor (66) et un tambour de criblage cylindrique (67) qui sont placés dans le boîtier et dont l'un au moins est rotatif,

    une surface du rotor étant dotée d'éléments de rotor (20, 30, 50, 70, 80, 84, 68) à proximité de la surface du tambour de criblage,

    chaque élément de rotor incluant une surface avant (21, 32, 53, 72) dirigée vers un flux de la suspension fibreuse, une surface supérieure (22, 34, 44, 59) et une surface arrière (24, 36, 77, 88) inclinée de la surface supérieure en direction de la surface (31, 71, 81, 87) du rotor,

    la surface arrière de l'élément de rotor étant incurvée, et

    des parois latérales (27, 28 ; 42 ; 58 ; 78, 79) de la surface arrière convergeant vers un point arrière (29, 39, 39', 54, 76, 89) de l'élément de rotor, et

    la surface arrière (36) comprenant au moins une première partie (37) et une deuxième partie (38), les parois latérales de la première partie étant sensiblement parallèles l'une à l'autre et les parois latérales de la deuxième partie convergeant au niveau du point arrière (39).


     
    2. Appareil selon la revendication 1, dans lequel les parois latérales (27, 28 ; 42 ; 58 ; 78, 79) de la surface arrière convergent, de façon sensiblement symétrique par rapport à un axe central longitudinal de l'élément, vers le point arrière (29, 39, 54, 76, 89) de l'élément.
     
    3. Appareil selon la revendication 1 ou 2, dans lequel la surface supérieure (22, 34) inclut un épaulement (23, 35) formant un gradin sur la surface supérieure.
     
    4. Appareil selon l'une quelconque des revendications précédentes, dans lequel la surface avant de l'élément de rotor (20, 30) est plane et est formée de deux pièces (25, 26 ; 40, 41) placées symétriquement par rapport à un axe longitudinal (L) de l'élément de rotor et les surfaces avant forment un coin dirigé vers le flux.
     
    5. Appareil selon l'une quelconque des revendications précédentes 1 à 4, dans lequel la surface avant de l'élément de rotor est plane et est formée de deux portions placées de façon dissymétrique par rapport à l'axe central longitudinal de l'élément en formant un coin destiné à recevoir le flux.
     
    6. Appareil selon l'une quelconque des revendications précédentes 1 à 4, dans lequel la surface avant (33, 53) de l'élément de rotor (30, 50) est incurvée.
     
    7. Appareil selon l'une quelconque des revendications précédentes, dans lequel la surface supérieure (22) de l'élément est parallèle à la surface du rotor.
     
    8. Appareil selon l'une quelconque des revendications précédentes, dans lequel le rotor est cylindrique et l'élément de rotor est conformé en saillie s'étendant depuis la surface du rotor, ladite saillie comprenant au moins une surface avant (32), une surface supérieure (34, 44) et une surface arrière (36) inclinée par rapport à la surface (31) du rotor.
     
    9. Appareil selon l'une quelconque des revendications précédentes 1 à 7, dans lequel l'élément de rotor (70) est conformé en saillie s'étendant depuis la surface de rotor (71), de sorte qu'une partie avant (74) de l'élément de rotor est dégagée de la surface de rotor (71) et est du type hydrofoil.
     
    10. Appareil selon l'une quelconque des revendications précédentes 1 à 7, dans lequel l'élément de rotor est conformé en saillie s'étendant depuis la surface de rotor, de sorte qu'une partie avant et une partie arrière de l'élément de rotor sont usinées ou gougées de telle sorte qu'elles sont dégagées de la surface de rotor.
     
    11. Appareil selon l'une quelconque des revendications précédentes 1 à 7, dans lequel l'élément de rotor (50) est supporté par la surface (52) du rotor par le biais d'un élément de support (51).
     
    12. Appareil selon l'une quelconque des revendications précédentes, dans lequel, dans une direction axiale du rotor, une pluralité d'éléments de rotor (68) sont disposés suivant un motif échelonné dans lequel des éléments de rotor se chevauchent au moins partiellement dans la direction axiale.
     
    13. Appareil selon l'une quelconque des revendications précédentes, dans lequel les éléments de rotor (68) sont disposés séquentiellement à distance l'un de l'autre sensiblement sur une même ligne circonférentielle commune s'étendant autour du rotor.
     
    14. Appareil selon l'une quelconque des revendications précédentes, dans lequel chaque élément de rotor (30) inclut un angle de traînée (α), inférieur à 10°, en un point amont de la surface arrière incurvée (36), l'angle de traînée (α) étant formé entre un plan tangentiel T2 passant par ledit point initial de la courbe de surface arrière et un plan tangentiel T1 à un rayon de courbure r1 de la courbe de surface arrière.
     
    15. Appareil selon l'une quelconque des revendications précédentes, dans lequel les parois latérales opposées (27, 28 ; 42 ; 58 ; 78, 79) de la surface arrière incluent chacune des sections droites qui s'amincissent en direction du point arrière.
     
    16. Appareil selon la revendication 15, dans lequel les parois latérales opposées de la surface arrière incluent chacune une portion progressivement incurvée près du point arrière (29, 39, 39', 54, 54', 76, 89), les portions incurvées fusionnant en point arrière.
     
    17. Appareil selon la revendication 15 ou 16, dans lequel les parois latérales opposées de la surface arrière incluent chacune des sections droites et parallèles (37), et des sections droites et convergentes (38) situées en aval des sections droites et parallèles.
     
    18. Appareil selon l'une quelconque des revendications précédentes, dans lequel la surface arrière s'amincit en direction de la surface (31, 71, 81) du rotor et rencontre la surface du rotor au point arrière (39, 39', 76).
     




    Drawing


















    REFERENCES CITED IN THE DESCRIPTION



    This list of references cited by the applicant is for the reader's convenience only. It does not form part of the European patent document. Even though great care has been taken in compiling the references, errors or omissions cannot be excluded and the EPO disclaims all liability in this regard.

    Patent documents cited in the description