CROSS-REFERENCES TO RELATED APPLICATIONS
BACKGROUND OF THE DISCLOSURE
[0002] The present disclosure relates to wireless digital communication systems and, amongst other things, to estimation of channel characteristics and interference level in such systems.
[0003] Demand for wireless digital communication and data processing systems is on the rise. Inherent in most digital communication channels are errors introduced when transferring frames, packets or cells containing data. Such errors are often caused by electrical interference or thermal noise. Data transmission error rates depend, in part, on the medium which carries the data. Typical bit error rates for copper based data transmission systems are in the order of 10
^{-6}. Optical fibers have typical bit error rates of 10
^{-9} or less. Wireless transmission systems, on the other hand, may have error rates of 10
^{-3} or higher. The relatively high bit error rates of wireless transmission systems pose certain difficulties in encoding and decoding of data transmitted via such systems. Partly because of its mathematical tractability and partly because of its application to a broad class of physical communication channels, the additive white Gaussian noise (AWGN) model is often used to characterize the noise in most communication channels.
[0004] Data is often encoded at the transmitter, in a controlled manner, to include redundancy. The redundancy is subsequently used by the receiver to overcome the noise and interference introduced in the data while being transmitted through the channel. For example, the transmitter might encode k bits with n bits where n is greater than k, according to some coding scheme. The amount of redundancy introduced by the encoding of the data is determined by the ratio n/k, the inverse of which is referred to as the code rate. Codewords representing the n-bit sequences are generated by an encoder and delivered to a modulator that interfaces with the communication channel. The modulator maps each received sequence into a symbol. In M-ary signaling, the modulator maps each n-bit sequence into one of M= 2n symbols. Data in other than binary form may be encoded, but typically data is representable by a binary digit sequence. Often it is desired to estimate and track the channel so as to be able to perform operations, such as channel equalization and channel-sensitive signaling.
[0005] Orthogonal frequency division modulation (OFDM) is sensitive to time-frequency synchronization. Use of pilot tones allows channel estimation to characterize the transmission pathways. Keeping transmitters synchronized with receivers reduces error rates of transmission.
BRIEF SUMMARY OF THE DISCLOSURE
[0006] In one embodiment, the present disclosure provides a system adapted to estimate and track a channel for wireless orthogonal frequency division modulation (OFDM) communication. The system comprises first and second modules. The first module is configured to receive a number of pilot symbols arbitrarily scattered between a plurality of data symbols transmitted via at least one transmit antenna. The number of pilot symbols are received via a number of taps indicative of the delay and multipath effects of the channel. The second module is configured to estimate the channel value using the plurality of received pilot symbols and in accordance with iterative correlation of the channel taps over time. The second module performs link scheduling using the channel value.
[0007] In another embodiment, the present disclosure provides a method of estimating and tracking a channel of a wireless OFDM communication system. In one step, pilot symbols are received that are scattered between data symbols transmitted via at least one transmit antenna. The pilot symbols are received via a plurality of taps indicative of the delay and multipath effects of the channel. The pilot symbols are scattered arbitrarily among at least one of time or OFDM sub-carrier. The channel value is estimated using the plurality of received pilot symbols and in accordance with correlation of the channel taps over time.
[0008] In yet another embodiment, the present disclosure provides a system adapted to estimate and track a channel for wireless OFDM communication system. The system includes receiving means and estimating means. The receiving means receives pilot symbols arbitrarily scattered between a multitude of data symbols transmitted via at least one transmit antenna. The pilot symbols are received via taps indicative of the delay and multipath effects of the channel. The estimating means estimates the channel value using the plurality of received pilot symbols and in accordance with iterative correlation of the channel taps over time. The channel comprises a plurality of OFDM sub-channels.
[0009] Further areas of applicability of the present disclosure will become apparent from the detailed description provided hereinafter. It should be understood that the detailed description and specific examples, while indicating various embodiments of the disclosure, are intended for purposes of illustration only and are not intended to necessarily limit the scope of the disclosure.
BRIEF DESCRIPTION OF THE DRAWINGS
[0010] Figure 1 shows a number of communication devices adapted to communicate via one or more wireless networks.
[0011] Figure 2 is a high-level block diagram of some of the blocks disposed in the transmitting end of a wireless communication system.
[0012] Figure 3 is a high-level block diagram of some of the blocks disposed in the receiving end of a wireless communication system.
[0013] Figure 4 shows a multitude of pilot symbols disposed between data symbols to enable estimation/tracking of channel characteristics, in accordance with the present disclosure.
DETAILED DESCRIPTION OF THE DISCLOSURE
[0014] The ensuing description provides preferred exemplary embodiment(s) only, and is not intended to limit the scope, applicability or configuration of the disclosure. Rather, the ensuing description of the preferred exemplary embodiment(s) will provide those skilled in the art with an enabling description for implementing a preferred exemplary embodiment of the disclosure. It being understood that various changes may be made in the function and arrangement of elements without departing from the spirit and scope of the disclosure as set forth in the appended claims.
[0015] Specific details are given in the following description to provide a thorough understanding of the embodiments. However, it will be understood by one of ordinary skill in the art that the embodiments may be practiced without these specific details. For example, circuits may be shown in block diagrams in order not to obscure the embodiments in unnecessary detail. In other instances, well-known circuits, processes, algorithms, structures, and techniques may be shown without unnecessary detail in order to avoid obscuring the embodiments.
[0016] Also, it is noted that the embodiments may be described as a process which is depicted as a flowchart, a flow diagram, a data flow diagram, a structure diagram, or a block diagram. Although a flowchart may describe the operations as a sequential process, many of the operations can be performed in parallel or concurrently. In addition, the order of the operations may be re-arranged. A process is terminated when its operations are completed, but could have additional steps not included in the figure. A process may correspond to a method, a function, a procedure, a subroutine, a subprogram, etc. When a process corresponds to a function, its termination corresponds to a return of the function to the calling function or the main function.
[0017] Furthermore, embodiments may be implemented by hardware, software, firmware, middleware, microcode, hardware description languages, or any combination thereof. When implemented in software, firmware, middleware or microcode, the program code or code segments to perform the necessary tasks may be stored in a machine readable medium such as storage medium. A processor(s) may perform the necessary tasks. A code segment or computer-executable instructions may represent a procedure, a function, a subprogram, a program, a routine, a subroutine, a module, a software package, a class, or any combination of instructions, data structures, or program statements. A code segment may be coupled to another code segment or a hardware circuit by passing and/or receiving information, data, arguments, parameters, or memory contents. Information, arguments, parameters, data, etc, may be passed, forwarded, or transmitted via any suitable means including memory sharing, message passing, token passing, network transmission, etc.
[0018] Estimation and tracking of a time-varying frequency-selective channel in a multi-carrier system is carried out in accordance with an algorithm that uses scattered pilot tones with arbitrary, random, pseudo-random, and/or substantially random time-frequency pattern. The pilot tones have a known modulation and coding scheme such the time that they were transmitted can be determined. The algorithm is based on a linear model that recursively estimates the channel value at any instance of time using a previous estimate of the channel together with the received values of the pilot symbols. The channel value is an indicator of the channel, for example, channel quality indicator (CQI), signal-to-noise ratio, signal strength, or any other measurement of channel sensitive signaling, including space-selective channel conditions. The algorithm uses a number of parameters representative of the channel loading, the ratio of pilot symbols to the received noise level, and the covariance matrix of the channel estimation error. The algorithm modifies such parameter values and the channel estimate until the modified parameter values and the channel estimate converge to satisfy predefined conditions. The channel value is used for link scheduling in one embodiment.
[0019] The pilot tones have a known modulation and coding scheme such that receivers do not need to necessarily know when they are being transmitted to recognize them as pilot tones. The receivers are geographically distributed across the wireless space such that they serve as taps with varying propagation delay and multipath effects from the transmitter. A channel estimate can be iteratively determined based upon analysis of the taps for the pilot tones. The channel estimate can be used for link scheduling in one embodiment.
[0020] In accordance with the present disclosure, estimation and tracking of a time-varying frequency-selective channel in a multi-carrier system is carried out using scattered pilot tones that have an arbitrary time-frequency pattern, The channel estimate is an unbiased estimate of the channel, and furthermore, the covariance matrix of the estimation error defined by the difference between the actual and the estimated value of the channel has a minimum variance. However, it is understood that there may be insubstantial variations around such estimates.
[0021] To estimate and track the channel, a linear model is assumed according to which, at any instance of time, a previous estimate of the channel together with the received values of the pilot symbols are used to estimate a new value for the channel. The pilot symbols may be part of a transmission protocol with which the wireless communication system is configured to comply and thus may be part of, e.g., the signal field. Alternatively, the pilot symbols may be extra symbols inserted between the data symbols for the purpose of estimating the channel.
[0022] In one embodiment, the system may be an OFDMA system and the initial value assigned to the channel may have a value of zero. The estimation/tracking algorithm uses, in part, a first parameter representative of the channel loading and adapted to balance contribution of the received pilot symbols with a previous estimate of the channel, a second parameter representative of the ratio of the pilot symbols to the received noise, as well as a third parameter obtained by performing a trace operation on a covariance matrix of the estimation error.
[0023] In accordance with the present algorithm, the first parameter value and the channel are updated recursively so as to arrive at new estimate values. The third parameter value is also updated to reflect the modified value of the first parameter. The modifications continue recursively until the values of the first parameter, the channel estimate, and the third parameter converge so as to meet predefined conditions.
[0024] The algorithm underlying channel estimation/tracking assumes a finite support of the time-domain response of the channel and uses the time-domain correlation of the channel response related to the known Doppler spectrum of the channel variations or an approximation thereof. The algorithm also accounts for singularities that occur in the initial phase of the channel estimation/tracking due to the limited number of the pilot symbols used. The algorithm provides a best-effort estimation of the channel state information through the limited number of the pilot symbols available on the control channels of the OFDMA reverse link. The algorithm may be used for channel sensitive scheduling such as forward link beam forming or frequency sensitive scheduling.
[0025] In accordance with the present disclosure, estimation and tracking of a time-varying frequency-selective channel in a multi-carrier system is carried out using scattered pilot tones that have an arbitrary time-frequency pattern. Scattered pilots appear at different tones over time and are substantially scattered across the band. The channel estimate is a substantially unbiased estimate. Furthermore, the covariance matrix of the estimation error defined by the difference between the actual and the estimate value of the channel has a substantially minimum variance.
[0026] The above algorithms and methods described above may be performed on a per antenna basis. Such that, the channel may be estimated for each antenna. These estimates may be utilized to obtain the spatial signature or the space-time signature of the channel. The estimates can then be utilized for providing beam forming, beam steering, or other spatial functionality.
[0027] The algorithm underlying channel estimation/tracking assumes a finite support of the time-domain response of the channel and uses the time-domain correlation of the channel response related to the known Doppler spectrum of the channel variations or an approximation thereof. The algorithm also accounts for singularities that occur in the initial phase of the channel estimation/tracking due to the limited number of the pilot symbols used. The algorithm provides a best-effort estimation of the channel state information through the limited number of the pilot symbols available on the control channels of the OFDMA reverse link. The algorithm may be used for channel sensitive scheduling such as forward link beam forming or frequency sensitive scheduling.
[0028] Figure 1 shows an example of a wireless network 10 being used for communications among transmitters/receivers 12, 14 and transmitters/receivers 16, 18 as indicated. Each of the transmitters/receivers 12, 14, 16, 18 may have a single or multiple transmit/receive antennas (not shown). While separate transmit and receive antennas are shown, antennas may be used for both transmitting and receiving signals. The free space medium forming the channel through which the signals are transmitted is often noisy affecting the received signal. Estimates of the transmission chancel's characteristics and the interference level due to noise are often made at the receiver, which indicative of the taps. Geographic location in the wireless space causes differing delays for the taps.
[0029] Figure 2 is a simplified block diagram of an embodiment of a transmitting end of wireless transmission system 100. Wireless transmission system is shown as including, in part, an encoder 110, a space-frequency interleaver 120, modulators 130, 160, OFDM blocks 140, 170, and transmit antennas 150, 180. Modulator 130, OFDM block 140, and transmit antenna 150 are disposed in the first transmission path 115; and modulator 160, OFDM block 170, and transmit antenna 180 are disposed in the second transmission path 125. Although the exemplary embodiment 100 of the wireless transmission system is shown as including only the two depicted transmission paths, it is understood that the wireless transmission system 100 may include more than two transmission paths. The data transmitted by the transmit antennas 150, 180 are received by one or more receive antennas of a wireless receive system. For example, pilot symbols and data symbols are transmitted on various sub-carriers of the OFDM channel.
[0030] Figure 3 is a simplified block diagram of an embodiment of a receiving end of a wireless receiving system 200. Wireless receiving system 200 is shown as including, in part, receive antenna 205, 255, front-end blocks 210, 260, demodulators 215, 265, space-frequency deinterleavers 220, 270, and decoders 225, 285. Wireless receiving system 200 is shown as including a pair of receive transmission paths, it is understood that the wireless transmission system 200 may include more than two transmission paths. Pilot symbols and data symbols are received by the wireless receiving system 200. Each transmission path is related to a particular sub-carrier. Analysis of the pilot symbols iteratively over time allows characterizing the channel.
[0031] Further, the estimates may be iteratively performed for each receiver chain, e.g. a separate estimate for receptions at antenna 205 and 255. This allows for the channel to be estimated for each spatial channel between the transmitter and receiver. The estimates may be utilized, e.g. combined, to obtain the spatial signature or the space-time signature of the channel from the different channels for each antenna. The estimates can then be utilized for providing beam forming, beam steering, or other spatial functionality.
[0032] Assume an OFDM or OFDMA transmission with
N orthogonal tones that are spaced by
f_{s}. Assume further that the transmitter sends pilot symbols over a certain time frequency pattern known to the receiver, as shown in Fig. 4. In the following, it is assumed the total number of different pilot tones
N in the time-frequency pattern is greater than or equal to the number of taps
L of the channel, i.e.,
N ≥
L. Such a pilot pattern enables estimation of a baseband channel response with up to
L taps, In the following analysis, the effect of the excess delay is assumed negligible. It is also assumed that the channel variations over the OFDMA symbol duration
T_{s} = I/
f_{s} is also negligible, and that the noise is a AWGN, Assume that the channel
h_{k} is represented by the following expression:
[0033] Channel
h_{k} is thus a
L×1 vector of channel taps with relative delays
l_{1},...,
l_{L-1} for any given time instance
t_{k}. The time instance may be representative of the channel update step, a single OFDMA symbol duration, slot or frame duration, etc. Assume further that the channel is a time-varying channel having a scalar complex Gaussian first order channel process, as shown below in expression (1):
[0034] In expression (1),
N_{c}(•,•) represents a complex circular Gaussian vector specified by its mean and covariance matrix respectively, and
I. is an (• × •) identity matrix. It is further assumed that the process is stationary over a tracking interval so that
r_{k,} defined by the following expression:
may be obtained from the channel variation model, e.g., its Doppler spectrum. It is assumed that
r_{k} is known.
[0035] The signal
x_{k} received at step
K may thus be defined as shown below in expression (2):
where ρ
^{2} = (E
_{p}/N
_{0}) represents the pilot-to-noise ratio,
H[m
_{k}] represents the channel frequency response corresponding to the pilot tone with index
m_{k}, where (0 ≤
m_{k} <
N), and η
_{k} represents the observation noise. The channel frequency response may be rewritten as shown below:
where
w_{k} represents the direction of the pilot tone with index
m_{k}.
[0036] In the above, it is assumed that there is one tone per step, thus enabling the channel estimate to be updated with only one pilot observation per step, which in turn, reduces the complexity of channel estimation/tracking. It is understood, however, that when multiple tones are observed at once, there may be multiple steps corresponding to the same time instance
t (e.g.
t_{k} =
t_{k-1} = ...). The estimate
ĥ_{k} of the channel at stop
k is defined by the following expression:
[0037] Because it is assumed that the channel is Gaussian, its estimate
ĥ_{k} is also Gaussian. The channel estimator, in accordance with the present algorithm, is unbiased and has a minimum variance. In the most general case, this enables the expected value of
ĥ_{k} to coincide with the projection of the true channel
h_{k} onto the subspace spanned by the directions
w_{k} of pilot tones used in the estimation/tracking throughout the step
k. In the startup phase, this condition ensures that no noise is collected in the subspace where no channel information is available. In the steady state when the present/past pilots span the entire
L -dimensional space, this condition provides the following expression:
Accordingly, the channel estimate may be defined as below:
where
P_{k} is the projector onto the subspace spanned by the available pilot directions, as shown below:
and
Q_{k} is the covariance matrix of the estimation error Δ
h_{k} = (
ĥ_{k} -
P_{k}h_{k}).
[0038] The variance of the estimate of the channel response
H[
m] corresponding to
ĥ_{k} and evaluated at data tones
m ∈ Ω
_{D} is represented below by Ĥ
_{k}[
m] , and the present algorithm seeks to minimize the average variance of
Ĥ_{k}[
m]. The following expression (5) applies to a multicarrier system:
[0039] The exact equality in expression (5) holds when the set Ω
_{D} of data tones coincides with the whole set of tones: Q
_{D} = {1, ...,
N}. The asymptotic equivalent in expression (5) holds whenever the data tones are evenly distributed over the whole spectrum. With an appropriate design of the time-frequency pilot pattern and assuming a wide sense stationary channel process, the estimation/tracking provides a steady phase covariance matrix
Q_{∞} which equals a scaled identity, thereby ensuring the minimum worst case variance in the steady phase.
[0040] Linear estimate
ĥ_{k} of
h_{k} combines the pilot observation
x_{k} as well as the estimate
ĥ_{k-1} obtained at the previous step and is defined as shown below in expression (6)
Using expressions (1)-(4), Linear estimate
ĥ_{k} may be written as below:
[0041] Linear estimator (7) is shown as including expressions representative of the mean and error values. Assume without loss of generality that
A_{k} is full rank.
Accordingly
A_{k} may further be defined as follows:
where (•)
^{#} denotes Moore-Penrose, pseudo inverse operator. To simplify the estimation algorithm further, assume a class of linear estimators defined as shown below:
where the loading parameter γ
_{k} is a non-negative scalar that balances the contribution by the current pilot against those by the previous channel estimate
ĥ_{k-1}. This simplification avoids the computational complexity. Linear estimator
ĥ_{k} may thus be written as shown below:
[0042] An update rule fol γ
_{k} and the resulting estimation accuracy quantified by
Tr{
Q_{k}} is developed below, where
Q_{k} is the covariance matrix of the error term in expression (7), and
Tr is a trace operator. Using expressions (1), (2), (4), (7),(9) and (10), the following recursion is obtained:
[0043] To determine a value for γ
_{k} during the startup phase, it is assumed that
P_{k-1} <
I_{L} in expression (11). It is also assumed that in the startup phase, every pilot tone contributes with a new direction to the channel estimate; this condition requires the following:
thus leading to the following result:
[0044] Expression (13) is invariant with respect to the loading parameter γ
_{k}. A single observation (e.g.
x_{k}) can provide an estimate of a single degree of freedom. In the startup phase, appending an extra pilot results in adding an extra direction to the channel estimate since the inclusion
span{
P_{k-1}} ⊂
span{
P_{k}} takes place. In other words, the value of
x_{k} is transformed into the estimate of the scaling applied to the orthogonal projection of the normalized version of
w_{k} onto the subspace which is the orthogonal complement of
P_{k-1} to the entire space. Since the old estimate
ĥ_{k-1} is within the span of
P_{k-1}, the balancing between the new pilot contribution and the old estimate has no effect. This enables loading factor γ
_{k} to be chosen arbitrarily in the startup phase. In particular, γ
_{k} may be selected so as to have a relatively small value. One advantage of such values for γ
_{k} is the elimination of pseudo-inverse operations, as shown below:
[0045] Linear estimator
ĥ_{k} may thus be written as shown below:
where the loading γ
_{k} is set to a small value in the startup phase, where
k = 1, ...,
L.
[0046] The matrix inversion operation in expression (14) may be efficiently carried out due to the matrix inversion lemma. The resulting simplified update of the estimator
ĥ_{k} is shown in following expression (15) that is used to provide an estimate of and track the channel:
where
. Selection of the loading factor γ
_{k}, or equivalently
during the steady phase
k > L is described first. After performing relevant algebra, an analog of expression (13) in the steady phase provides the following recursions:
where:
[0047] The exact minimization of
Tr{
Q_{k}} with respect to parameter β
_{k} is complicated because of the non-trivial relationship between the eigenstructure of
Q_{k} and the structure of the projectors Π
_{k} and
. As described above, in a steady mode,
Q_{k} should converge to a scaled identity matrix, based on the assumptions of the time-frequency structure of the pilot and stationary channel process. Over any substantial number of steps, pilot tones are evenly distributed over the signal bandwidth. Specifically, it is assumed that for any
k_{0} = 1, 2, ... , the following condition applies:
[0048] Condition (18) is statistically satisfied (i.e. with probability one) when a pseudo-random pilot pattern is used. With respect to the channel process, it is assumed that
r_{k} converges to a fixed r
_{∞} as
k increases. In many instances, it may be assumed that
r_{k} is constant, i.e.,
r_{k} =
r . In other instances, e.g., variable update time,
r_{k} may vary.
[0049] Assume that the sequence {
w_{k}} is a process with the identity covariance matrix. It can be shown that any quadratic form
v^{H}Q_{k}v, where (∥
v∥
^{2} = 1), under the minimum trace criterion and the update rule (15), is a monotonic (non-increasing) sequence which is lower bounded by zero. Hence
v^{H}Q_{k}v converges to a certain limit. The limits are the same for different
v. Two other observations are made. First, a steady phase in the following form may be considered for
Q_{k} :
[0050] This enables rewriting the recursion (16) with respect to
Q_{k} as an approximate recursion with respect to
as shown below:
or equivalently
wherein the approximation is expected to be accurate in the steady phase.
[0051] It is desired to find
corresponding to µ
_{k} defined in expression (17), such that it would lead to the minimum of (21). Nearly optimal β
_{k} and the corresponding
may be obtained as shown below:
[0052] The recursions defined by (22)-(23) are used to update the factor β
_{k}. Together with expression (15), this recursion provides estimation and tracking of the channel. The steady phase estimation error
may be determined by substituting recursion (22) into (23), which yields the following result:
[0053] It can be shown that expression (24), which is quadratic with respect to
has a single positive root. A closed form solution to expression (24) may be found. Table I provides a summary of channel estimation/tracking procedure described above in a pseudo-code form:
[0054] The two parameters to be specified are β
_{0} and
A relatively large value may be selected for β
_{0} (relatively small value for
) while ensuring a numerically stable algorithm. The value of
reflects the magnitude of the estimation error at the end of the startup phase. The covariance matrix
Q_{k} may be different from an identity matrix at the end of the startup phase, hence selection of
will always be an approximation except for a few special cases, such as when
w_{1,...,}w_{L} are orthogonal and channel variations through the startup phase can be considered negligible. For very slow varying channels, the magnitude of the error will be proportional to ρ
^{-2}L^{-1}.
[0055] It is also possible to choose the initial error at the same level as the actual channel, i.e., by setting
. Such a choice is generally more reliable because the estimation accuracy at the end of the startup phase may vary depending on the particular sequence
m_{1},...,
m_{L} of pilots in the startup phase. A relatively large value for
will result in a somewhat slower convergence of the tracking procedure, recognizing that convergence speed may not be the overriding factor for the best effort acquisition of the channel state information. It is understood, however, that an optimal selection of
may be provided given the set
m_{1},...,
m_{L}.
[0056] Table 2 further simplifies the pseudo-code of Table I. Table II uses a common initialization and does not distinguish between the startup phase and the steady phase. This simplification has no effect on the steady phase.
[0057] Proper characterization of the channel process, shown in expression (24), depends on the Doppler spectrum of channel variations. Specifically,
where
S_{D} (
f) is the power spectral density of channel variations which typically depends on the velocity of a mobile terminal as well as the propagation environment. One conventional model assumes a fixed velocity and rich scattering in the vicinity of a mobile terminal, with the uniform azimuth distribution. The corresponding Doppler spectrum, known as the U-shaped spectrum, is defined as following:
where
f_{D} =
f_{c}v_{m}/
c with carrier frequency
f_{c}, mobile speed
v_{m} and
c = 3·10
^{8}m/
s.
[0058] Another conventional model assumes a uniform spectrum defined below:
[0059] The time-frequency pilot pattern used herein is defined by the following expression:
Such a pattern ensures a uniform coverage of the entire bandwidth over any limited time period, thereby enabling the estimation and tracking of fast varying channels.
[0060] The channel estimation and tracking may be carried out using various codes of one or more software modules forming a program and executed as instructions/data by, e.g., a central processing unit, or using hardware modules specifically configured and dedicated to determine the channel and interference level. Alternatively, the channel estimation may be carried out using a combination of software and hardware modules.
[0061] The above embodiments of the present disclosure are illustrative and not limiting. Various alternatives and equivalents are possible. The disclosure is not limited by the type of encoding, decoding, modulation, demodulation, combining, eigenbeamforming, etc., performed. The disclosure is not limited by the number of channels in the transmitter or the receiver. The disclosure is not limited by the type of integrated circuit in which the present disclosure may be disposed. Nor is the disclosure limited to any specific type of process technology, e.g., CMOS, Bipolar, or BICMOS that may be used to manufacture the present disclosure. Other additions, subtractions or modifications are obvious in view of the present disclosure and are intended to fall within the scope of the appended claims.
In the following further embodiments are described to facilitate understanding:
- 1. A method of estimating and tracking a channel of a wireless orthogonal frequency division modulation (OFDM) communication system, the method comprising:
receiving a plurality of pilot symbols scattered between a plurality of data symbols transmitted via at least one transmit antenna, wherein:
said plurality of pilot symbols being subject to channel conditions, and
said plurality of pilot symbols are scattered arbitrarily among at least one of time or OFDM sub-carrier;
estimating the channel value using the plurality of received pilot symbols and in accordance with correlation of the channel conditions over time.
- 2. The method of 1 wherein the plurality of pilot symbols are distributed in a substantially random time-frequency pattern.
- 3. The method of 1 further comprising a step of forward scheduling using the channel value.
- 4. The method of 1 wherein said plurality of pilot symbols are scattered evenly among a plurality of sub-carriers over time.
- 5. The method of 1 wherein the estimating step uses a Kalman type filter to determine the channel value in an iterative manner.
- 6. The method of 1 wherein the estimating step uses a Kalman type filter to determine the channel value in an iterative manner without performing matrix inversion.
- 7. The method of 1 wherein the channel value indicates a measurement of channel sensitive signaling.
- 8. The method of 1 wherein the channel value is defined by an initial value assigned to the channel.
- 9. The method of 8 wherein the initial value assigned to the channel value is zero.
- 10. The method of 9 wherein the channel estimate value is further defined by a first parameter adapted to balance contribution of the received plurality of pilot symbols with a previous estimate of the channel.
- 11. The method of 10, wherein the channel estimate value is further defined by a second parameter defined by a ratio of the received plurality of pilot symbols to a received noise level.
- 12. The method of 11 further comprising:
assigning an initial value to the first parameter.
- 13. The method of 12 further comprising:
assigning an initial value to a third parameter defined by performing a trace operation on a covariance matrix of an estimation error defined by a difference between the actual and the estimate value of the channel.
- 14. The method of 13 further comprising:
performing a first modification step to modify the value of the first parameter in accordance with the value of the third parameter;
performing a second modification step to modify the channel estimate value in accordance with the modified value of the first parameter;
performing a third modification step to modify the value of the third parameter in accordance with the modified value of the first parameter; and
continuing to perform the first, second, and third modification steps until the values of each of the first parameter, the channel estimate, and third parameter converge to levels satisfying associated predefined conditions.
- 15. The method of 14 further comprising:
assigning an initial value of one to the third parameter.
- 16. The method of 14 wherein the channel estimate value satisfying the associated predefined condition is a substantially unbiased estimator of the channel.
- 17. The method of 16 wherein the covariance matrix of the estimation error is a substantially minimum variance estimator.
- 18. The method of 1 wherein said plurality of pilot symbols are symbols transmitted as part of a transmission protocol with which the wireless communication system is configured to comply.
- 19. The method of 18 wherein the channel estimate value is further defined by the frequency response of the channel.
- 20. An apparatus adapted to estimate and track a channel for wireless OFDM communication, the apparatus comprising:
a first module configured to receive a plurality of pilot symbols arbitrarily scattered between a plurality of data symbols transmitted via at least one transmit antenna, wherein said plurality of pilot symbols are received subject to various time delays along the channel; and
a second module configured to:
estimate the channel value using the plurality of received pilot symbols and in accordance with iterative correlation of the time delays over time, and
perform link scheduling using the channel value.
- 21. The apparatus of 20 wherein the wireless communication system is an OFDMA communication system.
- 22. The apparatus of 20 wherein the plurality of pilot symbols are subject to various taps at different times.
- 23. The apparatus of 20 wherein the plurality of pilot symbols are recognizable as pilot symbols by at least one of modulation or encoding.
- 24. The apparatus of 20 wherein the plurality of pilot symbols is randomly scattered in at least one of:
time sent on a particular OFDM sub-carrier, or
the OFDM sub-carrier chosen.
- 25. The apparatus of 20 wherein second module is further configured to estimate the channel value using a Kalman type filter to determine the channel value in an iterative manner.
- 26. The apparatus of 20 wherein the channel estimate value is defined by an initial value assigned to the channel.
- 27. The apparatus of 26 wherein the channel estimate value is further defined by a first parameter adapted to balance contribution of the received plurality of pilot symbols with a previous estimate of the channel.
- 28. The apparatus of 26 wherein the channel estimate value is further defined by a second parameter defined by a ratio of the plurality of received pilot symbols to a received noise level.
- 29. The apparatus of 28 further comprising:
a third module configured to assign an initial value to the first parameter.
- 30. The apparatus of 29 further comprising:
a fourth module configured to assign an initial value to a third parameter defined by performing a trace operation on a covariance matrix of an estimation error defined by a difference between the actual and the estimate value of the channel.
- 31. The apparatus of 30 further comprising:
a fifth module configured to perform a first modification step to modify the value of the first parameter in accordance with the value of the third parameter;
a sixth module configured to perform a second modification step to modify the channel estimate value in accordance with the modified value of the first parameter;
a seventh module configured to perform a third modification step to modify the third parameter value in accordance with the modified value of the first parameter, wherein the fifth, sixth, and seventh modules are further configured to continue to perform the first, second, and third modification steps until the values of each of the first parameter, the channel estimate, and the third parameter converge to levels satisfying associated predefined conditions.
- 32. The apparatus of 31 further comprising:
an eighth module configured to assign an initial value of one to the third parameter.
- 33. The apparatus of 30 wherein the covariance matrix of the estimation error is a substantially minimum variance estimator.
- 34. The apparatus of 32 wherein the channel estimate value is further defined by the frequency response of the channel.
- 35. The apparatus of 20 wherein apparatus comprises at least two antennas and wherein the second module estimates the channel value for each of the plurality of the at least two antennas separately.
- 36. An apparatus adapted to estimate and track a channel for wireless OFDM communication system, the apparatus comprising:
means for receiving a plurality of pilot symbols arbitrarily scattered between a multitude of data symbols transmitted via at least one transmit antenna, wherein said plurality of pilot symbols are received with various time delays along the channel;
means for estimating the channel value using the plurality of received pilot symbols and in accordance with iterative correlation of the time delays over time, wherein the channel comprises a plurality of OFDM sub-channels.
- 37. The apparatus of . 36 wherein the estimating step uses a Kalman type filter to determine the channel value in an iterative manner.
- 38. The apparatus of 36 wherein the plurality of pilot symbols are scattered arbitrarily among at least one of time or OFDM sub-carrier
- 39. The apparatus of 36 further comprising means for link scheduling using the channel value.
- 40. The apparatus of 36 wherein the channel estimate value is defined by an initial value assigned to the channel.
- 41. The apparatus of 40 wherein the initial value assigned to the channel is zero.
- 42. The apparatus of 40 wherein the channel estimate value is further defined by a first parameter adapted to balance contribution of the plurality of the received pilot symbols with a previous estimate of the channel.
- 43. The apparatus of 42 wherein the channel estimate value is further defined by a second parameter defined by a ratio of the plurality of received pilot symbols to a received noise level.
- 44. The system of 43 further comprising:
means for assigning an initial value to the first parameter.
- 45. The apparatus of 44 further comprising:
means for assigning an initial value to a third parameter defined by performing a trace operation on a covariance matrix of an estimation error defined by a difference between the actual and the estimate value of the channel.
- 46. The apparatus of 45 further comprising:
means for performing a first modification step to modify the value of the first parameter in accordance with the value of the third parameter;
means for performing a second modification step to modify the channel estimate value in accordance with the modified value of the first parameter;
means for performing a third modification step to modify the value of the third parameter in accordance with the modified value of the first parameter; and
means for continuing to perform the first, second, and third modification steps until the values of each of the first parameter, the channel estimate, and the third parameter converge to levels satisfying associated predefined conditions.
- 47. The system of 46 further comprising:
means for assigning an initial value of one to the third parameter.
- 48. The apparatus of 36 wherein the covariance matrix of the estimation error is a substantially minimum variance estimator.
- 49. The apparatus of 36 wherein the channel estimate value is further defined by the frequency response of the channel.
- 50. The apparatus of 36 wherein apparatus comprises at least two antennas and wherein the means for estimating the channel value comprises means for estimating the channel value for each of the plurality of the at least two antennas separately.
1. A method of estimating and tracking a channel of a wireless orthogonal frequency division modulation (OFDM) communication system, the method comprising:
receiving a plurality of pilot symbols scattered between a plurality of data symbols transmitted via at least one transmit antenna, wherein:
said plurality of pilot symbols being subject to channel conditions, and
said plurality of pilot symbols are scattered arbitrarily among at least one of time or OFDM sub-carrier;
estimating the channel value using the plurality of received pilot symbols and in accordance with correlation of the channel conditions over time,
wherein the channel value is defined by an initial value assigned to the channel, and the initial value assigned to the channel value is zero.
2. The method of claim 1 wherein the channel estimate value is further defined by a first parameter adapted to balance contribution of the received plurality of pilot symbols with a previous estimate of the channel.
3. The method of claim 2, wherein the channel estimate value is further defined by a second parameter defined by a ratio of the received plurality of pilot symbols to a received noise level.
4. The method of claim 3 further comprising: assigning an initial value to the first parameter.
5. The method of claim 4 further comprising: assigning an initial value to a third parameter defined by performing a trace operation on a covariance matrix of an estimation error defined by a difference between the actual and the estimate value of the channel.
6. The method of claim 5 further comprising:
performing a first modification step to modify the value of the first parameter in accordance with the value of the third parameter;
performing a second modification step to modify the channel estimate value in accordance with the modified value of the first parameter;
performing a third modification step to modify the value of the third parameter in accordance with the modified value of the first parameter; and
continuing to perform the first, second, and third modification steps until the values of each of the first parameter, the channel estimate, and third parameter converge to levels satisfying associated predefined conditions.
7. The method of claim 6 further comprising: assigning an initial value of one to the third parameter.
8. The method of claim 6 wherein the channel estimate value satisfying the associated predefined condition is a substantially unbiased estimator of the channel.
9. The method of claim 8 wherein the covariance matrix of the estimation error is a substantially minimum variance estimator.
10. An apparatus for estimating and tracking a channel for wireless OFDM communication system, the apparatus comprising:
means for receiving a plurality of pilot symbols arbitrarily scattered between a plurality of data symbols transmitted via at least one transmit antenna,
said plurality of pilot symbols being subject to channel conditions, and
said plurality of pilot symbols are scattered arbitrarily among at least
one of time or OFDM sub-carrier;
means for estimating a channel value using the plurality of received pilot symbols and in accordance with correlation of the channel conditions over time,
wherein the channel value is defined by an initial value assigned to the channel, and the initial value assigned to the channel is zero.
11. The apparatus of claim 10 wherein the channel estimate value is further defined by a first parameter adapted to balance contribution of the received plurality of pilot symbols with a previous estimate of the channel.
12. The apparatus of claim 11, wherein the channel estimate value is further defined by a second parameter defined by a ratio of the received plurality of pilot symbols to a received noise level.
13. The apparatus of claim 12 further comprising:
means for assigning an initial value to the first parameter.
14. The apparatus of claim 13 further comprising:
means for assigning an initial value to a third parameter defined by performing a trace operation on a covariance matrix of an estimation error defined by a difference between the actual and the estimate value of the channel.
15. The apparatus of claim 14 further comprising:
means for performing a first modification step to modify the value of the first parameter in accordance with the value of the third parameter;
means for performing a second modification step to modify the channel estimate value in accordance with the modified value of the first parameter;
means for performing a third modification step to modify the value of the third parameter in accordance with the modified value of the first parameter; and
means for continuing to perform the first, second, and third modification steps until the values of each of the first parameter, the channel estimate, and third parameter converge to levels satisfying associated predefined conditions.
16. The apparatus of claim 15 further comprising:
means for assigning an initial value of one to the third parameter.
17. The apparatus of claim 15 wherein the channel estimate value satisfying the associated predefined condition is a substantially unbiased estimator of the channel.
18. The apparatus of claim 17 wherein the covariance matrix of the estimation error is a substantially minimum variance estimator.
19. A computer readable medium having a computer readable program code embodied therein, said computer readable program code adapted to be executed to implement a method of estimating and tracking a channel of a wireless orthogonal frequency division modulation (OFDM) communication system as in any of claims 1 to 9.
20. An apparatus configured to estimate and track a channel of a wireless orthogonal frequency division modulation (OFDM) communication system, the apparatus comprising:
an antenna configured to receive a plurality of pilot symbols scattered between a plurality of data symbols transmitted via at least one transmit antenna, wherein said plurality of pilot symbols being subject to channel conditions, and said plurality of pilot symbols are scattered arbitrarily among at least one of time or OFDM sub-carrier; and
a processor configured to estimate the channel value using the plurality of received pilot symbols and in accordance with correlation of the channel conditions over time,
wherein the channel value is defined by an initial value assigned to the channel, and the initial value assigned to the channel value is zero.