(19)
(11)EP 2 249 161 B1

(12)EUROPEAN PATENT SPECIFICATION

(45)Mention of the grant of the patent:
13.05.2020 Bulletin 2020/20

(21)Application number: 09159425.9

(22)Date of filing:  05.05.2009
(51)Int. Cl.: 
G16B 40/00  (2019.01)
G01N 33/68  (2006.01)

(54)

Method of diagnosing asphyxia

Verfahren zur Diagnose von Asphyxie

Procédé pour le diagnostic de l'asphyxie


(84)Designated Contracting States:
AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO SE SI SK TR

(43)Date of publication of application:
10.11.2010 Bulletin 2010/45

(73)Proprietor: InfanDx AG
50670 Köln (DE)

(72)Inventors:
  • Keller, Matthias
    45219 Essen (DE)
  • Deigner, Hans-Peter
    68623 Lampertheim (DE)
  • Enot, David
    14480 Creully (FR)
  • Kohl, Matthias
    95326 Kulmbach (DE)
  • Solberg, Rønnaug
    0027 Oslo (NO)
  • Saugstad, Ola Didrik
    0373 Oslo (NO)
  • Koal, Therese
    6020 Innsbruck (AT)

(74)Representative: Nobbe, Matthias 
Demski & Nobbe Patentanwälte Mülheimer Strasse 210
47057 Duisburg
47057 Duisburg (DE)


(56)References cited: : 
WO-A-2007/003343
US-A1- 2007 003 965
  
  • CHU C Y ET AL: "Metabolomic and bioinformatic analyses in asphyxiated neonates" CLINICAL BIOCHEMISTRY, ELSEVIER INC, US, CA, vol. 39, no. 3, 1 March 2006 (2006-03-01), pages 203-209, XP025059029 ISSN: 0009-9120 [retrieved on 2006-03-01]
  • MUELLER P. ET AL.: "Mass Spectrometric Quantifications Of Organic Acids And Acylcarnitines In Early Random Urine Specimens Of Newborns With Perinatal Complications: Feasibility Study For The Prediction Of The Neuro developmental Outcome" THE INTERNET JOURNAL OF PEDIATRICS AND NEONATOLOGY, [Online] vol. 7, no. 2, 2007, XP002546473 [retrieved on 2009-07-06]
  • BUCHHOLZ A ET AL: "Metabolomics: quantification of intracellular metabolite dynamics", BIOMOLECULAR ENGINEER, ELSEVIER, NEW YORK, NY, US, vol. 19, no. 1, 1 June 2002 (2002-06-01), pages 5-15, XP004369441, ISSN: 1389-0344, DOI: 10.1016/S1389-0344(02)00003-5
 
Remarks:
The file contains technical information submitted after the application was filed and not included in this specification
 
Note: Within nine months from the publication of the mention of the grant of the European patent, any person may give notice to the European Patent Office of opposition to the European patent granted. Notice of opposition shall be filed in a written reasoned statement. It shall not be deemed to have been filed until the opposition fee has been paid. (Art. 99(1) European Patent Convention).


Description


[0001] The present invention relates to a method for in vitro diagnosing asphyxia and disorders related to hypoxia in accordance with claim 1, a method of in vitro estimating duration of hypoxia in a patient according to claim 10, and a method for in vitro monitoring of hypoxic conditions in accordance with claim 11.

[0002] The invention generally relates to biomarkers for asphyxia as tools in clinical diagnosis for early detection of asphyxia, therapy monitoring and methods based on the same biomarkers.

BACKGROUND Asphyxia



[0003] In technically developed countries, perinatal asphyxia affects 3 - 5 per 1000 live births with subsequent moderate or severe hypoxic ischaemic encephalopathy (HIE) in 0.5 - 1 per 1000 live births (Levene 1986). HIE is a major problem worldwide as 10 - 60% of affected infants die, and at least 25% of survivors have long term neurodevelopmental sequelae (Vannucci 1990). In addition 5 - 10% of newborns require some kind of assistance to start breathing after birth. The aim of resuscitation and resuscitation monitoring by appropriate diagnostic marker is to prevent death and adverse long term neurodevelopmental impairment.

[0004] Until recently the therapy was limited to preventive measures and symptomatic supportive strategies after asphyxia. However, asphyxia, hypoxia and related disorders are potentially treatable disorders which potentially impair memory or other mental functions or physical functions. Recent experimental and clinical study clearly show a benefit of hypothermia as a clinically feasible manoeuvre that improve the outcome of neonates with HIE. It has been shown that a delay of hypothermia reduces the neuroprotective potential or the earlier the therapy is initiated the higher the protective effect. Recent research has shown that using extra oxygen for newborn resuscitation will negatively influence both morbidity and mortality. Oxygen inhibits protein synthesis and/or increases their degradation and also is a potent activator and/or suppressor of a number of genes. Furthermore, it contributes to the regulation of membrane transport, intracellular signalling and the initiation of apoptosis.

[0005] In addition, in particular in treatment of decompression sickness occurring after recreational or professional scuba diving, it is common to treat patients with 100% oxygen under hyperbaric conditions in a pressure chamber, in order to get rid of nitrogen excess bubbling out after a decompression accident causing symptoms from skin itching to complete paralysis. A hyperbaric oxygen treatment [HBO] protocol is published in the US Navy Treatment Table 6, which is also used with slight modifications in German (GTUM) and Austrian (ÖGTH) diving and hyberbaric medical associations. itypical treatment. In this treatment protocols a patient suffering from decompression sickness is intermittently exposed to a maximum pressure of 2.8 bar/2.4 bar (corresponding to a water depth of 18 m/14m) for up to several hours and repeated treatments over several weeks, if necessary.

[0006] In the state of art, the following is known in view of metabolomic analysis.

[0007] Chu et al., Clinical Biochemistry 39 (2006) 203 -·209 disclose metabolomic and bioinformatic analysis of neonatal urine samples with clinical evidence of severe asphyxia. The metabolomic discriminators between good neonatal outcome and poor neonatal outcome were established using hierarchical clustering analysis. Concentrations of eight urinary organic acids in distinct biochemical pathways were elevated and significantly associated with the prognosis of neurodevelopmental handicap with high sensitivity and specificity: ethylmalonate, 3-hydroxy-3-methylglutarate, 2-hydroxy-glutarate and 2-oxo-glutarate were associated with good neonatal outcome, whereas glutarate, methylmalonate, 3-hydroxy-butyrate and orotate were associated with poor outcome.

[0008] WO 2007/003343 discloses a method for analysis of a drug and/or metabolite profile in a biological sample by means of mass-spectrometry involving internal standards for investigating multiple metabolites in clinical samples and comparison of the obtained data with databases.

[0009] US 2007/003965 discloses an apparatus for the quantitative analysisfor of a drug and/or a metabolite profile in a biological sample comprising a mass spectrometer and a database for storing results of the analysis.

[0010] Mueller et al. "Mass Spectrometric Quantifications Of Organic Acids And Acylcarnitines In Early Random Urine Specimens Of Newborns "With Perinatal Complications: Feasibility Study For The Prediction Of The Neuro-,developmental Outcome", The internet journal of paediatrics and neonataology, vol. 7, no. 2, 2007 disclose GC/MS and MS/MS technics for interpretation of intermediary metabolism in neonates with perinatal complications (Hypoxicischemic encephalopathy (HIE) caused by severe asphyxia) on the basis of 65 quantitative parameters (42 organic acids, 22 acylcarnitines. free carnitine) and 15 ratios.

[0011] Currently, no reliable monitoring of oxygen induced damages, in particular brain damages, during HBO therapy is existing, only the clinical signs of a CNS oxygen toxicity, such as neuromuscular spasms are available.

[0012] Accordingly, there is an urgent need for timely treatment and early diagnosis of asphyxia, in particular in newborns, and, as pointed out above, an urgent need for therapy monitoring given e.g. detrimental effects due to excess oxygen administration upon treatment.

[0013] These needs are met by a method for in vitro diagnosing asphyxia in accordance with claim 1, a method of in vitro estimating duration of hypoxia in a patient subjected to asphyxia according to claim 10, and a method for in vitro monitoring of hypoxic conditions according to claim 11.

[0014] In particular, the present invention relates to a method for in vitro diagnosing asphyxia comprising quantitatively detecting in at least one human blood three or more asphyxia specific compounds having a molecular weight of less than 1500 Dalton, except lactate, wherein the asphyxia specific endogenous compounds are selected from Tables 2 and 3, comprising the steps of:
  1. a) selecting said compounds;
  2. b) measuring at least one of the parameters selected from the group consisting of: concentration, level or amount of each individual metabolite of said plurality of metabolites in said sample, and using and storing the obtained set of values in a database;
  3. c) calibrating said values by comparing asphyxia-positive and/or asphyxia-negative reference parameters;
  4. d) comparing said measured values in the sample with the calibrated values, in order to assess whether the patient is asphyxia-positive or asphyxia-negative.


[0015] In a preferred embodiment of the present invention, the method is characterized in that said calibration step is carried out by
  1. a) mathematically preprocessing said values in order to reduce technical errors being inherent to the measuring procedures used in claim 1;
  2. b) selecting at least one suitable classifying algorithm from the group consisting of logistic regression, (diagonal) linear or quadratic discriminant analysis (LDA, QDA, DLDA, DQDA), perceptron, shrunken centroids regularized discriminant analysis (RDA), random forests (RF), neural networks (NN), Bayesian networks, hidden Markov models, support vector machines (SVM), generalized partial least squares (GPLS), partitioning around medoids (PAM), inductive logic programming (ILP), generalized additive models, gaussian processes, regularized least square regression, self organizing maps (SOM), recursive partitioning and regression trees, K-nearest neighbor classifiers (K-NN), fuzzy classifiers, bagging, boosting, and naïve Bayes; and applying said selected classifier algorithm to said preprocessed data of step a);
  3. c) said classifier algorithms of step b) being trained on at least one training data set containing preprocessed data from subjects being divided into classes according to their asphixia-related pathophysiological, physiological, prognostic, or responder conditions , in order to select a classifier function to map said preprocessed data to said conditions;
  4. d) applying said trained classifier algorithms of step c) to a preprocessed data set of a subject with unknown asphyxia-related pathophysiological, physiological, prognostic, or responder condition, and using the trained classifier algorithms to predict the class label of said data set in order to diagnose the asphyxia status of the subject,
wherein said step of mathematically preprocessing in step 2 a) of said raw data obtained in step 1 b) is carried out by a statistical method selected from the group consisting of:

in case of raw data obtained by optical spectroscopy (UV, visible, IR, Fluorescence): background correction and/or normalization;

in case of raw data obtained by mass spectroscopy or mass spectroscopy coupled to liquid or gas chromatography or capillary electrophoresis or by 2D gel electrophoresis, quantitative determination with ELISA or RIA or determination of concentrations/amounts by quantitation of immunoblots or quantitation of amounts of biomolecules bound to aptamers: smoothing, baseline correction, peak picking, optionally, additional further data transformation such as taking the logarithm in order to carry out a stabilization of the variances.



[0016] In accordance with the present invention, the method includes that the asphyxia is perinatal asphyxia.

[0017] Furthermore, it is preferred that after preprocessing step 2 a) a further step of feature selection is inserted, in order to find a lower dimensional subset of features with the highest discriminatory power between classes;
and/or said feature selection is carried out by a filter and/or a wrapper approach;
and/or wherein said filter approach includes rankers and/or feature subset evaluation methods; and/or wherein said wrapper approach is applied, where a classifier is used to evaluate attribute subsets.

[0018] In a preferred embodiment of the present invention, said pathophysiological condition corresponds to the label "diseased" and said physiological condition corresponds to the label "healthy" or said pathophysiological condition corresponds to different labels of "grades of a disease", "subtypes of a disease", different values of a "score for a defined disease"; said prognostic condition corresponds to a label "good", "medium", "poor", or "therapeutically responding" or "therapeutically non-responding" or "therapeutically poor responding".

[0019] The metabolic data of the present invention are preferably obtained by high- throughput mass spectrometry data.

[0020] It is further preferred that said asphyxia specific endogenous compounds are asphyxia specific endogenous metabolites.

[0021] A particular useful application of the method in accordance with the present invention is that said asphyxia is hypoxic ischemic encephalopathy, wherein missing data is imputed;
wherein raw data of metabolite concentrations are preprocessed using the log transformation;
wherein linear mixed effect models are used to identify metabolites which are differentially present;
wherein random forest is selected as suitable classifying algorithm, the training of the classifying algorithm including preprocessed metabolite concentrations, is carried out with stratified bootstrap replications
applying said trained random forests classifier to said preprocessed metabolite concentration data set to a subject under suspicion of having hypoxic ischemic encephalopathy, and using the trained classifier to diagnose hypoxic ischemic encephalopathy.

[0022] The method further comprises inclusion of standard lab parameters commonly used in clinical chemistry and critical care units, in particular, blood gases, preferably arterial blood oxygen, blood pH, base status, and lactate, serum and/or plasma levels of routinely used low molecular weight biochemical compounds, enzymes, enzymatic activities, cell surface receptors and/or cell counts, in particular red and/or white cell counts, platelet counts.

[0023] The present invention furthermore, is directed to a method of in vitro estimating duration of hypoxia in a patient subjected to asphyxia, comprising quantitatively detecting in at least one human blood sample three or more asphyxia specific endogenous compounds having a molecular weight of less than 1500 Dalton,
and calibrating preprocessed detected values by means of regression analysis with known duration of hypoxia and applying the obtained regression function to the preprocessed detected value data set of a patient under hypoxia, and using the regression function to calculate the duration of hypoxia, wherein the asphyxia specific endogenous compounds are selected from Tables 2 and 3.

[0024] Furthermore, with the methods of the present invention, for the first time, a method for in vitro monitoring of hypoxic conditions is provided. Such method is characterized by quantitatively detecting in at least one human blood sample three or more asphyxia specific compounds; and calibrating preprocessed detected values by means of training a linear discriminant analysis classifier with known stages of oxygenation and/or oxygen induced injuries of a mammalian subject and applying the trained classifier to said preprocessed value data set of a subject under oxygen therapy and using the trained classifier to determine the stage of oxygenation and/or oxygen induced injury, wherein the asphyxia specific endogenous compounds are selected from Tables 2 and 3.

[0025] Such monitoring method is further characterized in that said hypoxic conditions include asphyxia, in particular, perinatal asphyxia.

[0026] Currently used diagnostic methods require time and appropriate equipment (MRI; aEEG), with high costs and frequently unsatisfying sensitivities. Current diagnostics in clinical routine is limited to a) clinical information (APGAR) b) use of basic biochemical information of pH, lactate and base deficit c) use of cerebral function monitoring (aEEG) or EEG. However this used diagnostic means have major limitations either to reduced area under the curve (AUC) and/or delay of diagnosis or increased costs due to equipment required.

[0027] Therefore, there is an urgent need for early (immediately after asphyxia) biomarkers enabling early and reliable diagnosis, risk stratification of asphyxia per se, asphyxia duration and severity and asphyxia - induced hypoxic - ischemic encephalopathy. Since metabolite concentration differences in biological fluids and tissues provide links to the various phenotypical responses, metabolites are suitable biomarker candidates.

[0028] A major goal of the diagnostic workup is to discriminate mild transient asphyxia and perinatal stress from long-lasting moderate and/or severe asphyxia with the risk of hypoxia - induced disorders.

[0029] In classical patient screening and diagnosis, the medical practitioner uses a number of diagnostic tools for diagnosing a patient suffering from a certain disease. Among these tools, measurement of a series of single routine parameters, e.g. in a blood sample, is a common diagnostic laboratory approach. These single parameters comprise for example enzyme activities and enzyme concentration and/or detection of metabolic indicators such as glucose and the like. As far as such diseases are concerned which easily and unambiguously can be correlated with one single parameter or a few number of parameters achieved by clinical chemistry, these parameters have proved to be indispensable tools in modern laboratory medicine and diagnosis. Under the provision that excellently validated cut-off values can be provided, such as in the case of diabetes, clinical chemical parameters such as blood glucose can be reliably used in diagnosis.

[0030] In particular, when investigating pathophysiological states underlying essentially a well known pathophysiological mechanism, from which the guiding parameter is resulting, such as a high glucose concentration in blood typically reflects an inherited defect of an insulin gene, such single parameters have proved to be reliable biomarkers for "its" diseases.

[0031] However, in pathophysiological conditions, such as cancer or demyelinating diseases such as multiple sclerosis which share a lack of an unambiguously assignable single parameter or marker, differential diagnosis from blood or tissue samples is currently difficult to impossible.

[0032] The present invention provides methods for diagnosing whether a subject suffered from asphyxia as well as the duration/severity immediately after the event. Such methods comprise the steps of: analyzing a human blood sample to determine the levels of three or more biomarkers for asphyxia specific endogenous compounds having a molecular weight of less than 1500 Dalton, except lactate, wherein the asphyxia specific endogenous compounds are selected from Tables 2 and 3; and comparing the levels of the asphyxia specific endogenous compounds - respectively a composed value / score generated by subjecting the concentrations of asphyxia specific endogenous compounds in the sample to a classification method such as affording an equation processing single concentration values - to obtain a separation between both (diseased and healthy) groups.

[0033] Such methods comprise the steps of: analyzing a human blood sample to determine the levels of three or more asphyxia specific compounds having a molecular weight of less than 1500 Dalton, except lactate, wherein the asphyxia specific endogenous compounds are selected from Tables 2 and 3; and comparing the levels of the asphyxia specific endogenous compounds to asphyxia positive or asphyxia negative reference levels of the asphyxia specific endogenous compounds in order to determine whether the subject is developing asphyxia.

[0034] The present invention provides a solution to the problem described above, and generally relates to the use of metabolomics data, generated by quantitation of endogenous metabolites by but not limited to mass spectrometry (MS), in particular MS-technologies such as MALDI, ESI, atmospheric pressure pressure chemical ionization (APCI), and other methods, determination of metabolite concentrations by use of MS-technologies or alternative methods coupled to separatrion (LC-MS, GC-MS, CE-MS), subsequent feature selection and /or the combination of features to classifiers including molecular data of at least two molecules.

[0035] The concentrations of the individual markers, analytes, metabolites thus are measured and compared to reference values or data combined and processed to scores, classifiers and compared to reference values thus indicating diseased states etc. with superior sensitivities and specificities compared to known procedures, clinical parameters and biomarkers.

[0036] For example, in some embodiments, the present invention provides a method of diagnosing Asphyxia and/or duration/severity comprising: detecting the presence or absence of three or more (e.g., 5 or more, 10 or more, etc. measured together in a multiplex or panel format) asphyxia specific metabolites according to tables 2 and 3 in human blood sample from a subject; and diagnosing asphyxia based on the presence of the asphyxia specific metabolite.

[0037] In some embodiments, the specific metabolite is present in asphyctic samples but not non-asphyctic samples. In some embodiments, one or more additional asphyxia markers are detected (e.g., in a panel or multiplex format) along with the asphyxia specific metabolites.

[0038] The present invention further provides a method of screening compounds, comprising: contacting an animal, a tissue, a cell containing an asphyxia-specific metabolite with a test compound; and detecting the level of the asphyxia specific metabolite. In some embodiments, the method further comprises the step of comparing the level of the asphyxia specific metabolite in the presence of the test compound or therapeutic intervention to the level of the asphyxia specific metabolite in the absence of the asphyxia specific metabolite. In some embodiments, the cell is in vitro, in a non-human mammal, or ex vivo. In some embodiments, the test compound is a small molecule or a nucleic acid (e.g., antisense nucleic acid, a siRNA, or a miRNA) or oxygen/xenon or any neuroprotective drug that inhibits the expression of an enzyme involved in the synthesis or breakdown of an asphyxia specific metabolite. In some embodiments, the method is a high throughput method.

[0039] In one embodiment, the biomarker is a classifier generated from metabolite and analyte concentrations listed in tables 2 to 3.

[0040] Further aspects, advantages and embodiments of the present invention will become evident by the description of examples, from the experimental sections below and by means of the drawings.

Fig.1 is a graph showing relative metabolite concentration changes compared to the control (positive value) or to the treated animals (negative values) after asphyxia (orange, Start of Asphyxia (SA) vs End of Asphyxia (EA) and following the resuscitation (end of rescuscitation ER) procedure (green, EA vs ER) for the selected set of acyl carnitine derivatives. * denotes significance levels after correction for test multiplicity: q value lower than 10-3, ** 10-5 and *** 10-7;

Fig. 2 is a graph showing relative metabolite concentration changes compared to the control (positive value) or to the treated animals (negative values) after asphyxia (orange, SA vs EA) and following the resuscitation procedure (green, EA vs ER) for the selected set of metabolites other than acyl carnitine derivatives. * denotes significance levels after correction for test multiplicity: q value lower than 10-3, ** 10-5 and *** 10-7;

Fig. 3 is a graph showing relative metabolite concentration changes compared to the control (positive value) or to the treated animals (negative values) after asphyxia (orange, SA vs EA) and following the resuscitation procedure (green, EA vs ER) for a selection of concentration ratios between biologically connected metabolite. * denotes significance levels after correction for test multiplicity: q value lower than 10-3, ** 10-5 and *** 10-7;

Fig. 4a shows a mapping of the samples (scores) on the first two dimensions from a principal component analysis using the full list of compounds given in table 1. This illustrates that the main source of variability in the metabolomics data is clearly related to the asphyxia effect;

Fig. 4b shows a mapping of the samples (scores) on the first two dimensions from a principal component analysis after removing the 30 top ranked metabolites from the list given in table 2. This illustrates that variance associated to the linear combination of the most prominent metabolites is necessary to early detection of asphyxia in the subject. This statement is confirmed by means of multivariate classification (see also Fig 4c);

Fig. 4c shows an evaluation of classification performance by mean of repeated bootstrapping using Random Forest with different number of top ranked compounds/metabolites (analytes) excluded from the model. Exclusion of the top ranked metabolites is translated by a dramatic loss of classification efficiency and an increased variance of its error estimates.

Fig. 5 shows receiver operator characteristics curves: an individual clinical parameter (heart rate, HR), a predictive metabolite from table 1 and the combination of these two to discriminate healthy and asphyxiated subjects;

Fig. 6 shows a graph demonstrating that metabolites can be used to determine the time of hypoxia and therefore reoxygenation: actual versus fitted hypoxia length (in minutes, log scale) for 26 animals from regression models involving commonly used marker lactate (black circles), Gly/BCAA ratio (red triangles) and a combination of three metabolomics parameters (green squares).

Fig. 7a shows the effect of a resuscitation protocol with the metabolite decadienyl-L-carnitine; and

Fig. 7b shows the effect of a resuscitation protocol with the metabolite propionyl-L-carnitine.



[0041] Abbreviations: C4 = Butyrylcarnitine / Isobutyrylcarnitine; BCAA=branched chain amino acids; Gly=Glycine

[0042] "Asphyxia" in this context relates to any diseased state linked to lack of oxygen, oxygen saturation, hypoxia.Asphyxia can be induced either pre-/perinatally due to a lack of oxygen supply by the umbilical cord or can be caused by any condition associated with an inability to breathe and/or inadequate lung ventilation like choking, drowning, electric shock, injury, or the inhalation of toxic gases.

[0043] As used herein, the term "asphyxia specific metabolite" refers to a metabolite that is differentially present or differentially concentrated in asphyctic organisms compared to non-asphyctic organisms. For example, in some embodiments, asphyxia specific metabolites are present in asphyctic blood samples but not in non- in asphyctic blood samples.

[0044] In other embodiments, asphyxia-specific metabolites are absent in asphyctic blood samples but present in non-asphyctic blood samples. In still further embodiments, asphyxia specific metabolites are present at different levels (e.g., higher or lower) in asphyctic blood samples as compared to non-asphyctic blood samples. For example, an asphyxia specific metabolite may be differentially present at any level, but is generally present at a level that is increased by at least 10%, by at least 15%, by at least 20%, by at least 25%, by at least 30%, by at least 35%, by at least 40%, by at least 45%, by at least 50%, by at least 55%, by at least 60%, by at least 65%, by at least 70%, by at least 75%, by at least 80%, by at least 85%, by at least 90%, by at least 95%, by at least 100%, by at least 110%, by at least 120%, by at least 130%, by at least 140%, by at least 150%, or more; or is generally present at a level that is decreased by at least 5%, by at least 10%, by at least 15%, by at least 20%, by at least 25%, by at least 30%, by at least 35%, by at least 40%, by at least 45%, by at least 50%, by at least 55%, by at least 60%, by at least 65%, by at least 70%, by at least 75%, by at least 80%, by at least 85%, by at least 90%, by at least 95%, or by 100% (i.e., absent).

[0045] An asphyxia-specific metabolite is preferably differentially present at a level that is statistically significant (e.g., a p-value less than 0.001 and/or a q-value of less than 0.01 as determined using either Analysis of Variance, Welch's t-test or its non parametric equivalent versions). Exemplary asphyxia-specific metabolites are described in the detailed description and experimental sections below.

[0046] The term "sample" in the present specification and claims is used in its broadest sense.

[0047] A "reference level" of a metabolite means a level of the metabolite that is indicative of a particular disease state, phenotype, or lack thereof, as well as combinations of disease states, phenotypes, or lack thereof. A "positive" reference level of a metabolite means a level that is indicative of a particular disease state or phenotype. A "negative" reference level of a metabolite means a level that is indicative of a lack of a particular disease state or phenotype. For example, an "asphyxia-positive reference level" of a metabolite means a level of a metabolite that is indicative of a positive diagnosis of asphyxia in a subject, and an "asphyxia-negative reference level" of a metabolite means a level of a metabolite that is indicative of a negative diagnosis of asphyxia in a subject. A "reference level" of a metabolite may be an absolute or relative amount or concentration of the metabolite, a presence or absence of the metabolite, a range of amount or concentration of the metabolite, a minimum and/or maximum amount or concentration of the metabolite, a mean amount or concentration of the metabolite, and/or a median amount or concentration of the metabolite; and, in addition, "reference levels" of combinations of metabolites may also be ratios of absolute or relative amounts or concentrations of two or more metabolites with respect to each other or a composed value / score obtained by classification.

[0048] Appropriate positive and negative reference levels of metabolites for a particular disease state, phenotype, or lack thereof may be determined by measuring levels of desired metabolites in one or more appropriate subjects, and such reference levels may be tailored to specific populations of subjects (e.g., a reference level may be age-matched so that comparisons may be made between metabolite levels in samples from subjects of a certain age and reference levels for a particular disease state, phenotype, or lack thereof in a certain age group). Such reference levels may also be tailored to specific techniques that are used to measure levels of metabolites in biological samples (e.g., LC-MS, GC-MS, etc.), where the levels of metabolites may differ based on the specific technique that is used.

[0049] As used herein, the term "cell" refers to any eukaryotic or prokaryotic cell (e.g., bacterial cells such as E. coli, yeast cells, mammalian cells, avian cells, amphibian cells, plant cells, fish cells, and insect cells), whether located in vitro or in vivo.

[0050] As used herein, the term "processor" refers to a device that performs a set of steps according to a program (e.g., a digital computer). Processors, for example, include Central Processing Units ("CPUs"), electronic devices, or systems for receiving, transmitting, storing and/or manipulating data under programmed control.

[0051] As used herein, the term "memory device," or "computer memory" refers to any data storage device that is readable by a computer, including, but not limited to, random access memory, hard disks, magnetic (floppy) disks, compact discs, DVDs, magnetic tape, flash memory, and the like.

[0052] "Mass Spectrometry" (MS) is a technique for measuring and analyzing molecules that involves fragmenting a target molecule, then analyzing the fragments, based on their mass/charge ratios, to produce a mass spectrum that serves as a "molecular fingerprint". Determining the mass/charge ratio of an object is done through means of determining the wavelengths at which electromagnetic energy is absorbed by that object. There are several commonly used methods to determine the mass to charge ration of an ion, some measuring the interaction of the ion trajectory with electromagnetic waves, others measuring the time an ion takes to travel a given distance, or a combination of both. The data from these fragment mass measurements can be searched against databases to obtain definitive identifications of target molecules. Mass spectrometry is also widely used in other areas of chemistry, like petrochemistry or pharmaceutical quality control, among many others.

[0053] As used here, the term "metabolite" denotes endogenous organic compounds being present in blood and in extracts obtained from the aforementioned source with a molecular weight typically below 1500 Dalton.

[0054] "Metabolomics" as understood within the scope of the present invention designates the comprehensive quantitative measurement of several (2-thousands) metabolites by, but not limited to, methods such as mass spectroscopy, coupling of liquid chromatography, gas chromatography and other separation methods chromatography with mass spectroscopy.

[0055] The term "separation" refers to separating a complex mixture into its component proteins or metabolites. Common laboratory separation techniques include gel electrophoresis and chromatography.

[0056] The term "capillary electrophoresis" refers to an automated analytical technique that separates molecules in a solution by applying voltage across buffer-filled capillaries. Capillary electrophoresis is generally used for separating ions, which move at different speeds when the voltage is applied, depending upon the size and charge of the ions. The solutes (ions) are seen as peaks as they pass through a detector and the area of each peak is proportional to the concentration of ions in the solute, which allows quantitative determinations of the ions.

[0057] The term "chromatography" refers to a physical method of separation in which the components to be separated are distributed between two phases, one of which is stationary (stationary phase) while the other (the mobile phase) moves in a definite direction. Chromatographic output data may be used for manipulation by the present invention.

[0058] An "ion" is a charged object formed by adding electrons to or removing electrons from an atom.

[0059] A "mass spectrum" is a plot of data produced by a mass spectrometer, typically containing m/z values on x-axis and intensity values on y-axis.

[0060] A "peak" is a point on a mass spectrum with a relatively high y-value.

[0061] The term "m/z" refers to the dimensionless quantity formed by dividing the mass number of an ion by its charge number. It has long been called the "mass-to-charge" ratio.

[0062] The term "metabolism" refers to the chemical changes that occur within the tissues of an organism, including "anabolism" and "catabolism". Anabolism refers to biosynthesis or the buildup of molecules and catabolism refers to the breakdown of molecules.

[0063] As used herein, the terms "detect", "detecting", or "detection" may describe either the general act of discovering or discerning or the specific observation of a detectably labeled composition.

[0064] As used herein, the term "clinical failure" refers to a negative outcome following asphyxia treatment.

[0065] A biomarker in this context is a characteristic, comprising data of at least one metabolite that is measured and evaluated as an indicator of biologic processes, pathogenic processes, or responses to a therapeutic intervention associated with asphyxia or related to asphyxia treatment. A combined biomarker as used here may be selected from at least two small endogenous molecules and metabolites.

DETAILED DESCRIPTION OF THE INVENTION



[0066] The present invention relates to markers of Asphyxia and its duration/severity as well of the effect of therapeutic interventions. In particular embodiments, the present invention provides metabolites that are differentially present in Asphyxia. Experiments conducted during the course of development of embodiments of the present invention identified a series of metabolites as being differentially present in asphyxia versus normal.

[0067] Table 2 provides additional metabolites present in plasma serum or other body liquids. The disclosed markers find use as diagnostic and therapeutic targets.

Diagnostic Applications



[0068] In some embodiments, the present invention provides methods for diagnosing asphyxiac, including but not limited to, characterizing risk of asphyxia, stage of asphyxia, duration and severity etc. based on the presence of asphyxia specific metabolites or their derivates, precursors, metabolites, etc. Exemplary diagnostic methods are described below.

[0069] Thus, for example, a method of diagnosing (or aiding in diagnosing) whether a subject has asphyxia comprises (1) detecting in at least one human blood sample the presence or absence or a differential level of one or more asphyxia specific metabolites selected from tables 2 and 3 and b) diagnosing asphyxia based on the presence, absence or differential level of the asphyxia specific metabolite. When such a method is used to aid in the diagnosis of asphyxia, the results of the method may be used along with other methods (or the results thereof) useful in the clinical determination of whether a subject has asphyxia.

[0070] Any mammalian sample suspected of containing asphyxia specific metabolites is tested according to the methods described herein. The sample is blood, or a fraction thereof (e.g., plasma, serum).

[0071] In some embodiments, the patient sample undergoes preliminary processing designed to isolate or enrich the sample for asphyxia specific metabolites. A variety of techniques known to those of ordinary skill in the art may be used for this purpose, including but not limited: centrifugation; immunocapture; and cell lysis.

[0072] Metabolites may be detected using any suitable method including, but not limited to, liquid and gas phase chromatography, alone or coupled to mass spectrometry (See e.g., experimental section below), NMR, immunoassays, chemical assays, spectroscopy and the like. In some embodiments, commercial systems for chromatography and NMR analysis are utilized.

[0073] In other embodiments, metabolites (i.e. biomarkers and derivatives thereof) are detected using optical imaging techniques such as magnetic resonance spectroscopy (MRS), magnetic resonance imaging (MRI), CAT scans, ultra sound, MS-based tissue imaging or X-ray detection methods (e.g., energy dispersive x-ray fluorescence detection).

[0074] Any suitable method may be used to analyze the biological sample in order to determine the presence, absence or level(s) of the three or more metabolites in the sample. Suitable methods include chromatography (e.g., HPLC, gas chromatography, liquid chromatography), mass spectrometry (e.g., MS, MS-MS), enzyme-linked immunosorbent assay (ELISA), antibody linkage, other immunochemical techniques, biochemical or enzymatic reactions or assays, and combinations thereof. Further, the level(s) of the three or more metabolites may be measured indirectly, for example, by using an assay that measures the level of a compound (or compounds) that correlates with the level of the biomarker(s) that are desired to be measured.

[0075] The levels of three or more of the recited metabolites may be determined in the methods of the present invention. For example, the levels of three or more metabolites, four or more metabolites, five or more metabolites, six or more metabolites, seven or more metabolites, eight or more metabolites, nine or more metabolites, ten or more metabolites, etc., including a combination of some or all of the metabolites listed in tables 2 and 3, may be determined and used in such methods.

[0076] Determining levels of combinations of the metabolites may allow greater sensitivity and specificity in the methods, such as diagnosing asphyxia and aiding in the diagnosis of asphyxia, and may allow better differentiation or characterization of asphyxia from other courses of brain injuries or other asphyxias that may have similar or overlapping metabolites to asphyxia (as compared to a subject not having asphyxia). For example, ratios of the levels of certain metabolites in biological samples may allow greater sensitivity and specificity in diagnosing asphyxia and aiding in the diagnosis of asphyxia and allow better differentiation or characterization of asphyxia from other asphyxias or other disorders of the that may have similar or overlapping metabolites to asphyxia (as compared to a subject not having asphyxia).

Data Analysis



[0077] In some embodiments, a computer-based analysis program is used to translate the raw data generated by the detection assay (e.g., the presence, absence, or amount of an asphyxia specific metabolite) into data of predictive value for a clinician. The clinician can access the predictive data using any suitable means. Thus, in some embodiments, the present invention provides the further benefit that the clinician, who is not likely to be trained in metabolite analysis, need not understand the raw data. The data is presented directly to the clinician in its most useful form. The clinician is then able to immediately utilize the information in order to optimize the care of the subject.

[0078] The present invention contemplates any method capable of receiving, processing, and transmitting the information to and from laboratories conducting the assays, information provides, medical personal, and subjects. For example, in some embodiments of the present invention, a blood sample is obtained from a subject and submitted to a profiling service (e.g., clinical lab at a medical facility, etc.), located in any part of the world (e.g., in a country different than the country where the subject resides or where the information is ultimately used) to generate raw data. The subject may visit a medical center to have the sample obtained and sent to the profiling center, or subjects may collect the sample themselves (e.g., a plasma sample) and directly send it to a profiling center. Where the sample comprises previously determined biological information, the information may be directly sent to the profiling service by the subject (e.g., an information card containing the information may be scanned by a computer and the data transmitted to a computer of the profiling center using an electronic communication systems). Once received by the profiling service, the sample is processed and a profile is produced (i.e., metabolic profile), specific for the diagnostic or prognostic information desired for the subject.

[0079] The profile data is then prepared in a format suitable for interpretation by a treating clinician. For example, rather than providing raw data, the prepared format may represent a diagnosis or risk assessment (e.g., likelihood of asphyxia being present) for the subject, along with recommendations for particular treatment options. The data may be displayed to the clinician by any suitable method. For example, in some embodiments, the profiling service generates a report that can be printed for the clinician (e.g., at the point of care) or displayed to the clinician on a computer monitor.

[0080] In some embodiments, the information is first analyzed at the point of care or at a regional facility. The raw data is then sent to a central processing facility for further analysis and/or to convert the raw data to information useful for a clinician or patient. The central processing facility provides the advantage of privacy (all data is stored in a central facility with uniform security protocols), speed, and uniformity of data analysis. The central processing facility can then control the fate of the data following treatment of the subject. For example, using an electronic communication system, the central facility can provide data to the clinician, the subject, or researchers.

[0081] In some embodiments, the subject is able to directly access the data using the electronic communication system. The subject may chose further intervention or counseling based on the results. In some embodiments, the data is used for research use. For example, the data may be used to further optimize the inclusion or elimination of markers as useful indicators of a particular condition or stage of disease.

[0082] When the amount(s) or level(s) of the three or more metabolites in the sample are determined, the amount(s) or level(s) may be compared to asphyxia metabolite-reference levels, such as - asphyxia-positive and/or asphyxia-negative reference levels to aid in diagnosing or to diagnose whether the subject has asphyxia. Levels of the three or more metabolites in a sample corresponding to the asphyxia-positive reference levels (e.g., levels that are the same as the reference levels, substantially the same as the reference levels, above and/or below the minimum and/or maximum of the reference levels, and/or within the range of the reference levels) are indicative of a diagnosis of asphyxia in the subject. Levels of the three or more metabolites in a sample corresponding to the asphyxia-negative reference levels (e.g., levels that are the same as the reference levels, substantially the same as the reference levels, above and/or below the minimum and/or maximum of the reference levels, and/or within the range of the reference levels) are indicative of a diagnosis of no asphyxia in the subject. In addition, levels of the three or more metabolites that are differentially present (especially at a level that is statistically significant) in the sample as compared to asphyxia-negative reference levels are indicative of a diagnosis of asphyxia in the subject. Levels of the three or more metabolites that are differentially present (especially at a level that is statistically significant) in the sample as compared to asphyxia-positive reference levels are indicative of a diagnosis of no asphyxia in the subject.

[0083] The levels of the three or more metabolites may be compared to asphyxia-positive and/or asphyxia-negative reference levels using various techniques, including a simple comparison (e.g., a manual comparison) of the levels of the three or more metabolites in the biological sample to asphyxia-positive and/or asphyxia-negative reference levels. The levels of the three or more metabolites in the biological sample may also be compared to asphyxia-positive and/or asphyxia-negative reference levels using one or more statistical analyses (e.g., t-test, Welch's t-test, Wilcoxon's rank sum test, random forests).

[0084] Embodiments of the present invention provide for multiplex or panel assays that simultaneously detect three or more of the markers of the present invention depicted in tables 2 and 3, alone or in combination with additional asphyxia markers known in the art. For example, in some embodiments, panel or combination assays are provided that detected 3 or more, 4 or more, 5 or more, 6 or more, 7 or more, 8 or more, 9 or more, 10 or more, 15 or more, or 20 or more, 30 or more, 40 or more markers in a single assay. In some embodiments, assays are automated or high throughput.

[0085] The present invention is directed to the use of markers listed in tables 2 and 3 for diagnosis of asphyxia and its duration/severity where said mammalian subject is a human being, said biological sample blood.

[0086] In some embodiments, additional asphyxia markers are included in multiplex or panel assays. Markers are selected for their predictive value alone or in combination with the metabolic markers described herein.

EXPERIMENTAL



[0087] The following examples are provided in order to demonstrate and further illustrate certain preferred embodiments and aspects of the present invention and are not to be construed as limiting the scope thereof.

General Analytics:



[0088] Sample preparation and metabolomic analyses were performed at BIOCRATES life sciences AG, Innsbruck, Austria. We used a multi-parametric, highly robust, sensitive and high-throughput targeted metabolomic platform consisting of flow injection analysis (FIA)-MS/MS and LC-MS/MS methods for the simultaneous quantification of a broad range of endogenous intermediates namely acylcarnitines, sphingomyelins, hexoses, glycerophospholipids, amino acids, biogenic amines, bile acids, eicosanoids, and small organic acids (energy metabolism), in plasma. All procedures (sample handling, analytics) were performed by co-workers blinded to the groups.

Acylcarnitines, Sphingomyelins, Hexoses, Glycerophospholipids (FIA-MS/MS)



[0089] To determine the concentration of acylcarnitines, sphingomyelins and glycerophospholipids in brain homogenates and in plasma the Absolute IDQ kit p150 (Biocrates Life Sciences AG) was prepared as described in the manufacturer's protocol. In brief, 10 µL of brain homogenate was added to the center of the filter on the upper 96-well kit plate, and the samples were dried using a nitrogen evaporator (VLM Laboratories). Subsequently, 20 µL of a 5 % solution of phenyl-isothiocyanate was added for derivatization. After incubation, the filter spots were dried again using an evaporator. The metabolites were extracted using 300 µL of a 5 mM ammonium acetate solution in methanol. The extracts were obtained by centrifugation into the lower 96-deep well plate followed by a dilution step with 600 µL of kit MS running solvent. Mass spectrometric analysis was performed on an API4000 QTrap® tandem mass spectrometry instrument (Applied Biosystems/MDS Analytical Technologies) equipped with an electro-spray ionization (ESI)-source using the analysis acquisition method as provided in the Absolute IDQ kit. The standard FIA-MS/MS method was applied for all measurements with two subsequent 20 µL injections (one for positive and one for negative mode analysis). Multiple reaction monitoring (MRM) detection was used for quantification applying the spectra parsing algorithm integrated into the MetIQ software (Biocrates Life Sciences AG). Concentration values for 148 metabolites (all analytes determined with the metabolomics kit besides of the amino acids, which were determined by a different method) obtained by internal calibration were exported for comprehensive statistical analysis.

Amino acids, Biogenic amines (LC-MS/MS)



[0090] Amino acids and biogenic amines were quantitatively analyzed by reversed phase LC-MS/MS to obtain chromatographic separation of isobaric (same MRM ion pairs) metabolites for individual quantitation performed by external calibration and by use of internal standards. 10 µL sample volume (plasma, brain homogenate) is required for the analysis using the following sample preparation procedure. Samples were added on filter spots placed in a 96- solvinert well plate (internal standards were placed and dried down under nitrogen before), fixed above a 96 deep well plate (capture plate). 20 µL of 5% phenyl-isothiocyanate derivatization reagent was added. The derivatized samples were extracted after incubation by aqueous methanol into the capture plate. Sample extracts were analyzed by LC-ESI-MS/MS in positive MRM detection mode with an API4000 QTrap® tandem mass spectrometry instrument (Applied Biosystems/MDS Analytical Technologies). The analyzed individual metabolite concentrations (Analyst 1.4.2 software, Applied Biosystems) were exported for comprehensive statistical analysis.

Bile acids (LC-MS/MS)



[0091] A highly selective reversed phase LC-MS/MS analysis method in negative MRM detection mode was applied to determine the concentration of bile acids in plasma samples. Samples were extracted via dried filter spot technique in 96 well plate format, which is well suitable for high throughput analysis. For highly accurate quantitation internal standards and external calibration were applied. In brief, internal standards and 20 µL sample volume placed onto filter spots were extracted and simultaneously protein precipitated with aqueous methanol. These sample extracts were measured by LC-ESI-MS/MS with an API4000 QTrap® tandem mass spectrometry instrument (Applied Biosystems/MDS Analytical Technologies). Data of bile acids were quantified with Analyst 1.4.2 software (Applied Biosystems) and finally exported for comprehensive statistical analysis.

Prostanoids, oxidized fatty acids (LC-MS/MS)



[0092] Prostanoids - a term summarizing prostaglandins (PG), thromboxanes (TX) and prostacylines - and oxidised fatty acid metabolites were analyzed in plasma extracts by LC-ESI-MS/MS [Unterwurzacher at al. Clin Chem Lab Med 2008; 46 (11):1589-1597] and in brain homogenate extracts by online solid phase extraction (SPE)-LC-MS/MS [Unterwurzacher et al. Rapid Commun Mass Spec submitted] with an API4000 QTrap® tandem mass spectrometry instrument (Applied Biosystems/MDS Analytical Technologies) in negative MRM detection mode. The sample preparation was the same for both, plasma and brain homogenates. In brief, filter spots in a 96 well plate were spiked with internal standard; 20 µL of plasma or tissue homogenates were added and extracted with aqueous methanol, the individual extracts then were analysed. Data of prostanoids and oxidized fatty acids were quantified with Analyst 1.4.2 software (Applied Biosystems) and finally exported for statistical analysis.

Energy metabolism (Organic Acids) (LC-MS/MS)



[0093] For the quantitative analysis of energy metabolism intermediates (glycolysis, citrate cycle, pentose phosphate pathway, urea cycle) hdyrophilic interaction liquid chromatography (HILIC)-ESI-MS/MS method in highly selective negative MRM detection mode was used. The MRM detection was performed using an API4000 QTrap® tandem mass spectrometry instrument (Applied Biosystems/MDS Analytical Technologies). 20 µL sample volume (plasma, brain homogenate) was protein precipitated and extracted simultaneously with aqueous methanol in a 96 well plate format. Internal standards (ratio external to internal standard) and external calibration were used for highly accurate quantitation. Data were quantified with Analyst 1.4.2 software (Applied Biosystems) and finally exported for statistical analysis.
Table 1 a: Common and Systematic Name of Compounds
BC CodeCommon NameSystematic Name
Suc.EM Succinic acid (succinate) Butanedioic acid
Lac.EM Lactate Propanoic acid, 2-hydroxy-
C4.K1 Butyrylcarnitine / Isobutyrylcarnitine 3-butanoyloxy-4-trimethylammonio-butanoate (L)
Fum.EM Fumaric acid 2-Butenedioic acid (E)-
GCA.BA Glycocholic Acid N-(3-alpha,7-alpha,12-alpha-Trihydroxycholan-24-oyl)glycine
C16:2.K1 Hexadecadienoylcarnitine chain length and number of double bonds is determined by the measured mass, but position and cis-trans-isomerie of double bonds is not specified (generally double bonds are cis)
Putrescine.K2 Putrescine Putrescine (1,4-Butanediamine)
Glu/Gln  
C16:1.K1 Hexadecenoylcarnitine [Palmitoleylcarnitine] chain length and number of double bonds is determined by the measured mass, but position and cis-trans-isomerie of double bonds is not specified (generally double bonds are cis)
C10:2.K1 Decadienoylcarnitine chain length and number of double bonds is determined by the measured mass, but position and cis-trans-isomerie of double bonds is not specified (generally double bonds are cis)
TCDCA.BA Taurochenodeoxycholic Acid Ethanesulfonic acid, 2-(((3alpha,5beta, 7alpha)-3,7-dihydroxy-24-oxocholan-24-yl)amino)-
GCDCA.BA Glycochenodeoxycholic Acid Glycine, N-((3alpha,5beta,7alpha)-3,7-dihydroxy-24-oxocholan-24-yl)-
Spermidine.K2 Spermidine 1,4-Butanediamine, N-(3-aminopropyl)-
C18:2.K1 Octadecadienoylcarnitine [Linoleylcarnitine] chain length and number of double bonds is determined by the measured mass, but position and (Z)-(E)-isomerie of double bonds is not specified
CA.BA Cholic Acid Cholan-24-oic acid, 3,7,12-trihydroxy-, (3alpha,5beta,7alpha, 12alpha)-
C5.K1 Isovalerylcarnitine / 2-Methylbutyrylcarnitine / Valerylcarnitine 3 C5-fatty acids with the same mass as residues (branched/unbranched)
Spermine.K2 Spermine 1,4-Butanediamine, N,N'-bis(3-aminopropyl)-
Pyr + OAA.EM Pyruvate + Oxaloacetate  
C5:1-DC.K1 Tiglylcarnitine / 3-Methyl-crotonylcarnitine 2 C5 fatty acids with one double bond as residues
C3.K1 Propionylcarnitine Propionylcarnitine
Lys.K2 Lysine L-Lysine
alpha-KGA.EM C18:1.K1 alpha-Ketoglutaric acid Octadecenoylcarnitine [Oleylcarnitine] Pentanedioic acid, 2-oxo-chain length and number of double bonds is determined by the measured mass, but position and cis-trans-isomerie of double bonds is not specified (generally double bonds are cis)
C14:2.K1 Tetradecadienoylcarnitine chain length and number of double bonds is determined by the measured mass, but position and cis-trans-isomerie of double bonds is not specified (generally double bonds are cis)
Asp/Asn  
Putrescine/Orn  
Gln.K2 Glutamine L-Glutamine
UDCA.BA Ursodeoxycholic Acid Cholan-24-oic acid, 3,7-dihydroxy-, (3alpha,5beta,7beta)-
PC ae C40:3.K1   Glycerophosphocholine with estimated chemical composition (2 residues)
Serotonin.K2 Serotonin Indol-5-ol, 3-(2-aminoethyl)-
Orn/Cit  
Ala. K2 C14.K1 Alanine Tetradecanoylcarnitine L-Alanine requirement: unbranched fatty acid: only Myristic acid (CAS-Nr: 544-63-8) is possible
Ala/BCAA  
His.K2 Histidine L-Histidine
lysoPC a C16:0.K1   Glycerophosphocholine with estimated chemical composition (1 acyl residue)
lysoPC a C17:0.K1   Glycerophosphocholine with estimated chemical composition (1 acyl residue)
C12.K1 Dodecanoylcarnitine [Laurylcarnitine] requirement: unbranched fatty acid: only Lauric acid (CAS-Nr: 143-07-7) is possible
Pro. K2 Proline L-Proline
Serotonin/TrpSerotonin/Tryptophan 
C14:2-OH.K1 3-Hydroxytetradecadienoylcarnitine chain length and number of double bonds is determined by the measured mass, but positionof the OH-group and position and cis-trans-isomerie of double bonds is not specified
Glu.K2 Glutamate L-Glutamic acid
C16:2-OH.K1 3-Hydroxyhexadecadienoylcarnitine chain length and number of double bonds is determined by the measured mass, but positionof the OH-group and position and cis-trans-isomerie of double bonds is not specified
Histamine.K2 Histamine 2-Imidazol-4-ethylamine
PC ae C30:0.K1   Glycerophosphocholine with estimated chemical composition (2 residues)
C14:1.K1 Tetradecenoylcarnitine [Myristoleylcarnitine] chain length and number of double bonds is determined by the measured mass, but position and cis-trans-isomerie of double bonds is not specified (generally double bonds are cis)
SumLyso Phe.K2 Phenylalanine L-Phenylalanine
lysoPC a C18:0.K1   Glycerophosphocholine with estimated chemical composition (1 acyl residue)
PC aa C42:4.K1   Glycerophosphocholine with estimated chemical composition (2 acyl residues)
PC ae C38:4.K1   Glycerophosphocholine with estimated chemical composition (2 residues)
PC aa C40:3.K1   Glycerophosphocholine with estimated chemical composition (2 acyl residues)
AA.PA Arachidonic acid 5,8,11,14-Eicosatetraenoic acid, (all-Z)-
C5:1.K1 Tiglylcarnitine / 3-Methyl-crotonylcarnitine 2 C5 fatty acids with one double bond as residues
Met-SO.K2 Methionine-Sulfoxide Butyric acid, 2-amino-4-(methylsulfinyl)-
Spermine/Spermidine C16+C18/C0  
C16.K1 Hexadecanoylcarnitine [Palmitoylcarnitine] Palmitylcarnitine (requirement: unbranched fatty acid)
lysoPC a C16:1.K1   Glycerophosphocholine with estimated chemical composition (1 acyl residue)
PC aa C40:4.K1   Glycerophosphocholine with estimated chemical composition (2 acyl residues)
Asn.K2 Asparagine L-Asparagine
C9.K1 Nonanoylcarnitine [Pelargonylcarnitine] Nonanoylcarnitine (requirement: unbranched fatty acid)
PC ae C42:5.K1   Glycerophosphocholine with estimated chemical composition (2 residues)
C6 (C4:1-DC).K1 Hexanoylcarnitine [Caproylcarnitine] mass of possible residues: Caproic acid and Fumaric acid ist similar (116.1)
PC aa C40:6.K1   Glycerophosphocholine with estimated chemical composition (2 acyl residues)
Val. K2 Valine L-Valine
SumSFA    
PC ae C40:5.K1   Glycerophosphocholine with estimated chemical composition (2 residues)
PC ae C42:4.K1   Glycerophosphocholine with estimated chemical composition (2 residues)
PC ae C40:6.K1   Glycerophosphocholine with estimated chemical composition (2 residues)
Leu.K2 Leucine L-Leucine
C2.K1 Acetylcarnitine 1-Propanaminium, 2-(acetyloxy)-3-carboxy-N,N,N-trimethyl-, inner salt
PC aa C40:5.K1   Glycerophosphocholine with estimated chemical composition (2 acyl residues)
PC ae C42:3.K1   Glycerophosphocholine with estimated chemical composition (2 residues)
PC ae C40:4.K1   Glycerophosphocholine with estimated chemical composition (2 residues)
Asp.EM Aspartic acid L-Aspartic acid
CDCA.BA Chenodeoxycholic Acid Cholan-24-oic acid, 3,7-dihydroxy-, (3alpha,5beta,7alpha)-
PC aa C38:6.K1   Glycerophosphocholine with estimated chemical composition (2 acyl residues)
SM (OH) C16:1.K1 Hydroxysphingomyelin with acyl residue sum C16:1 Hydroxysphingomyelin with estimated chemical composition
PC ae C38:5.K1   Glycerophosphocholine with estimated chemical composition (2 residues)
C18:1-OH.K1 3-Hydroxyoctadecenoylcarnitine [3-Hydroxyoleylcarnitine] chain length and number of double bonds is determined by the measured mass, but position of the OH-group and position and cis-trans-isomerie of double bond is not specified
Orn/Arg  
C16:1-OH.K1 3-Hydroxyhexadecenoylcarnitine [3-Hydroxypalmitoleylcarnitine] chain length and number of double bonds is determined by the measured mass, but position of the OH-group and position and cis-trans-isomerie of double bond is not specified
C18.K1 Octadecanoylcarnitine [Stearylcarnitine] Stearylcarnitine (requirement: unbranched fatty acid))
PC aa C36:6.K1   Glycerophosphocholine with estimated chemical composition (2 acyl residues
SM C26:1.K1   Hydroxysphingomyelin with estimated chemical composition
PC aa C42:5.K1   Glycerophosphocholine with estimated chemical composition (2 acyl residues)
C14:1-OH.K1 3-Hydroxytetradecenoylcarnitine [3-Hydroxymyristoleylcarnitine] chain length and number of double bonds is determined by the measured mass, but position and cis-trans-isomerie of double bonds is not specified (generally double bonds are cis)
PC aa C38:4.K1   Glycerophosphocholine with estimated chemical composition (2 acyl residues)
SumPC+Lyso PC ae C36:4.K1   Glycerophosphocholine with estimated chemical composition (2 residues)
Hex.EM Hexose sum of aldohexoses and ketohexoses
LCA.BA Lithocholic acid Cholan-24-oic acid, 3-hydroxy-, (3al pha, 5beta)-
PC aa C36:4.K1   Glycerophosphocholine with estimated chemical composition (2 residues)
SumPC    
SumPUFA    
PC aa C40:2.K1   Glycerophosphocholine with estimated chemical composition (2 acyl residues)
Met.K2 Methionine L-Methionine
PC ae C38:3.K1   Glycerophosphocholine with estimated chemical composition (2 residues)
PC ae C32.2.K1   Glycerophosphocholine with estimated chemical composition (2 residues)
Cit.K2 Citrulline L-Citrulline (L-Ornithine, N5-(aminocarbonyl)-)
PC ae C30:1.K1   Glycerophosphocholine with estimated chemical composition (2 residues)
PC ae C42:2.K1   Glycerophosphocholine with estimated chemical composition (2 residues)
Kyn/Trp  
Orn.K2 Ornithine L-Ornithine
PC ae C38:6.K1   Glycerophosphocholine with estimated chemical composition (2 residues)
lysoPC a C20:4.K1   Glycerophosphocholine with estimated chemical composition (1 acyl residue)
PC ae C40:1.K1   Glycerophosphocholine with estimated chemical composition (2 residues)
Asp. K2 Aspartate L-Aspartic acid
PC aa C30:2.K1   Glycerophosphocholine with estimated chemical composition (2 acyl residues)
PC aa C28:1.K1   Glycerophosphocholine with estimated chemical composition (2 acyl residues)
Gly/BCAA  
PC aa C38:5.K1   Glycerophosphocholine with estimated chemical composition (2 acyl residues)
PC ae C34:1.K1   Glycerophosphocholine with estimated chemical composition (2 residues)
PC aa C38:3.K1   Glycerophosphocholine with estimated chemical composition (2 acyl residues)
C16-OH.K1 3-Hydroxyhexadecanolycarnitine [3-Hydroxypalmitoylcarnitine] chain length is determined by the measured mass, but position of the OH-group is not specified
SM (OH) C14:1.K1   Hydroxysphingomyelin with estimated chemical composition
PC ae C44:4.K1   Glycerophosphocholine with estimated chemical composition (2 residues)
PC ae C38:1.K1   Glycerophosphocholine with estimated chemical composition (2 residues)
SumSM    
SumMUFA    
PC ae C40:2.K1   Glycerophosphocholine with estimated chemical composition (2 residues)
lysoPC a C24:0.K1   Glycerophosphocholine with estimated chemical composition (1 acyl residue)
OH-Kyn.K2 Hydroxykynurenine 3-Hydroxykynurenine
SM (OH) C22:1.K1   Hydroxysphingomyelin with estimated chemical composition
PC ae C32:1.K1   Glycerophosphocholine with estimated chemical composition (2 residues)
SM C16:1.K1   chain length and number of double bonds is determined by the measured mass, but position and cis-trans-isomerie of double bonds is not specified (generally double bonds are cis)
PC ae C30:2.K1   Glycerophosphocholine with estimated chemical composition (2 residues)
Ala/Lys  
Tyr.K2 Tyrosine L-Tyrosine
PC ae C34:0.K1   Glycerophosphocholine with estimated chemical composition (2 residues)
PC ae C36:0.K1   Glycerophosphocholine with estimated chemical composition (2 residues)
SM (OH) C22:2.K1   Hydroxysphingomyelin with estimated chemical composition
lysoPC a C28:0.K1   Glycerophosphocholine with estimated chemical composition (1 acyl residue)
C12:1.K1 Dodecenoylcarnitine chain length and number of double bonds is determined by the measured mass, but position and cis-trans-isomerie of double bonds is not specified (generally double bonds are cis)
PC aa C34:4.K1   Glycerophosphocholine with estimated chemical composition (2 acyl residues)
SM C26:0.K1 sphingomyelin with acyl residue sum C26:0 Sphingomyelin with estimated chemical composition
SM (OH) C24:1.K1 Hydroxysphingomyelin with acyl residue sum C24:1 Hydroxysphingomyelin with estimated chemical composition
SM C16:0.K1 sphingomyelin with acyl residue sum C16:0 Sphingomyelin with estimated chemical composition
Ile.K2 Isoleucine L-Isoleucine
C5-DC (C6-OH).K1   Acylcarnitine with estimated composition: mass of 2 possible residues is similar
PC aa C38:0.K1   Glycerophosphocholine with estimated chemical composition (2 acyl residues)
PC aa C34:2.K1   Glycerophosphocholine with estimated chemical composition (2 acyl residues)
Cit/Arg  
Ser.K2 Serine L-Serine
PC ae C36.5.K1   Glycerophosphocholine with estimated chemical composition (2 residues)
PC ae C34:2.K1   Glycerophosphocholine with estimated chemical composition (2 residues)
PC ae C36:3.K1   Glycerophosphocholine with estimated chemical composition (2 residues)
C3-OH.K1 Hydroxypropionylcarnitine chain length is determined by the measured mass, but position of the OH-group is not specified
PC ae C42:1.K1   Glycerophosphocholine with estimated chemical composition (2 residues)
H1.K1   sum of aldohexoses and ketohexoses
PC ae C36:2.K1   Glycerophosphocholine with estimated chemical composition (2 residues)
SM C22:3.K1 sphingomyelin with acyl residue sum C22:3 Sphingomyelin with estimated chemical composition
SM C24:1.K1 sphingomyelin with acyl residue sum C24:1 Sphingomyelin with estimated chemical composition
C4-OH (C3-DC).K1 3-Hydroxybutyrylcarnitine Acylcarnitine with estimated composition: mass of 2 possible residues is similar
PC aa C40:1.K1   Glycerophosphocholine with estimated chemical composition (2 acyl residues)
PC aa C32:3.K1   Glycerophosphocholine with estimated chemical composition (2 acyl residues)
PC aa C42:1.K1   Glycerophosphocholine with estimated chemical composition (2 acyl residues)
PC aa C36:5.K1   Glycerophosphocholine with estimated chemical composition (2 acyl residues)
PC aa C42:6.K1   Glycerophosphocholine with estimated chemical composition (2 acyl residues)
DHA.PA Docosahexaenoic acid 4,7,10,13,16,19-Docosahexaenoic acid, (all-Z)-
SM C20:2. K1 sphingomyelin with acyl residue sum C20:2 Sphingomyelin with estimated chemical composition
C4:1.K1 Butenoylcarnitine chain length is determined by the measured mass, but position of the double bond is not specified
SM C24:0.K1 sphingomyelin with acyl residue sum C24:0 Sphingomyelin with estimated chemical composition
PC ae C38:0.K1   Glycerophosphocholine with estimated chemical composition (2 residues)
Kyn/OHKyn  
Arg.K2 total DMA.K2 Arginine L-Arginine
PC aa C34:3.K1   Glycerophosphocholine with estimated chemical composition (2 acyl residues)
PC ae C38:2.K1   Glycerophosphocholine with estimated chemical composition (2 residues)
PUFA/MUFA  
PC aa C42:0.K1   Glycerophosphocholine with estimated chemical composition (2 acyl residues)
SM C18:1.K1   Sphingomyelin with estimated chemical composition
PC aa C32:2.K1   Glycerophosphocholine with estimated chemical composition (2 residues)
lysoPC a C18:2.K1   Glycerophosphocholine with estimated chemical composition (1 acyl residue)
PC ae C44:3.K1   Glycerophosphocholine with estimated chemical composition (2 residues)
PC ae C40:0.K1   Glycerophosphocholine with estimated chemical composition (2 residues)
Xle.K2 Leucine + Isoleucine  
PC aa C24:0.K1   Glycerophosphocholine with estimated chemical composition (2 acyl residues)
PC aa C38:1.K1   Glycerophosphocholine with estimated chemical composition (2 acyl residues)
SM C18:0.K1   Sphingomyelin with estimated chemical composition
PC aa C42:2.K1   Glycerophosphocholine with estimated chemical composition (2 acyl residues)
lysoPC a C20:3.K1   Glycerophosphocholine with estimated chemical composition (1 acyl residue)
PC ae C36:1.K1   Glycerophosphocholine with estimated chemical composition (2 residues)
C3:1.K1 Propenoylcarnitine  
lysoPC a C18:1.K1   Glycerophosphocholine with estimated chemical composition (1 acyl residue)
C8:1.K1 Octenoylcarnitine chain length and number of double bonds is determined by the measured mass, but position and cis-trans-isomerie of double bonds is not specified (generally double bonds are cis)
C8.K1 Octanoylcarnitine [Caprylylcarnitine]  
PC aa C30:0.K1   Glycerophosphocholine with estimated chemical composition (2 acyl residues)
PC ae C44:5.K1   Glycerophosphocholine with estimated chemical composition (2 residues)
lysoPC a C14:0.K1   Glycerophosphocholine with estimated chemical composition (1 acyl residue)
Creatinine.K2 Creatinine 4H-Imidazol-4-one, 2-amino-1,5-dihydro-1-methyl-
C0.K1 Carnitine (free) (3-Carboxy-2-hydroxypropyl)trimethylammonium hydroxide inner salt
Thr.K2 Threonine L-Threonine ((2S,3R)-2-amino-3-hydroxybutanoic acid)
Phe/Tyr  
Gly.K2 Glycine Glycine
PC aa C26:0.K1   Glycerophosphocholine with estimated chemical composition (2 acyl residues)
C5-OH (C3-DC-M).K1 3-Hydroxyisovalerylcarnitine / 3-Hydroxy-2-methylbutyryl Acylcarnitine with estimated composition: mass of 2 possible residues is similar
PC aa C34:1.K1   Glycerophosphocholine with estimated chemical composition (2 acyl residues)
lysoPC a C28:1.K1   Glycerophosphocholine with estimated chemical composition (1 acyl residue)
Met-SO/Met  
C10:1.K1 Decenoylcarnitine chain length and number of double bonds is determined by the measured mass, but position and cis-trans-isomerie of double bonds is not specified (generally double bonds are cis)
PC aa C36:0.K1   Glycerophosphocholine with estimated chemical composition (2 acyl residues)
SDMA.K2 Symmetrical Dimethylarginine N,N'-Dimethyl-L-arginine
Trp.K2 Tryptophan L-Tryptophan
PC ae C34:3.K1   Glycerophosphocholine with estimated chemical composition (2 residues)
PC aa C36:2.K1   Glycerophosphocholine with estimated chemical composition (2 acyl residues)
PC aa C36:1.K1   Glycerophosphocholine with estimated chemical composition (2 acyl residues)
Kyn.K2 Kynurenine alpha-2-Diamino-gamma-oxobenzenebutyric acid
PC aa C32:1.K1   Glycerophosphocholine with estimated chemical composition (2 residues)
C7-DC.K1 Pimelylcarnitine  
SDMA/ADMA PUFA/SFA  
Arg.EM Arginine L-Arginine
PC aa C36:3.K1   Glycerophosphocholine with estimated chemical composition (2 acyl residues)
13S-HODE.PA 13(S)-hydroxy-9Z,11E-octadecadienoic acid  
PC ae C44:6.K1   Glycerophosphocholine with estimated chemical composition (2 residues)
lysoPC a C6:0.K1   Glycerophosphocholine with estimated chemical composition (1 acyl residue)
ADMA.K2 asymmetrical Dimethylarginin N,N-Dimethyl-L-arginine
PC aa C32:0.K1   Glycerophosphocholine with estimated chemical composition (2 residues)
SumSMOH/SumSM MUFA/SFA  
PC ae C42:0.K1   Glycerophosphocholine with estimated chemical composition (2 residues)
C6:1.K1 Hexenoylcarnitine chain length and number of double bonds is determined by the measured mass, but position and cis-trans-isomerie of double bonds is not specified (generally double bonds are cis)
lysoPC a C26:1.K1   Glycerophosphocholine with estimated chemical composition (1 acyl residue)
C12-DC.K1 Dodecanedioylcarnitine  
C10.K1 Decanoylcarnitine [Caprylcarnitine] (Fumarylcarnitine) chain length is determined by the measured mass, condition unbranched fatty acid: Capric acid as residue
lysoPC a C26:0.K1   Glycerophosphocholine with estimated chemical composition (1 acyl residue)
Table 1b: CAS-Numbers and Compound Species With The Same Structure
BC CodeCAS Registry NumberSpecies with the same structure:
Suc.EM 110-15-6  
Lac.EM 50-21-5 (s)-2-Hydroxypropanoic acid, CAS-NR:79-33-4; (r)-2-Hydroxypropanoic acid, CAS-Nr: 10326-41-7
C4.K1 25576-40-3 3-butanoyloxy-4-trimethylammonio-butanoate (D) CAS-Nr: 25518-46-1
Fum.EM 110-17-8 (Z)-2-Butenedioic acid (Maleic acid), CAS-Nr: 110-16-7
GCA.BA C16:2.K1 475-31-0  
Putrescine.K2 110-60-1  
Glu/Gln  
C16:1.K1    
C10:2.K1    
TCDCA.BA 516-35-8 Tauroursodeoxycholic acid (Ethanesulfonic acid, 2-(((3-alpha,5-beta,7-beta)-3,7-dihydroxy-24-oxocholan-24-yl)amino)-), CAS-Nr: 14605-22-2
GCDCA.BA 640-79-9 Glycine, N-((3alpha,5beta,7beta)-3,7-dihydroxy-24-oxocholan-24-yl)-, CAS-Nr: 2273-95-2
Spermidine.K2 C18:2.K1 124-20-9  
CA.BA 81-25-4 (11 stereo centers = 2048 isomers, one is natural cholic acid), Allocholic acid CAS-Nr: 2464-18-8; Ursocholic acid Cas-Nr: 2955-27-3
C5.K1    
Spermine.K2 Pyr + OAA.EM C5:1-DC.K1 C3.K1 71-44-3  
Lys.K2 56-87-1 DL-Lysine CAS-Nr: 70-54-2; D-Lysine CAS-Nr: 923-27-3
alpha-KGA.EM C18:1.K1 C14:2.K1 328-50-7  
Asp/Asn Putrescine/Orn  
Gln.K2 56-85-9 DL-Glutamine CAS-Nr: 6899-04-3; D-Glutamine CAS-Nr: 5959-95-5
UDCA.BA 128-13-2 Chenodiol (Cholan-24-oic acid, 3,7-dihydroxy-, (3alpha,5beta,7alpha)-) CAS-Nr: 474-25-9;Cholan-24-oic acid, 3,7-dihydroxy-,(3beta,5beta,7alpha)- CAS-Nr: 566-24-5; Isoursodeoxycholic acid (Cholan-24-oic acid, 3,7-dihydroxy-, (3beta,5beta,7beta)-) CAS-Nr: 78919-26-3
PC ae C40:3.K1    
Serotonin.K2 50-67-9  
Orn/Cit  
Ala.K2 56-41-7 DL-Alanine CAS-Nr: 302-72-7; D-Alanine CAS-Nr: 338-69-2; beta-Alanine CAS-Nr: 107-95-9
C14.K1    
Ala/BCAA  
His.K2 71-00-1 DL-Histidine CAS-NR: 4998-57-6;D-Histidine CAS-Nr: 351-50-8
lysoPC a C16:0.K1   Position and character of residue (a/e) is not clear! (m(lysoPC a C16.0) = m(lysoPC e C17.0))
lysoPC a C17:0.K1 C12.K1    
Pro.K2 147-85-3  
Serotonin/Trp  
C14:2-OH.K1    
Glu.K2 56-86-0 DL-Glutamic acid CAS-Nr: 617-65-2; D-Glutamic acid CAS-Nr: 6893-26-1
C16:2-OH.K1    
Histamine.K2 PC ae C30:0.K1 C14:1.K1 SumLyso 51-45-6  
Phe.K2 63-91-2 DL-Phenylalanine CAS-Nr: 150-30-1; D-Phenylalanine CAS-Nr: 673-06-3
lysoPC a C18:0.K1    
PC aa C42:4.K1    
PC ae C38:4.K1    
PC aa C40:3.K1    
AA.PA 506-32-1 8,11,14,17-Eicosatetraenoic acid CAS-Nr: 2091-26-1; 5,11,14,17-Eicosatetraenoic acid CAS-Nr: 2271-31-0; 5,8,11,14-Eicosatetraenoic acid CAS-Nr: 7771-44-0 ; theorretically as combination of E and Z double bonds is possible
C5:1.K1    
Met-SO.K2 62697-73-8 Methionine S-oxide (L-Methionine sulfoxide) CAS-Nr: 3226-65-1; Butanoic acid, 2-amino-4-(methylsulfinyl)-, (S-(R*,S*))- CAS-NR:50896-98-5
Spermine/Spermidine C16+C18/C0  
C16.K1 1935-18-8 Palmitoyl-D(+)-carnitin CAS-Nr: 2364-66-1; Palmitoyl-L-(-)-carnitin CAS-Nr: 2364-67-2
lysoPC a C16:1.K1 PC aa C40:4.K1    
Asn.K2 70-47-3 DL-Asparagine CAS-Nr: 3130-87-8; D-Asparagine CAS-Nr: 2058-58-4
C9.K1    
PC ae C42:5.K1    
C6 (C4:1-DC).K1    
PC aa C40:6.K1    
Val.K2 72-18-4 DL-Valine CAS-Nr: 516-06-3; D-Valine CAS-Nr: 640-68-6
SumSFA    
PC ae C40:5.K1    
PC ae C42:4.K1    
PC ae C40:6.K1    
Leu.K2 61-90-5 DL-Leucine CAS-Nr: 328-39-2; D-Leucine CAS-Nr: 328-38-1
C2.K1 14992-62-2 R-Acetylcarnitine CAS-Nr:3040-38-8
PC aa C40:5.K1    
PC ae C42:3.K1    
PC ae C40:4.K1    
Asp. EM 56-84-8 Aspartic acid CAS-Nr: 617-45-8; D-Aspartic acid CAS-Nr: 1783-96-6
CDCA.BA 474-25-9 8 possible isomers (3a,5a,7a; 3a,5a,7b; 3a,5b,7a; 3a,5b,7b; 3b,5a,7a; 3b,5a,7b; 3b,5b,7a; 3b,5b,7b); Found with CAS-numbers: Cholan-24-oic acid, 3,7-dihydroxy-, (3alpha,5beta,7beta)-(Ursodeoxycholic acid) CAS-Nr: 128-13-2; Cholan-24-oic acid, 3,7-dihydroxy-, (3beta,5beta,7alpha)- CAS-Nr: 566-24-5;Cholan-24-oic acid, 3,7-dihydroxy-, (3beta,5beta,7beta)-(Isoursodeoxycholic acid) CAS-Nr: 78919-26-3
PC aa C38:6.K1    
SM (OH) C16:1.K1    
PC ae C38:5.K1    
C18:1-OH.K1    
Orn/Arg  
C16:1-OH.K1    
C18.K1    
PC aa C36:6.K1    
SM C26:1.K1    
PC aa C42:5.K1    
C14:1-OH.K1    
PC aa C38:4.K1    
SumPC+Lyso    
PC ae C36:4.K1    
Hex.EM   8 Aldohexoses (D-Form) most common in nature: D-Glucose, D-Galactose und D-Mannose, 4 Ketohexoses (D-Form): D-Psicose, D-Fructose, D-Sorbose, D-Tagatose
LCA.BA 434-13-9 Cholan-24-oic acid, 3-hydroxy-, (3beta,5beta)-(Isolithocholic acid) CAS-Nr: 1534-35-6;Cholan-24-oic acid, 3-hydroxy-, (3beta,5alpha)- (9CI) (Alloisolithocholic acid) CAS-Nr:2276-93-9
PC aa C36:4.K1    
SumPC    
SumPUFA    
PC aa C40:2.K1    
Met.K2 63-68-3 DL-Methionine CAS-Nr:59-51-8; D-Methionine CAS-Nr: 348-67-4
PC ae C38:3.K1    
PC ae C32:2.K1    
Cit. K2 372-75-8 DL-2-Amino-5-ureidovaleric acid CAS-Nr:627-77-0
PC ae C30:1.K1    
PC ae C42:2.K1    
Kyn/Trp  
Orn.K2 70-26-8 DL-Ornithine CAS-NR: 616-07-9; D-Ornithine CAS-Nr: 348-66-3
PC ae C38:6.K1 lysoPC a C20:4.K1    
PC ae C40:1.K1    
Asp.K2 56-84-8 D,L-Aspartic acid CAS-Nr: 617-45-8; D-Aspartic acid CAS-Nr: 1783-96-6
PC aa C30:2.K1    
PC aa C28:1.K1    
Gly/BCAA  
PC aa C38:5.K1    
PC ae C34:1.K1    
PC aa C38:3.K1    
C16-OH.K1    
SM (OH) C14:1.K1    
PC ae C44:4.K1    
PC ae C38:1.K1    
SumSM    
SumMUFA    
PC ae C40:2.K1    
lysoPC a C24:0.K1    
OH-Kyn.K2 484-78-6 L-3-Hydroxykynurenine CAS-Nr: 606-14-4; 5-Hydroxykynurenine CAS-Nr: 720-00-3
SM (OH) C22:1.K1    
PC ae C32:1.K1    
SM C16:1.K1    
PC ae C30:2.K1    
Ala/Lys  
Tyr.K2 60-18-4 DL-Tyrosine CAS-Nr: 556-03-6; D-Tyrosine CAS-Nr: 556-02-5
PC ae C34:0.K1    
PC ae C36:0.K1    
SM (OH) C22:2.K1    
lysoPC a C28:0.K1    
C12:1.K1    
PC aa C34:4.K1    
SM C26:0.K1    
SM (OH) C24:1.K1    
SM C16:0.K1    
Ile.K2 73-32-5 DL-Isoleucine CAS-Nr: 443-79-8; Allo-L-Isoleucine CAS-Nr: 1509-34-8; Allo-D-Isoleucine CAS-Nr: 1509-35-9; Allo-DL-Isoleucine CAS-Nr: 3107-04-8
C5-DC (C6-OH).K1    
PC aa C38:0.K1    
PC aa C34:2.K1    
Cit/Arg  
Ser.K2 56-45-1 DL-Serine CAS-Nr: 302-84-1; D-Serine CAS-Nr: 312-84-5
PC ae C36:5.K1    
PC ae C34:2.K1    
PC ae C36:3.K1    
C3-OH.K1    
PC ae C42:1.K1    
H1.K1   8 Aldohexoses (D-Form) most common in nature: D-Glucose, D-Galactose und D-Mannose, 4 Ketohexoses (D-Form): D-Psicose, D-Fructose, D-Sorbose, D-Tagatose
PC ae C36:2.K1    
SM C22:3.K1    
SM C24:1.K1    
C4-OH (C3-DC).K1    
PC aa C40:1.K1    
PC aa C32:3.K1    
PC aa C42:1.K1    
PC aa C36:5.K1    
PC aa C42:6.K1    
DHA.PA 6217-54-5 cis-trans-isomerie of double bonds is not specified: CAS-Nr: 25167-62-8;
SM C20:2.K1    
C4:1.K1    
SM C24:0.K1    
PC ae C38:0.K1    
Kyn/OHKyn  
Arg.K2 74-79-3 DL-Arginine CAS-Nr: 7200-25-1; D-Arginine CAS-Nr:157-06-2
total DMA.K2    
PC aa C34:3.K1    
PC ae C38:2.K1    
PUFA/MUFA  
PC aa C42:0.K1    
SM C18:1.K1    
PC aa C32:2.K1    
lysoPC a C18:2.K1    
PC ae C44:3.K1    
PC ae C40:0.K1    
Xle.K2    
PC aa C24:0.K1    
PC aa C38:1.K1    
SM C18:0.K1    
PC aa C42:2.K1    
lysoPC a C20:3.K1    
PC ae C36:1.K1    
C3:1.K1    
lysoPC a C18:1.K1    
C8:1.K1    
C8.K1    
PC aa C30:0.K1    
PC ae C44:5.K1    
lysoPC a C14:0.K1    
Creatinine.K2 60-27-5  
C0.K1 461-06-3 DL-Carnitine CAS-Nr: 406-76-8; D-Carnitine CAS-Nr: 541-14-0
Thr.K2 72-19-5 DL-Threonine CAS-Nr: 80-68-2; D-Threonine CAS-Nr: 632-20-2; Allo-DL-Threonine ((2S,3S)-2-amino-3-hydroxybutanoic acid) CAS-Nr: 144-98-9
Phe/Tyr  
Gly.K2 56-40-6  
PC aa C26:0.K1    
C5-OH (C3-DC-M).K1    
PC aa C34:1.K1    
lysoPC a C28:1.K1    
Met-SO/Met  
C10:1.K1    
PC aa C36:0.K1    
SDMA.K2 30344-00-4  
Trp.K2 73-22-3 DL-Tryptophan CAS-Nr: 54-12-6; D-Tryptophan CAS-Nr: 153-94-6
PC ae C34:3.K1    
PC aa C36:2.K1    
PC aa C36:1.K1    
Kyn.K2 343-65-7  
PC aa C32:1.K1    
C7-DC.K1    
SDMA/ADMA PUFA/SFA  
Arg.EM 74-79-3 DL-Arginine CAS-Nr: 7200-25-1; D-Arginine CAS-Nr:157-06-2
PC aa C36:3.K1    
13S-HODE.PA   13-Hydroxyoctadecadienoic acid CAS-Nr: 5204-88-6; 9,11-Octadecadienoic acid, 13-hydroxy-, (R-(E,Z))- CAS-Nr: 10219-69-9
PC ae C44:6.K1    
lysoPC a C6:0.K1    
ADMA.K2 30315-93-6 N,N-Dimethyl-L-arginine CAS-Nr: 102783-24-4
PC aa C32:0.K1    
SumSMOH/SumSM MUFA/SFA  
PC ae C42:0.K1    
C6:1.K1    
lysoPC a C26:1.K1    
C12-DC.K1    
C10.K1    
lysoPC a C26:0.K1    


[0094] Table 1a and 1b summarize analyzed metabolites and respective abbreviations; Glycerophospholipids are further differentiated with respect to the presence of ester (a) and ether (e) bonds in the glycerol moiety, where two letters (aa, ea, or ee) denote that the first and the second position of the glycerol scaffold are bound to a fatty acid residue, whereas a single letter (a or e) indicates a bond with only one fatty acid residue; e.g. PC_ea_33:1 denotes a plasmalogen phosphatidylcholine with 33 carbons in the two fatty acid side chains and a single double bond in one of them.
Table 1c: Compounds and Chemical Families
Name in datasetsLab nameExplicit nameChemical Family
C0.K1 C0 Carnitine (free) ac.carnitines
C10.K1 C10(C4:1-DC) Decanoyl carn iti ne [Capryl carnitine] (Fumarylcarnitine) ac.carnitines
C10:1.K1 C10:1 Decenoylcarnitine ac.carnitines
C10:2.K1 C10:2 Decadienoylcarnitine ac.carnitines
C12.K1 C12 Dodecanoylcarnitine [Laurylcarnitine] ac.carnitines
C12-DC.K1 C12-DC Dodecanedioylcarnitine ac.carnitines
C12:1.K1 C12:1 Dodecenoylcarnitine ac.carnitines
C14.K1 C14 Tetradecanoylcarnitine [Myristylcarnitine] ac.carnitines
C14:1.K1 C14:1 Tetradecenoylcarnitine [Myristoleylcarnitine] ac.carnitines
C14:1-OH.K1 C14:1-OH 3-Hydroxytetradecenoylcarnitine [3-Hydroxymyristoleylcarnitine] ac.carnitines
C14:2.K1 C14:2 Tetradecadienoylcarnitine ac.carnitines
C14:2-OH.K1 C14:2-OH 3-Hydroxytetradecadienoylcarnitine ac.carnitines
C16.K1 C16 Hexadecanoylcarnitine [Palmitoylcarnitine] ac.carnitines
C16-OH.K1 C16-OH 3-Hydroxyhexadecanolycarnitine [3-Hydroxypalmitoylcarnitine] ac.carnitines
C16:1.K1 C16:1 Hexadecenoylcarnitine [Palmitoleylcarnitine] ac.carnitines
C16.1-OH.K1 C16:1-OH 3-Hydroxyhexadecenoylcarnitine [3-Hydroxypalmitoleylcarnitine] ac.carnitines
C16:2.K1 C16:2 Hexadecadienoylcarnitine ac.carnitines
C16:2-OH.K1 C16:2-OH 3-Hydroxyhexadecadienoylcarnitine ac.carnitines
C18.K1 C18 Octadecanoylcarnitine [Stearylcarnitine] ac.carnitines
C18:1.K1 C18:1 Octadecenoylcarnitine [Oleylcarnitine] ac.carnitines
C18:1-OH.K1 C18:1-OH 3-Hydroxyoctadecenoylcarnitine [3-Hydroxyoleylcarnitine] ac.carnitines
C18:2.K1 C18:2 Octadecadienoylcarnitine [Linoleylcarnitine] ac.carnitines
C2.K1 C2 Acetylcarnitine ac.carnitines
C3.K1 C3 Propionylcarnitine ac.carnitines
C3-OH.K1 C3-OH Hydroxypropionylcarnitine ac.carnitines
C3:1.K1 C3:1 Propenoylcarnitine ac.carnitines
C4.K1 C4 Butyrylcarnitine / Isobutyrylcarnitine ac.carnitines
C4-OH (C3-DC).K1 C4-OH (C3-DC) 3-Hydroxybutyrylcarnitine ac.carnitines
C4:1.K1 C4:1 Butenoylcarnitine ac.carnitines
C5.K1 C5 Isovalerylcarnitine / 2-Methylbutyrylcarnitine / Valerylcarnitine ac.carnitines
C5-DC (C6-OH).K1 C5-DC (C6-OH) Glutarylcarnitine ac.carnitines
C5-OH (C3-DC-M).K1 C5-OH (C3-DC-M) 3-Hydroxyisovalerylcarnitine / 3-Hydroxy-2-methylbutyryl ac.carnitines
C5:1.K1 C5:1 Tiglylcarnitine / 3-Methyl-crotonylcarnitine ac.carnitines
C5:1-DC.K1 C5:1-DC Glutaconylcarnitine / Mesaconylcarnitine (Undecanoylcarnitine) ac.carnitines
C6 (C4:1-DC).K1 C6 Hexanoylcarnitine [Caproylcarnitine] ac.carnitines
C6:1.K1 C6:1 Hexenoylcarnitine ac.carnitines
C7-DC.K1 C7-DC Pimelylcarnitine ac.carnitines
C8.K1 C8 Octanoylcarnitine [Caprylylcarnitine] ac.carnitines
C8:1.K1 C8:1 Octenoylcarnitine ac.carnitines
    Nonanoylcarnitine  
C9.K1 C9 [Pelargonylcarnitine] ac.carnitines
H1.K1 H1 Hexoses sugars
SM (OH) C14:1.K1 SM (OH) C14:1 Hydroxysphingomyelin with acyl residue sum C14:1 sphingolipids
SM (OH) C16:1.K1 SM (OH) C16:1 Hydroxysphingomyelin with acyl residue sum C16:1 sphingolipids
SM (OH) C22:1.K1 SM (OH) C22:1 Hydroxysphingomyelin with acyl residue sum C22:1 sphingolipids
SM (OH) C22:2.K1 SM (OH) C22:2 Hydroxysphingomyelin with acyl residue sum C22:2 sphingolipids
SM (OH) C24:1.K1 SM (OH) C24:1 Hydroxysphingomyelin with acyl residue sum C24:1 sphingolipids
SM C16:0.K1 SM C16:0 sphingomyelin with acyl residue sum C16:0 sphingolipids
SM C16:1.K1 SM C16:1 sphingomyelin with acyl residue sum C16:1 sphingolipids
SM C18:0.K1 SM C18:0 sphingomyelin with acyl residue sum C18:0 sphingolipids
SM C18:1.K1 SM C18:1 sphingomyelin with acyl residue sum C18:1 sphingolipids
SM C20:2.K1 SM C20:2 sphingomyelin with acyl residue sum C20:2 sphingolipids
SM C22:3.K1 SM C22:3 sphingomyelin with acyl residue sum C22:3 sphingolipids
SM C24:0.K1 SM C24:0 sphingomyelin with acyl residue sum C24:0 sphingolipids
SM C24:1.K1 SM C24:1 sphingomyelin with acyl residue sum C24:1 sphingolipids
SM C26:0.K1 SM C26:0 sphingomyelin with acyl residue sum C26:0 sphingolipids
SM C26:1.K1 SM C26:1 sphingomyelin with acyl residue sum C26:1 sphingolipids
PC aa C24:0.K1 PC aa C24:0 Phosphatidylcholine with diacyl residue sum C24:0 glycerophospholipids
PC aa C26:0.K1 PC aa C26:0 Phosphatidylcholine with diacyl residue sum C26:0 glycerophospholipids
PC aa C28:1.K1 PC aa C28:1 Phosphatidylcholine with diacyl residue sum C28:1 glycerophospholipids
PC aa C30:0.K1 PC aa C30:0 Phosphatidylcholine with diacyl residue sum C30:0 glycerophospholipids
PC aa C30:2.K1 PC aa C30:2 Phosphatidylcholine with diacyl residue sum C30:2 glycerophospholipids
PC aa C32:0.K1 PC aa C32:0 Phosphatidylcholine with diacyl residue sum C32:0 glycerophospholipids
PC aa C32:1.K1 PC aa C32:1 Phosphatidylcholine with diacyl residue sum C32:1 glycerophospholipids
PC aa C32:2.K1 PC aa C32:2 Phosphatidylcholine with diacyl residue sum C32:2 glycerophospholipids
PC aa C32:3.K1 PC aa C32:3 Phosphatidylcholine with diacyl residue sum C32:3 glycerophospholipids
PC aa C34:1.K1 PC aa C34:1 Phosphatidylcholine with diacyl residue sum C34:1 glycerophospholipids
PC aa C34:2.K1 PC aa C34:2 Phosphatidylcholine with diacyl residue sum C34:2 glycerophospholipids
PC aa C34:3.K1 PC aa C34:3 Phosphatidylcholine with diacyl residue sum C34:3 glycerophospholipids
PC aa C34:4.K1 PC aa C34:4 Phosphatidylcholine with diacyl residue sum C34:4 glycerophospholipids
PC aa C36:0.K1 PC aa C36:0 Phosphatidylcholine with diacyl residue sum C36:0 glycerophospholipids
PC aa C36:1.K1 PC aa C36:1 Phosphatidylcholine with diacyl residue sum C36:1 glycerophospholipids
PC aa C36:2.K1 PC aa C36:2 Phosphatidylcholine with diacyl residue sum C36:2 glycerophospholipids
PC aa C36:3.K1 PC aa C36:3 Phosphatidylcholine with diacyl residue sum C36:3 glycerophospholipids
PC aa C36:4.K1 PC aa C36:4 Phosphatidylcholine with diacyl residue sum C36:4 glycerophospholipids
PC aa C36:5.K1 PC aa C36:5 Phosphatidylcholine with diacyl residue sum C36:5 glycerophospholipids
PC aa C36:6.K1 PC aa C36:6 Phosphatidylcholine with diacyl residue sum C36:6 glycerophospholipids
PC aa C38:0.K1 PC aa C38:0 Phosphatidylcholine with diacyl residue sum C38:0 glycerophospholipids
PC aa C38:1.K1 PC aa C38:1 Phosphatidylcholine with diacyl residue sum C38:1 glycerophospholipids
PC aa C38:3.K1 PC aa C38:3 Phosphatidylcholine with diacyl residue sum C38:3 glycerophospholipids
PC aa C38:4.K1 PC aa C38:4 Phosphatidylcholine with diacyl residue sum C38:4 glycerophospholipids
PC aa C38:5.K1 PC aa C38:5 Phosphatidylcholine with diacyl residue sum C38:5 glycerophospholipids
PC aa C38:6.K1 PC aa C38:6 Phosphatidylcholine with diacyl residue sum C38:6 glycerophospholipids
PC aa C40:1.K1 PC aa C40:1 Phosphatidylcholine with diacyl residue sum C40:1 glycerophospholipids
PC aa C40:2.K1 PC aa C40:2 Phosphatidylcholine with diacyl residue sum C40:2 glycerophospholipids
PC aa C40:3.K1 PC aa C40:3 Phosphatidylcholine with diacyl residue sum C40:3 glycerophospholipids
PC aa C40:4.K1 PC aa C40:4 Phosphatidylcholine with diacyl residue sum C40:4 glycerophospholipids
PC aa C40:5.K1 PC aa C40:5 Phosphatidylcholine with diacyl residue sum C40:5 glycerophospholipids
PC aa C40:6.K1 PC aa C40:6 Phosphatidylcholine with diacyl residue sum C40:6 glycerophospholipids
PC aa C42:0.K1 PC aa C42:0 Phosphatidylcholine with diacyl residue sum C42:0 glycerophospholipids
PC aa C42:1.K1 PC aa C42:1 Phosphatidylcholine with diacyl residue sum C42:1 glycerophospholipids
PC aa C42:2.K1 PC aa C42:2 Phosphatidylcholine with diacyl residue sum C42:2 glycerophospholipids
PC aa C42:4.K1 PC aa C42:4 Phosphatidylcholine with diacyl residue sum C42:4 glycerophospholipids
PC aa C42:5.K1 PC aa C42:5 Phosphatidylcholine with diacyl residue sum C42:5 glycerophospholipids
PC aa C42:6.K1 PC aa C42:6 Phosphatidylcholine with diacyl residue sum C42:6 glycerophospholipids
PC ae C30:0.K1 PC ae C30:0 Phosphatidylcholine with acylalkyl residue sum C30:0 glycerophospholipids
PC ae C30:1.K1 PC ae C30:1 Phosphatidylcholine with acylalkyl residue sum C30:1 glycerophospholipids
PC ae C30:2.K1 PC ae C30:2 Phosphatidylcholine with acylalkyl residue sum C30:2 glycerophospholipids
PC ae C32:1.K1 PC ae C32:1 Phosphatidylcholine with acylalkyl residue sum C32:1 glycerophospholipids
PC ae C32:2.K1 PC ae C32:2 Phosphatidylcholine with acylalkyl residue sum C32:2 glycerophospholipids
PC ae C34:0.K1 PC ae C34:0 Phosphatidylcholine with acylalkyl residue sum C34:0 glycerophospholipids
PC ae C34:1.K1 PC ae C34:1 Phosphatidylcholine with acylalkyl residue sum C34:1 glycerophospholipids
PC ae C34:2.K1 PC ae C34:2 Phosphatidylcholine with acylalkyl residue sum C34:2 glycerophospholipids
PC ae C34:3.K1 PC ae C34:3 Phosphatidylcholine with acylalkyl residue sum C34:3 glycerophospholipids
PC ae C36:0.K1 PC ae C36:0 Phosphatidylcholine with acylalkyl residue sum C36:0 glycerophospholipids
PC ae C36:1.K1 PC ae C36:1 Phosphatidylcholine with acylalkyl residue sum C36:1 glycerophospholipids
PC ae C36:2.K1 PC ae C36:2 Phosphatidylcholine with acylalkyl residue sum C36:2 glycerophospholipids
PC ae C36:3.K1 PC ae C36:3 Phosphatidylcholine with acylalkyl residue sum C36:3 glycerophospholipids
PC ae C36:4.K1 PC ae C36:4 Phosphatidylcholine with acylalkyl residue sum C36:4 glycerophospholipids
PC ae C36:5.K1 PC ae C36:5 Phosphatidylcholine with acylalkyl residue sum C36:5 glycerophospholipids
PC ae C38:0.K1 PC ae C38:0 Phosphatidylcholine with acylalkyl residue sum C38:0 glycerophospholipids
PC ae C38:1.K1 PC ae C38:1 Phosphatidylcholine with acylalkyl residue sum C38:1 glycerophospholipids
PC ae C38:2.K1 PC ae C38:2 Phosphatidylcholine with acylalkyl residue sum C38:2 glycerophospholipids
PC ae C38:3.K1 PC ae C38:3 Phosphatidylcholine with acylalkyl residue sum C38:3 glycerophospholipids
PC ae C38:4.K1 PC ae C38:4 Phosphatidylcholine with acylalkyl residue sum C38:4 glycerophospholipids
PC ae C38:5.K1 PC ae C38:5 Phosphatidylcholine with acylalkyl residue sum C38:5 glycerophospholipids
PC ae C38:6.K1 PC ae C38:6 Phosphatidylcholine with acylalkyl residue sum C38:6 glycerophospholipids
PC ae C40:0.K1 PC ae C40:0 Phosphatidylcholine with acylalkyl residue sum C40:0 glycerophospholipids
PC ae C40:1.K1 PC ae C40:1 Phosphatidylcholine with acylalkyl residue sum C40:1 glycerophospholipids
PC ae C40:2.K1 PC ae C40:2 Phosphatidylcholine with acylalkyl residue sum C40:2 glycerophospholipids
PC ae C40:3.K1 PC ae C40:3 Phosphatidylcholine with acylalkyl residue sum C40:3 glycerophospholipids
PC ae C40:4.K1 PC ae C40:4 Phosphatidylcholine with acylalkyl residue sum C40:4 glycerophospholipids
PC ae C40:5.K1 PC ae C40:5 Phosphatidylcholine with acylalkyl residue sum C40:5 glycerophospholipids
PC ae C40:6.K1 PC ae C40:6 Phosphatidylcholine with acylalkyl residue sum C40:6 glycerophospholipids
PC ae C42:0.K1 PC ae C42:0 Phosphatidylcholine with acylalkyl residue sum C42:0 glycerophospholipids
PC ae C42:1.K1 PC ae C42:1 Phosphatidylcholine with acylalkyl residue sum C42:1 glycerophospholipids
PC ae C42:2.K1 PC ae C42:2 Phosphatidylcholine with acylalkyl residue sum C42:2 glycerophospholipids
PC ae C42:3.K1 PC ae C42:3 Phosphatidylcholine with acylalkyl residue sum C42:3 glycerophospholipids
PC ae C42:4.K1 PC ae C42:4 Phosphatidylcholine with acylalkyl residue sum C42:4 glycerophospholipids
PC ae C42:5.K1 PC ae C42:5 Phosphatidylcholine with acylalkyl residue sum C42:5 glycerophospholipids
PC ae C44:3.K1 PC ae C44:3 Phosphatidylcholine with acylalkyl residue sum C44:3 glycerophospholipids
PC ae C44:4.K1 PC ae C44:4 Phosphatidylcholine with acylalkyl residue sum C44:4 glycerophospholipids
PC ae C44:5.K1 PC ae C44:5 Phosphatidylcholine with acylalkyl residue sum C44:5 glycerophospholipids
PC ae C44:6.K1 PC ae C44:6 Phosphatidylcholine with acylalkyl residue sum C44:6 glycerophospholipids
lysoPC a C14:0.K1 lysoPC a C14:0 Lysophosphatidylcholine with acyl residue C14:0 glycerophospholipids
lysoPC a C16:0.K1 lysoPC a C16:0 Lysophosphatidylcholine with acyl residue C16:0 glycerophospholipids
lysoPC a C16:1.K1 lysoPC a C16:1 Lysophosphatidylcholine with acyl residue C16:1 glycerophospholipids
lysoPC a C17:0.K1 lysoPC a C17:0 Lysophosphatidylcholine with acyl residue C17:0 glycerophospholipids
lysoPC a C18:0.K1 lysoPC a C18:0 Lysophosphatidylcholine with acyl residue C18:0 glycerophospholipids
lysoPC a C18:1.K1 lysoPC a C18:1 Lysophosphatidylcholine with acyl residue C18:1 glycerophospholipids
lysoPC a C18:2.K1 lysoPC a C18:2 Lysophosphatidylcholine with acyl residue C18:2 glycerophospholipids
lysoPC a C20:3.K1 lysoPC a C20:3 Lysophosphatidylcholine with acyl residue C20:3 glycerophospholipids
lysoPC a C20:4.K1 lysoPC a C20:4 Lysophosphatidylcholine with acyl residue C20:4 glycerophospholipids
lysoPC a C24:0.K1 lysoPC a C24:0 Lysophosphatidylcholine with acyl residue C24:0 glycerophospholipids
lysoPC a C26:0.K1 lysoPC a C26:0 Lysophosphatidylcholine with acyl residue C26:0 glycerophospholipids
lysoPC a C26:1.K1 lysoPC a C26:1 Lysophosphatidylcholine with acyl residue C26:1 glycerophospholipids
lysoPC a C28:0.K1 lysoPC a C28:0 Lysophosphatidylcholine with acyl residue C28:0 glycerophospholipids
lysoPC a C28:1.K1 lysoPC a C28:1 Lysophosphatidylcholine with acyl residue C28:1 glycerophospholipids
lysoPC a C6:0.K1 lysoPC a C6:0 Lysophosphatidylcholine with acyl residue C6:0 glycerophospholipids
Gly.K2 Gly Glycine aminoacids
Ala.K2 Ala Alanine aminoacids
Ser. K2 Ser Serine aminoacids
Pro.K2 Pro Proline aminoacids
Val.K2 Val Valine aminoacids
Thr.K2 Thr Threonine aminoacids
Xle.K2 Ile Isoleucine aminoacids
Leu.K2 Leu Leucine aminoacids
Ile.K2 Ile Isoleucine aminoacids
Asn.K2 Asn Asparagine aminoacids
Asp.K2 Asp Aspartic acid aminoacids
Gln.K2 Gln Glutamine aminoacids
Glu.K2 Glu Glutamate aminoacids
Met.K2 Met Methionine aminoacids
His.K2 His Histidine aminoacids
Phe.K2 Phe Phenylalanine aminoacids
Arg.K2 Arg Arginine aminoacids
Cit.K2 Cit Citrulline aminoacids
Tyr.K2 Tyr Tyrosine aminoacids
Trp.K2 Trp Tryptophane aminoacids
Orn.K2 Orn Ornithine aminoacids
Lys.K2 Lys Lysine aminoacids
ADMA.K2 ADMA Asymmetric dimethylarginine biogenic amine
SDMA.K2 SDMA Symmetric dimethylarginine biogenic amine
total DMA.K2 totalDMA Total dimethylarginine biogenic amine
Histamine.K2 Histamine Histamine biogenic amine
Met-SO.K2 Methionine-Sulfoxide Methionine-Sulfoxide aminoacids
Kyn.K2 Kynurenine Kynurenine biogenic amine
OH-Kyn.K2 Hydroxykynurenine Hydroxykynurenine biogenic amine
Putrescine.K2 Putrescine Putrescine biogenic amine
Spermidine.K2 Spermidine Spermidine biogenic amine
Spermine.K2 Spermine Spermine biogenic amine
Serotonin.K2 Serotonin Serotonin biogenic amine
Creatinine.K2 Creatinine Creatinine biogenic amine
Lac.EM Lac Lactate acid
Fum.EM Fum Fumaric acid acid
Asp.EM Asp Aspartic acid aminoacids
Arg.EM Arg Arginine aminoacids
Pyr + OAA.EM Pyr+OAA Pyruvate + Oxaloacetate acid
Suc.EM Suc Succinic acid acid
alpha-KGA.EM alpha-KGA alpha-Ketoglutaric acid acid
Hex.EM Hex Hexose (e.g. Glucose) sugars
TCDCA.BA TCDCA Taurochenodeoxycholic Acid bile acid
GCA.BA GCA Glycocholic Acid bile acid
CA.BA CA Cholic Acid bile acid
UDCA.BA UDCA Ursodeoxycholic Acid bile acid
CDCA.BA CDCA Chenodeoxycholic Acid bile acid
GCDCA.BA GCDCA Glycochenodeoxycholic Acid bile acid
LCA.BA LCA Lithocholic Acid bile acid
13S-HODE.PA 13S-HODE 13(S)-hydroxy-9Z, 11E-octadecadienoic acid prostaglandin
DHA.PA DHA Docosahexaenoic acid prostaglandin
AA.PA AA Arachidonic acid prostaglandin
22ROHC 22-R-Hydroxycholesterol Cholest-5-ene-3,22-diol, (3beta,22R)- Cholesterol compound
24SOHC 24-S-Hydroxycholesterol Cholest-5-ene-3,24-diol, (3beta,24S)- Cholesterol compound
25OHC 25-Hydroxycholesterol Cholest-5-ene-3beta,25-diol Cholesterol compound
27OHC 27-Hydroxycholesterol Cholest-5-ene-3,26,diol, (3beta,25R)- Cholesterol compound
20aOHC 20α-Hydroxycholesterol Cholest-5-ene-3beta,20-diol, (20S)- Cholesterol compound
22SOHC 22S-Hydroxycholesterol Cholest-5-ene-3,22-diol, (3beta,22S)- Cholesterol compound
24,25EC 24,25-Epoxycholesterol Cholestan-3-ol, 24,25-epoxy-, (3alpha,5beta)- Cholesterol compound
3B,5a,6BTHC 3β,5α,6β-Trihydroxycholestan Cholestane-3beta,5alpha,6beta-triol Cholesterol compound
7aOHC 7α-Hydroxycholesterol Cholest-5-ene-3,7-diol, (3beta,7alpha)- Cholesterol compound
7KC 7-Ketocholesterol Cholest-5-en-7-one, 3-hydroxy-, (3-beta)- Cholesterol compound
5B,6B,EC 5β,6β-Epoxycholesterol Cholestan-3-ol, 5,6-epoxy-, (3beta,5beta,6beta)- Cholesterol compound
5a,6a,EC 5α,6α-Epoxycholesterol Cholestan-3-ol, 5,6-epoxy-, (3beta,5alpha,6alpha)- Cholesterol compound
4BOHC 4β-Hydroxycholesterol Cholest-5-ene-3,4-diol, (3beta,4beta)- Cholesterol compound
Desmosterol Desmosterol Cholesta-5,24-dien-3-ol, (3beta)- Cholesterol compound
7DHC 7-Dehydrocholesterol Cholesta-5,7-dien-3-ol, (3beta)- Cholesterol compound
Cholestenone Cholestenone Cholest-5-en-3-one Cholesterol compound
Lanosterol Lanosterol Lanosta-8,24-dien-3-ol, (3beta)- Cholesterol compound
24DHLan 24-Dihydrolanosterol (3beta)-Lanost-8-en-3-ol Cholesterol compound

Examples



[0095] Piglets were subjected to asphyxia. To "mimic" birth asphyxia we exposed the whole body to hypoxia by ventilating piglets with 8% oxygen and added CO2 to achieve hypercarbia. Hypotension was used to cause ischaemic damage and occurred as a result of the hypercarbic hypoxia.

Experimental procedure:



[0096] The National Animal Research Authority, (NARA), approved the experimental protocol. The animals were cared for and handled in accordance with the European Guidelines for Use of Experimental Animals. The Norwegian Council for Animal Research approved the experimental protocol. The animals were cared for and handled in accordance with the European Guidelines for Use of Experimental Animals, by certified FELASA (Federation of European Laboratory Animals Science Association). Thirty-four newborn Noroc (LYxLD) pigs (12-36 h old) were included in the study. In addition we had a reference group consisting of 6 newborn pigs going through all procedures.

Surgical preparation and anesthesia.



[0097] Anesthesia was induced by giving Sevofluran 5% (Sevorane, Abbott); an ear vein was cannulated, the piglets were given Pentobarbital sodium 15 mg/kg and Fentanyl 50 µg/kg intravenously as a bolus injection. The piglets were orally intubated then placed on their back and washed for sterile procedures. Anesthesia was maintained by continuous infusion of Fentanyl (50 µg · kg-1 · h-1) and Midazolam (0.25 mg · kg-1 · h-1) in mixtures giving 1 ml/kg/h for each drug applied by IVAC P2000 infusion pump. When necessary, a bolus of Fentanyl (10 µg/kg), Midazolam (1 mg/kg) or Pentobarbital (2.5 mg/kg) was added (need for medication being defined as shivering, trigging on the respirator, increased tone assessed by passive movements of the limbs, increase in blood pressure and/or pulse). A continuous IV Infusion (Salidex: saline 0.3% and glucose 3.5%, 10 mL · kg-1 · h-1) was given until hypoxia and from 15 min after start of resuscitation and throughout the experiment.

[0098] The piglets were ventilated with a pressure-controlled ventilator (Babylog 8000+; Drägerwerk, Lübeck, Germany). Normoventilation (arterial carbon dioxide tension (PaCO2) 4.5-5.5 kPa) and a tidal volume of 6-8 mL/kg were achieved by adjusting the peak inspiratory pressure or ventilatory rate. Ventilatory rate was 15-40 respirations/min. Inspiratory time of 0.4 s and positive end-expiratory pressure of 4.5 cm H2O was kept constant throughout the experiment. Inspired fraction of O2 and end-tidal CO2 was monitored continuously (Datex Normocap Oxy; Datex, Helsinki, Finland).

[0099] The left femoral artery was cannulated with polyethylene catheters (Porex PE-50, inner diameter 0.58mm; Porex Ltd Hythe, Kent, UK). Mean arterial bloodpressure (MABP) was measured continuously in the left femoral artery using BioPac systems MP150-CE. Rectal temperature was maintained between 38.5 and 39.5°C with a heating blanket and a radiant heating lamp. One hour of stabilization was allowed after surgery. At the end of the experiment, the piglets were given an overdose of 150 mg/kg pentobarbital intravenously. (Eye enucleation at 15 (30 Gr 3) and 60min)

Experimental protocol:



[0100] Hypoxemia was achieved by ventilation with a gas mixture of 8% O2 in N2 until either mean arterial blood pressure decreased to 20 mm Hg or base excess (BE) reached -20 mM. CO2 was added during hypoxemia aiming at a PaCO2 of 8.0-9.5 kPa, to imitate perinatal asphyxia. Before start of resuscitation, the hypoxic piglets were block-randomized for resuscitation with 21% or 100% oxygen for 15 min and then ventilation with room air for 45 min (group 1 and 2), or to receive 100% oxygen for 60 min (group 3). After initiating the reoxygenation, the piglets were kept normocapnic (PaCO2 4.5-5.5 kPa). Throughout the whole experiment there was a continuous surveillance of blood pressure, saturation, pulse, temperature and blood gas measurements. Hemoglobin was measured on a HemoCue Hb 201+ (HemoCue AB, Angelholm, Sweden) at baseline and at the end. Temperature-corrected arterial acid/base status and glucose were measured regularly throughout the experiment on a Blood Gas Analyzer 860 (Ciba Corning Diagnostics, Midfield, Mass., USA). Blood samples for Metabolomics were drawn before initiating the hypoxia, at the end of hypoxia and 60 min after initiating reoxygenation and handled according to the Biocrates protocol. Plasma or serum were prepared according to a standard protocol and then stored at minus 70 °C until subsequent analysis. All blood samples obtained from the femoral artery catheter were replaced by saline 1.5 x the volume drawn. One hour after the end of hypoxia the animals were given an overdose of pentobarbital (150 mg/kg iv). The study staff and the laboratory personnel were blinded to the percentage oxygen administered by resuscitation.

Analytics:



[0101] Targeted metabolite profiling by ESI MS/MS was performed at Biocrates Life Sciences, Austria. The technique is described in detail by U.S. Patent 20070004044 (accessible online at http://www.freepatents online.com/20070004044.html). Briefly, a targeted profiling scheme is used to screen quantitatively for known small molecule metabolites using multiple reaction monitoring, neutral loss, and precursor ion scans. The quantification of the metabolites of the biological sample is achieved by reference to appropriate internal standards. The method is proven to be in conformance with Title 21 Code of Federal Regulations Part 11, and has been used in the past in different academic and industrial applications (2, 17). We used a multiparametric, highly robust, sensitive and high-throughput targeted metabolomic flow injection and LC-MS/MS method for the simultaneous quantification of endogenous intermediates namely amino acids, biogenic amines, acylcarnitines, sphingomyelins, hexoses, glycerophospholipids, small organic acids, and eicosanoids in brain samples enabling the determination of a broad range of target analytes. All procedures (sample handling, analytics) were performed by co-workers blinded to the groups.

Determination and quantification of oxysterols in biological samples by LC-MS/MS



[0102] Oxysterols are determined by HPLC-Tandem mass spectrometer (HPLC-API-MS/MS) in positive detection mode using Multiple Reaction Mode (MRM).

[0103] 20 µL samples, calibrators or internal standard mixture were placed into a capture plate and were protein precipitated by addition of 200 µL acetonitrile and centrifugation. 180 µL of the appropriate supernatants were transferred on a new filter plate with 7 mm filter spots and dried under a nitrogen stream. The analytes were hydrolyzed by addition of 100 µL 0.35 M KOH in 95 % EtOH followed by a 2 h incubation in the dark. The reaction mixture was dried and washed three times with 200 µL water. The oxysterols were extracted with 100 µL 90 % aqueous MeOH. 20 µL of the extracted sample are injected onto the HPLC-MS/MS system. Chromatographic separation and detection is performed by using a Zorbax Eclipse XDB C18, 150 x 2.0 mm, 3.5 µm HPLC-Column at a flow rate of 0.3 mL/min followed by electrospray ionization on the API4000 tandem mass spectrometer. For the quantitation the Analyst Quantitation software from Applied Bioystems was used.

Statistical Analysis:



[0104] All statistical calculations have been performed using the statistics software R (R: A Language and Environment for Statistical Computing, R Development Core Team, R Foundation for Statistical Computing,Vienna, Austria, 2008, ISBN 3-900051-07-0).

[0105] Analytes that were detected in at least 15% of the samples were selected for further analyses resulting in a list of 213 compounds/metabolites along with 28 known compound/metabolite sums and ratios (table 2).

[0106] The metabolic data is left censored due to thresholding of the mass spectrometer data resulting in non detected peak/signals. By a combination of metabolic pathway dynamism, complex sample molecular interaction and overall efficiency of the analytical protocol, replacement of missing data by means of a multivariate algorithm is preferred to a naive imputation by a prespecified value like for instance zero. Hence, missing metabolite concentrations are replaced by the average value of the 6 closest samples to the one where the measurement is missing (impute: Imputation for microarray data, Hastie T., Tibshirani R., Narasimhan B. and Chu G., R package version 1.14.0).

[0107] At the exception of fold change (FC) determination, all statistical analyses are performed on preprocessed - that is, log transformed - data. The gls function in the package nlme (nlme: Linear and Nonlinear Mixed Effects Models, Pinheiro J., Bates D., DebRoy S., Sarkar D. and the R Core team, 2008, R package version 3.1-90) is used to compute the linear models specifying within treatment group heteroscedasticity structure and default parameters otherwise. Resulting p values are adjusted by the method described in Benjamini and Hochberg (Benjamini Y. and Hochberg Y., Controlling the false discovery rate: a practical and powerful approach to multiple testing, Journal of the Royal Statistical Society Series B, 1995, 57, 289-300) leading to so-called q values.

[0108] The results for comparing asphyxia with non-asphyxia are given in table 2. Results of the comparisons SA (start of asphyxia) vs. EA (end of asphyxia) and EA vs. ER (end of resuscitation) are displayed in figures 1 to 3 where a q value threshold of 0.001 is set to select analytes. The depicted fold changes are computed from the median ratio original concentration between two time points and presented as changes compared to the control group (positive values) or to the treated group (negative values).

[0109] Sensitivity/specificity properties of a classifier comprising one analyte or a combination of analytes are summarised in terms of Area Under the Receiver Operating Characteristic Curve (AUC). The function colAUC (caTools: Tools: moving window statistics, GIF, Base64, ROC AUC, etc., Tuszynski J., 2008, R package version 1.9) is used to compute and plot ROC curves. Performance of single markers as well as of combinations of markers is assessed by Random Forest classification via the contributed R package randomForest (Classification and Regression by randomForest, Liaw A. and Wiener M., R News, 2002 2(3),: 18-22). Predictive abilities of the models are computed using stratified boostrap (B=20) which was repeated 5 times to obtain a performance estimate and its associated variance (FIEmspro: Flow Injection Electrospray Mass Spectrometry Processing: data processing, classification modelling and variable selection in metabolite fingerprinting, Beckmann M., Enot D. and Lin W., 2007, R package version 1.1-0).

[0110] In table 2 the individual analytes and metabolites are ranked according to their discriminative power in terms of AUC for distinguishing asphyxia from non-asphyxia.
Table 2 depicts the ranks of the individual analytes and metabolites in terms of AUC distinguishing asphyxia from non-asphyxia. Moreover p values, q values (i.e., adjusted p values) and fold changes are given. For additional information see also figs. 1-3.
NrAnalytep valueq valuefold changeAUC
1 Suc 0,00E+00 0,00E+00 -5696,32 1,00
2 C4 0,00E+00 0,00E+00 -414,86 1,00
3 Lac 0,00E+00 0,00E+00 -1192,31 1,00
4 C16:1 2,66E-15 2,66E-14 -217,65 1,00
5 C16:2 5,55E-16 1,11E-14 -280,00 0,99
6 Putrescine 5,45E-13 5,99E-12 -360,57 0,99
7 C10:2 2,55E-15 2,66E-14 90,20 0,99
8 Spermine 1,07E-11 3,93E-11 -175,44 0,99
9 Pyr + OAA 7,12E-11 7,12E-11 -177,05 0,99
10 C5:1-DC 1,37E-12 9,11E-12 -112,50 0,98
11 Glu/Gln 2,06E-13 5,77E-12 298,09 0,98
12 Spermidine 6,11E-12 3,36E-11 -337,86 0,98
13 Gln 7,87E-08 1,44E-06 -112,10 0,97
14 C18:2 3,18E-14 2,54E-13 -225,18 0,97
15 alpha-KGA 5,01E-11 6,26E-11 -187,63 0,96
16 C5 3,03E-12 1,73E-11 -248,87 0,96
17 PC ae C40:3 3,63E-09 3,34E-07 57,58 0,96
18 Asp/Asn 1,70E-08 1,58E-07 191,33 0,95
19 C14:2 7,71E-1 1 3,85E-10 -203,03 0,95
20 Lys 2,36E-06 9,82E-06 -277,31 0,95
21 Fum 0,00E+00 0,00E+00 -852,86 0,94
22 C3 1,31E-10 5,74E-10 -286,23 0,94
23 Orn/Cit 1,52E-08 1,58E-07 -100,98 0,94
24 lysoPC a C16:0.K1 1,98E-08 9,11E-07 80,78 0,93
25 C18:1.K1 1,43E-10 5,74E-10 -277,89 0,93
26 C14:2-OH.K1 9,66E-08 2,97E-07 -39,73 0,92
27 Ala.K2 1,56E-07 1,44E-06 -155,53 0,92
28 Pro.K2 1,73E-07 1,44E-06 -85,34 0,92
29 Ala/BCAA 3,95E-08 2,77E-07 -102,36 0,92
30 C16:2-OH.K1 5,14E-07 1,37E-06 -30,77 0,91
31 lysoPC a C17:0.K1 8,11E-08 2,49E-06 98,90 0,91
32 His.K2 7,51E-07 3,82E-06 -114,09 0,91
33 PC ae C30:0.K1 2,70E-06 6,21E-05 58,30 0,91
34 SumLyso 5,75E-07 2,68E-06 31,94 0,91
35 Putrescine/Orn 8,86E-08 4,96E-07 -250,65 0,91
36 Phe.K2 7,64E-07 3,82E-06 -55,79 0,91
37 C12.K1 2,09E-08 7,61E-08 -68,63 0,90
38 TCDCA.BA 4,69E-07 1,64E-06 -507,88 0,89
39 lysoPC a C18:0.K1 6,00E-06 6,39E-05 72,70 0,88
40 PC ae C42:5.K1 5,50E-06 6,39E-05 27,28 0,88
41 SumSFA 9,69E-06 3,39E-05 26,85 0,88
42 GCDCA.BA 1,17E-06 2,73E-06 -706,02 0,88
43 Asn.K2 2,18E-05 6,80E-05 -54,57 0,87
44 C6 (C4:1-DC).K1 2,23E-06 5,58E-06 -27,10 0,87
45 PC aa C40:3.K1 1,26E-05 1,16E-04 74,34 0,87
46 PC ae C38:4.K1 5,92E-06 6,39E-05 73,56 0,87
47 C9.K1 4,06E-06 9,56E-06 -38,05 0,86
48 Leu.K2 2,11E-04 5,26E-04 -35,04 0,86
49 Val.K2 3,45E-05 9,59E-05 -46,32 0,86
50 lysoPC a C16:1.K1 3,78E-06 6,39E-05 48,21 0,86
51 C14.K1 7,65E-08 2,55E-07 -161,22 0,86
52 Spermine/Spermidine 4,86E-06 1,95E-05 77,81 0,85
53 PC aa C40:4.K1 2,57E-05 1,97E-04 69,07 0,85
54 C18:1-OH.K1 4,32E-05 9,09E-05 -31,10 0,85
55 C5:1.K1 2,70E-07 7,72E-07 -39,33 0,85
56 C2.K1 8,46E-05 1,69E-04 -51,90 0,85
57 Glu.K2 1,75E-05 6,27E-05 112,21 0,84
58 PC ae C38:5.Kl 3,72E-04 1,43E-03 39,85 0,84
59 AA.PA 2,31E-04 6,92E-04 88,68 0,84
60 PC aa C42:4.K1 6,25E-06 6,39E-05 86,78 0,84
61 PC aa C38:6.K1 7,04E-05 4,99E-04 47,20 0,83
62 SumPC+Lyso 9,62E-05 2,69E-04 28,81 0,83
63 PC ae C40:6.K1 2,46E-04 1,08E-03 58,76 0,83
64 PC ae C40:4.K1 2,43E-05 1,97E-04 50,81 0,83
65 SM C26:1.K1 3,75E-05 5,63E-04 30,27 0,83
66 PC aa C40:6.K1 1,42E-04 7,68E-04 70,46 0,83
67 SM (OH) C16:1.K1 6,24E-04 4,68E-03 54,87 0,83
68 PC ae C40:5.K1 1,23E-04 7,68E-04 65,13 0,82
69 PC ae C42:4.K1 1,31E-04 7,68E-04 66,61 0,82
70 Orn/Arg 1,52E-04 3,54E-04 -50,90 0,82
71 PC ae C36:4.K1 4,39E-04 1,61E-03 43,98 0,82
72 PC aa C40:5.K1 3,11E-04 1,30E-03 68,04 0,82
73 PC aa C40:2.K1 1,41E-04 7,68E-04 19,89 0,82
74 GCA.BA 5,07E-08 3,55E-07 -1090,38 0,81
75 SumPUFA 2,46E-04 5,29E-04 30,54 0,81
76 SumPC 2,77E-04 5,54E-04 31,55 0,81
77 C14:1-OH.K1 3,40E-04 5,95E-04 -49,02 0,81
78 PC aa C38:4.K1 2,22E-04 1,05E-03 43,70 0,81
79 Serotonin/Trp 8,72E-05 2,69E-04 172,55 0,81
80 C14:1.K1 3,35E-05 7,44E-05 -105,36 0,81
81 PC aa C36:6.K1 1,73E-04 8,85E-04 51,15 0,81
82 PC ae C30:1.K1 6,69E-04 2,30E-03 38,62 0,80
83 C16:1-OH.K1 1,13E-04 2,15E-04 -49,02 0,80
84 PC ae C38:3.K1 3,35E-04 1,34E-03 36,15 0,80
85 PC ae C38:6.K1 1,90E-03 4,73E-03 38,08 0,80
86 Orn.K2 3,78E-04 8,58E-04 -33,69 0,80
87 PC ae C32:2.K1 2,09E-03 4,85E-03 39,84 0,79
88 SumSM 1,39E-03 2,16E-03 16,91 0,79
89 PC ae C38:1.K1 8,82E-04 2,80E-03 23,52 0,79
90 PC ae C34:1.K1 8,62E-04 2,80E-03 30,70 0,79
91 PC aa C36:4.K1 2,29E-04 1,05E-03 38,45 0,78
92 PC aa C30:2.K1 1,42E-03 4,16E-03 35,49 0,78
93 C16-OH.K1 3,42E-04 5,95E-04 -15,56 0,78
94 SumMUFA 7,92E-04 1,48E-03 19,84 0,78
95 PC ae C30:2.K1 2,99E-03 6,26E-03 18,49 0,78
96 PC aa C28:1.K1 2,61E-03 5,58E-03 36,44 0,78
97 lysoPC a C24:0.K1 1,45E-03 4,16E-03 16,81 0,78
98 PC ae C42:3.K1 1,61E-03 4,34E-03 71,88 0,78
99 Kyn/Trp 1,11E-03 1,82E-03 38,72 0,78
100 Serotonin.K2 6,15E-04 1,69E-03 226,02 0,77
101 C12:1.K1 2,04E-03 3,26E-03 -13,07 0,77
102 Met-SO.K2 9,96E-04 2,08E-03 104,16 0,77
103 lysoPC a C28:0.K1 2,04E-03 4,85E-03 13,52 0,77
104 PC ae C40:2.K1 1,44E-03 4,16E-03 27,36 0,77
105 C16+C18/C0 1,42E-04 3,54E-04 -99,53 0,77
106 PC aa C38:5.K1 1,75E-03 4,46E-03 36,62 0,76
107 PC ae C36:0.K1 2,39E-03 5,23E-03 24,93 0,76
108 UDCA.BA 1,01E-03 1,77E-03 -269,98 0,76
109 SM (OH) C22:1.K1 1,81E-03 4,91E-03 27,15 0,76
110 PC aa C42:5.K1 6,74E-04 2,30E-03 57,93 0,76
111 Cit.K2 1,05E-02 1,38E-02 48,41 0,76
112 SM (OH) C22:2.K1 2,59E-03 5,55E-03 27,12 0,76
113 SM (OH) C24:1.K1 1,56E-03 4,91E-03 15,39 0,76
114 C16.K1 5,45E-04 9,08E-04 -97,85 0,76
115 PC ae C34:0.K1 2,32E-03 5,20E-03 28,79 0,75
116 PC aa C38:3.K1 1,67E-03 4,39E-03 37,57 0,75
117 Asp.EM 1,08E-03 2,09E-03 78,57 0,75
118 Gly/BCAA 9,57E-04 1,68E-03 36,18 0,75
119 PC aa C42:1.K1 3,25E-03 6,50E-03 13,03 0,75
120 PC ae C36:5.K1 7,76E-03 1,27E-02 26,17 0,75
121 lysoPC a C20:4.K1 1,58E-03 4,34E-03 44,44 0,75
122 PC ae C36:3.K1 3,82E-03 7,32E-03 25,64 0,74
123 PC ae C36:2.K1 5,88E-03 1,02E-02 20,16 0,74
124 PC ae C32:1.K1 3,19E-03 6,50E-03 32,59 0,74
125 Met.K2 2,21E-03 3,69E-03 51,90 0,74
126 PC aa C38:0.K1 3,51E-03 6,88E-03 27,68 0,74
127 SM (OH) C14:1.K1 1,84E-02 1,97E-02 38,66 0,74
128 C5-DC (C6-OH).K1 4,17E-03 6,18E-03 -28,57 0,74
129 SM C22:3.K1 3,70E-03 6,16E-03 23,10 0,74
130 Asp.K2 5,09E-03 7,96E-03 46,91 0,74
131 SM C26:0.K1 1,31E-03 4,91E-03 15,09 0,74
132 PC ae C40:1.K1 4,91E-03 9,22E-03 48,11 0,74
133 PC aa C40:1.K1 2,11E-03 4,85E-03 9,62 0,74
134 PUFA/MUFA 1,00E-02 1,34E-02 7,80 0,74
135 C18.K1 1,84E-02 2,54E-02 -70,54 0,74
136 C3-OH.K1 2,34E-03 3,60E-03 -21,05 0,73
137 Tyr.K2 6,81E-03 9,52E-03 -34,18 0,73
138 PC aa C36:5.K1 6,94E-03 1,16E-02 22,53 0,73
139 Ser.K2 1,83E-03 3,27E-03 -18,88 0,72
140 PC ae C42:2.K1 5,45E-03 1,00E-02 50,72 0,72
141 SM C24:1.K1 1,96E-03 4,91E-03 14,69 0,72
142 SM C16:1.K1 4,62E-03 6,31E-03 34,79 0,72
143 PC ae C38:2.K1 9,29E-03 1,42E-02 15,20 0,72
144 Ala/Lys 3,30E-03 4,86E-03 33,04 0,72
145 PC ae C40:0.K1 8,10E-03 1,29E-02 13,45 0,72
146 Histamine.K2 1,56E-02 2,45E-02 119,64 0,72
147 C4-OH (C3-DC).K1 1,76E-02 2,52E-02 -28,30 0,72
148 PC ae C44:4.K1 2,49E-02 3,18E-02 40,91 0,72
149 Xle.K2 6,86E-03 9,52E-03 -11,85 0,71
150 SM C24:0.K1 3,11E-03 5,84E-03 13,86 0,71
151 PC ae C34:2.K1 6,59E-03 1,12E-02 29,21 0,71
152 SM C18:1.K1 1,85E-02 1,97E-02 19,23 0,71
153 C8.K1 2,62E-02 3,38E-02 -7,69 0,71
154 SM C16:0.K1 4,37E-03 6,31E-03 29,12 0,71
155 C8:1.K1 2,16E-02 2,88E-02 8,09 0,71
156 PC aa C42:0.K1 1,46E-02 2,03E-02 18,21 0,71
157 PC aa C42:2.K1 8,09E-03 1,29E-02 8,94 0,71
158 total DMA.K2 1,29E-02 2,45E-02 -21,58 0,71
159 PC aa C32:3.K1 1,18E-02 1,78E-02 27,73 0,71
160 PC ae C42:1.K1 1,23E-02 1,82E-02 30,08 0,70
161 PC ae C36:1.K1 1,96E-02 2,57E-02 16,68 0,70
162 PC aa C42:6.K1 5,71E-03 1,01E-02 25,85 0,70
163 24,25,EPC 7,99E-01 8,07E-01 12,79 0,70
164 SM C20:2.K1 1,97E-02 1,97E-02 27,85 0,70
165 Cit/Arg 1,80E-02 2,29E-02 31,23 0,70
166 lysoPC a C20:3.K1 8,27E-03 1,29E-02 12,94 0,70
167 PC ae C38:0.K1 1,25E-02 1,83E-02 26,76 0,69
168 Kyn/OHKyn 6,67E-03 9,34E-03 -20,64 0,69
169 PC aa C30:0.K1 1,87E-02 2,50E-02 12,41 0,69
170 PC aa C32:2.K1 1,53E-02 2,09E-02 20,96 0,69
171 PC aa C34:2.K1 1,30E-02 1,87E-02 31,29 0,69
172 PC aa C38:1.K1 5,70E-03 1,01E-02 9,65 0,69
173 PC ae C44:3.K1 2,75E-02 3,42E-02 23,94 0,69
174 PC aa C34:4.K1 1,61E-02 2,18E-02 34,70 0,69
175 Hex.EM 4,11E-01 4,94E-01 -58,08 0,68
176 PC aa C24:0.K1 1,98E-02 2,57E-02 23,18 0,67
177 DHA.PA 4,14E-01 4,14E-01 29,63 0,67
178 Desmosterol 6,94E-02 3,39E-01 27,78 0,67
179 PC aa C26:0.K1 1,23E-01 1,37E-01 3,05 0,66
180 Ile.K2 7,40E-02 8,89E-02 34,37 0,66
181 C5-OH (C3-DC-M).K1 1,25E-01 1,52E-01 7,30 0,66
182 OH-Kyn.K2 1,55E-02 2,45E-02 36,61 0,66
183 24SOHC 7,83E-02 3,39E-01 -14,88 0,66
184 C3:1.K1 3,81E-02 4,76E-02 20,00 0,66
185 lysoPC a C18:2.K1 2,87E-02 3,52E-02 26,65 0,66
186 lysoPC a C18:1.K1 2,73E-02 3,42E-02 18,24 0,66
187 PC ae C44:5.K1 2,34E-01 2,53E-01 17,90 0,65
188 SM C18:0.K1 1,92E-02 1,97E-02 22,56 0,65
189 Creatinine.K2 6,20E-01 6,20E-01 -17,92 0,65
190 lysoPC a C14:0.K1 1,39E-02 1,97E-02 4,70 0,65
191 H1.K1 4,94E-01 4,94E-01 -32,61 0,64
192 5a,6a,EPC 2,58E-01 4,79E-01 17,09 0,64
193 lysoPC a C28:1.K1 9,06E-02 1,06E-01 5,15 0,64
194 24DHLan 7,05E-01 8,07E-01 -48,05 0,63
195 27OHC 3,37E-01 5,31E-01 8,09 0,63
196 4BOHC 2,07E-01 4,78E-01 6,74 0,62
197 C0.K1 2,50E-01 2,94E-01 14,29 0,62
198 Met-SO/Met 1,71E-01 2,09E-01 5,92 0,62
199 PC aa C34:1.K1 5,28E-02 6,30E-02 7,59 0,62
200 25OHC 1,81E-01 4,78E-01 -7,93 0,61
201 PUFA/SFA 2,83E-01 3,30E-01 5,28 0,61
202 SDMA.K2 1,18E-01 1,62E-01 -4,80 0,61
203 5B,6B,EPC 4,66E-01 6,06E-01 6,39 0,60
204 C7-DC.K1 3,24E-01 3,60E-01 -7,14 0,60
205 Trp.K2 7,47E-02 8,89E-02 -0,48 0,60
206 PC aa C34:3.K1 1,04E-01 1,19E-01 27,33 0,60
207 PC aa C32:1.K1 1,12E-01 1,26E-01 4,43 0,60
208 PC ae C34:3.K1 1,05E-01 1,19E-01 4,96 0,59
209 CDCA.BA 3,81E-01 3,81E-01 -81,76 0,59
210 PC aa C36:2.K1 1,31E-01 1,44E-01 7,07 0,59
211 Cholestenone 5,20E-02 3,39E-01 17,96 0,58
212 PC aa C36:3.K1 2,89E-01 3,05E-01 6,38 0,58
213 LCA.BA 2,05E-01 2,40E-01 -57,99 0,58
214 Gly.K2 4,32E-01 4,70E-01 14,56 0,58
215 PC ae C44:6.K1 2,52E-01 2,69E-01 2,62 0,57
216 13S-HODE.PA 2,15E-01 3,23E-01 -3,40 0,57
217 7aOHC 3,68E-01 5,31E-01 7,07 0,57
218 CA.BA 4,71E-03 6,60E-03 -581,92 0,57
219 PC aa C36:1.K1 7,48E-02 8,82E-02 1,18 0,57
220 C10:1.K1 3,18E-01 3,60E-01 9,43 0,57
221 7DHC 2,21E-01 4,78E-01 15,98 0,57
222 C4:1.K1 3,98E-01 4,31E-01 30,36 0,57
223 SumSMOH/SumSM 6,05E-01 6,28E-01 -3,64 0,56
224 Kyn.K2 5,90E-01 6,20E-01 12,50 0,56
225 Phe/Tyr 8,25E-01 8,25E-01 16,64 0,56
226 lysoPC a C26:1.K1 5,91E-01 6,05E-01 1,56 0,56
227 PC aa C32:0.K1 3,93E-01 4,11E-01 -0,61 0,56
228 PC ae C42:0.K1 4,01E-01 4,14E-01 -0,46 0,55
229 PC aa C36:0.K1 4,85E-02 5,87E-02 0,77 0,55
230 MUFA/SFA 4,20E-01 4,71E-01 1,34 0,55
231 Lanosterol 8,07E-01 8,07E-01 -3,53 0,55
232 Arg.K2 9,53E-01 9,53E-01 29,91 0,54
233 lysoPC a C26:0.K1 9,87E-01 9,87E-01 1,56 0,54
234 SDMA/ADMA 5,49E-01 5,92E-01 12,14 0,54
235 ADMA.K2 3,78E-01 4,62E-01 1,32 0,53
236 C12-DC.K1 4,22E-01 4,44E-01 1,12 0,53
237 C6:1.K1 6,12E-01 6,12E-01 3,57 0,52
238 lysoPC a C6:0.K1 6,14E-01 6,20E-01 -7,69 0,52
239 Arg.EM 8,76E-01 9,13E-01 -12,65 0,51
240 Thr.K2 2,52E-01 2,87E-01 15,28 0,51
241 C10.K1 5,87E-01 6,02E-01 1,77 0,51


[0111] Due to the high predictive power for distinguishing asphyxia and non-asphyxia of several analytes and metabolites taken alone (cf. table 2) which is confirmed by principal component analyses (PCA) with and without the 30 top ranked metabolites (cf. figs 4a and 4b), a backward strategy is employed to decide on an optimal feature subset. Successive models are constructed by iterative removal of metabolites according to a relevance score calculated by means of a t test; i.e., by a so-called filter/ranker. At each step, classification accuracy is computed by bootstrapping (cf. fig. 4c).

[0112] In addition, the receiver operator characteristics (ROC) curves plotted in fig. 5 provide evidence that the combination of a predictive metabolite (e.g., Leu) of table 1 with an individual clinical parameter (e.g., heart rate) provides a way to increase sensitivity and specificity for distinguishing asphyxia from non-asphyxia.

[0113] For assessing the duration of hypoxia regression models (as described above) are used. A full list of the results is given in table 4. In fig. 6 the actual versus the fitted hypoxia length involving the commonly used marker lactate (grey asterisks), the Gly/BCAA ratio and a combination of three metabolomics parameters are displayed. As the results in fig. 6 show, the predictive power of the Gly/BCAA ratio and the combination of three metabolomics parameters is clearly larger than that of lactate. In particular, the combination of the three metabolomics parameters leads to a nearly perfect fit of the hypoxia length.

[0114] For testing the effectiveness of reoxygenation, three groups of animals were selected after asphyxia was experimentally induced as described above:

Group 1: 21% O2, 15 min

Group 2: 100% O2, 15 min, followed by 45 min 21% O2

Group 3: 100% O2, 60 min.



[0115] The regression analyses were followed by post hoc analyses using the Tukey's Honest Significant Difference method. The results in table 5 for instance indicate that C10:2 concentration ratios in group 3 are significantly higher than in group 1 and that C3 concentration ratios are significantly higher in group 2 than in group 1 (cf. figs 7a and 7b, table 5). Without achieving adequate statistical significance, the behaviour of C3 can be extended to several compounds analogous to C3 partly due to a relative degree of correlation between concentrations and/or metabolic relatedness. A list of all results of the post hoc analyses is given in table 5.

[0116] Finally, linear discriminant analyses (LDA) are conducted. Because of the low sample size (7 to 10 piglets per group), models including no more than two features are examined to limit over-fitting and consequently avoid overoptimistic interpretation. The models are compared according to the bootstrap .632+ accuracy (with B=20) averaged over 5 independent runs. Accuracies from the classifiers built using either only C10:2 or only C3 are 58% and 48%, respectively. These accuracies can be increased to 73% by combining C3 and C10:2. These results show that combinations of analytes offer a meaningful description of resuscitation group differences with higher discriminative power than single analytes.
Table 3: Cholesterol-derived
 Analytes
BC CodeCommon NameSystematic NameCAS Registry Number
22ROHC 22-R-Hydroxycholesterol Cholest-5-ene-3,22-diol, (3beta,22R)- 17954-98-2
24SOHC 24-S-Hydroxycholesterol Cholest-5-ene-3,24-diol, (3beta,24S)- 474-73-7
25OHC 25-Hydroxycholesterol Cholest-5-ene-3beta,25-diol 2140-46-7
27OHC 27-Hydroxycholesterol Cholest-5-ene-3,26,diol, (3beta,25R)- 20380-11-4
20aOHC 20α-Hydroxycholesterol Cholest-5-ene-3beta,20-diol, (20S)- 516-72-3
22SOHC 22S-Hydroxycholesterol Cholest-5-ene-3,22-diol, (3beta,22S)- 22348-64-7
24,25EC 24,25-Epoxycholesterol Cholestan-3-ol, 24,25-epoxy-, (3alpha,5beta)- 68138-65-8
3B,5a,6BTHC 3β,5α,6β-Trihydroxycholestan Cholestane-3beta,5alpha,6beta-triol 1253-84-5
7aOHC 7α-Hydroxycholesterol Cholest-5-ene-3,7-diol, (3beta,7alpha)- 566-26-7
7KC 7-Ketocholesterol Cholest-5-en-7-one, 3-hydroxy-, (3-beta)- 566-28-9
5B,6B,EC 5β,6β-Epoxycholesterol Cholestan-3-ol, 5,6-epoxy-, (3beta,5beta,6beta)- 4025-59-6
5a,6a,EC 5α,6α-Epoxycholesterol Cholestan-3-ol, 5,6-epoxy-, (3beta,5alpha,6alpha)- 2953-38-0
4BOHC 4β-Hydroxycholesterol Cholest-5-ene-3,4-diol, (3beta,4beta)- 17320-10-4
Desmosterol Desmosterol Cholesta-5,24-dien-3-ol, (3beta)- 313-04-2
7DHC 7-Dehydrocholesterol Cholesta-5,7-dien-3-ol, (3beta)- 434-16-2
Cholestenone Cholestenone Cholest-5-en-3-one 601-54-7
Lanosterol Lanosterol Lanosta-8,24-dien-3-ol, (3beta)- 79-63-0
24DHLan 24-Dihydrolanosterol (3beta)-Lanost-8-en-3-ol 79-62-9
 

 


[0117] Table 3 Numbering of the cholesterol compounds in table 3 is evident from the above numbered structural formula. The compounds listed in table 3 are particular useful for assessing duration of hypoxia and/or for assessing oxygenation status of the subjects after and/or during resuscitation (cf. tables 4 and 5)
Table 4: Duration of hypoxia; p values and q values (i.e., adjusted p values) of regression analyses are given.
  Duration of hypoxiaGender effectInteraction
NrAnalytep valueq valuep valueq valuep valueq value
1 C0.K1 1,20E-01 3,42E-01 4,06E-01 7,11E-01 6,50E-01 8,76E-01
2 C10.K1 4,45E-04 2,54E-03 2,64E-01 5,48E-01 9,96E-01 9,96E-01
3 C10:1.K1 3,67E-01 6,56E-01 8,79E-01 9,50E-01 7,96E-01 9,22E-0 1
4 C10:2.K1 1,93E-02 7,99E-02 4,35E-01 7,20E-01 9,79E-01 9,88E-01
5 C12.K1 2,50E-10 5,00E-09 2,25E-01 5,06E-01 4,95E-01 7,61E-01
6 C12-DC.K1 5,73E-01 8,19E-01 5,07E-01 7,61E-01 8,73E-01 9,50E-01
7 C12:1.K1 8,39E-02 2,72E-01 9,22E-01 9,70E-01 8,72E-01 9,50E-01
8 C14.K1 4,55E-05 2,87E-04 2,65E-01 5,48E-01 8,87E-01 9,50E-01
9 C14:1.K1 2,93E-07 2,71E-06 4,31E-01 7,20E-01 2,08E-01 4,81E-01
10 C14:1-OH.K1 1,27E-01 3,45E-01 7,73E-01 9,09E-01 3,30E-01 6,09E-01
11 C14:2.K1 1,37E-11 3,29E-10 4,09E-01 7,11E-01 7,87E-02 2,62E-01
12 C14:2-OH.K1 8,50E-05 5,10E-04 2,55E-01 5,48E-01 8,55E-01 9,50E-01
13 C16.K1 1,50E-09 1,64E-08 2,01E-01 4,72E-01 7,16E-01 8,91E-01
14 C16-OH.K1 6,72E-03 3,10E-02 8,93E-02 2,75E-01 9,34E-01 9,70E-01
15 C16:1.K1 1,27E-11 3,29E-10 1,61E-01 4,04E-01 3,02E-01 6,04E-01
16 C16:1-OH.K1 3,88E-05 2,59E-04 2,58E-01 5,48E-01 7,21E-01 8,91E-01
17 C16:2.K1 7,57E-10 1,14E-08 4,71E-02 1,61E-01 5,70E-03 2,74E-02
18 C16:2-OH.K1 3,13E-05 2,21E-04 6,45E-01 8,76E-01 6,35E-01 8,75E-01
19 C18.K1 2,31E-07 2,31E-06 2,28E-01 5,06E-01 8,01E-01 9,22E-01
20 C18:1.K1 7,52E-10 1,14E-08 7,26E-01 8,91E-01 3,30E-01 6,09E-01
21 C18:1-OH.K1 9,40E-04 4,90E-03 1,03E-01 3,01E-01 6,33E-01 8,75E-01
22 C18:2.K1 2,31E-13 9,25E-12 4,42E-01 7,20E-01 4,60E-02 1,61E-01
23 C2.K1 5,82E-06 4,66E-05 8,88E-02 2,75E-01 5,14E-01 7,61E-01
24 C3.K1 1,10E-09 1,47E-08 6,99E-01 8,91E-01 9,38E-01 9,70E-01
25 C3-OH.K1 1,94E-01 4,72E-01 2,58E-02 1,00E-01 1,61E-01 4,04E-01
26 C3:1.K1 3,28E-01 6,09E-01 5,00E-01 7,61E-01 7,03E-01 8,91E-01
27 C4.K1 1,11E-16 1,33E-14 3,14E-01 6,09E-01 2,80E-01 5,70E-01
28 C4-OH (C3-DC).K1 8,26E-01 9,35E-01 3,27E-01 6,09E-01 7,50E-01 8,91E-01
29 C4:1.K1 2,35E-02 9,42E-02 7,41E-01 8,91E-01 7,48E-01 8,91E-01
30 C5.K1 8,76E-14 5,26E-12 5,13E-01 7,61E-01 5,51E-01 7,96E-01
31 C5-DC (C6-OH).K1 6,34E-04 3,46E-03 6,64E-01 8,85E-01 1,23E-01 3,44E-01
32 C5-OH (C3-DC-M).K1 1,84E-02 7,90E-02 1,33E-01 3,54E-01 7,23E-01 8,91E-01
33 C5:1.K1 7,94E-06 5,96E-05 7,38E-01 8,91E-01 2,00E-01 4,72E-01
34 C5:1-DC.K1 1,36E-09 1,63E-08 8,07E-01 9,22E-01 5,49E-01 7,96E-01
35 C6 (C4: 1-DC).K1 1,07E-06 9,15E-06 4,47E-01 7,20E-01 9,80E-01 9,88E-01
36 C6:1.K1 4,60E-02 1,61E-01 6,20E-01 8,75E-01 4,26E-01 7,20E-01
37 C7-DC.K1 4,62E-01 7,30E-01 9,02E-01 9,58E-01 7,31E-01 8,91E-01
38 C8.K1 1,06E-02 4,71E-02 3,50E-01 6,37E-01 8,74E-01 9,50E-01
39 C8:1.K1 4,50E-01 7,20E-01 1,03E-01 3,01E-01 9,80E-01 9,88E-01
40 C9.K1 4,35E-03 2,17E-02 1,47E-01 3,83E-01 4,01E-02 1,50E-01
41 H1.K1 7,56E-01 7,56E-01 6,85E-01 7,56E-01 9,38E-02 1,88E-01
42 SM (OH) C14:1.K1 6,56E-01 9,83E-01 8,53E-02 2,74E-01 8,62E-01 9,83E-01
43 SM (OH) C16:1.K1 7,23E-01 9,83E-01 2,50E-02 1,28E-01 7,19E-01 9,83E-01
44 SM (OH) C22:1.K1 9,49E-01 9,83E-01 2,63E-02 1,28E-01 8,25E-01 9,83E-01
45 SM (OH) C22:2.K1 7,18E-01 9,83E-01 1,71E-02 1,28E-01 7,63E-01 9,83E-01
46 SM (OH) C24:1.K1 9,44E-01 9,83E-01 3,98E-02 1,49E-01 5,66E-01 9,83E-01
47 SM C16:0.K1 8,55E-01 9,83E-01 1,13E-02 1,27E-01 6,25E-01 9,83E-01
48 SM C16:1.K1 9,87E-01 9,87E-01 2,77E-02 1,28E-01 9,04E-01 9,83E-01
49 SM C18:0.K1 6,78E-01 9,83E-01 3,22E-03 7,26E-02 6,72E-01 9,83E-01
50 SM C18:1.K1 6,68E-01 9,83E-01 3,23E-03 7,26E-02 7,82E-01 9,83E-01
51 SM C20:2.K1 2,45E-01 7,36E-01 5,15E-02 1,78E-01 7,36E-01 9,83E-01
52 SM C22:3.K1 3,88E-01 9,70E-01 3,41E-01 9,34E-01 7,30E-01 9,83E-01
53 SM C24:0.Kl 6,33E-01 9,83E-01 1,05E-02 1,27E-01 9,61E-01 9,83E-01
54 SM C24:1.K1 9,22E-01 9,83E-01 3,73E-02 1,49E-01 8,22E-01 9,83E-01
55 SM C26:0.K1 3,53E-01 9,34E-01 2,84E-02 1,28E-01 8,05E-01 9,83E-01
56 SM C26:1.K1 9,05E-01 9,83E-01 1,97E-02 1,28E-01 7,54E-01 9,83E-01
57 PC aa C24:0.K1 5,00E-01 9,34E-01 5,18E-01 9,34E-01 4,05E-01 9,09E-01
58 PC aa C26:0.K1 5,02E-01 9,34E-01 9,24E-01 9,72E-01 3,51E-01 8,72E-01
59 PC aa C28:1.K1 8,74E-01 9,72E-01 3,64E-02 6,32E-01 7,57E-01 9,72E-01
60 PC aa C30:0.K1 1,75E-01 6,99E-01 6,74E-02 6,32E-01 8,89E-01 9,72E-01
61 PC aa C30:2.K1 9,40E-01 9,72E-01 9,56E-03 6,32E-01 7,30E-01 9,72E-01
62 PC aa C32:0.K1 2,77E-01 8,25E-01 4,08E-01 9,09E-01 6,77E-01 9,72E-01
63 PC aa C32:1.K1 6,07E-02 6,32E-01 1,31E-01 6,89E-01 5,88E-01 9,49E-01
64 PC aa C32:2.K1 9,12E-02 6,43E-01 6,88E-02 6,32E-01 5,52E-01 9,46E-01
65 PC aa C32:3.K1 1,10E-01 6,43E-01 4,36E-02 6,32E-01 5,15E-01 9,34E-01
66 PC aa C34:1.K1 1,02E-01 6,43E-01 7,20E-01 9,72E-01 8,46E-01 9,72E-01
67 PC aa C34:2.K1 1,93E-01 7,39E-01 7,46E-01 9,72E-01 8,37E-01 9,72E-01
68 PC aa C34:3.K1 7,32E-02 6,32E-01 5,99E-01 9,51E-01 8,79E-01 9,72E-01
69 PC aa C34:4.K1 3,80E-02 6,32E-01 5,39E-01 9,46E-01 8,16E-01 9,72E-01
70 PC aa C36:0.K1 2,83E-01 8,25E-01 5,80E-01 9,49E-01 8,57E-01 9,72E-01
71 PC aa C36:1.K1 3,22E-01 8,25E-01 5,33E-01 9,46E-01 8,63E-01 9,72E-01
72 PC aa C36:2.K1 2,94E-01 8,25E-01 7,88E-01 9,72E-01 9,20E-01 9,72E-01
73 PC aa C36:3.K1 2,99E-01 8,25E-01 7,65E-01 9,72E-01 1,00E+00 1,00E+00
74 PC aa C36:4.K1 1,46E-01 6,89E-01 4,50E-01 9,14E-01 9,20E-01 9,72E-01
75 PC aa C36:S.K1 6,47E-02 6,32E-01 7,99E-01 9,72E-01 9,66E-01 9,87E-01
76 PC aa C36:6.K1 7,10E-02 6,32E-01 2,20E-01 7,68E-01 9,04E-01 9,72E-01
77 PC aa C38:0.K1 9,22E-01 9,72E-01 4,12E-02 6,32E-01 7,63E-01 9,72E-01
78 PC aa C38:1.K1 5,56E-01 9,48E-01 1,03E-01 6,43E-01 9,94E-01 9,98E-01
79 PC aa C38:3.K1 4,04E-01 9,09E-01 1,51E-01 6,89E-01 8,42E-01 9,72E-01
80 PC aa C38:4.K1 1,41E-01 6,89E-01 2,99E-01 8,25E-01 8,55E-01 9,72E-01
81 PC aa C38:5.K1 2,68E-01 8,25E-01 1,57E-01 6,89E-01 8,19E-01 9,72E-01
82 PC aa C38:6.K1 6,80E-02 6,32E-01 1,68E-01 6,89E-01 8,87E-01 9,72E-01
83 PC aa C40:1.K1 8,29E-01 9,72E-01 6,76E-02 6,32E-01 2,18E-01 7,68E-01
84 PC aa C40:2.K1 5,45E-01 9,46E-01 3,17E-01 8,25E-0 1 8,81E-01 9,72E-01
85 PC aa C40:3.K1 4,30E-01 9,09E-01 1,67E-01 6,89E-01 9,39E-01 9,72E-01
86 PC aa C40:4.K1 9,83E-02 6,43E-01 9,00E-02 6,43E-01 7,72E-01 9,72E-01
87 PC aa C40:5.K1 1,24E-01 6,84E-01 1,55E-01 6,89E-01 9,08E-01 9,72E-01
88 PC aa C40:6.K1 1,14E-01 6,43E-01 7,60E-02 6,36E-01 7,06E-01 9,72E-01
89 PC aa C42:0.K1 8,02E-01 9,72E-01 2,59E-02 6,32E-01 4,33E-01 9,09E-01
90 PC aa C42:1.K1 9,22E-01 9,72E-01 2,17E-01 7,68E-01 4,92E-01 9,34E-01
91 PC aa C42:2.K1 5,88E-01 9,49E-01 5,93E-01 9,50E-01 6,37E-01 9,67E-01
92 PC aa C42:4.K1 7,69E-01 9,72E-01 3,32E-02 6,32E-01 9,13E-01 9,72E-01
93 PC aa C42:5.K1 3,40E-01 8,53E-01 2,93E-02 6,32E-01 6,68E-01 9,72E-01
94 PC aa C42:6.K1 3,04E-01 8,25E-0 1 1,15E-02 6,32E-01 5,75E-01 9,49E-01
95 PC ae C30:0.K1 6,22E-01 9,60E-01 4,99E-02 6,32E-01 9,08E-01 9,72E-01
96 PC ae C30:1.K1 5,44E-01 9,46E-01 1,09E-01 6,43E-01 9,71E-01 9,89E-01
97 PC ae C30:2.K1 3,20E-01 8,25E-01 5,14E-01 9,34E-01 4,41E-01 9,09E-01
98 PC ae C32:1.K1 2,78E-01 8,25E-01 8,16E-02 6,43E-01 7,74E-01 9,72E-01
99 PC ae C32:2.K1 3,08E-01 8,25E-01 6,41E-02 6,32E-01 8,00E-01 9,72E-01
100 PC ae C34:0.K1 2,18E-01 7,68E-01 4,90E-01 9,34E-01 8,41E-01 9,72E-01
101 PC ae C34:1.K1 2,10E-01 7,68E-01 1,62E-01 6,89E-01 7,94E-01 9,72E-01
102 PC ae C34:2.K1 4,93E-01 9,34E-01 1,64E-01 6,89E-01 8,12E-01 9,72E-01
103 PC ae C34:3.K1 6,45E-01 9,71E-01 1,13E-01 6,43E-01 9,39E-01 9,72E-01
104 PC ae C36:0.K1 6,07E-01 9,53E-01 2,77E-01 8,25E-01 8,38E-01 9,72E-01
105 PC ae C36:1.K1 4,45E-01 9,10E-01 2,66E-01 8,25E-01 7,32E-01 9,72E-01
106 PC ae C36:2.K1 5,72E-01 9,49E-01 3,60E-01 8,72E-01 7,19E-01 9,72E-01
107 PC ae C36:3.K1 5,84E-01 9,49E-01 1,79E-01 7,06E-01 9,09E-01 9,72E-01
108 PC ae C36:4.K1 4,41E-01 9,09E-01 6,99E-02 6,32E-01 7,69E-01 9,72E-01
109 PC ae C36:5.K1 5,95E-01 9,50E-01 4,74E-02 6,32E-01 9,08E-01 9,72E-01
110 PC ae C38:0.K1 4,90E-02 6,32E-01 1,97E-01 7,43E-01 6,29E-01 9,60E-01
111 PC ae C38:1.K1 8,91E-01 9,72E-01 9,21E-02 6,43E-01 7,85E-01 9,72E-01
112 PC ae C38:2.K1 4,27E-01 9,09E-01 1,70E-01 6,89E-01 9,83E-01 9,94E-01
113 PC ae C38:3.K1 5,04E-01 9,34E-01 8,04E-02 6,43E-01 7,62E-01 9,72E-01
114 PC ae C38:4.K1 2,40E-01 8,16E-01 2,99E-01 8,25E-01 9,90E-01 9,97E-01
115 PC ae C38:5.K1 4,13E-01 9,09E-01 1,38E-01 6,89E-01 9,82E-01 9,94E-01
116 PC ae C38:6.K1 6,77E-01 9,72E-01 1,29E-01 6,89E-01 8,81E-01 9,72E-01
117 PC ae C40:0.K1 4,12E-02 6,32E-01 3,70E-01 8,74E-01 8,74E-01 9,72E-01
118 PC ae C40:1.K1 3,08E-01 8,25E-01 7,33E-01 9,72E-01 9,16E-01 9,72E-01
119 PC ae C40:2.K1 7,50E-01 9,72E-01 5,36E-02 6,32E-01 6,90E-01 9,72E-01
120 PC ae C40:3.K1 5,43E-01 9,46E-01 7,38E-01 9,72E-01 6,76E-01 9,72E-01
121 PC ae C40:4.K1 4,36E-01 9,09E-01 6,20E-02 6,32E-01 7,60E-01 9,72E-01
122 PC ae C40:5.K1 3,64E-01 8,73E-01 1,86E-01 7,24E-01 8,68E-01 9,72E-01
123 PC ae C40:6.K1 4,39E-01 9,09E-01 3,18E-02 6,32E-01 9,15E-01 9,72E-01
124 PC ae C42:0.K1 5,02E-01 9,34E-01 4,39E-01 9,09E-01 6,30E-01 9,60E-01
125 PC ae C42:1.K1 5,07E-01 9,34E-01 5,49E-01 9,46E-01 6,78E-01 9,72E-01
126 PC ae C42:2.K1 3,23E-01 8,25E-01 2,96E-01 8,25E-01 8,31E-01 9,72E-01
127 PC ae C42:3.K1 5,11E-01 9,34E-01 3,39E-01 8,53E-01 8,72E-01 9,72E-01
128 PC ae C42:4.K1 7,50E-01 9,72E-01 8,97E-02 6,43E-01 5,88E-01 9,49E-01
129 PC ae C42:5.K1 8,73E-01 9,72E-01 1,38E-01 6,89E-01 9,05E-01 9,72E-01
130 PC ae C44:3.K1 8,55E-01 9,72E-01 2,43E-01 8,16E-01 3,15E-01 8,25E-0 1
131 PC ae C44:4.K1 4,18E-01 9,09E-01 3,55E-01 8,72E-01 5,68E-01 9,49E-01
132 PC ae C44:5.K1 7,46E-01 9,72E-01 2,55E-01 8,25E-01 9,29E-01 9,72E-01
133 PC ae C44:6.K1 4,55E-01 9,18E-01 3,14E-01 8,25E-01 8,37E-01 9,72E-01
134 lysoPC a C14:0.K1 5,48E-01 9,46E-01 3,73E-01 8,74E-01 4,15E-01 9,09E-01
135 lysoPC a C16:0.K1 1,99E-01 7,43E-01 1,14E-01 6,43E-01 6,84E-01 9,72E-01
136 lysoPC a C16:1.K1 2,75E-01 8,25E-01 2,28E-01 7,88E-01 6,48E-01 9,71E-01
137 lysoPC a C17:0.K1 1,07E-01 6,43E-01 1,64E-01 6,89E-01 9,61E-01 9,86E-01
138 lysoPC a C18:0.K1 7,28E-02 6,32E-01 2,61E-01 8,25E-01 6,22E-01 9,60E-01
139 lysoPC a C18:1.K1 1,41E-01 6,89E-01 5,71E-01 9,49E-01 4,72E-01 9,34E-01
140 lysoPC a C18:2.K1 1,92E-02 6,32E-01 6,55E-01 9,71E-01 4,88E-01 9,34E-01
141 lysoPC a C20:3.K1 1,63E-01 6,89E-01 2,91E-01 8,25E-01 4,15E-01 9,09E-01
142 lysoPC a C20:4.K1 2,97E-02 6,32E-01 4,10E-01 9,09E-01 6,07E-01 9,53E-01
143 lysoPC a C24:0.K1 6,28E-01 9,60E-01 5,06E-01 9,34E-01 3,57E-01 8,72E-01
144 lysoPC a C26:0.K1 8,58E-01 9,72E-01 4,20E-02 6,32E-01 3,07E-04 8,49E-02
145 lysoPC a C26:1.K1 8,58E-01 9,72E-01 3,74E-01 8,74E-01 2,71E-0 1 8,25E-01
146 lysoPC a C28:0.K1 9,40E-01 9,72E-01 6,54E-01 9,71E-01 7,03E-01 9,72E-01
147 lysoPC a C28:1.K1 1,09E-01 6,43E-01 1,54E-01 6,89E-01 3,32E-02 6,32E-01
148 lysoPC a C6:0.K1 9,54E-01 9,82E-01 2,95E-01 8,25E-01 5,09E-01 9,34E-01
149 Gly.K2 1,01E-01 2,91E-01 5,08E-01 8,75E-01 4,91E-01 8,75E-01
150 Ala.K2 1,73E-09 1,30E-07 6,32E-01 8,79E-01 1,56E-01 4,05E-01
151 Ser.K2 7,38E-05 1,12E-03 8,45E-02 2,54E-01 5,43E-01 8,79E-01
152 Pro.K2 5,49E-04 3,43E-03 8,23E-01 8,79E-01 5,50E-01 8,79E-01
153 Val.K2 3,74E-04 3,43E-03 8,32E-01 8,79E-01 8,61E-01 8,97E-01
154 Thr.K2 9,93E-06 2,48E-04 4,89E-02 1,53E-01 3,71E-01 7,52E-01
155 Xle.K2 7,48E-05 1,12E-03 6,99E-01 8,79E-01 7,22E-01 8,79E-01
156 Leu.K2 4,46E-04 3,43E-03 8,11E-01 8,79E-01 5,13E-01 8,75E-01
157 Ile.K2 5,16E-04 3,43E-03 2,69E-01 6,50E-01 7,86E-01 8,79E-01
158 Asn.K2 1,02E-04 1,27E-03 5,68E-01 8,79E-01 4,61E-01 8,75E-01
159 Asp.K2 2,97E-02 1,11E-01 7,88E-01 8,79E-01 4,86E-02 1,53E-01
160 Gln.K2 7,86E-07 2,95E-05 4,44E-01 8,75E-01 8,04E-01 8,79E-01
161 Glu.K2 8,31E-04 4,79E-03 6,28E-01 8,79E-01 7,27E-01 8,79E-01
162 Met.K2 1,08E-01 2,99E-01 7,97E-01 8,79E-01 7,75E-01 8,79E-01
163 His.K2 1,15E-03 6,19E-03 7,81E-01 8,79E-01 7,14E-01 8,79E-01
164 Phe.K2 9,99E-03 4,16E-02 6,48E-01 8,79E-01 5,99E-01 8,79E-01
165 Arg.K2 4,72E-01 8,75E-01 9,99E-01 9,99E-01 6,71E-01 8,79E-01
166 Cit.K2 4,39E-04 3,43E-03 4,31E-02 1,47E-01 6,61E-01 8,79E-01
167 Tyr.K2 3,96E-03 1,98E-02 2,69E-01 6,50E-01 6,36E-01 8,79E-01
168 Trp.K2 8,19E-03 3,61E-02 3,25E-01 7,18E-01 7,28E-01 8,79E-01
169 Orn.K2 2,58E-02 1,02E-01 7,83E-01 8,79E-01 9,33E-01 9,51E-01
170 Lys.K2 4,85E-04 3,43E-03 9,38E-01 9,51E-01 2,99E-01 7,01E-01
171 ADMA.K2 5,07E-01 6,03E-01 1,37E-01 5,67E-01 3,95E-01 6,03E-01
172 SDMA.K2 3,17E-01 5,77E-01 4,32E-01 6,03E-01 2,94E-01 5,77E-01
173 total DMA.K2 5,78E-02 2,73E-01 2,83E-01 5,77E-01 3,04E-01 5,77E-01
174 Histamine.K2 2,53E-01 5,77E-01 2,22E-02 1,46E-01 8,06E-01 8,10E-01
175 Met-SO.K2 3,62E-01 7,52E-01 3,46E-01 7,41E-01 1,31E-01 3,52E-01
176 Kyn.K2 4,95E-01 6,03E-01 7,10E-01 7,56E-01 2,55E-01 5,77E-01
177 OH-Kyn.K2 1,19E-02 9,83E-02 1,73E-01 5,72E-01 2,47E-01 5,77E-01
178 Putrescine.K2 3,21E-12 1,06E-10 1,58E-01 5,72E-01 2,04E-01 5,77E-01
179 Spermidine.K2 1,42E-11 2,34E-10 4,52E-01 6,03E-01 4,43E-01 6,03E-01
180 Spermine.K2 4,25E-07 4,68E-06 8,10E-01 8,10E-01 5,12E-01 6,03E-01
181 Serotonin.K2 5,51E-01 6,27E-01 2,83E-02 1,55E-01 5,74E-01 6,32E-01
182 Creatinine.K2 4,92E-01 6,03E-01 3,45E-01 5,77E-01 3,50E-01 5,77E-01
183 Lac.EM 5,52E-08 1,66E-07 8,67E-01 9,27E-01 7,86E-01 9,07E-01
184 Fum.EM 4,66E-15 3,50E-14 1,12E-03 2,80E-03 3,64E-03 7,80E-03
185 Asp.EM 4,83E-03 2,27E-02 4,25E-02 1,47E-01 6,82E-01 8,79E-01
186 Arg.EM 3,25E-01 7,18E-01 4,93E-01 8,75E-01 5,98E-01 8,79E-01
187 Pyr + OAA.EM 3,37E-09 1,26E-08 5,44E-01 6,80E-01 2,50E-02 4,69E-02
188 Suc.EM 0,00E+00 0,00E+00 5,27E-01 6,80E-01 4,74E-01 6,80E-01
189 alpha-KGA.EM 3,24E-12 1,62E-11 9,27E-01 9,27E-01 4,07E-01 6,79E-01
190 Hex.EM 5,80E-01 7,56E-01 1,64E-02 9,82E-02 8,89E-02 1,88E-01
191 TCDCA.BA 8,54E-02 3,60E-01 3,33E-01 7,29E-01 7,79E-01 8,18E-01
192 GCA.BA 6,18E-04 1,30E-02 3,46E-01 7,29E-01 6,70E-02 3,60E-01
193 CA.BA 3,94E-03 4,13E-02 4,57E-01 7,29E-01 2,71E-01 7,29E-01
194 UDCA.BA 4,86E-01 7,29E-01 6,03E-01 8,18E-01 4,60E-01 7,29E-01
195 CDCA.BA 4,18E-01 7,29E-01 7,58E-01 8,18E-01 7,33E-01 8,18E-01
196 GCDCA.BA 8,56E-02 3,60E-01 2,36E-01 7,29E-01 7,24E-01 8,18E-01
197 LCA.BA 7,55E-01 8,18E-01 9,15E-01 9,15E-01 4,26E-01 7,29E-01
198 13S-HODE.PA 8,87E-03 2,66E-02 3,93E-01 5,89E-01 6,88E-01 7,56E-01
199 DHA.PA 4,37E-05 3,93E-04 3,27E-01 5,89E-01 6,86E-01 7,56E-01
200 AA.PA 3,50E-03 1,57E-02 2,84E-01 5,89E-01 7,56E-01 7,56E-01
201 Orn/Cit 5,23E-05 5,49E-04 2,75E-01 7,00E-01 7,15E-01 9,60E-01
202 Orn/Arg 1,12E-01 4,29E-01 7,96E-01 9,60E-01 4,99E-01 8,50E-01
203 Cit/Arg 9,27E-04 7,08E-03 1,31E-01 4,45E-01 8,44E-01 9,60E-01
204 Glu/Gln 9,06E-09 1,90E-07 7,53E-01 9,60E-01 5,93E-01 8,90E-01
205 Asp/Asn 6,21E-06 1,04E-04 8,31E-01 9,60E-01 9,16E-02 3,85E-01
206 Ala/Lys 2,45E-02 1,21E-01 8,99E-01 9,60E-01 9,03E-01 9,60E-01
207 Phe/Tyr 7,58E-01 9,60E-01 3,46E-02 1,61E-01 1,53E-01 4,60E-01
208 Serotonin/Trp 9,58E-01 9,81E-01 2,13E-02 1,12E-01 5,52E-01 8,75E-01
209 Kyn/Trp 1,01E-02 6,52E-02 3,57E-01 7,37E-01 5,06E-01 8,50E-01
210 Kyn/OHKyn 3,96E-05 4,75E-04 1,50E-01 4,60E-01 3,19E-01 7,06E-01
211 Putrescine/Orn 7,74E-09 1,90E-07 5,42E-01 8,75E-01 2,90E-01 7,06E-01
212 Spermine/Spermidine 3,14E-10 1,32E-08 8,99E-01 9,60E-01 6,67E-01 9,33E-01
213 SDMA/ADMA 3,77E-01 7,37E-01 9,18E-01 9,64E-01 4,17E-01 7,62E-01
214 Met-SO/Met 1,36E-03 9,55E-03 1,15E-04 1,07E-03 1,58E-02 9,49E-02
215 Ala/BCAA 2,93E-05 4,10E-04 5,85E-01 8,90E-01 2,98E-01 7,06E-01
216 Gly/BCAA 2,29E-04 1,93E-03 8,01E-01 9,60E-01 9,92E-01 9,92E-01
217 SumLyso 1,92E-01 5,04E-01 6,93E-01 9,54E-01 6,10E-01 8,98E-01
218 SumPC+Lyso 3,15E-01 7,06E-01 1,72E-01 4,91E-01 8,92E-01 9,60E-01
219 SumPC 3,67E-0 1 7,37E-01 1,32E-01 4,45E-01 8,07E-01 9,60E-01
220 SumSM 9,87E-01 9,92E-01 1,79E-02 1,00E-01 8,99E-01 9,60E-01
221 SumSMOH/SumSM 6,55E-0 1 9,33E-01 5,63E-01 8,76E-01 6,43E-01 9,31E-01
222 C16+C18/C0 3,66E-13 3,07E-11 7,48E-01 9,60E-01 3,76E-01 7,37E-01
223 SumMUFA 4,11E-01 7,62E-01 8,22E-02 3,64E-01 8,15E-01 9,60E-01
224 SumPUFA 3,54E-01 7,37E-01 1,18E-01 4,31E-01 8,53E-01 9,60E-01
225 SumSFA 4,72E-01 8,44E-01 1,81E-01 4,91E-01 9,31E-01 9,65E-01
226 PUFA/SFA 3,11E-01 7,06E-01 1,48E-01 4,60E-01 5,48E-01 8,75E-01
227 PUFA/MUFA 1,81E-01 4,91E-01 8,41E-01 9,60E-01 8,47E-01 9,60E-01
228 MUFA/SFA 4,84E-01 8,46E-01 9,72E-02 3,89E-01 4,08E-01 7,62E-01
229 24SOHC 7,72E-03 3,01E-01 2,70E-01 7,32E-01 7,79E-01 9,40E-01
230 250HC 1,96E-01 7,32E-01 2,83E-01 7,32E-01 8,43E-01 9,40E-01
231 270HC 9,35E-02 6,60E-01 7,55E-01 9,40E-01 3,05E-01 7,32E-01
232 24,25,EPC 8,07E-01 9,40E-01 9,78E-01 9,78E-01 8,80E-01 9,53E-01
233 7aOHC 5,26E-01 8,20E-01 7,71E-01 9,40E-01 5,20E-01 8,20E-01
234 5B,6B,EPC 3,79E-02 6,37E-01 8,27E-01 9,40E-01 7,84E-01 9,40E-01
235 5a,6a,EPC 4,90E-02 6,37E-01 2,42E-01 7,32E-01 3,64E-01 7,48E-01
236 4BOHC 2,53E-01 7,32E-01 4,84E-01 8,20E-01 2,78E-0 1 7,32E-01
237 Desmosterol 4,51E-01 8,20E-01 3,37E-01 7,32E-01 3,27E-01 7,32E-01
238 7DHC 9,67E-01 9,78E-01 8,06E-01 9,40E-01 9,85E-02 6,60E-01
239 Cholestenone 1,50E-01 7,32E-01 1,61E-01 7,32E-01 9,32E-01 9,78E-01
240 Lanosterol 3,38E-01 7,32E-01 4,61E-01 8,20E-01 1,02E-01 6,60E-01
241 24DHLan 8,05E-01 9,40E-01 5,02E-01 8,20E-01 7,60E-01 9,40E-01
Table 5: Effectiveness of reoxygenation; p values obtained by post hoc analyses via Tukey's honest significant difference and fold changes (FC) are depicted.
  Group2 vs Group1Group3 vs Group1Group3 vs Group2
NrAnalytep valueFCp valueFCp valueFC
1 C0.K1 5,97E-01 3,69 9,45E-01 2,03 5,85E-01 -1,63
2 C10.K1 3,58E-02 -13,23 1,96E-01 -19,82 3,23E-01 -5,82
3 C10:1.K1 9,82E-02 -16,54 1,18E-01 -9,49 8,95E-01 6,43
4 C10:2.K1 7,47E-02 -10,34 5,50E-05 -35,89 1,43E-02 -23,15
5 C12.K1 1,81E-01 -18,26 2,14E-01 -11,95 7,38E-01 5,63
6 C12-DC.K1 1,24E-02 -11,02 3,70E-01 -1,67 4,45E-02 9,20
7 C12:1.K1 1,91E-01 -32,41 4,66E-01 -29,57 3,94E-01 2,19
8 C14.K1 2,54E-01 -10,73 5,20E-01 -11,26 4,05E-01 -0,48
9 C14:1.K1 1,20E-01 -18,98 3,27E-01 -16,79 3,83E-01 1,87
10 C14:1-OH.K1 3,14E-01 -21,43 5,58E-01 -19,58 7,40E-01 1,55
11 C14:2.K1 8,47E-01 -9,02 9,64E-01 -11,17 7,50E-01 -1,97
12 C14:2-OH.K1 2,17E-01 -18,97 5,81E-02 -31,91 4,79E-01 -10,88
13 C16.K1 3,48E-02 -20,63 3,31E-01 -16,32 2,11E-01 3,71
14 C16-OH.K1 4,31E-03 -27,27 9,38E-01 5,63 2,55E-02 34,44
15 C16:1.K1 8,39E-02 -48,01 6,82E-01 3,49 1,11E-01 53,17
16 C16:1-OH.K1 1,17E-03 -33,94 4,52E-02 -26,51 4,32E-01 5,87
17 C16:2.K1 3,22E-01 -22,45 1,96E-01 -13,72 9,02E-01 7,67
18 C16:2-OH.K1 3,22E-01 -12,50 7,80E-01 10,25 1,32E-01 24,03
19 C18.K1 7,08E-02 -8,90 5,61E-01 -3,52 3,74E-01 5,20
20 C18:1.K1 1,09E-01 -15,69 4,42E-01 -1,86 3,05E-01 13,58
21 C18:1-OH.K1 4,31E-01 -3,13 4,07E-01 0,56 8,16E-02 3,70
22 C18:2.K1 2,64E-02 -68,58 5,23E-01 4,02 3,39E-02 75,36
23 C2.K1 6,70E-02 -20,30 8,78E-01 -0,81 7,91E-02 19,33
24 C3.K1 6,77E-05 -57,28 8,73E-02 -18,34 9,21E-02 32,91
25 C3-0H.K1 1,89E-01 18,68 7,75E-01 1,64 8,43E-02 -16,77
26 C3:1.K1 1,28E-02 -33,33 9,42E-03 -44,29 7,85E-01 -8,22
27 C4.K1 1,63E-03 -38,40 2,62E-01 -10,63 7,16E-02 25,10
28 C4-OH (C3-DC).K1 4,55E-02 -26,53 3,98E-01 -5,44 1,81E-01 20,00
29 C4:1.K1 3,09E-02 -37,28 2,28E-02 -38,70 6,70E-01 -1,03
30 C5.K1 9,51E-03 -25,60 8,32E-01 5,69 2,60E-02 32,74
31 C5-DC (C6-OH).K1 3,29E-01 -12,50 7,62E-01 -5,05 3,15E-01 7,09
32 C5-OH (C3-DC-M).K1 5,76E-01 -2,88 5,30E-01 1,60 1,93E-01 4,52
33 C5:1.K1 5,30E-02 -5,00 5,80E-02 -10,46 9,23E-01 -5,20
34 C5:1-DC.K1 2,07E-01 -14,29 4,84E-01 -1,19 5,45E-01 12,94
35 C6 (C4:1-DC).K1 2,58E-02 -5,33 1,62E-01 -8,29 7,87E-01 -2,81
36 C6:1.K1 5,45E-01 -18,13 4,85E-01 -13,19 8,69E-01 4,36
37 C7-DC.K1 2,97E-01 -25,06 5,93E-01 -13,33 6,46E-01 10,34
38 C8.K1 3,14E-01 -4,50 4,07E-02 -8,43 6,04E-01 -3,76
39 C8:1.K1 6,09E-01 6,20 6,47E-01 -2,41 9,26E-01 -8,77
40 C9.K1 5,34E-01 -3,24 1,46E-01 -33,99 5,25E-02 -29,79
41 H1.K1 5,96E-02 -30,86 1,21E-01 -28,48 3,60E-01 1,85
42 SM (OH) C14:1.K1 2,18E-01 -13,25 7,03E-01 -5,82 5,75E-01 7,02
43 SM (OH) C16:1.K1 8,88E-01 3,79 5,24E-01 0,19 5,16E-01 -3,60
44 SM (OH) C22:1.K1 3,64E-01 -9,63 2,79E-01 -10,07 6,60E-01 -0,40
45 SM (OH) C22:2.K1 1,76E-01 -12,55 7,68E-01 -4,62 2,98E-01 7,58
46 SM (OH) C24:1.K1 6,53E-03 -9,97 3,14E-01 -1,87 2,65E-01 7,95
47 SM C16:0.K1 8,51E-01 -1,91 6,16E-01 2,84 5,47E-01 4,81
48 SM C16:1.K1 1,50E-01 -12,17 5,36E-01 0,11 5,99E-01 12,30
49 SM C18:0.K1 3,23E-01 -12,17 5,96E-01 -3,10 8,79E-01 -3,10
50 SM C18:1.K1 1,29E-01 -8,62 5,47E-01 -3,60 6,56E-01 4,85
51 SM C20:2.K1 8,29E-01 3,95 7,57E-01 2,84 6,69E-01 -1,08
52 SM C22:3.K1 2,12E-01 -5,77 1,84E-02 -18,67 4,13E-01 -12,19
53 SM C24:0.Kl 3,40E-02 -15,31 2,54E-01 -6,48 6,26E-01 8,29
54 SM C24:1.K1 6,55E-02 -9,89 9,01E-02 -6,74 6,96E-01 2,95
55 SM C26:0.K1 4,60E-01 -8,98 4,30E-01 -6,01 9,94E-01 2,80
56 SM C26:1.K1 2,34E-01 -14,78 2,05E-01 -5,84 8,88E-01 8,45
57 PC aa C24:0.Kl 3,84E-01 -15,71 2,09E-02 -28,59 1,72E-01 -11,13
58 PC aa C26:0.K1 4,06E-01 -6,93 3,39E-01 -5,17 9,52E-01 1,67
59 PC aa C28:1.K1 3,20E-01 -5,36 4,89E-01 -0,11 7,47E-01 5,24
60 PC aa C30:0.K1 6,67E-01 4,73 9,89E-01 0,62 6,31E-01 -4,09
61 PC aa C30:2.K1 7,55E-02 -13,43 6,59E-01 -6,99 3,59E-01 6,03
62 PC aa C32:0.K1 7,76E-01 10,58 9,73E-01 1,26 8,07E-01 -9,20
63 PC aa C32:1.K1 7,13E-01 2,50 5,42E-01 -2,05 4,48E-01 -4,60
64 PC aa C32:2.K1 9,51E-01 -0,42 3,79E-01 -11,20 3,99E-01 -10,73
65 PC aa C32:3.K1 6,84E-01 4,65 4,71E-01 1,70 8,49E-01 -2,90
66 PC aa C34:1.K1 8,05E-01 8,71 8,50E-01 1,26 7,13E-01 -7,36
67 PC aa C34:2.K1 8,35E-01 3,84 4,01E-01 -4,76 7,14E-01 -8,78
68 PC aa C34:3.K1 9,70E-01 10,93 5,05E-01 -6,99 5,55E-01 -18,69
69 PC aa C34:4.K1 5, 73E-01 8,62 5,77E-01 0,29 3,23E-01 -8,30
70 PC aa C36:0.K1 6,59E-01 2,93 2,08E-01 -6,14 4,59E-01 -9,25
71 PC aa C36:1.K1 7,98E-01 5,27 3,39E-01 -2,95 5,72E-01 -8,37
72 PC aa C36:2.K1 7,19E-01 0,95 5,12E-01 -6,01 8,70E-01 -7,02
73 PC aa C36:3.K1 6,90E-01 -0,33 1,29E-01 -14,05 4,89E-01 -13,67
74 PC aa C36:4.K1 7,58E-01 1,58 6,37E-02 -9,08 4,14E-01 -10,81
75 PC aa C36:5.K1 9,29E-01 8,56 1,09E-01 -8,28 2,10E-01 -17,55
76 PC aa C36:6.K1 7,29E-01 1,20 3,95E-01 -5,64 6,73E-01 -6,91
77 PC aa C38:0.K1 6,14E-01 -1,84 1,56E-01 -6,71 3,98E-01 -4,78
78 PC aa C38:1.K1 9,51E-01 -4,41 9,08E-01 -2,59 9,32E-01 1,77
79 PC aa C38:3.K1 3,39E-01 -0,24 2,32E-01 -6,52 8,60E-01 -6,27
80 PC aa C38:4.K1 8,37E-01 2,06 2,72E-01 -2,55 4,58E-01 -4,67
81 PC aa C38:5.K1 6,82E-01 -2,13 2,39E-01 -9,70 4,91E-01 -7,41
82 PC aa C38:6.K1 8,58E-01 -0,51 3,32E-01 -5,70 6,30E-01 -5,16
83 PC aa C40:1.K1 4,36E-01 7,80 5,34E-01 -2,02 2,39E-01 -9,98
84 PC aa C40:2.K1 3,07E-01 0,24 5,16E-01 -5,48 8,16E-01 -5,72
85 PC aa C40:3.K1 1,83E-01 -3,37 1,53E-01 -8,86 7,13E-01 -5,31
86 PC aa C40:4.K1 9,88E-01 0,16 6,91E-01 -4,25 7,68E-01 -4,42
87 PC aa C40:5.K1 6,79E-01 4,03 7,96E-01 0,35 6,05E-01 -3,67
88 PC aa C40:6.K1 8,44E-01 6,89 4,16E-01 -3,43 4,62E-01 -10,56
89 PC aa C42:0.K1 3,49E-01 -9,67 3,85E-01 -11,90 8,93E-01 -2,03
90 PC aa C42:1.K1 2,53E-01 -3,22 1,40E-01 -8,46 5,85E-01 -5,08
91 PC aa C42:2.K1 1,75E-01 -0,92 1,32E-02 -16,95 3,15E-01 -15,88
92 PC aa C42:4.K1 7,62E-01 -2,84 6,98E-01 -4,76 9,00E-01 -1,87
93 PC aa C42:5.K1 8,23E-01 -4,68 1,46E-01 -3,06 3,65E-01 1,57
94 PC aa C42:6.K1 4,21E-01 5,75 9,48E-01 3,27 4,35E-01 -2,41
95 PC ae C30:0.K1 1,23E-02 -17,00 4,61E-03 -12,79 7,98E-01 3,74
96 PC ae C30:1.K1 6,85E-01 -2,72 5,23E-01 -7,48 7,25E-01 -4,63
97 PC ae C30:2.K1 4,65E-02 -10,18 1,27E-01 -5,99 6,50E-01 3,94
98 PC ae C32:1.K1 9,51E-01 2,66 5,70E-01 1,04 6,99E-01 -1,60
99 PC ae C32:2.K1 6,40E-01 -1,76 4,07E-01 -1,33 2,91E-01 0,42
100 PC ae C34:0.K1 9,93E-01 7,76 1,03E-01 -5,20 2,84E-01 -13,36
101 PC ae C34:1.K1 5,29E-01 -9,08 4,01E-01 -4,86 7,81E-01 4,02
102 PC ae C34:2.K1 7,25E-01 0,26 6,04E-01 1,51 8,50E-01 1,24
103 PC ae C34:3.K1 3,24E-01 -5,08 2,80E-01 -0,89 9,11E-01 4,15
104 PC ae C36:0.K1 8,66E-01 0,37 6,26E-01 -3,43 8,01E-01 -3,81
105 PC ae C36:1.K1 7,81E-01 3,56 6,38E-01 -1,89 8,46E-01 -5,52
106 PC ae C36:2.K1 5,68E-01 -6,67 2,28E-01 -8,67 6,77E-01 -1,87
107 PC ae C36:3.K1 4,77E-01 -6,30 1,23E-01 -5,15 4,69E-01 1,09
108 PC ae C36:4.K1 2,76E-01 -2,68 1,55E-01 -6,92 6,44E-01 -4,13
109 PC ae C36:5.K1 5,90E-01 -3,89 6,26E-01 -2,83 9,64E-01 1,02
110 PC ae C38:0.K1 5,91E-01 0,79 2,15E-01 -9,00 5,21E-01 -9,86
111 PC ae C38:1.K1 3,09E-01 -1,76 2,20E-01 -11,73 7,06E-01 -9,79
112 PC ae C38:2.K1 9,16E-01 1,65 4,51E-01 -3,24 5,84E-01 -4,95
113 PC ae C38:3.K1 5,73E-01 -2,21 6,05E-01 -4,80 9,90E-01 -2,54
114 PC ae C38:4.K1 6,87E-01 1,95 4,54E-02 -5,50 2,09E-01 -7,56
115 PC ae C38:5.K1 4,93E-01 2,56 7,84E-02 -6,69 3,15E-01 -9,42
116 PC ae C38:6.K1 5,96E-01 -0,81 1,05E-01 -5,68 3,48E-01 -4,83
117 PC ae C40:0.K1 2,93E-01 1,69 4,40E-01 -1,82 1,20E-01 -3,55
118 PC ae C40:1.K1 2,17E-01 -8,35 3,00E-02 -14,06 4,49E-01 -5,27
119 PC ae C40:2.K1 8,52E-01 -1,50 3,82E-01 -10,33 4,28E-01 -8,70
120 PC ae C40:3.K1 1,44E-01 -6,44 2,98E-02 -16,15 2,69E-01 -9,13
121 PC ae C40:4.K1 8,50E-01 -0,05 9,89E-02 -5,93 3,18E-01 -5,87
122 PC ae C40:5.K1 7,99E-01 -1,71 3,46E-01 -3,68 4,75E-01 -1,94
123 PC ae C40:6.K1 4,63E-01 3,96 8,68E-01 3,15 6,50E-01 -0,79
124 PC ae C42:0.K1 6,04E-01 -1,91 7,65E-01 -0,59 7,57E-01 1,31
125 PC ae C42:1.K1 3,43E-01 -4,77 4,93E-02 -12,84 5,00E-01 -7,70
126 PC ae C42:2.K1 4,85E-01 9,84 2,72E-01 -1,05 9,16E-01 -10,99
127 PC ae C42:3.K1 1,73E-01 -2,97 5,52E-01 -2,03 5,10E-01 0,92
128 PC ae C42:4.K1 3,21E-01 -5,97 9,07E-01 1,50 5,38E-01 7,56
129 PC ae C42:5.K1 2,03E-02 -8,84 2,94E-02 -11,09 8,12E-01 -2,06
130 PC ae C44:3.K1 1,95E-01 -16,11 2,31E-01 -11,48 8,62E-01 4,16
131 PC ae C44:4.K1 8,93E-01 -4,44 6,69E-02 -13,79 1,11E-01 -8,95
132 PC ae C44:5.Kl 8,50E-01 -0,72 2,71E-01 -8,89 2,91E-01 -8,12
133 PC ae C44:6.K1 3,94E-01 0,56 1,48E-02 -19,11 1,60E-01 -19,78
134 lysoPC a C14:0.K1 1,52E-01 0,82 1,39E-01 -1,03 9,17E-01 -1,85
135 lysoPC a C16:0.K1 1,79E-01 -8,36 1,38E-01 -17,69 6,94E-01 -8,61
136 lysoPC a C16:1.K1 4,57E-01 -2,29 1,56E-01 -17,42 4,47E-01 -14,79
137 lysoPC a C17:0.K1 7,21E-01 -4,83 3,73E-01 -32,79 5,33E-01 -26,68
138 lysoPC a C18:0.K1 5,14E-02 -13,17 2,85E-02 -26,65 6,09E-01 -11,91
139 lysoPC a C18:1.K1 4,43E-01 -10,48 1,47E-01 -13,27 4,60E-01 -2,53
140 lysoPC a C18:2.K1 5,70E-01 -1,41 2,85E-01 -8,20 7,45E-01 -6,70
141 lysoPC a C20:3.K1 3,12E-01 -21,77 3,79E-01 -9,00 8,15E-01 11,72
142 lysoPC a C20:4.K1 5,08E-01 -25,92 2,16E-01 -24,53 5,87E-01 1,12
143 lysoPC a C24:0.Kl 9,82E-02 -6,30 2,99E-02 -18,39 9,75E-01 -11,37
144 lysoPC a C26:0.K1 1,87E-01 -8,04 5,80E-01 -6,59 2,44E-01 1,36
145 lysoPC a C26:1.K1 8,21E-01 1,12 3,68E-01 -2,90 5,49E-01 -4,05
146 lysoPC a C28.0.K1 1,34E-01 -9,33 7,46E-01 -5,50 3,10E-01 3,63
147 lysoPC a C28:1.K1 8,53E-02 -12,56 7,90E-01 5,34 1,31E-01 18,57
148 lysoPC a C6:0.K1 8,36E-02 -59,18 4,60E-02 -173,79 5,89E-01 -72,00
149 Gly.K2 6,91E-01 -3,90 3,46E-01 -19,98 6,46E-01 -15,48
150 Ala.K2 6,84E-01 -5,15 8,34E-01 3,21 7,75E-01 8,52
151 Ser.K2 6,55E-01 -13,56 1,28E-01 -25,39 2,88E-01 -10,42
152 Pro.K2 1,52E-01 -3,22 3,82E-01 -4,89 4,49E-01 -1,62
153 Val.K2 1,95E-01 -3,82 4,52E-01 -4,01 4,53E-01 -0,19
154 Thr.K2 3,40E-01 -9,40 4,40E-01 -10,53 8,99E-01 -1,03
155 Xle.K2 1,60E-01 -5,31 4,77E-01 -19,90 4,91E-01 -13,86
156 Leu.K2 2,12E-01 -15,34 4,12E-01 -26,01 6,35E-01 -9,25
157 Ile.K2 1,41E-01 -10,99 2,92E-01 -19,53 6,99E-01 -7,69
158 Asn.K2 2,18E-01 2,98 4,24E-01 -7,78 5,77E-01 -10,99
159 Asp.K2 6,89E-02 -70,92 9,15E-01 -26,93 7,11E-02 34,66
160 Gln.K2 8,28E-01 -5,18 9,06E-01 -4,29 8,99E-01 0,86
161 Glu.K2 1,70E-01 -16,38 2,99E-01 -19,80 5,71E-01 -2,94
162 Met.K2 2,42E-02 -46,09 3,18E-02 -59,04 7,54E-01 -8,86
163 His.K2 9,82E-01 3,35 7,02E-01 -9,02 7,23E-01 -12,67
164 Phe.K2 1,64E-01 -8,75 4,82E-01 -6,79 3,20E-01 1,83
165 Arg.K2 3,61E-01 -9,48 3,27E-01 -18,87 9,80E-01 -8,57
166 Cit.K2 1,44E-01 -12,89 1,73E-01 -18,41 9,39E-01 -4,89
167 Tyr.K2 1,98E-01 -8,33 2,31E-01 -6,08 8,79E-01 2,12
168 Trp.K2 6,26E-01 -4,96 9,67E-01 -1,61 6,64E-01 3,30
169 Orn.K2 6,17E-01 2,27 1,61E-01 -18,38 1,11E-01 -21,07
170 Lys.K2 3,21E-01 -12,76 8,22E-01 9,28 2,57E-01 23,23
171 ADMA.K2 4,97E-02 -26,79 1,48E-01 -17,95 4,23E-01 7,49
172 SDMA.K2 2,45E-01 -5,59 3,35E-01 -15,63 6,03E-01 -9,51
173 total DMA.K2 2,31E-01 -33,17 2,31E-01 -17,06 7,57E-01 13,77
174 Histamine.K2 3,53E-01 -35,36 2,38E-01 -27,19 9,89E-01 6,42
175 Met-SO.K2 2,36E-01 -41,82 6,31E-01 -18,47 4,92E-01 19,71
176 Kyn.K2 7,91E-01 3,17 8,30E-01 1,58 6,78E-01 -1,57
177 OH-Kyn.K2 1,53E-01 -11,26 3,29E-01 -16,21 7,25E-01 -4,45
178 Putrescine.K2 4,78E-01 -14,07 7,29E-01 -0,93 2,58E-01 13,02
179 Spermidine.K2 5,72E-01 -3,47 5,35E-02 40,24 9,52E-02 45,12
180 Spermine.K2 3,75E-01 -9,70 2,79E-01 63,28 1,85E-03 79,12
181 Serotonin.K2 2,61E-01 -83,99 1,77E-01 -74,22 9,73E-01 5,61
182 Creatinine.K2 1,55E-01 -16,47 4,39E-01 -13,49 4,74E-01 2,62
183 Lac.EM 8,43E-01 -18,46 9,11E-01 -14,73 6,68E-01 3,25
184 Fum.EM 7,20E-02 -214,43 8,16E-02 -101,23 5,13E-01 56,25
185 Asp.EM 1,75E-01 -19,83 1,18E-01 -82,39 7,62E-01 -52,21
186 Arg.EM 3,47E-01 -5,31 5,73E-01 -22,10 8,39E-01 -15,94
187 Pyr + OAA.EM 9,13E-02 -19,37 7,31E-01 5,96 1,28E-01 26,49
188 Suc.EM 6,12E-02 -191,05 1,83E-01 -76,47 2,76E-01 64,92
189 alpha-KGA.EM 1,88E-01 -83,12 1,17E-02 -92,84 7,30E-01 -5,31
190 Hex.EM 1,08E-01 -13,33 1,96E-01 -10,36 3,88E-01 2,69
191 TCDCA.BA 6,44E-01 10,96 3,79E-02 114,26 1,84E-01 93,09
192 GCA.BA 5,37E-01 -12,87 2,44E-01 49,49 4,11E-02 68,73
193 CA.BA 2,40E-02 -117,69 3,36E-01 -57,06 6,52E-02 38,60
194 UDCA.BA 3,72E-01 -35,25 9,26E-01 -16,69 2,75E-01 15,90
195 CDCA.BA 3,30E-02 -187,92 2,24E-01 -63,25 2,57E-01 76,36
196 GCDCA.BA 6,70E-01 1,14 2,00E-01 41,56 4,46E-01 39,97
197 LCA.BA 6,02E-01 -16,44 9,35E-01 3,86 3,66E-01 20,93
198 13S-HODE.PA 9,42E-01 -2,53 2,18E-01 72,20 2,09E-01 76,56
199 DHA.PA 9,31E-01 -5,99 9,31E-01 -4,42 8,59E-01 1,50
200 AA.PA 1,04E-01 28,00 6,09E-01 11,97 2,41E-01 -14,31
201 Orn/Cit 1,10E-01 31,05 8,38E-01 -0,80 1,46E-01 -32,10
202 Orn/Arg 1,34E-01 25,38 7,82E-01 8,07 6,30E-02 -16,02
203 Cit/Arg 6,85E-01 -17,97 7,05E-01 -12,25 9,48E-01 5,09
204 Glu/Gln 2,91E-01 6,21 4,42E-01 -2,87 6,66E-01 -9,26
205 Asp/Asn 1,02E-01 -30,37 6,26E-01 21,61 6,92E-02 58,55
206 Ala/Lys 5,10E-01 -7,97 5,38E-01 -4,50 2,06E-01 3,32
207 Phe/Tyr 5,62E-01 -7,44 3,12E-01 4,31 1,97E-01 12,06
208 Serotonin/Trp 3,14E-01 -110,30 1,97E-01 -71,38 9,79E-01 22,71
209 Kyn/Trp 8,00E-01 -2,32 8,81E-01 1,70 9,06E-01 4,07
210 Kyn/OHKyn 1,30E-01 17,62 2,21E-01 30,22 8,28E-01 10,71
211 Putrescine/Orn 4,32E-01 -39,18 3,45E-01 9,58 1,06E-01 52,52
212 Spermine/Spermidine 5,14E-02 -39,58 1,48E-01 -35,59 4,12E-01 2,94
213 SDMA/ADMA 3,48E-01 15,88 3,77E-01 5,59 7,98E-01 -9,74
214 Met-SO/Met 4,28E-01 -3,63 1,12E-02 20,89 2,42E-01 25,29
215 Ala/BCAA 2,60E-01 18,55 3,57E-01 10,57 6,82E-01 -7,21
216 Gly/BCAA 2,28E-01 21,97 6,82E-01 15,36 3,67E-01 -5,73
217 SumLyso 4,74E-02 -20,90 2,82E-02 -21,95 8,18E-01 -0,87
218 SumPC+Lyso 2,70E-01 -3,76 8,26E-02 -10,76 5,53E-01 -6,75
219 SumPC 4,77E-01 1,00 1,40E-01 -7,31 5,40E-01 -8,39
220 SumSM 1,50E-01 -7,55 3,73E-01 -4,99 8,18E-01 2,43
221 SumSMOH/SumSM 5,94E-01 -0,27 8,18E-01 0,16 5,92E-01 0,44
222 C16+C18/C0 9,39E-02 -29,71 4,59E-01 -3,61 2,30E-01 25,20
223 SumMUFA 2,47E-01 -2,35 1,90E-01 -5,80 7,79E-01 -3,36
224 SumPUFA 3,28E-01 -2,39 1,28E-01 -8,94 6,30E-01 -6,39
225 SumSFA 7,68E-02 -8,94 3,66E-02 -14,46 5,93E-01 -5,07
226 PUFA/SFA 2,71E-01 6,76 2,00E-01 5,69 9,72E-01 -1,01
227 PUFA/MUFA 9,54E-01 -0,89 3,17E-01 -0,83 3,70E-01 0,05
228 MUFA/SFA 1,80E-01 0,32 5,74E-02 4,47 6,54E-01 4,13
229 24SOHC 6,91E-02 -24,12 2,19E-04 -70,17 8,62E-03 -37,11
230 250HC 5,60E-02 -18,40 8,37E-04 -59,28 9,86E-02 -34,53
231 27OHC 3,32E-02 -22,36 1,61E-02 -22,72 8,30E-01 -0,29
232 24,25,EPC 3,06E-01 -37,01 2,45E-03 -92,73 9,73E-03 -40,67
233 7aOHC 7,83E-02 24,50 1,28E-01 36,14 7,20E-01 9,36
234 5B,6B,EPC 1,67E-01 14,26 2,04E-02 49,53 1,65E-01 30,87
235 5a,6a,EPC 4,59E-01 16,71 6,71E-02 31,18 1,94E-01 12,40
236 4BOHC 4,96E-02 -17,82 2,26E-02 -22,85 4,57E-0 1 -4,26
237 Desmosterol 9,73E-01 30,36 8,19E-01 18,46 7,87E-01 -10,05
238 7DHC 2,55E-01 51,11 9,03E-01 1,48 2,49E-01 -48,91
239 Cholestenone 4,96E-01 5,98 7,89E-01 29,61 6,26E-0 1 22,30
240 Lanosterol 9,61E-01 2,92 7,67E-03 -109,37 4,04E-03 -115,49
241 24DHLan 6,89E-01 -3,62 6,57E-01 -142,35 2,32E-01 -133,88



Claims

1. A method for in vitro early diagnosing asphyxia,
characterized by quantitatively detecting in at least one human blood sample three or more asphyxia specific endogenous compounds having a molecular weight of less than 1500 Dalton, except lactate, wherein the asphyxia specific endogenous compounds are selected from Tables 2 and 3
comprising the steps of:

a) selecting said compounds;

b) measuring at least one of the parameters selected from the group consisting of: concentration, level or amount of each individual metabolite of said compounds in said sample; and using and storing the obtained set of values in a database;

c) calibrating said values by comparing asphyxia-positive and/or asphyxia-negative reference parameters;

d) comparing said measured values in the sample with the calibrated values, in order to assess whether the patient is asphyxia-positive or asphyxia-negative.


 
2. Method according to claim 1, characterized in that said calibration step is carried out by

a) mathematically preprocessing said values in order to reduce technical errors being inherent to the measuring procedures used in claim 1;

b) selecting at least one suitable classifying algorithm from the group consisting of logistic regression, (diagonal) linear or quadratic discriminant analysis (LDA, QDA, DLDA, DQDA), perceptron, shrunken centroids regularized discriminant analysis (RDA), random forests (RF), neural networks (NN), Bayesian networks, hidden Markov models, support vector machines (SVM), generalized partial least squares (GPLS), partitioning around medoids (PAM), inductive logic programming (ILP), generalized additive models, gaussian processes, regularized least square regression, self organizing maps (SOM), recursive partitioning and regression trees, K-nearest neighbor classifiers (K-NN), fuzzy classifiers, bagging, boosting, and naïve Bayes; and applying said selected classifier algorithm to said preprocessed data of step a);

c) said classifier algorithms of step b) being trained on at least one training data set containing preprocessed data from subjects being divided into classes according to their asphixia-related pathophysiological, physiological, prognostic, or responder conditions , in order to select a classifier function to map said preprocessed data to said conditions;

d) applying said trained classifier algorithms of step c) to a preprocessed data set of a subject with unknown asphyxia-related pathophysiological, physiological, prognostic, or responder condition, and using the trained classifier algorithms to predict the class label of said data set in order to diagnose the asphyxia status of the subject,

wherein said step of mathematically preprocessing in step 2 a) of said raw data obtained in step 1 b) is carried out by a statistical method selected from the group consisting of:

in case of raw data obtained by optical spectroscopy (UV, visible, IR, Fluorescence): background correction and/or normalization;

in case of raw data obtained by mass spectroscopy or mass spectroscopy coupled to liquid or gas chromatography or capillary electrophoresis or by 2D gel electrophoresis, quantitative determination with ELISA or RIA or determination of concentrations/amounts by quantitation of immunoblots or quantitation of amounts of biomolecules bound to aptamers: smoothing, baseline correction, peak picking, optionally, additional further data transformation such as taking the logarithm in order to carry out a stabilization of the variances.


 
3. Method according to Claim 1 or 2, characterized in that said asphyxia is perinatal asphyxia.
 
4. Method according to Claim 2 or 3, characterized in that after preprocessing step 2 a) a further step of feature selection is inserted, in order to find a lower dimensional subset of features with the highest discriminatory power between classes; and/or
said feature selection is carried out by a filter and/or a wrapper approach; and/or
wherein said filter approach includes rankers and/or feature subset evaluation methods; and/or
wherein said wrapper approach is applied, where a classifier is used to evaluate attribute subsets.
 
5. Method according to Claims 1 to 4, characterized in that said pathophysiological condition corresponds to the label "diseased" and said physiological condition corresponds to the label "healthy" or said pathophysiological condition corresponds to different labels of "grades of a disease", "subtypes of a disease", different values of a "score for a defined disease"; said prognostic condition corresponds to a label "good", "medium", "poor", or "therapeutically responding" or "therapeutically non-responding" or "therapeutically poor responding".
 
6. Method according to Claims 1 to 5, characterized in that said metabolic data is high-throughput mass spectrometry data.
 
7. Method according to Claims 1 to 6, characterized in that said asphyxia specific endogenous compounds are asphyxia specific endogenous metabolites.
 
8. Method according to Claims 1 to 7, characterized in that said asphyxia is hypoxic ischemic encephalopathy,
wherein missing data is imputed;
wherein raw data of metabolite concentrations are preprocessed using the log transformation;
wherein linear mixed effect models are used to identify metabolites which are
differentially present;
wherein random forest is selected as suitable classifying algorithm, the training of
the classifying algorithm including preprocessed metabolite concentrations, is carried out with stratified bootstrap replications, applying said trained random forests classifier to said preprocessed metabolite concentration data set to a subject under suspicion of having hypoxic ischemic encephalopathy, and using the trained classifier to diagnose hypoxic ischemic encephalopathy.
 
9. Method according to anyone of claims 1 to 8, characterized in that the method further comprises inclusion of standard lab parameters commonly used in clinical chemistry and critical care units, in particular, blood gases, preferably arterial blood oxygen, blood pH, base status, and lactate, serum and/or plasma levels of routinely used low molecular weight biochemical compounds, enzymes, enzymatic activities, cell surface receptors and/or cell counts, in particular red and/or white cell counts, platelet counts.
 
10. Method of in vitro estimating duration of hypoxia in a patient subjected to asphyxia, characterized by quantitatively detecting in at least one human blood sample 3 or more asphyxia specific endogenous compounds having a molecular weight of less than 1500 Dalton; and calibrating preprocessed detected values by means of regression analysis with known duration of hypoxia and applying the obtained regression function to the preprocessed detected value data set of a patient under hypoxia, and using the regression function to calculate the duration of hypoxia, wherein the asphyxia specific endogenous compounds are selected from Tables 2 and 3.
 
11. Method for in vitro monitoring of hypoxic conditions, characterized by quantitatively detecting in at least one human blood sample 3 or more asphyxia specific endogenous compounds; and calibrating preprocessed detected values by means of training a linear discriminant analysis classifier with known stages of oxygenation and/or oxygen induced injuries of a human subject and applying the trained classifier to said preprocessed detected value data set of a subject under oxygen therapy and using the trained classifier to determine the stage of oxygenation and/or oxygen induced injury, wherein the asphyxia specific endogenous compounds are selected from Tables 2 and 3.
 
12. Method according to claim 11, characterized in that said hypoxic conditions include asphyxia, in particular, perinatal asphyxia.
 


Ansprüche

1. Verfahren zur frühen in vitro Diagnose von Asphyxie, gekennzeichnet durch quantitatives Detektieren von drei oder mehr Asphyxie-spezifischen Verbindungen mit einem Molekulargewicht von weniger als 1500 Dalton, ausgenommen Lactat, in mindestens einer humanen Blutprobe, wobei die Asphyxie-spezifischen endogenen Verbindungen ausgewählt sind aus den Tabellen 2 und 3,
das die Schritte umfasst:

a) Auswählen der Verbindungen;

b) Messen mindestens eines Parameters, ausgewählt aus der Gruppe bestehend aus: Konzentration, Level oder Menge eines jeden individuellen Metaboliten der Verbindungen in der Probe; und Verwenden und Speichern des erhaltenen Wertesets in einer Datenbank;

c) Kalibrieren der Werte durch Vergleichen mit Asphyxie-positiven und/oder Asphyxie-negativen Referenzparametern;

d) Vergleichen der gemessenen Werte in der Probe mit den kalibrierten Werten, um zu beurteilen, ob der Patient Asphyxie-positiv oder Asphyxienegativ ist.


 
2. Verfahren nach Anspruch 1, dadurch gekennzeichnet, dass der Kalibrierungsschritt durchgeführt wird, dass man:

a) die Werte mathematisch vorverarbeitet, um die technischen Fehler, die den in Anspruch 1 verwendeten Messverfahren anhaften, zu reduzieren;

b) mindestens einen geeigneten Klassifizierungsalgorithmus aus der Gruppe auswählt, die aus logistischer Regression, (diagonal) linearer oder quadratischer Diskriminanzanalyse (LDA, QDA, DLDA, DQDA), Perzeptron, Shrunken Centroids geregelter Diskriminazanalyse (RDA), Random Forest (RF), neuronalen Netzwerke (NN), bayesschen Netzen, Hidden-Markov-Modellen, Support Vector Machines (SVM), Generalized Partial Least Squares (GPLS), Partitioning Around Medoids (PAM), induktiver logischer Programmierung (ILP), allgemeiner additiver Modellierung, Gauß-Prozessen, regulierter Kleinst-Quadrate-Regression, selbstorganisierenden Karten (SOM), rekursives Partitionieren und Regressionsbäume, K-Nearest Neighbor Klassifikatoren (K-NN), Fuzzy Klassifikatoren, Bagging, Boosting, und na'ive Bayes besteht; und den ausgewählten Klassifizierungsalgorithmus auf die vorverarbeiteten Daten aus Schritt a) anwendet;

c) den Klassifizierungsalgorithmus aus Schritt b) an mindestens einem Trainingsdatensatz, der vorverarbeitete Daten von Subjekten umfasst, die entsprechend ihrer Asphyxie-bezogenen pathophysiologischen, physiologischen, prognostischen oder Responder-Zuständen in Klassen eingeteilt sind, trainiert, um eine Klassifizierungsfunktion auszuwählen, um die vorverarbeiteten Daten den Zuständen zuzuordnen;

d) den trainierten Klassifizierungsalgorithmus aus Schritt c) auf einen vorverarbeiteten Datensatz eines Subjekts mit unbekannten Asphyxie-bezogenen verbundenen pathophysiologischen, physiologischen, prognostischen oder Responder-Zuständen anwendet, und den trainierten Klassifizierungsalgorithmus verwendet, um das Klassenlabel des Datensatzes vorherzusagen, um den Asphyxie-Status des Subjektes zu diagnostizieren,

wobei der Schritt der mathematischen Vorverarbeitung der in Schritt 1 b) erhaltenen Rohdaten in Schritt 2a) durchgeführt wird mittels einer statistischen Methode, die aus der Gruppe ausgewählt wird, die besteht aus:

im Fall von Rohdaten, die mittels optischer Spektroskopie (UV, sichtbar, IR, Fluoreszenz) erhaltenen wurden: Hintergrundkorrektur und/oder Normalisierung;

im Fall von Rohdaten, die mittels Massenspektroskopie oder Massenspektroskopie gekoppelt an Flüssig- oder Gaschromatrographie oder Kapilarelektrophorese oder mittels 2D Gelelektrophorese, quantitativer Bestimmung mit ELISA oder RIA oder Bestimmung von Konzentrationen/Mengen durch Quantifizierung von Immunoblots oder Quantifizierung von Mengen von an Aptameren gebundenen Biomolekülen erhaltenen wurden: Glätten, Basislinienkorrektur, Peak Picking, optional zusätzlicher weiterer Datentransformation wie Logarithmieren, um eine Stabilisierung der Abweichungen durchzuführen.


 
3. Verfahren nach einem der Ansprüche 1 bis 2, dadurch gekennzeichnet, dass die Asphyxie perinatale Asphyxie ist.
 
4. Verfahren nach einem der Ansprüche 2 bis 3, dadurch gekennzeichnet, dass nach dem vorverarbeitenden Schritt 2 a) ein weiterer Schritt der Merkmalsauswahl eingefügt wird, um eine geringe Dimensionsteilmenge von Merkmalen mit der höchsten Trennschärfe zwischen den Klassen zu finden; und/oder
die Merkmalsauswahl durch einen Filter- und/oder Wrapper-Ansatz durchgeführt wird, und /oder
wobei der Filter-Ansatz Ranker und/oder Merkmalsteilmengen-Evaluationsverfahren umfasst; und/oder
wobei der Wrapper-Ansatz angewendet wird, wo ein Klassifikator verwendet wird, um die Merkmalsteilmengen zu bewerten.
 
5. Verfahren nach einem der Ansprüche 1 bis 4, dadurch gekennzeichnet, dass der pathophysiologische Zustand dem Label "krank" entspricht und der physiologische Zustand dem Label "gesund" entspricht oder der pathophysiologische Zustand verschiedenen Labeln von "Krankheitsgraden", "Subtypen von einer Krankheit", verschiedenen Werten eines "Scores einer definierten Krankheit" entspricht; der prognostische Zustand dem Label "gut", "durchschnittlich" oder "schlecht", oder "therapeutisch reagierend" oder "therapeutisch nicht reagierend" oder "therapeutisch schlecht reagierend" entspricht.
 
6. Verfahren nach einem der Ansprüche 1 bis 5, dadurch gekennzeichnet, dass die metabolischen Daten Hochdurchsatz-Massenspektrometrie-Daten sind.
 
7. Verfahren nach einem der Ansprüche 1 bis 6, dadurch gekennzeichnet, dass die Asphyxie-spezifischen endogenen Verbindungen Asphyxie-spezifische endogene Metaboliten sind.
 
8. Verfahren nach einem der Ansprüche 1 bis 7, dadurch gekennzeichnet, dass die Asphyxie hypoxische ischämische Enzephalopathie ist,
wobei fehlende Daten eingegeben werden;
wobei Rohdaten von Metabolitkonzentrationen unter Verwendung der Log-Transformation vorverarbeitet sind;
wobei lineare gemischte Wirkungsmodelle verwendet werden, um Metaboliten zu identifizieren, die unterschiedlich vorhanden sind;
wobei Random-Forest als geeigneter Klassifizierungsalgorithmus ausgewählt wird, das Trainieren des Klassifizierungsalgorithmus, der Metabolitkonzentrationen umfasst, mit stratifizierten Bootstrap-Replikationen durchgeführt wird, wobei man den trainierten Random-Forest Klassifikator auf den vorverarbeiteten Metabolit-Konzentrationsdatensatz eines Subjektes unter Verdacht auf hypoxische ischämische Enzephalopathie anwendet, und den trainierten Klassifikator benutzt, um hypoxische ischämische Enzephalopathie zu diagnostizieren.
 
9. Verfahren nach einem der Ansprüche 1 bis 8, dadurch gekennzeichnet, dass das Verfahren weiter die Einbindung von Standard-Labor-Parametern umfasst, die gewöhnlich in der klinischen Chemie und auf Intensivstationen verwendet werden, insbesondere Blutgasen, bevorzugt arteriellem Blutsauerstoff, Blut pH, Basen-Status, und Lactat, Serum und/oder Plasmalevel von routinemäßig verwendeten biochemischen Verbindungen mit geringem Molekulargewicht, Enzymen, enzymatischen Aktivitäten, Zelloberflächen-Rezeptoren und/oder Zellzahlen, insbesondere rote und/oder weiße Zellzahlen, Thrombozytenzahlen.
 
10. Verfahren zur in vitro Abschätzung der Dauer einer Hypoxie in einem Patienten, der Asphyxie leidet, dadurch gekennzeichnet, dass man drei oder mehr Asphyxie-spezifische endogene Verbindungen mit einem Molekulargewicht von weniger als 1500 Dalton in mindestens einer humanen Blutprobe quantitativ detektiert; und vorverarbeitete detektierte Werte durch Regressionsanalyse mit bekannter Dauer von Hypoxie kalibriert und die erhaltene Regressionsfunktion auf den vorverarbeiteten detektierten Werte-Datensatz eines Patienten unter Hypoxie anwendet, und die Regressionsfunktion verwendet, um die Dauer der Hypoxie zu berechnen, wobei die Asphyxie-spezifischen endogenen Verbindungen aus den Tabellen 2 und 3 ausgewählt sind.
 
11. Verfahren zum in vitro Monitoring von hypoxischen Zuständen, gekennzeichnet dadurch, dass man drei oder mehr Asphyxie-spezifische Verbindungen in mindestens einer humanen Blutprobe quantitativ detektiert; und vorverarbeitete detektierte Werte durch Trainieren eines linearen Diskriminanzanalysen-Klassifikators mit bekannten Stadien von Oxygenierung und/oder sauerstaufbedingten Schädigungen eines humanen Subjektes kalibriert und den trainierten Klassifikator auf den vorverarbeiteten detektierten Wertedatensatz eines Subjektes unter Sauerstoff-Therapie anwendet und den trainierten Klassifikator verwendet, um das Stadium einer Oxygenierung und/oder sauerstoffbedingten Schädigung zu bestimmen, wobei die Asphyxie-spezifischen endogenen Verbindungen aus den Tabellen 2 und 3 ausgewählt sind.
 
12. Verfahren nach Anspruch 11, dadurch gekennzeichnet, dass die hypoxischen Zustände Asphyxie, insbesondere perinatale Asphyxie, umfassen.
 


Revendications

1. Procédé de diagnostic précoce in vitro de l'asphyxie,
caractérisé par une détection quantitative dans au moins un échantillon de sang humain de trois composés endogènes spécifiques de l'asphyxie ou plus présentant une masse moléculaire de moins de 1 500 Da, à l'exception du lactate, dans lequel les composés endogènes spécifiques de l'asphyxie sont sélectionnés dans les tableaux 2 et 3,
comprenant les étapes suivantes :

a) sélection desdits composés ;

b) mesure d'au moins un des paramètres sélectionnés dans le groupe consistant en : la concentration, le niveau ou la quantité de chaque métabolite individuel desdits composés dans ledit échantillon ; et l'utilisation et la mémorisation de l'ensemble de valeurs obtenu dans une base de données ;

c) étalonnage desdites valeurs par comparaison de paramètres de référence positifs en termes d'asphyxie et/ou négatifs en termes d'asphyxie ;

d) comparaison desdites valeurs mesurées dans l'échantillon aux valeurs étalonnées, de manière à évaluer si le patient est positif en termes d'asphyxie ou négatif en termes d'asphyxie.


 
2. Procédé selon la revendication 1, caractérisé en ce que ladite étape d'étalonnage est effectuée par

a) prétraitement mathématique desdites valeurs de manière à réduire les erreurs techniques inhérentes aux procédures de mesure utilisées dans la revendication 1 ;

b) sélection d'au moins un algorithme de classification approprié dans le groupe consistant en une régression logistique, une analyse discriminante linéaire ou quadratique (diagonale) (LDA, QDA, DLDA, DQDA), un perceptron, une analyse discriminante régularisée de centroïdes réduits (RDA), des forêts aléatoires (RF), des réseaux de neurones (NN), des réseaux bayésiens, des modèles de Markov cachés, des machines à vecteurs de support (SVM), des moindres carrés partiels généralisés (GPLS), un partitionnement autour de médoïdes (PAM), une programmation logique inductive (ILP), des modèles additifs généralisés, des procédés gaussiens, une régression par moindres carrés régularisés, des cartes auto-adaptatives (SOM), des arbres de partitionnement récursif et de régression, des classifieurs des K plus proches voisins (K-NN), des classifieurs flous, un bagging, un boosting, et une classification naïve bayésienne ; et une application dudit algorithme classifieur sélectionné auxdites données prétraitées de l'étape a) ;

c) lesdits algorithmes classifieurs de l'étape b) étant entraînés sur au moins un ensemble de données d'apprentissage contenant des données prétraitées provenant de sujets qui sont divisés en classes selon leurs états physiopathologiques, physiologiques, de pronostic ou de réponse associés à l'asphyxie, de manière à sélectionner une fonction de classifieur pour établir une correspondance entre lesdites données prétraitées et lesdits états ;

d) application desdits algorithmes classifieurs entraînés de l'étape c) à un ensemble de données prétraitées d'un sujet à l'état physiopathologique, physiologique, de pronostic ou de réponse associé à l'asphyxie inconnu, et utilisation des algorithmes classifieurs entraînés pour prédire l'étiquette de classe dudit ensemble de données de manière à diagnostiquer l'état d'asphyxie du sujet,

dans lequel ladite étape de prétraitement mathématique de l'étape 2 a) desdites données brutes obtenues lors de l'étape 1 b) est effectuée par un procédé statistique sélectionné dans le groupe consistant en :

en cas de données brutes obtenues par spectroscopie optique (UV, visible, IR, fluorescence) : correction et/ou normalisation du bruit de fond ;

en cas de données brutes obtenues par spectrométrie de masse ou spectrométrie de masse couplée à une chromatographie en phase liquide ou gazeuse ou à une électrophorèse capillaire ou par électrophorèse sur gel 2D, détermination quantitative avec le procédé ELISA ou RIA ou détermination de concentrations/quantités par quantification d'immunotransferts ou quantification de quantités de biomolécules liées à des aptamères : lissage, correction de valeurs de base, détection de pics, optionnellement autre transformation de données supplémentaire telle que l'utilisation du logarithme de manière à réaliser une stabilisation des variances.


 
3. Procédé selon l'une quelconque des revendications 1 ou 2, caractérisé en ce que ladite asphyxie est l'asphyxie périnatale.
 
4. Procédé selon la revendication 2 ou 3, caractérisé en ce qu'après l'étape de prétraitement 2 a), une autre étape de sélection de caractéristiques est insérée, de manière à trouver un sous-ensemble dimensionnel inférieur de caractéristiques ayant le plus haut pouvoir discriminatoire entre les classes ; et/ou
ladite sélection de caractéristiques est effectuée par une approche de filtre et/ou une approche d'enveloppe ; et/ou
dans lequel ladite approche de filtre inclut des classifieurs de rang et/ou des méthodes d'évaluation de sous-ensembles de caractéristiques ; et/ou
dans lequel ladite approche d'enveloppe est appliquée, où un classifieur est utilisé pour évaluer des sous-ensembles d'attributs.
 
5. Procédé selon les revendications 1 à 4, caractérisé en ce que ledit état physiopathologique correspond à l'étiquette « malade » et ledit état physiologique correspond à l'étiquette « en bonne santé » ou bien ledit état physiopathologique correspond à différentes étiquettes de « stades d'une maladie », « sous-types d'une maladie », à différentes valeurs d'une « note pour une maladie définie » ; ledit état de pronostic correspond à une étiquette « bon », « moyen », « mauvais », ou « répond au traitement thérapeutique » ou « ne répond pas au traitement thérapeutique » ou « ne répond pas bien au traitement thérapeutique ».
 
6. Procédé selon l'une quelconque des revendications 1 à 5, caractérisé en ce que lesdites données métaboliques sont des données de spectrométrie de masse haut débit.
 
7. Procédé selon l'une quelconque des revendications 1 à 6, caractérisé en ce que lesdits composés endogènes spécifiques de l'asphyxie sont des métabolites endogènes spécifiques de l'asphyxie.
 
8. Procédé selon l'une quelconque des revendications 1 à 7, caractérisé en ce que ladite asphyxie est une encéphalopathie ischémique hypoxique,
dans lequel une donnée manquante est imputée ;
dans lequel des données brutes de concentrations de métabolites sont prétraitées en utilisant la transformation logarithmique ;
dans lequel des modèles d'effet mixte linéaires sont utilisés pour identifier des métabolites qui sont présents de manière différentielle ;
dans lequel une forêt aléatoire est sélectionnée en tant qu'algorithme de classification approprié, l'apprentissage de l'algorithme de classification incluant des concentrations de métabolites prétraitées, est réalisé avec des répliques bootstrap stratifié, en appliquant ledit classifieur à forêts aléatoires entraîné au dit ensemble de données de concentrations de métabolites prétraitées pour un sujet suspecté de présenter une encéphalopathie ischémique hypoxique, et en utilisant le classifieur entraîné pour diagnostiquer une encéphalopathie ischémique hypoxique.
 
9. Procédé selon l'une quelconque des revendications 1 à 8, caractérisé en ce que le procédé comprend en outre une inclusion de paramètres de laboratoire standard couramment utilisés en chimie clinique et en unités de réanimation, en particulier, les gaz sanguins, de préférence l'oxygène du sang artériel, le pH sanguin, un état de base, et le lactate, les niveaux sériques et/ou de plasmatiques de composés biochimiques de faible masse moléculaire utilisés régulièrement, les enzymes, les activités enzymatiques, les récepteurs de surface cellulaire et/ou les numérations cellulaires, en particulier les numération de globules rouges et/ou blancs, les numérations de plaquettes.
 
10. Procédé in vitro d'estimation de la durée d'hypoxie chez un patient sujet à l'asphyxie, caractérisé par une détection quantitative dans au moins un échantillon de sang humain de trois composés endogènes spécifiques de l'asphyxie ou plus présentant une masse moléculaire de moins de 1 500 Da ; et un étalonnage des valeurs détectées prétraitées au moyen d'une analyse de régression avec une durée connue d'hypoxie et une application de la fonction de régression obtenue à l'ensemble de données de valeurs détectées prétraitées d'un patient en hypoxie, et une utilisation de la fonction de régression pour calculer la durée d'hypoxie, dans lequel les composés endogènes spécifiques de l'asphyxie sont sélectionnés dans les tableaux 2 et 3.
 
11. Procédé de surveillance in vitro d'états hypoxiques, caractérisé par une détection quantitative dans au moins un échantillon de sang humain de trois composés endogènes spécifiques de l'asphyxie ou plus ; et un étalonnage des valeurs détectées prétraitées au moyen d'un apprentissage d'un classifieur d'analyse discriminante linéaire avec des stades connus d'oxygénation et/ou de lésions induites par l'oxygène d'un sujet humain et une application du classifieur entraîné au dit ensemble de données de valeurs détectées prétraitées d'un sujet sous oxygénothérapie et une utilisation du classifieur entraîné pour déterminer le stade d'oxygénation et/ou de lésion induite par l'oxygène, dans lequel les composés endogènes spécifiques de l'asphyxie sont sélectionnés dans les tableaux 2 et 3.
 
12. Procédé selon la revendication 11, caractérisé en ce que lesdits états hypoxiques incluent l'asphyxie, en particulier, l'asphyxie périnatale.
 




Drawing

































REFERENCES CITED IN THE DESCRIPTION



This list of references cited by the applicant is for the reader's convenience only. It does not form part of the European patent document. Even though great care has been taken in compiling the references, errors or omissions cannot be excluded and the EPO disclaims all liability in this regard.

Patent documents cited in the description




Non-patent literature cited in the description