(19)
(11)EP 2 211 189 B1

(12)EUROPEAN PATENT SPECIFICATION

(45)Mention of the grant of the patent:
19.09.2018 Bulletin 2018/38

(21)Application number: 09156905.3

(22)Date of filing:  31.03.2009
(51)International Patent Classification (IPC): 
H04Q 9/00(2006.01)
G08C 17/02(2006.01)
G08C 23/04(2006.01)
G01R 15/12(2006.01)

(54)

Digital multimeter having remote display with automatic communication mode switching

Digitaler Multimesser mit Remote-Anzeige mit automatischer Kommunikationsmodus-Schaltung

Multimètre numérique disposant d'un affichage distant avec une commutation automatique de mode de communication


(84)Designated Contracting States:
DE ES FR GB IT

(30)Priority: 21.01.2009 US 356885

(43)Date of publication of application:
28.07.2010 Bulletin 2010/30

(73)Proprietor: FLUKE CORPORATION
Everett, WA 98206 (US)

(72)Inventors:
  • Hudson, Jeffrey C.
    Snohomish, WA 98296 (US)
  • Wetzel, Nathaniel J.
    Seattle, WA 98133 (US)

(74)Representative: HGF Limited 
Fountain Precinct Balm Green
Sheffield S1 2JA
Sheffield S1 2JA (GB)


(56)References cited: : 
US-A- 5 880 867
US-A1- 2004 160 410
US-A- 6 035 350
  
      
    Note: Within nine months from the publication of the mention of the grant of the European patent, any person may give notice to the European Patent Office of opposition to the European patent granted. Notice of opposition shall be filed in a written reasoned statement. It shall not be deemed to have been filed until the opposition fee has been paid. (Art. 99(1) European Patent Convention).


    Description

    Background of the Invention



    [0001] The present invention relates generally to digital multimeters. More particularly, the invention relates to a digital multimeter having a remote display with automatic communication mode switching.

    [0002] Digital multimeters (DMMs) function to measure a number of electrical parameters as needed for service, troubleshooting and maintenance. Such parameters may include AC voltage and current, DC voltage and current, resistance and continuity. In some cases, a DMM may measure other parameters such as capacitance and temperature.

    [0003] A DMM will often be configured as a hand-held unit having a rotary knob by which various functions are selected. A plurality of lead jacks are provided in the case (i.e., housing) of the unit for connection of test leads. The specific jack used may depend on the function that has been selected. An LCD display provides a reading of the tested parameter.

    [0004] Generally, it is desired to place the DMM on a flat surface such as a shelf as measurements are being conducted. Often, however, the shelf may be in a position making it difficult to view the LCD display. In this circumstance, the user may be required to look away from the point of measurement in order to see the measurement reading. A remote display, separate from the DMM but linked by communication to the DMM, may be used to lessen this difficulty. Examples of remote displays are shown in U.S. Pub. No. 2003/0137310 to Holzel and U.S. Pat. No. 7,304,618 to Plathe. US 7,304,618 discloses a remote display for a portable meter which is connectable to the portable meter by a wired or a wireless connection.

    [0005] The remote display may use wireless coupling, such as infrared (IR) or radio frequency (RF), for communication with the DMM. While IR and RF are both effective, each has its limitations. RF utilizes a relatively high level of power, thus reducing battery life at the remote display. IR uses less power, but requires a line of sight between transmitter and receiver.

    Summary of the Invention



    [0006] According to one aspect, the present invention provides a multimeter comprising a base unit having at least one test lead terminal. A remote display unit separate from the base unit is also provided. The remote display unit has a display operative to show measured parameters. The multimeter further comprises communication circuitry operative to provide electrical communication between the base unit and the remote display unit. The communication circuitry provides electrical communication in a plurality of alternative communication modes.

    [0007] In exemplary embodiments, at least two of the alternative communication modes are wireless communication modes. A first communication is an optical communication mode (such as IR), whereas a second communication mode is an RF communication mode.

    [0008] It is often desirable if the communication circuitry provides electrical communication in a first communication mode when the remote display unit is located adjacent to the base unit and in a second communication mode when the remote display unit is located apart from the base unit. The communication circuitry first attempts to establish communication from the base unit in an IR communication mode and then switch to an RF communication mode if IR communication is unsuccessful.

    [0009] Embodiments are contemplated in which the remote display unit has an end surface canted at an acute angle relative to perpendicular such that the display will be tilted when the remote display unit is placed on a horizontal surface. Preferably, the remote display unit may also be adapted to be placed on a vertical surface. For example, an internal magnet may be utilized to retain the remote display unit on the vertical surface.

    [0010] In accordance with another aspect, the present invention provides a method of establishing electrical communication between a base unit and a separate remote display unit of an electrical test instrument. With one of the base unit and the remote display unit, a request for response via an IR communication mode is sent to the other of the base unit and the remote display unit. If a response to the request for response is received, then communication is maintained in an optical communication mode. If a response to the request for response is not received, then communication is established in an RF communication mode.

    [0011] A further aspect of the present invention provides an electrical test instrument comprising a base unit and a remote display unit separate from but matable with the base unit. The remote display unit has a display operative to show measured parameters. The electrical test instrument further comprises communication circuitry operative to provide electrical communication between the base unit and the remote display unit. The communication circuitry is operative to provide electrical communication in a first communication mode when the remote display unit is mated with the base unit and a second communication mode when the remote display unit is located apart from the base unit.

    [0012] Another aspect of the invention provides a multimeter comprising a base unit having a plurality of test lead jacks and a rotary selector knob. A remote display unit separate from but matable with the base unit is also provided. The remote display unit has a display operative to show measured parameters. The multimeter further includes communication circuitry operative to provide electrical communication between the base unit and the remote display unit. The communication circuitry is operative to provide electrical communication in a first communication mode when the remote display unit is mated with the base unit and a second communication mode when the remote display unit is located apart from the base unit. In this aspect, the first and second communication modes are wireless communication modes.

    [0013] Other objects, features and aspects of the present invention are provided by various combinations and subcombinations of the disclosed elements, as well as methods of practicing same, which are discussed in greater detail below.

    Brief Description of the Drawings



    [0014] A full and enabling disclosure of the present invention, including the best mode thereof, to one of ordinary skill in the art, is set forth more particularly in the remainder of the specification, including reference to the accompanying drawings, in which:

    Figure 1 is a top perspective view of a DMM constructed in accordance with an embodiment of the present invention;

    Figure 2 is a top plan view of the DMM of Figure 1;

    Figure 3 is a side elevational view of the DMM of Figure 1;

    Figure 4 is a bottom perspective view of the DMM of Figure 1;

    Figure 5 illustrates the characters that may appear on the DMM's display in accordance with the embodiment of Figure 1;

    Figure 6 is a diagrammatic representation showing test leads of a DMM connected to a circuit under test;

    Figure 7 is a perspective view of the DMM of Figure 1 showing separation of the remote display unit;

    Figure 8 illustrates the manner in which the retaining mechanism may be released for separation of the remote display unit;

    Figure 9 is a diagrammatic representation showing communication between the remote display unit and base unit when the remote display unit is mated with the base unit;

    Figures 10 and 11 are flowcharts respectively showing the manner in which the base unit and the remote display unit select a communication mode;

    Figure 12 shows the remote display unit placed on a flat surface, such as a shelf or table top; and

    Figure 13 shows the remote display unit attached to a vertical surface.



    [0015] Repeat use of reference characters in the present specification and drawings is intended to represent same or analogous features or elements of the invention.

    Detailed Description of Preferred Embodiments



    [0016] It is to be understood by one of ordinary skill in the art that the present discussion is a description of exemplary embodiments only, and is not intended as limiting the broader aspects of the present invention, which broader aspects are embodied in the exemplary constructions.

    [0017] Figures 1 through 4 illustrate a digital multimeter (DMM) 10 constructed in accordance with an embodiment of the present invention. Multimeter 10 comprises a base unit 12 and a remote display unit 14. The housing of base unit 12 defines an interior cavity in which various internal components are located. In this embodiment, the housing of base unit 12 is preferably formed having two or more housing members which are assembled together to form the interior cavity. Preferably, these housing members may be molded of high impact rigid plastic material. In some cases, it may be desirable to overmold a softer polymeric material on at least portions of the rigid plastic material to enhance gripability and user comfort.

    [0018] In this case, remote display unit 14 is mated to base unit 12 such that its display 16 will be located in a conventional position on the overall DMM. Display 16, which will typically be an LCD display located behind a transparent window, shows a variety of information of interest to the user. Preferably, display 16 will include a backlight that may be activated when desired to facilitate use in low-light conditions.

    [0019] Figure 5 depicts various characters (both numeric and symbolic) that may appear on display 16 depending on the operating mode of the DMM and other factors. As can be seen, the primary icons are a 4-digit, 7-segment numeric display. Along the right edge are the measurement annunciators which indicate the units of measurement displayed by the numbers. The bottom right and left icons indicate a low battery condition with the remote unit and base unit, respectively. Auto Range and Manual Range indicate the meter ranging condition. The icons on the top left indicate the display modes and the icon on the top right indicates RF communication mode. The lighting bolt indicates a predetermined high voltage on the test leads.

    [0020] Base unit 12 includes a rotary selector knob 18 which allows the user to select a particular multimeter function. For example, 5-10 such functions may be indicated by respective stop positions in the knob rotation. As one skilled in the art will appreciate, suitable graphics will typically be printed on the top surface of the base unit housing to indicate the respective functions.

    [0021] Base unit 12 also includes a plurality of jacks 20a-c for connection of respective test leads. In particular, two test leads are connected to a respective two of lead jacks 20a-c depending on the parameter being tested. In this regard, Figure 6 shows a pair of test leads 22 and 24 connected to a circuit 26 under test.

    [0022] As shown in Figure 4, DMM 10 preferably has test lead holders 28 and 30 defined on the bottom of base unit 12. Test lead holders 28 and 30 may be configured to retain the test leads in two orientations: (1) a storage orientation in which the leads are nested; and (2) a "third hand" orientation in which the terminal end of a test lead extends away from the DMM housing. In the "third hand" orientation, base unit 12 can be used to maintain the lead's terminal end in position on one side of circuit 26 under test while the user positions the other test lead. This leaves the user's second hand free to operate the DMM.

    [0023] Referring again to Figures 1 and 2, certain additional features of DMM 10 will now be explained. In this regard, DMM 10 may include a shift key 32 located on base unit 12. Shift key 32 allows the user to select alternate functions for respective positions of selector knob 18. A high voltage indicator light 34 alerts a user who may not be viewing the remote display unit 14 (when separated from base unit 12) that the test lead has encountered a high voltage situation.

    [0024] In this embodiment, a number of function buttons are also provided on remote display unit 14 itself. Typically, these buttons will relate to functions dealing directly with the display rather than the operating parameters of DMM 10. One skilled in the art will appreciate, however, that variations of the present invention are possible in which different user interface elements are placed on base unit 12 and/or remote display unit 14. For example, in some embodiments, it may be desirable not to have any selector buttons on remote display 14.

    [0025] In the illustrated embodiment, a total of four function buttons are provided on remote display unit 14: hold button 36, min/max button 38, range button 40 and backlight button 42. As its name implies, backlight button 42 activates the internal light used to illuminate the LCD display.

    [0026] By pressing hold button 36, the display will freeze the last displayed reading. Pressing hold button 36 again returns the display to normal updating mode.

    [0027] Pressing min/max button 38 causes the display to enter the min/max mode. In this mode, the meter captures the smallest reading and the largest reading. These readings can be displayed by toggling min/max button 38. Holding the button for a couple of seconds returns the meter to normal display mode.

    [0028] Pressing range button 40 puts the meter in manual range mode. Subsequent presses manually change the measurement range of the meter. Holding range button 40 for a couple of seconds returns the meter to autorange mode.

    [0029] Figure 7 shows the manner in which remote display unit 14 is removed from base unit 12 in the illustrated embodiment. In this case, base unit 12 defines a receiving portion 50 at which remote display unit 14 is mated. Receiving portion 50 defines a pair of lateral rails 52 and 54 located on either side of a recess 56. The back of remote display unit 14 is generally complimentary to the configuration of receiving portion 50. In this regard, remote display unit 14 includes a back portion 58 adapted to be slidably received in recess portion 56.

    [0030] A suitable latching mechanism is preferably provided to retain remote display unit 14 with respect to base unit 12. When it is desired to separate remote unit from base unit 12, the latching mechanism is easily releasable by the user. In this embodiment, for example, rails 52 and 54 include respective flanges 60 and 62 extending part of the way along their length. In particular, flanges 60 and 62 terminate before reaching wall 64 of base unit 12 to define respective gaps 66 and 68.

    [0031] Referring now to Figure 8, gap 68 receives the end projection 70 of a spring-loaded latching arm 72 carried by the remote display unit 14. End projection 70 thus retains remote display unit 14 in position by engaging the end surface of flange 62. As one skilled in the art will appreciate, a similar latching arm is associated with the other flange 60.

    [0032] When it is desired to separate remote display unit 14 from base unit 12, the user depresses release buttons 74 and 76 located on the respective sides of remote display unit 12 (as indicated by arrows S in Figure 2). Release buttons 74 and 76 are operatively connected to an associated latching arm, thus causing the latching to move inward (and away from its corresponding flange 60 or 62 on base unit 12). The user can then simply slide remote display unit 14 until it is completely separated from base unit 12.

    [0033] As will now be explained, DMM 10 is preferably operable to switch between first and second communication modes depending on whether remote display unit 14 is mated or separated with respect to base unit 12. In this regard, remote display unit 14 will preferably communicate with base unit 12 using RF communication when the two units are separated from each other. As noted above, RF communication is advantageous because it does not require a direct line of sight between base unit 12 and remote display unit 14.

    [0034] Often, however, RF communication will consume more power than some other types of wired or wireless communication. Therefore, DMM 10 is adapted to switch to a lower power mode of communication when remote display unit 14 is attached to base unit 12. In this embodiment, for example, DMM 10 utilizes IR communication when remote display unit 14 is mated.

    [0035] Thus, the present embodiment utilizes two different types of wireless communication depending on whether or not remote display unit 14 is separated from base unit 12. As one skilled in the art will appreciate, however, direct electrical connection can alternatively be used when remote display unit 14 is docked. Generally, however, it will be preferable to utilize wireless communication even when the two units are mated to eliminate the need for exposed metal conductors.

    [0036] In some embodiments, a mechanical switch can be used to achieve communication mode switching. Often, however, it will be preferable to use logical methodology to determine whether remote display unit 14 is mated with or separated from base unit 12.

    [0037] Referring now to Figure 9, remote display unit 14 includes control circuitry 90, which receives inputs from buttons 92 and provides information to display 94. Control circuitry 90 also selects whether to communicate with base unit 12 via RF transceiver 96 or IR interface 98. RF transceiver 96 may include any circuit components necessary in order to effect RF communication with base unit 12. These may include a digital-to-analog converter, frequency generator, modulator and antenna. Similarly, IR interface 98 will include components necessary for IR communication, such as an IR-LED and photodetector. As one skilled in the art will appreciate, control circuitry 90 may be implemented in hardware, firmware, software, or a combination thereof as necessary or desirable.

    [0038] Base unit 12 will likewise include circuit elements used in communicating with remote display unit 14. For example, control circuitry 100 (which may be implemented as hardware, firmware, software, or a combination thereof) is in electrical communication with an RF transceiver 102 and IR interface 104. Control circuitry 100 determines whether communication with remote display unit 14 should occur by RF transceiver 102 or IR interface 104.

    [0039] As one skilled in the art will appreciate, both base unit 12 and remote display unit 14 are preferably equipped with an IR transmissive window, such as window 106 of base unit 12 (Fig. 7), which are aligned when remote display unit 14 is mated in order to provide the desired line of sight between IR interface 98 and IR interface 104 (as shown at 108 in Fig. 9).

    [0040] Figures 10 and 11 illustrate respective processes that may be performed by control circuitry 100 and control circuitry 90 in order to switch communication between RF and IR modes as described above. Referring first to Figure 10, the process implemented by control circuitry 100 begins as indicated at 110. Initially, the "radio" will be off (as indicated at 112), meaning that there will be no RF communication as this point. As indicated at 114, base unit 12 next "pings" remote display unit 14 via the IR interface. Then, as indicated at 116, control circuitry 100 waits for a predetermined period of time for a response from remote display unit 14. If the remote display unit 14 responds, IR communication rather than RF communication will be utilized as indicated at 118. On the other hand, if remote display unit 14 does not respond to the "ping," it is assumed that remote display unit 14 is separated from base unit 12. In this case, as indicated at 120, RF communication will be utilized rather than IR communication.

    [0041] Referring now specifically to Figure 11, a similar process occurs at control circuitry 90 of remote display unit 14. The process starts as indicated at 120. Initially, the process assumes a "radio on" condition, meaning that communication will occur via RF (as indicated at 122). Nevertheless, the process will continually listen for a "ping" via IR, as indicated at 124. Decision block 126 asks whether or not a ping is "heard." If a ping is heard, as indicated as 128, RF communication is switched off and IR communication will be utilized. On the other hand, if no ping is heard, the radio will remain on and RF communication will be utilized as indicated at 130.

    [0042] Certain additional features of remote display unit 14 will now be explained. Before discussing Figure 12, however, reference is made to Figure 3. As can be seen, the physical interface between the end surface of remote display unit 14 and wall 64 of base unit 12 is situated at a small angle θ relative to the vertical. As shown in Figure 12, this is advantageous because it will produce a slight tilt when remote display unit 14 is placed on a horizontal surface 140, such as a shelf or table. This tilt facilitates viewing by a user whose eye level will typically be higher than that of surface 140.

    [0043] In some preferred embodiments, remote display unit 14 may be adapted for attachment to a vertical surface. In this case, for example, remote display unit 14 includes a magnet 142 located at back portion 58. Magnet 142 may be located inside of a removable door used to cover the battery compartment of remote display unit 14. As shown in Figure 13, magnet 142 allows remote display unit 14 to be placed on any vertical surface 144 having suitable ferrous characteristics.

    [0044] It can thus be seen that the present invention provides a digital multimeter having a remote display with automatic communication mode switching. While preferred embodiments of the invention have been shown and described, modifications and variations may be made thereto by those of ordinary skill in the art without departing from the scope of the present invention. In addition, it should be understood that aspects of the various embodiments may be interchanged both in whole or in part. Furthermore, those of ordinary skill in the art will appreciate that the foregoing description is by way of example only, and is not intended to be limitative of the invention as further described in the appended claims.


    Claims

    1. A multimeter (10) comprising:

    a base unit (12) having at least one test lead terminal;

    a remote display unit (14) separate from said base unit (12), said remote display unit (14) having a display operative (16) to show measured parameters; and

    communication circuitry (90) operative to provide electrical communication between said base unit (12) and said remote display unit (14), characterised in that:

    said communication circuitry (90) provides said electrical communication in a plurality of alternative communication modes, including a first communication mode that is an optical communication mode and a second communication mode that is an RF communication mode;

    said remote display unit (14) is matable with said base unit (12);

    said communication circuitry (90) provides electrical communication in the first communication mode when said remote display unit (14) is located adjacent to and mated with said base unit (12), and in the second communication mode when said remote display unit (14) is located apart from said base unit (12); and

    said communication circuitry (90) is operative to attempt to establish communication from said base unit (12) in said optical communication mode and then switch to said RF communication mode if optical communication is unsuccessful.


     
    2. A multimeter (10) as set forth in claim 1, wherein said optical communication mode is an IR communication mode.
     
    3. A multimeter (10) as set forth in claim 1, wherein said base unit (12) has a receiving portion (50) at which said remote display (14) is slidably mated.
     
    4. A multimeter (10) as set forth in claim 1, further comprising a latching mechanism which releasably retains said remote display unit (14) in mated relationship with said base unit (12).
     
    5. A multimeter (10) as set forth in claim 1, wherein said base unit includes:

    a rotary selector knob (18); and

    wherein said at least one test lead terminal comprises a plurality of test lead jacks (20a, 20b, 20c).


     
    6. A multimeter (10) as set forth in any preceding claim, wherein said remote display unit (14) has an end surface canted at an acute angle relative to perpendicular such that said display (16) will be tilted when said remote display unit (14) is placed on a horizontal surface.
     
    7. A multimeter (10) as set forth in any preceding claim, wherein said remote display unit (14) is adapted to be placed on a vertical surface.
     
    8. A multimeter (10) as set forth in claim 7, wherein said remote display unit (14) includes an internal magnet (142) to retain said remote display unit (14) on said vertical surface.
     
    9. A multimeter (10) as set forth in any preceding claim, wherein said remote display unit (14) has a plurality of display function buttons (92) located thereon.
     
    10. A method of establishing electrical communication between a base unit (12) and a separate remote display unit (14) of a multimeter (10) according to claim 1, the multimeter (10) having communication circuitry (90) that provides electrical communication in a plurality of alternative communication modes, including an optical communication mode and an RF communication mode, said method comprising steps of:

    (a) with one of said base unit (12) and said remote display unit (14), sending a request for response via an optical communication mode to the other of said base unit (12) and said remote display unit (14);

    (b) if a response to said request for response is received at said one of said base unit (12) and said remote display unit (14), then maintaining communication with the other of said base unit (12) and said remote display unit (14) in optical communication mode; and

    (c) if a response to said request for response is not received at said one of said base unit (12) and said remote display unit (14), then establishing communication with the other of said base unit (10) and said remote display unit (14) in an RF communication mode.


     
    11. A method as set forth in claim 10, wherein said base unit (12) sends said request for response to said remote display unit (14).
     
    12. A method as set forth in claim 10, wherein said optical communication mode is an IR communication mode.
     


    Ansprüche

    1. Multimeter (10), das umfasst:

    eine Sockeleinheit (12) mit mindestens einem Messleitungsanschluss;

    eine von der Sockeleinheit (12) getrennte, entfernt angeordnete Anzeigeeinheit (14), wobei die entfernt angeordnete Anzeigeeinheit (14) eine Anzeige aufweist, die betriebsfähig (16) ist, gemessene Parameter anzuzeigen; und

    eine Datenübertragungsschaltung (90), die betriebsfähig ist, um elektrische Datenübertragung zwischen der Sockeleinheit (12) und der entfernt angeordneten Anzeigeeinheit (14) bereitzustellen, dadurch gekennzeichnet, dass:

    die Datenübertragungsschaltung (90) die elektrische Datenübertragung in einer Vielzahl von alternativen Datenübertragungsmodi bereitstellt, einschließlich eines ersten Datenübertragungsmodus, der ein optischer Datenübertragungsmodus ist, und eines zweiten Datenübertragungsmodus, der ein HF-Datenübertragungsmodus ist;

    wobei die entfernt angeordnete Anzeigeeinheit (14) mit der Sockeleinheit (12) zusammensteckbar ist;

    wobei die Datenübertragungsschaltung (90) elektrische Datenübertragung in dem ersten Datenübertragungsmodus, wenn sich die entfernt angeordnete Anzeigeeinheit (14) benachbart zu und mit der Sockeleinheit (12) ineinander gesteckt befindet, und in dem zweiten Datenübertragungsmodus bereitstellt, wenn sich die entfernt angeordnete Anzeigeeinheit (14) getrennt von der Sockeleinheit (12) befindet; und

    wobei die Datenübertragungsschaltung (90) betriebsfähig ist, zu versuchen Datenübertragung von der Sockeleinheit (12) in dem optischen Datenübertragungsmodus einzurichten und dann zu dem HF-Datenübertragungsmodus zu schalten, wenn optische Datenübertragung nicht erfolgreich ist.


     
    2. Multimeter (10) nach Anspruch 1, wobei der optische Datenübertragungsmodus ein IR-Datenübertragungsmodus ist.
     
    3. Multimeter (10) nach Anspruch 1, wobei die Sockeleinheit (12) einen Aufnahmeabschnitt (50) aufweist, mit dem die entfernt angeordnete Anzeige (14) gleitend ineinander gesteckt wird.
     
    4. Multimeter (10) nach Anspruch 1, das des Weiteren einen Rastmechanismus umfasst, der die entfernt angeordnete Anzeigeeinheit (14) mit der Sockeleinheit (12) in ineinander gesteckter Beziehung lösbar hält.
     
    5. Multimeter (10) nach Anspruch 1, wobei die Sockeleinheit aufweist:

    einen Drehwahlschalterknopf (18); und

    wobei der mindestens eine Messleitungsanschluss eine Vielzahl von Messleitungsbuchsen (20a, 20b, 20c) umfasst.


     
    6. Multimeter (10) nach einem vorhergehenden Anspruch, wobei die entfernt angeordnete Anzeigeeinheit (14) eine bezogen auf die Senkrechte in einem spitzen Winkel gekippte Endfläche aufweist, sodass die Anzeige (16) geneigt wird, wenn die entfernt angeordnete Anzeigeeinheit (14) auf einer horizontalen Fläche platziert wird.
     
    7. Multimeter (10) nach einem vorhergehenden Anspruch, wobei die entfernt angeordnete Anzeigeeinheit (14) geeignet ist, auf einer senkrechten Fläche platziert zu werden.
     
    8. Multimeter (10) nach Anspruch 7, wobei die entfernt angeordnete Anzeigeeinheit (14) einen internen Magneten (142) aufweist, um die entfernt angeordnete Anzeigeeinheit (14) auf der senkrechten Fläche zu halten.
     
    9. Multimeter (10) nach einem vorhergehenden Anspruch, wobei die entfernt angeordnete Anzeigeeinheit (14) eine Vielzahl von darauf angeordneten Anzeigefunktionsknöpfen (92) aufweist.
     
    10. Verfahren zum Herstellen einer elektrischen Datenübertragung zwischen einer Sockeleinheit (12) und einer getrennten, entfernt angeordneten Anzeigeeinheit (14) eines Multimeters (10) nach Anspruch 1, wobei das Multimeter (10) eine Datenübertragungsschaltung (90) aufweist, die elektrische Datenübertragung in einer Vielzahl von alternativen Datenübertragungsmodi bereitstellt, einschließlich eines optischen Datenübertragungsmodus und eines HF-Datenübertragungsmodus, wobei das Verfahren die Schritte umfasst:

    (a) Senden einer Antwortanforderung mittels eines optischen Datenübertragungsmodus mit einer Sockeleinheit (12) und der entfernt angeordneten Anzeigeeinheit (14) an die andere Sockeleinheit (12) und die entfernt angeordnete Anzeigeeinheit (14);

    (b) Aufrechterhalten von Datenübertragung mit der anderen der Sockeleinheit (12) und der entfernt angeordneten Anzeigeeinheit (14) im optischen Datenübertragungsmodus, wenn eine Antwort auf die Antwortanforderung an der einen der Sockeleinheit (12) und der entfernt angeordneten Anzeigeeinheit (14) empfangen wird; und

    (c) Herstellen von Datenübertragung mit der anderen der Sockeleinheit (10) und der entfernt angeordneten Anzeigeeinheit (14) im HF-Datenübertragungsmodus, wenn eine Antwort auf die Antwortanforderung an der einen der Sockeleinheit (12) und der entfernt angeordneten Anzeigeeinheit (14) nicht empfangen wird.


     
    11. Verfahren nach Anspruch 10, wobei die Sockeleinheit (12) die Antwortanforderung an die entfernt angeordnete Anzeigeeinheit (14) sendet.
     
    12. Verfahren nach Anspruch 10, wobei der optische Datenübertragungsmodus ein IR-Datenübertragungsmodus ist.
     


    Revendications

    1. Multimètre (10) comprenant :

    un socle (12) possédant au moins une borne pour conducteur d'essai ;

    un dispositif d'affichage à distance (14) séparé dudit socle (12), ledit dispositif d'affichage à distance (14) possédant un dispositif d'affichage opérationnel (16) pour afficher des paramètres mesurés ; et

    des circuits de communication (90) servant à fournir des communications électriques entre ledit socle (12) et ledit dispositif d'affichage à distance (14), caractérisé en ce que :

    lesdits circuits de communication (90) servant à fournir lesdites communications électriques dans une pluralité de modes de communication alternatifs, y compris un premier mode de communication, qui est un mode de communication optique, et un deuxième mode de communication, qui est un mode de communication RF ;

    ledit dispositif d'affichage à distance (14) pouvant être accouplé avec ledit socle (12) ; lesdits circuits de communication (90) assurant des communications électriques dans le premier mode de communication, lorsque ledit dispositif d'affichage à distance (14) étant situé dans une position adjacente au socle, et accouplé avec ledit socle (12), et dans le deuxième mode de communication,

    ledit dispositif d'affichage à distance (14) étant espacé dudit socle (12) ; et lesdits circuits de communication (90) étant opérationnels pour tenter d'établir une communication depuis le socle (12) dans ledit mode de communication optique, puis de passer audit mode de communication RF en cas d'échec de la communication optique.


     
    2. Multimètre (10) selon la revendication 1, ledit mode de communication optique étant un mode de communication IR.
     
    3. Multimètre (10) selon la revendication 1, ledit socle (12) possédant une partie réceptrice (50) à laquelle ledit dispositif d'affichage à distance (14) est accouplé par coulissement.
     
    4. Multimètre (10) selon la revendication 1, comprenant en outre un mécanisme de verrouillage maintenant de façon amovible ledit dispositif d'affichage à distance (14) accouplé avec ledit socle (12).
     
    5. Multimètre (10) selon la revendication 1, ledit socle comprenant :
    un bouton sélecteur rotatif (18) ; et au moins une borne pour câble d'essai comprenant une pluralité de fiches de conducteurs d'essai (20a, 20b, 20c).
     
    6. Multimètre (10) selon une quelconque des revendications précédentes, ledit dispositif d'affichage à distance (14) possédant une surface d'extrémité inclinée à un angle aigu relativement à la perpendiculaire, de sorte que ledit dispositif d'affichage (16) sera incliné lorsque l'on place ledit dispositif d'affichage à distance (14) sur une surface horizontale.
     
    7. Multimètre (10) selon une quelconque des revendications précédentes, ledit dispositif d'affichage à distance (14) étant placé sur une surface verticale.
     
    8. Multimètre (10) selon la revendication 7, ledit dispositif d'affichage à distance (14) comprenant un aimant interne (142) pour maintenir ledit dispositif d'affichage à distance (14) sur ladite surface verticale.
     
    9. Multimètre (10) selon une quelconque des revendications précédentes, ledit dispositif d'affichage à distance (14) possédant une pluralité de boutons de fonction d'affichage (92) placés sur celui-ci.
     
    10. Méthode d'établissement de communications électriques entre un socle (12) et un dispositif d'affichage à distance (14) séparé d'un multimètre (10) selon la revendication 1, le multimètre (10) possédant des circuits de communication (90) assurant des communications électriques dans une pluralité de différents modes de communication, y compris un mode de communication optique et un mode de communication RF, ladite méthode comprenant les étapes suivantes :

    (a) un dudit socle (12) et dudit dispositif d'affichage à distance (14) transmettant une demande de réponse par le biais d'un mode de communication optique à l'autre dudit socle (12) et dudit dispositif d'affichage à distance (14) ;

    (b) si une réponse à ladite demande de réponse est reçue audit un dudit socle (12) et audit dispositif d'affichage à distance (14), le maintien des communications avec l'autre dudit socle (12) et dudit dispositif d'affichage à distance (14) en mode de communication optique ; et

    (c) si une réponse à ladite demande de réponse n'est pas reçue audit un dudit socle (12) et dudit dispositif d'affichage à distance (14), l'établissement de communications avec l'autre dudit socle (10) et dudit dispositif d'affichage à distance (14) dans un mode de communication RF.


     
    11. Méthode selon la revendication 10, ledit socle (12) transmettant ladite demande de réponse audit dispositif d'affichage à distance (14).
     
    12. Méthode selon la revendication 10, ledit mode de communication optique étant un mode de communication IR.
     




    Drawing
































    Cited references

    REFERENCES CITED IN THE DESCRIPTION



    This list of references cited by the applicant is for the reader's convenience only. It does not form part of the European patent document. Even though great care has been taken in compiling the references, errors or omissions cannot be excluded and the EPO disclaims all liability in this regard.

    Patent documents cited in the description