(19)
(11)EP 2 263 600 B1

(12)EUROPEAN PATENT SPECIFICATION

(45)Mention of the grant of the patent:
11.12.2019 Bulletin 2019/50

(21)Application number: 10009793.0

(22)Date of filing:  11.11.2003
(51)International Patent Classification (IPC): 
A61C 8/00(2006.01)

(54)

Dental implant system

Dentalimplantatsystem

Système d'implant dentaire


(84)Designated Contracting States:
AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IT LI LU MC NL PT RO SE SI SK TR

(30)Priority: 13.11.2002 US 425976 P
26.02.2003 US 450541 P

(43)Date of publication of application:
22.12.2010 Bulletin 2010/51

(62)Application number of the earlier application in accordance with Art. 76 EPC:
03026016.0 / 1419746

(73)Proprietor: Biomet 3i, LLC
West Palm Beach FL 33410 (US)

(72)Inventors:
  • Porter, Stephan, S.
    Palm Beach Gardens, FL 33418 (US)
  • Rogers, Dan Paul
    North Palm Beach, FL 33408 (UA)
  • Goodman, Ralph E.
    West Palm Beach, FL 33415 (US)

(74)Representative: Epping - Hermann - Fischer 
Patentanwaltsgesellschaft mbH Postfach 20 07 34
80007 München
80007 München (DE)


(56)References cited: : 
DE-U1- 9 417 182
US-B1- 6 227 859
US-A- 5 782 918
  
      
    Note: Within nine months from the publication of the mention of the grant of the European patent, any person may give notice to the European Patent Office of opposition to the European patent granted. Notice of opposition shall be filed in a written reasoned statement. It shall not be deemed to have been filed until the opposition fee has been paid. (Art. 99(1) European Patent Convention).


    Description

    FIELD OF THE INVENTION



    [0001] This invention relates to dental implant system.

    BACKGROUND OF THE INVENTION



    [0002] Single-tooth restorations present the unique requirement that they must be supported non-rotationally on the underlying abutment. When a prepared natural tooth is the underlying abutment this requirement is met in the normal course of preparing the abutment with a non-circular cross-section. Likewise, when the underlying abutment is a post fitted onto an implant, this requirement is met by preparing the post with a noncircular cross-section. This latter scenario can be more complicated due to the added connection between the implant and the abutment.

    [0003] Typically a dental implant is implanted into the bone of a patient's jaw and comprises a socket, e.g. a bore, which is accessible through the overlying or surrounding gum tissue for receiving and supporting one or more attachments or components which in turn are useful to fabricate and to support the prosthodontic restoration. Dental implant procedures can use a variety of implanting modalities, for example, blade, threaded implant, or smooth push-in implant. The present invention is not concerned with the implant modality that is used. The invention is, however, concerned with connections between implants and attachments, as well as with other matters.

    [0004] With respect to connections used in implant systems, internal threads of the implant have been used to connect abutments having threaded stems. But rotational alignment is not easily achieved using threaded connections. Further, such a threaded bore, by itself, cannot generally provide rotational fixing. Rotationally fixing the prosthetic tooth to the abutment, and rotationally fixing the abutment to the implant, must be accomplished to ensure the prosthetic tooth is non-rotational in the mouth of the patient after the restoration process is complete. To improve the likelihood that that implant will not exhibit movement, the implant is typically allowed to undergo osseointegration prior to being subjected to normal loading.

    [0005] To overcome the non-rotational deficiency between the implant and attachments, dental implants include anti-rotational structure to restrain components attached to the implant against rotation relative to the implant around the longitudinal axis through the bore. A common structure used to restrain rotation includes a male projection or a female indentation located on or near the gingival surface of the implant which is concentric with the opening into the bore. But these designs are not free of problems.

    [0006] An inherent disadvantage of implant components is that their small size makes assembly difficult. Problems include the difficulty of properly positioning abutments in implants. The relatively small size of the components and tight working environment make it difficult to know when an abutment is properly seated in an implant. Related problems include abutments becoming loose due to the extreme forces incurred through normal chewing actions. Traditionally axial retention has been achieved with a screw threaded through the abutment and attaching to the implant. More recently, attempts have been made to eliminate the axial screw by using snap-in abutments. These snap-in abutments generally are provided with protrusions extending from the distal end of the stem of the abutment. Some of these snap-in designs are more successful than others. Practitioners have noted that some abutments used in these screw-less systems become loose due to the large forces generated through chewing. For some, the disadvantages associated with screw-less abutments outweigh any potential benefits.

    [0007] These screw-less abutments also exhibit unacceptable axial movement. This axial movement can lead to damage of the abutment or the implant as a result of mis-aligned forces and increased internal wear. The internal wear and mis-aligned forces lead to further unacceptable movement, inevitably requiring repair and replacement. In the mildest cases, the patient is inconvenienced, in the more severe cases, where the patient waits too long, infection and permanent bone and tissue damage occur. Thus, even systems that provide adequate connection must continually be improved upon to reduce patient suffering, or worse.

    [0008] The prior art has successfully addressed many problems. But not all disadvantages have been overcome. And some solutions carry their own disadvantages.

    [0009] US 5,782,918 A shows an implant which has a groove and an abutment having an enlarged portion of a stem. The combination of this abutment with the implant has the functionality of a screw anchor. The abutment has to be inserted into the implant as deep as possible and limited by the outer enlarged portion adjoining again the upper end of the implant 18. Then the practitioner will insert the screw with the result that the enlarged end portion of the stem of the abutment is bent outwardly and engage into the groove of the implant.

    [0010] US 6,227,859 B1 shows a dental implant system comprising an implant, an abutment and a screw coupling the abutment with the implant and having means for anti-rotational engagement of the abutment with the implant. The screw passes through the through bore of the abutment for axially retaining the abutment on the dental implant. Based on US 6,227,859 B1 the object of the invention is to provide a dental implant system and an abutment used in the system giving a feedback so that the practitioner can realize when the abutment is properly inserted into the dental implant. This object is solved by the features of the independent claims.

    SUMMARY OF THE INVENTION



    [0011] This invention, in particular, relates to a dental implant system as defined in the claims. This invention also relates to rotation-limiting dental connecting mechanisms of the kind employing a non-round projection engaged in a non-round bore to connect two parts endwise in a fashion that limits relative rotation between the parts around their common longitudinal axis. Some embodiments of the present invention are concerned with limiting axial movement between endwise-connected dental implant system parts. Embodiments also concern sensory feedback systems indicative of connection conditions in dental implant systems.

    [0012] An embodiment of the invention comprises a dental implant comprising a proximal end adapted to abut an abutment and an interior bore extending distally from the proximal end. As used herein, unless otherwise indicated, a distal location is closer to or deeper in the bone than a proximal location. The implant is provided with a first anti-rotation cavity in the interior bore and a second anti-rotation cavity in the interior bore. The first cavity comprises a first minor diameter and the second cavity comprises a second minor diameter no greater than the first minor diameter of the first cavity. Depending on the application, the second anti-rotation cavity is positioned distal of the first anti-rotation cavity.

    [0013] The implant may also be provided with an axial retention section distal of the first and second anti-rotation cavities. The axial retention section is adapted to mate with a device inserted into the interior bore. The axial retention section comprises, for some embodiments, a threaded section in the interior bore that is adapted to mate with an abutment screw inserted into the interior bore. In an alternate embodiment, the axial retention section comprises a recess adapted to engage a resilient lip of a device inserted into the interior bore. Another embodiment uses both an abutment screw and a resilient feature to inhibit axial movement.

    [0014] In another embodiment, the implant is provided with a first feedback feature distal of the first and second anti-rotation cavities. The feedback feature may, for example, comprise male geometry. In yet another embodiment of the implant, the interior bore comprises a feedback feature and an axial retention feature. Anti-rotational features may be provided in combination with a feedback feature and an axial retention feature.

    [0015] A dental implant system may comprise an implant, a first abutment, and a second abutment. The implant comprises a proximal end opening to a bore, a first internal anti-rotation cavity in the bore, and a second internal anti-rotation cavity in the bore, wherein the second internal anti-rotation cavity is located distal of the first anti-rotation cavity.

    [0016] The first abutment comprises a stem adapted to fit in the bore of the implant. The stem comprises a first non-locking portion adapted to be located in the first internal anti-rotation cavity without rotationally-lockingly engaging the first internal-rotation cavity. The stem further comprises a locking portion distal of the non-locking portion. The locking portion is adapted to rotationally-lockingly engage the second anti-rotation cavity.

    [0017] By contrast, the second abutment comprises a stem having a locking portion adapted to rotationally-lockingly engage the first anti-rotation cavity. The stem of the second abutment further comprises a non-locking portion distal of the locking portion. The non-locking portion of the second abutment is adapted to be positioned in the second anti-rotation cavity without rotationally-lockingly engaging the first anti-rotation cavity.

    [0018] An abutment cross-section need not, however, have the same configuration as that of an implant cross-section for the implant and the abutment to be rotationally locked. For example, a 12-point hexagonal configuration can lock with a 6-point hexagonal configuration. The two cross-sections should, however, be adapted to be engaged such that relative rotation is relatively small, and preferably, substantially eliminated.

    [0019] The system may comprise one or both of the abutments. Further, at least one of the abutments is an angled abutment. The angled abutment comprises a locking section adapted to interface with at least one of the two or more anti-rotation cavities. Preferably, the abutment is adapted to be rotatable in increments of 30° prior to fixedly engaging it with the implant. That is, the abutment is adapted for 30° indexing. One embodiment of anti-rotational cavity adapted to provide 30° increment rotation comprises a twelve-pointed polygonal socket.

    [0020] Another system may comprise an implant having a first internal anti-rotation feature and a driving tool adapted to engage the implant through the first internal anti-rotation feature. The system may also comprise an abutment adapted to engage the implant through a second internal anti-rotation feature of the implant.

    [0021] An alternate implant system of the invention comprises an implant comprising an interior bore and a feedback feature in the interior bore. A threaded section is positioned distal of the feedback feature. The system further comprises an abutment adapted to be attached to the implant.

    [0022] The abutment comprises a post and a stem extending from the post. The stem is adapted to fit in the interior bore. The stem comprises a complementary feedback feature adapted to cooperate with the implant feedback feature and provide feedback to a practitioner indicating when the abutment is properly seated. The complementary feedback feature may, for example, comprise male geometry. The feedback provided to the practitioner may, for example, comprise tactile or audible output or both tactile and audible output, such as when a resilient member snaps back to its non-deformed shape or position. The feedback system may alternatively, or in combination with tactile and audible output, provide a visual indication concerning a seating condition of an abutment of coping structure.

    [0023] An abutment screw is adapted to fit within a through-bore extending through the post and stem of the abutment and retain to the abutment in the implant. The abutment screw comprises a proximal end (e.g., the screw head) adapted to interface with the abutment and a distal end adapted to engage the threaded section of the implant. More generally, the implant may be provided with an internal axial-retention section adapted to engage an abutment retention shaft. The axial retention shaft engages an internal axial retention feature of the implant to limit axial movement of the abutment relative to the implant.

    [0024] The invention, although directed toward individual components, such as the implant, the abutment, the axial-retention shaft, and to systems comprising combinations thereof, other aspects and advantages of the present invention will be apparent to one or ordinary skill in the art from review of applicant's teachings.

    BRIEF DESCRIPTION OF THE DRAWINGS



    [0025] 

    Figs. 1A and 1B show a perspective view and top view of an implant comprising two internal anti-rotation cavities and an angled abutment positioned for insertion into the implant.

    Fig. 2 shows a cut-away sectional view of the implant and abutment shown in Fig. 1, but with the abutment seated in the implant. An abutment screw extends beyond the abutment stem and threadably engages the implant.

    Fig. 3 shows a side elevation view of the angled abutment shown in Figs. 1 and 2 and more clearly illustrates a locking portion and a non-locking portion of a stem of the abutment.

    Figs. 4A and 4B show side elevation and cross-sectional views of a straight abutment comprising a stem having a locking portion and a non-locking portion, where the portions are in reverse order as compared to those of the angled abutment shown in Fig. 3.

    Fig. 5 shows a partial side elevation view with part of the implant cut away to show the straight abutment illustrated in Fig. 4 seated in the implant and axially secured with an abutment screw.

    Fig. 6 illustrates an alternative embodiment of an implant.

    Fig. 7 illustrates an alternative embodiment of a straight abutment adapted to mate with the implant illustrated in Fig. 6.

    Fig. 8 illustrates an alternative angled abutment adapted to mate with the implant illustrated in Fig. 6.

    Fig. 9 illustrates driving tools for driving the implant into the bone of the patient.

    Figs. 10A-10D illustrate an impression coping transfer cylinder adapted to engage an implant, such as for example the implant illustrated in Figs. 1A and 1B.

    Figs. 11A-11B illustrate an impression coping transfer screw suitable for use with the impression coping transfer cylinder illustrated in Figs. 10A-10D.

    Figs. 12A-12B illustrate a pick-up screw suitable for use with the impression coping transfer cylinder illustrated in Figs. 10A-10D.


    DETAILED DESCRIPTION OF THE ILLUSTRATED EMBODIMENT



    [0026] Figs. 1 and 2 illustrate an implant 10 adapted to be screwed into the bone of a patient and an abutment 40 adapted to be connected to the implant 10. The implant 10 comprises a proximal end 12 including a table 14 adapted to abut the abutment 40. The implant 10 comprises a distal end 16 opposite the proximal end 12 and at least one thread 18 disposed therebetween for screwing the implant 10 into the bone of a patient. An interior bore 20 extends distally from the proximal end 12 toward the distal end 16. The interior bore 20 comprises a first anti-rotation cavity 22 and a second anti-rotation cavity 24 distal of the first anti-rotation cavity 22.

    [0027] In Fig. 1, the two cavities 22 and 24 are separate, distinct and slightly spaced apart; they connected with a tapered section. But other arrangements are equally suitable, such as for example, where the cavities are adjacent and step-wise connected, or spaced apart and connected by one or more cavities.

    [0028] Focusing on Fig. 1B, an end view of the implant 10 is shown. In the embodiment illustrated in Fig. 1B, the first anti-rotation cavity of implant 10 comprises a hexagonal 26 socket. The hexagonal socket 26 comprises a plurality of obtuse interior angles. By contrast, the second anti-rotation cavity 24 comprises a twelve-pointed polygonal socket 28 including a plurality of obtuse interior angles. The hexagonal socket 26 comprises a minor diameter 30 and the twelve-pointed polygonal socket 28 comprises a minor diameter 32. The minor diameter 32 is less than the minor diameter 30 of the hexagonal socket 26. And the major diameter of hexagonal socket 26 is larger than minor diameter 32 of the twelve-pointed polygonal socket 28. In one embodiment, the minor diameter 30 is approximately 0.11 inch (0,3cm) and the minor diameter 32 is approximately 0.09 inch (0,2cm). For some embodiments, the difference between the major and minor diameters is in the range of 0.0005 (0,0013cm) and .1 inch (0,25cm). As used herein, the term minor diameter refers to the diameter of the largest cylinder sized to fit within a polygonal cavity, whereas the term major diameter is the diameter of a cylinder contacting the external points at corners of such a cavity.

    [0029] For some applications, at least one of the anti-rotation cavities 22 and 24 is adapted to mate with a conventional driving tool, for example, a tool with a working end comprising a square, a pentagon, a hexagon, an octagon, etc. Preferably, at least the other cavity is adapted to mate with an abutment stem having a predetermined shape. Some tools are described in Fig. 9.

    [0030] In one conventional implant system, an implant comprises an external hexagon, i.e., a hexagonal projection, for engaging a driving tool. The driving tool applies relatively significant amounts of torque to the external hexagonal projection to screw the implant into the patient's bone. After the implant is screwed into place, and healing has occurred, an abutment is mated with the external hexagonal projection and seated on the implant. Unfortunately, the significant amount of torque applied to the hexagonal projection often mars and distorts the hexagonal configuration. This distortion can, in some applications, result in play, or wiggle-room, between the implant and the abutment.

    [0031] To overcome this distortion-related problem, the implant 10 has been provided with the first and second anti-rotation cavities 22 and 24. The implant 10 may, for example, be driven with a driving tool through the first anti-rotation cavity 22. The abutment 40 can then be mated with the second anti-rotation cavity 24, which has not been subjected to driving torques as was the first anti-rotation cavity 22. The second anti-rotation cavity 24 is in pristine condition; enabling a tight fit to occur between the abutment 40 and the implant 10. An advantage of internal anti-rotation cavities, over external projections, is that the cavity can generally be longer (deeper) than would be possible with an external feature. The longer length provides greater surface area for engaging a driving tool. Thus, there is a smaller chance of damaging the implant during installation.

    [0032] The cavities illustrated in Fig. 1B are generally straight and comprise perimeters generally parallel with a longitudinal axis. Other shapes, such as frusto-conical, are appropriate for different applications. For such shapes, analogues of the terms major and minor diameter are applicable.

    [0033] Turning to Fig. 2, which illustrates a partial sectional view, the abutment 40 is shown abutting, i.e., seated on, the implant 10. The interior bore 20 of the implant 10 comprises a feedback feature 34 for interfacing with the abutment 40 and providing feedback to a practitioner indicating when the abutment 40 is properly seated within the implant. The feedback feature 34 may, for example, comprise male geometry. Distal of the implant feedback feature 34 is an axial-retention feature 36 embodied in the form of a plurality of threads. An abutment screw 70 extends through the abutment 40 and interfaces with the threads of the axial-retention feature 36 to limit axial movement of the abutment.

    [0034] Referring to Figs. 1 and 2, the abutment 40 comprises a post 42 and a stem 44 extending in a relative downward direction from the post 42. The stem 44 comprises a non-locking portion 46 adapted to be positioned in the first anti-rotation cavity 22 when the abutment 40 is seated in the implant 10. The stem 44 further comprises a locking portion 48 adapted to be positioned in the second anti-rotation cavity 24 when the abutment 40 is positioned in the implant 10. The locking portion 48 is adapted to rotationally-lockingly engage the second anti-rotation cavity 24, wherein the abutment 40 is prevented from rotating relative to the implant 10.

    [0035] For some applications, it is desirable to be able to increment the angled abutment 40 in steps to achieve the proper functional and cosmetic alignment of a prosthetic ultimately affixed to the post 42, i.e., the abutment may be indexed. Accordingly, the locking portion 48 and the second anti-rotation cavity 24 are adapted to provide a predetermined minimum rotational increment; the illustrated embodiment has a minimum rotational increment of 30° due to the 12-point shape. Once the abutment 40 is rotationally aligned, the practitioner can apply pressure to seat the abutment 40, while being sensitive to feedback indicative of the abutment's seating status.

    [0036] The polygonal shape is not required to have actual points. Other forms of interface, for example, indentations and projections, are suitable to limit rotation between the implant 10 and the abutment 40. Furthermore, shapes other than polygons are suitable for limiting rotation between the components. The actual rotational increment size will depend, at least in part, on the anti-rotation feature in the second cavity 24 and the shape of the locking portion 48.

    [0037] Turning briefly to Fig. 3, to rotationally lock the locking portion 48 to the implant 10, the locking portion 48 comprises a major diameter 50 greater than the minor diameter 32 of the second anti-rotation cavity 24. The major diameter 50 is greater than the minor diameter 32 so the projections and indentations engage to limit, or eliminate, rotation between the implant 10 and the abutment 40. In contrast, the non-locking portion 46 comprises a major diameter 52 smaller than or approximately equal to the minor diameter 30 of the first anti-rotation cavity 22. Thus, the non-locking portion 46 of the abutment 40 does not rotationally engage the implant 10.

    [0038] Returning to Fig. 2, the abutment 40 comprises a feedback feature 54 adapted to engage the implant 10 as the abutment 40 is being seated and to provide an indication to the practitioner when the abutment 40 is properly seated. The feedback features 34 (of the implant 10) and 54 (of the abutment 40) may collectively comprise one or more resilient members adapted to deform during the seating process and reform when the abutment is properly seated. With reference to Figs. 1 and 3, the feedback feature 54 of the abutment 40 comprises a plurality of resilient fingers 56 located at the distal end of the stem 44.

    [0039] The feedback system may be a system adapted to provide only tactile feedback, or only audible feedback or both tactile and audible feedback. A system is considered to provide feedback when the sensory output is a sufficient level to be sensed by a practitioner without the practitioner taking extraordinary steps to receive the feedback. Generally, use of tactile feedback and audible feedback, alone or in combination, is desirable in many applications due to the relative simplicity of such systems and the advantages of such systems over current verification practices.

    [0040] Verification techniques involve additional steps, typically taken immediately after the practitioner performs the abutment-seating steps, that often use additional equipment. Current verification practices typically involve the use of radiographic equipment, e.g., an X-ray. Use of radiographic equipment is both relatively costly and time consuming. The practitioner must adjust the equipment to take a proper image, and typically step out of the room to snap the image. The patient is also exposed to another dose of radiation. Such verification systems are both costly and time-consuming. In contrast, a feedback system does not have the attendant costs and delays of verification systems. The feedback system of the present invention operates, in a practical sense, contemporaneous with the seating process. A verification process involves identifiable steps separate from those required to seat an abutment.

    [0041] In some embodiments, the abutment 40 is adapted to be axially restrained in the bore 20 without additional components, in essence, the abutment 40 is autonomously axially-restrained when seated. The stem 44 of the abutment 40 comprises axial retention features adapted to interface with axial retention features in the abutment interior bore 20. In the illustrated embodiment, the implant feedback feature 34 and the abutment feature 54 also have retention capability. The axial retention feature 54 comprises the plurality of fingers 56, that are adapted to provide both feedback and retention capabilities.

    [0042] Other structures are suitable for providing one or both axial retention and feedback capabilities. In some embodiments, including some comprising resilient members providing both retention and feedback, an additional axial retention structure is required, or at least desirable. Such additional axial retention structure may be integral with one or both of the abutment 40 and the implant 10. Alternatively, the structure may be separate but coupled to and relatively fixed with respect to one of either the abutment or the implant. Furthermore, separate additional axial retention structures need not be relatively fixed to either one of the abutment or the implant. For example, the separate additional retention structure may also be provided as an abutment retention shaft that interfaces with one or both the abutment 40 and the implant 10, yet is separable from both. One example of an abutment retention shaft is the abutment screw 70 illustrated in Fig. 2.

    [0043] In Fig. 2, a through-bore 60 extends through the post 42 and the stem 44 to allow the abutment screw 70 to be inserted therein. The through-bore 60 comprises a first diameter 62, and a second diameter 64 distal of the first diameter 62 and smaller than the first diameter 62. The abutment screw 70 is inserted into the through-bore 60 to threadably engage the threads 36 of the implant 10.

    [0044] In Fig. 2, the abutment screw 70 comprises a screw head 72 adapted to couple with a driving tool, for example, an Allen wrench. Other abutment screw head driving structure, e.g., a square driver, a flat head screwdriver, a Phillips screwdriver, will be suitable. A shank 74 extends distally from the head 72 to a distal threaded end 76. The head 72 comprises a first diameter, and the shank 74 comprises a second diameter smaller than the head diameter. The head diameter is preferably larger than the through-bore 60 second diameter 64 to prevent the abutment from moving axially past the screw head 72. Thus, after abutment screw 70 threadably engages implant 10, the screw 70 acts to retain the abutment 40 in the implant 10.

    [0045] The system may also comprise a straight abutment 90, as for example illustrated in Fig. 4, which is compatible with the implant 10. The straight abutment 90 comprises a post 92, and a stem 94. The stem 94 comprises a non-locking portion 96 and a locking portion 98. In contrast to the angled abutment 40, the non-locking portion 96 is distal of the locking portion 98.

    [0046] Fig. 5 is a side elevation view showing the straight abutment 90 seated in the implant 10. Part of the implant 10 is cut away to better illustrate the straight abutment 90 and part of the abutment screw 70, which acts to limit axial movement of the abutment. The locking portion 98 is adapted to rotationally-lockingly engage the first anti-rotation cavity 22 when the abutment 90 is positioned in the implant 10. The non-locking portion 96 does not so engage the second anti-rotation cavity 24.

    [0047] To avoid rotational lock between the implant 10 and the second cavity 24, the non-locking portion 96 has a major diameter 100 (FIG. 4) no larger than the minor diameter 32 of the second anti-rotation cavity 24. To provide rotational engagement between the stem 94 and the implant 10, the locking portion 98 has a major diameter 102 (FIG. 4) that is larger than the minimum diameter 30 of the first anti-rotation cavity 22. Thus, in embodiments illustrated in Figs. 1-5, the angled abutment 40 rotationally engages the implant 10 through the second anti-rotation cavity 24, whereas the straight abutment 90 rotationally engages the implant 10 through the first anti-rotation cavity 22.

    [0048] The first anti-rotation cavity 22 may comprise a configuration including interior acute angles while the second anti-rotation cavity 24 comprises a configuration including interior obtuse angles. Furthermore, both cavities may be provided with the same type of configuration, but of differing diameters. Additionally, the straight abutment 90 may be adapted to engage the implant 10 through the second anti-rotation cavity 24, whereas the angled abutment 90 is adapted to engage the implant 10 through the first anti-rotation cavity 22.

    [0049] To facilitate compatibility among components, a system may comprise an implant having one internal anti-rotation feature for engaging both straight and angled abutments and another internal anti-rotation feature for engaging a driving tool. The one internal anti-rotation feature may be adapted to engage the driving tool as well as the abutments. Similarly, the other anti-rotation feature may be adapted to engage multiple abutment stem types as well as the driving tool. And although the invention is primarily described with respect to implants having two internal features, principles of the invention are not so limited. An implant may be provided with a single internal anti-rotation feature, with a single external anti-rotation feature, with two or more internal features, or two or more external features, or various combinations.

    [0050] Turning to Fig. 6, Fig. 6A illustrates a side view of an implant 10'. Fig. 6B is a section view taken along such line 6B-6B of the implant 10' in Fig. 6A. Fig. 6C is an end view looking down the bore of the implant 10' Implant 10' is generally similar to implant 10, except that the interior bore 20 of implant 10' comprises a recess 110 adapted to retain a toroidal flexible member, such as a toroidal spring, that may interface with an abutment as the abutment is seated. The toroidal flexible member provides feedback to the practitioner indicating when the abutment is properly seated. The toroidal flexible member may, for example, comprise male geometry as for example a round tube formed into a toroid. Fig. 6D illustrates a straight abutment 90' seated in implant 10'.

    [0051] Figs. 7 and 8 illustrate abutments adapted to interface with implant 10' shown in Fig. 6. Fig. 7A is a side elevation view of a straight abutment 90'; Fig. 7B is a section view along section line 7B-7B of Fig. 7A. Fig. 8A is a side elevation view of an angled abutment 40'; Fig. 8B is a section view along section line 8B-8B of Fig. 8A. The stems of both the straight abutment 90' and the angled abutment 40' comprise a complementary recess 112. The recess 112 is positioned to be adjacent the recess 110 in the interior bore 20 of the implant 10' when the abutment is seated. The recess 110 and complementary recess 112 define an area in which a toroidal ring would rest when the abutment is seated.

    [0052] With reference to Figs. 6B and 6D, the implant 10' includes a second groove 114 for providing feedback. The second groove 114 is also useful in the implant 10 of FIGS. 1-5. The second groove 114 is useful for retaining a driving tool or other component, as for example an impression coping, in operable contact with implant 10'. In one embodiment of the embodiment illustrated in Fig. 6, the implant 10' has length L, that for some applications is approximately between 0.3 inch (0,8cm) and 0.9 inch (2,3cm) The first and second anti-rotation cavities 26 and 28 extend into the bore a combined depth of approximately 0.1 (0,25cm) to .2 inch (0,5cm) A finger passage 115 extends to a depth of approximately 0.1 (0,25cm) to .3 inch (0,76cm). The second groove 114 has a mid-line positioned approximately 0.01 (0,03cm) to .2 inch (0,5cm) from the table 14. The recess 110, beginning at a depth of approximately 0.1 (0,25cm) to .3 inch (0,76cm), has a width of approximately 0.01 (0,03cm) to .2 inch (0,5cm). These dimensions are illustrative and suitable for particular applications, but are not the only suitable dimensions for a dental implant in accordance with applicant's teachings. A toroidal spring 116 is positioned in the area defined by the recess 110 and the complementary recess 112. The toroidal spring 116 acts against the resilient member 54 to apply a retention force to the straight abutment 90'.

    [0053] With reference to Figs. 6B, 6D 6E, 7A and 7B, to reduce stress the implant 10' comprises a counter bore 120 to receive a base 122 of abutment 90'. In Fig. 6E, part of the abutment 90' is removed to aid illustration. The base 122 is positioned between a margin 124 and the locking portion 98 that mates with the first anti-rotation cavity 26. Counter bore 120 has a diameter of approximately 0.10 (0,25cm) to .15 inch (0,38cm) and a depth of approximately 0.01 inch (0,03cm). To reduce point stresses, the counter bore 120 comprises a chamfer 126 and a fillet 128 with dimensions approximately 0.001 (0,03cm) to 0.01 inch (0,03cm). The base 122 comprises a chamfer 130 corresponding to fillet 128. The chamfers 130 and 126 together facilitate placing abutment 90' into implant 10'.

    [0054] Fig. 9A is a perspective view of one type of a driving tool 200 adapted to mate with the second anti-rotation cavity 28 of implant 10' or implant 10. The driving tool 200 comprises a first end 202 comprising a 12-pointed polygonal male geometry 204 adapted to mate with the second anti-rotation cavity 28. An opposing end 206 comprises a handle 208 to facilitate gripping the driving tool 200.

    [0055] Fig. 9B illustrates another type of driving tool 220 adapted to mate with the first anti-rotation cavity 26 of the implant 10' or implant 10. The driving tool 220 comprises a first end 222, on a working end, that is adapted to fit within the bore 20 of the implant 10'. The first end comprises a resilient ring, such as an O-ring 224, that couples with the second recess 114 of the implant 10' to help retain the driving tool 220 in proper engagement with the implant 10'. The working end 222 of the driving tool 220 comprises a hexagonal male geometry driving portion 226 adapted to mate with the anti-rotation cavity 26. The diameter distal of O-ring 224 is sized to fit within the second anti-rotation cavity 28. The working end 222 includes a stop 228 that abuts against table 14 of the implant 10' when the driving tool 220 is properly seated. The O-ring 224 and stop 228 cooperate to reduce, and preferably eliminate, unwanted axially motion of the drive tool 220 relative to the implant 10'. The O-ring 224 may be adapted to provide tactile or audible, or both tactile and audible, feedback indicative of a seating condition of the driving tool. The stop 228 provides at least a visual feedback.

    [0056] An alignment portion 230 of the working end 222 comprises a hexagonal shape aligned with the hexagonal driving portion 226. The alignment portion 230 facilitates aligning the driving portion 226 with the first anti-rotation cavity 26 while the driving tool 220 is being coupled with the implant 10'. After the tool 220 is mated with the implant 10', the alignment portion 230 provides a visual indication as to how the implant 10' anti-rotation cavity 26 is aligned in the mouth of the patient, e.g., the rotational alignment of the implant 10'. The illustrated alignment portion 226 comprises male alignment geometry in the form of the hexagonal shape. Alternative to, or in combination with, the male alignment geometry, the working end 230 may be provided with visual alignment indicia, such as lines running along the length of the working end 230.

    [0057] The driving tool 220 may be provided with a handle 232 to facilitate gripping the driving tool 220. But the handle 232 is not required as the alignment portion 230 may comprise sufficient structure to aid gripping the driving tool 220.

    [0058] Fig. 9C illustrates a driving tool 240 that is similar to driving tool 220 illustrated in Fig. 9B. The driving tool 240 comprises a hexagonal driving portion 226' and a stop 228' and interface structure 224' that facilitates interfacing the driving tool 240 with the bore of an implant. And the driving tool 240 comprises an iso-latch 242 that is to couple the driving too 240 to a power driving mechanism.

    [0059] Fig. 10A illustrates a side elevation view of a transfer impression coping cylinder 300. The impression coping comprises an impression end 310 for interfacing with impression material, and an implant interface end 320 for interfacing with an implant. The implant interface end 320 comprises and anti-rotation section 322, e.g., a hexagonal extension, and resilient interface 324 to temporarily hold the transfer cylinder 300 in an implant until a screw secures the cylinder to the implant. Fig. 10B illustrates an end view of the transfer cylinder 300 showing the implant interface end 320. Fig. 10C illustrates an end view of the impression end 310. Fig. 10D illustrates a section view taken along section line 10D-10D of Fig. 10B. The cylinder 300 includes a through-bore 330 with a reduced cross-section portion 332.

    [0060] Fig. 11A illustrates an impression coping transfer screw 350 suitable for use with the transfer cylinder 300. The transfer screw 350 comprises a shaft 352 that is sized to extend through the through-bore 330 of the transfer cylinder 330 and connect to the implant via threads 360. Fig. 11B is an end view of the transfer screw 350.

    [0061] Fig. 12A illustrates a twist lock pickup impression screw 380 suitable for use with the transfer cylinder 300. The transfer screw 380 comprises a shaft 382 that is sized to extend through the through-bore 330 of the transfer cylinder 330 and connect to the implant via threads 390. Fig. 12B is an end view of the transfer screw 380.

    [0062] The impression coping components illustrated in Figs. 10-12 are described in further detail in U.S. Patent 5,685,715, which is incorporated herein by reference in its entirety. Such an impression coping can be pre-packaged and delivered to the clinician with the implant such that the coping serves as a mount that receives torque for installing the implant into the bone of the patient. Consequently, the present invention contemplates using one of the anti-rotational features of the implant for engaging the mount, rather than, for example, one of the driving tools shown in Fig. 9, and another anti-rotational feature for engaging an abutment or coping if the coping is not used as a mount.

    [0063] One method of improving connectivity includes coupling an abutment to an implant positioned in a patient; and sensing a tactile feedback associated with seating the abutment. Subsequent to sensing the tactile feedback, the implant is engaged with retention structure to resist axial movement of the abutment relative to the implant. The retention structure may be rotated while engaging a thread and allowed to move deeper into the implant as the retention structure is rotated.

    [0064] The retention structure may be engaged with the implant to limit axial movement of the abutment relative to the implant, but allow some movement of the abutment when a dislodging force is applied to the abutment. For example, the retention structure may threadably engage the implant, but prior to fully screwing the structure down, the abutment can be unseated if a sufficient force is applied. In this manner, a practitioner, e.g., a dentist, can apply a test force insufficient to dislodge the abutment but sufficient to verify the abutment has not become loose. This avoids problems associated with applying forces, through the retention structure, to an abutment that has become mis-aligned subsequent to having been seated.

    [0065] To reduce unwanted rotation between an implant and an abutment, a torque is applied to a first internal anti-rotation feature of the implant to insert the implant deeper into a bone. Subsequent to applying the torque to the first internal anti-rotation feature, an abutment is engaged with a second internal anti-rotation feature of the implant. Such a process allows the abutment to engage a pristine feature, one not damaged while inserting the implant into the patient.

    [0066] Another advantage of using an implant that has two internal anti-rotation features is that a suitable abutment can be selected from a plurality of abutments, and the selection can be based, at least in part, upon prevailing conditions in the patient's mouth. Generally, this use of an implant having two or more anti-rotation features results in a wider assortment of abutments that can be mated to the implant than can be mated to an implant comprising only one anti-rotation feature. While each abutment type is theoretically available with any stem type, a suitable abutment is not as readily available as a practitioner would like. A suitable abutment has a stem that in fact can be mated to the osseointegrated implant and is suitable for other prevailing conditions in the patient's mouth. To reduce problems associated with not having a suitable abutment, a practitioner installs an implant comprising two internal anti-rotation features. The practitioner can then be fairly confident that when it comes time to attach an abutment, a suitable abutment having a stem adapted to engage at least one of the features will be available.

    [0067] A dental implant may comprise a proximal end adapted to abut an abutment. The implant has an interior bore extending distally from the proximal end. The implant also has a first anti-rotation cavity in the interior bore that comprises a first minor diameter, and a second anti-rotation cavity in the interior bore that comprises a second minor diameter no greater than the first minor diameter.

    [0068] A dental implant may comprise a proximal end and an interior bore extending distally from the proximal end. The implant includes a first anti-rotational feature in the interior bore and a second anti-rotational feature in the interior bore. The second anti-rotation feature is positioned distal of the first anti-rotational feature to provide rotational resistance independent of the first anti-rotational feature.

    [0069] A dental implant may be for mating with an abutment. The implant comprises a table adapted to abut the abutment. The implant has a first anti-rotational feature adjacent to the table, and a second anti-rotational feature adjacent to the first anti-rotational feature and located further from the table than the first anti-rotational feature. One of the first and second anti-rotational features engages a non-rotational feature of the abutment.

    [0070] A dental implant system may comprise an implant, a first abutment, and a second abutment. The implant includes a proximal end opening to a bore, a first internal anti-rotation feature in the bore, and a second internal anti-rotation feature in the bore distal of the first anti-rotational feature. The first abutment comprises a stem adapted to fit in the bore of the implant. The first abutment's stem comprises a non-locking portion adapted to be located in the first internal anti-rotation feature without rotationally-lockingly engaging the first internal anti-rotation feature, and a locking portion distal of the non-locking portion and adapted to rotationally-lockingly engage the second anti-rotation feature. The second abutment also comprises a stem adapted to fit in the bore of the implant. The second abutment's stem comprises a locking portion adapted to rotationally-lockingly engage the first anti-rotation feature of the implant.

    [0071] A dental implant system may comprise an implant and an abutment. The implant comprises an interior bore, a first internal anti-rotation section, and a second internal anti-rotation section. The abutment comprises a stem adapted to fit in the bore. The stem includes a first section adapted to be positioned in the first internal anti-rotation section of the implant, and a second section adapted to be positioned in the second internal anti-rotation section of the implant. Only one of either the first section of the stem or the second section of the stem rotationally-lockingly engages the implant when the abutment is seated.

    [0072] A dental implant system may comprise an implant and an abutment. The implant comprises an interior bore, a first internal anti-rotation section, and a second internal anti-rotation section distal of the first internal anti-rotation section. The abutment has a stem adapted to fit in the bore. The stem has a first section adapted to be positioned in the first internal anti-rotation section of the implant, and a second section distinct from the first section of the abutment adapted to be positioned in the second internal anti-rotation section of the implant. One or more of the first and second sections of the stem rotationally-lockingly engages the implant when the abutment is seated.

    [0073] In an embodiment, the present invention is a dental implant system comprising an implant, an abutment, and an abutment screw. The implant comprises an interior bore, an implant feedback feature in the interior bore, and a threaded section distal of the feedback feature. The abutment is adapted to be attached to the implant and comprises a post and a stem extending from the post for fitting in the interior bore. The stem comprises a complimentary feedback feature adapted to cooperate with the implant feedback feature and provide feedback to a practitioner indicating when the abutment is properly seated. The abutment also has a through-bore passing through the post and the stem. The abutment screw fits within the through-bore and axially retains the abutment on the implant. The abutment screw comprises a screw head adapted to interface with the abutment, and a distal end comprising threads adapted to engage the threaded section of the implant.

    [0074] A dental implant system may comprise an implant, an abutment, and an abutment retention shaft. The implant comprises an internal implant feedback feature, and an internal axial-retention section distal of the internal feedback feature. The abutment is mated to the implant and comprises a post extending beyond the implant and a stem extending in a direction downward from the post. The stem fits in the implant and comprises a feedback feature adapted to interface with the implant internal feedback feature to provide a practitioner with an indication of when the abutment is properly seated in the implant. The abutment has a through-bore extending through the post and the stem, and the stem comprises a first diameter and a second diameter larger than the first diameter. The first diameter is closer to the internal axial-retention section of the implant than the second diameter when the abutment is seated in the implant. The abutment retention shaft is adapted to fit in the through-bore and comprises a first effective diameter larger than the first diameter of the through-bore. The abutment retention shaft has a shank extending through the through-bore. The shank comprises a complimentary axial-retention section adapted to couple with the internal axial-retention section of the implant. The shaft limits axial movement of the abutment when the shaft is positioned in the through-bore and effectively coupled to the internal axial-retention section of the implant.

    [0075] An embodiment of the present invention relates to an implant comprising and an internal feedback feature and an internal axial-retention section. The internal feedback feature interfaces with an abutment for providing to a practitioner feedback indicating when the abutment is properly seated. The internal axial-retention section is located distal of the internal feedback feature and is coupled with an abutment retention shaft extending through the abutment to limit axial movement of the abutment relative to the implant.

    [0076] An embodiment of the present invention relates to an abutment with a post, a stem, and a through-bore. The post supports a prosthetic tooth. The stem extends downwardly from the post, and fits in an interior bore of an implant. The stem comprises a feedback feature adapted to interface with the implant to provide a practitioner with an indication of when the abutment is properly seated in the implant. The through-bore extends through the stem and the post and receives an axial-retentive shaft for limiting axial movement of the abutment.

    [0077] In another embodiment, a dental implant is for installation in bone and comprises an exterior surface for contacting the bone. The implant has an upper portion for engaging an abutment adapted for receiving a prosthesis. Further, the implant has an internal bore having two distinct internal anti-rotational features. One of the two internal anti-rotational features engages a driving tool during the installation and the other of the two internal anti-rotational features engages the abutment for resisting rotation of the abutment relative to the implant.

    [0078] In a further embodiment, a dental implant is for installation in bone and comprises an exterior surface for contacting the bone. The dental implant has an internal bore having two distinct internal anti-rotational features. One of the two internal anti-rotational features engages a first abutment to resist rotation of the first abutment relative to the implant. The other of the two internal anti-rotational features engages a second abutment for resisting rotation of the second abutment relative to the implant, the first abutment being a type of abutment that is different from the second abutment.

    [0079] The present invention is also a dental implant system comprising a dental implant, an abutment, and a screw. The dental implant has an exterior surface for contacting bone, and an internal bore with a threaded section and an enlarged groove. The abutment has a stem fitting within the internal bore and a through-bore. The stem includes a resilient section that expands outwardly into the enlarged groove in response to the abutment being properly mated to the implant. The screw passes through the through-bore of the abutment and threadably engages the threaded section of the internal bore of the implant. The screw axially retains the abutment on the dental implant.

    [0080] Embodiments of the present invention also relate to novel methods. One such method comprises, coupling an abutment to an implant positioned in a patient and sensing a tactile feedback associated with seating the abutment. Subsequent to sensing the tactile feedback, the method includes engaging a threaded bore within the implant with an axial retention screw to limit axial movement of the abutment relative to the implant.

    [0081] Another method includes applying a torque to a first internal anti-rotation feature of an implant to insert the implant deeper into a bone. And, subsequent to applying the torque to the first internal anti-rotation feature, engaging an abutment with a second internal anti-rotation feature of the implant.

    [0082] A further novel method includes installing an implant comprising two internal anti-rotation features into a patient's mouth. And, subsequent to installing the implant in the patient's mouth, selecting a suitable abutment from a plurality of abutments and coupling the suitable abutment to one of two internal anti-rotation features of the implant in the patent's mouth.

    [0083] The present invention also contemplates a dental implant system comprising and implant and an implant driving tool. The implant has a bore comprising an anti-rotation structure and a recess in the bore. The implant driving tool comprises a gripping end and a working end opposing the gripping end. The working end includes a predetermined shape adapted to rotationally lock with the implant bore and a retention structure distal of the predetermined shape for coupling with the recess in the bore of the implant.

    [0084] Further, the present invention contemplates a dental implant system comprising a dental implant, and impression coping, and a screw. The dental implant has an exterior surface for contacting bone. The dental implant has an internal bore with a threaded section and an enlarged groove. The impression coping has a stem fitting within the internal bore and a through-bore. The stem includes a resilient section that expands outwardly into the enlarged groove in response to the impression coping being properly mated to the implant. The screw passes through the through-bore of the impression coping and threadably engages the threaded section of the internal bore of the implant. The screw axially retains the impression coping on the dental implant.

    [0085] The invention clearly reduces connectivity problems and other problems encountered in the field of dental implants. Applying principles of the invention to dental restoration processes yields improved results. The likelihood of a suitable abutment being available, when needed, is increased while reducing the amount of planning required. And costs may also be reduced by eliminating or reducing the need to use verification equipment, such as radio-graphic equipment, during the restoration process.

    [0086] Use of terms such as first, second, up, below, etc., are for convenience in describing the illustrated embodiments and such use is not intended to limit the variety of embodiments of the invention. Similar features are identified throughout with similar numbers to aid understanding but not to indicate such features are required to be identical among the various embodiments.


    Claims

    1. A dental implant system, comprising:

    a dental implant (10) having an internal bore (20), the internal bore (20) including a first anti-rotation cavity (22), and an enlarged groove (110), the enlarged groove (110) being separated from the first anti-rotation cavity (22) by a second anti-rotation cavity (24) and a feedback feature (34), the enlarged groove (110) having a maximum diameter that is larger than a diameter of the second anti-rotation cavity (24) and the feedback feature (34);

    an abutment (40) having a stem (44) and a through-bore (60), the stem (44) fitting within the internal bore (20) of the dental implant (10), the stem (44) including a resilient section (56) that has a diameter that is greater than the diameter of the second anti-rotation cavity (24) and the feedback feature (34) of the dental implant (10), the resilient section (56) of the abutment (40), upon insertion into the internal bore (20) of the dental implant (10), initially contracts when moving past the second anti-rotation cavity (24) and the feedback feature (34) and then expands outwardly into the enlarged groove (110) in response to the abutment (40) being properly mated to the dental implant (10), the resilient section (54) and the enlarged groove (110) combine to provide a feedback concerning the abutment (40), the stem (44) further including a non-round cross-section portion (48) for anti-rotational engagement with the first anti-rotation cavity (22) of the dental implant (10);

    and a screw (70) passing through the through-bore (60) of the abutment (40), the internal bore (20) of the dental implant (10) includes a threaded section (36) and the screw (70) threadably engages the threaded section (36) of the internal bore (20) of the dental implant (10), the screw (70) axially retaining the abutment (40) on the dental implant (10).


     
    2. The dental implant system of claim 1, wherein the enlarged groove (110) is circumferentially located around the bore (20).
     
    3. The dental implant system of claim 1, wherein the enlarged groove (110) is above the threaded section (36).
     
    4. The dental implant system of claim 1, wherein the resilient section (54) comprises a plurality of fingers (56).
     
    5. The dental implant system of claim 1, wherein the screw (70) comprises a head (72) that is seated within the through-bore (60) of the abutment (40) when the screw (70) is engaging the threaded section (36) of the internal bore (20).
     
    6. The dental implant system of claim 1, wherein the feedback provided is audible.
     
    7. The dental implant system of claim 1, wherein the resilient section (54) of the stem (44) is located below the non-round cross-section portion (48) of the stem (44).
     
    8. The dental implant system of claim 1, wherein the feedback provided is both audible and tactile.
     
    9. The dental implant system of claim 1, wherein an engagement of the resilient section (54) and the enlarged groove (110) resists axial movement of the abutment (40) relative to the implant (10).
     
    10. The dental implant system of claim 1, wherein an engagement of the resilient section (54) and the enlarged groove (110) applies an axial retention force to the abutment (40).
     
    11. The dental implant system of claim 1, wherein the resilient section (56) is distal of the non-round cross-section portion (48) of the abutment (40).
     
    12. The dental implant system of claim 1, wherein the second anti-rotation cavity (24) is located distally from the first anti-rotation cavity (22).
     
    13. The dental implant system of claim 12, wherein the stem (44) includes a non-locking portion (46) proximal the non-round cross-section portion (48), the non-locking portion (46) configured to be positioned in the non-round cross-section portion (22) of the internal bore (20).
     
    14. The dental implant system of claim 12, wherein the non-round cross-section portion (48) of the abutment (40) is configured to be positioned in the non-round cross-section portion (24) of the internal bore (20).
     


    Ansprüche

    1. Dentalimplantatsystem, umfassend:

    ein Dentalimplantat (10) mit einer Innenbohrung (20), wobei die Innenbohrung (20) einen ersten Verdrehsicherungshohlraum (22) und eine vergrößerte Nut (110) umfasst, wobei die vergrößerte Nut (110) von dem ersten Verdrehsicherungshohlraum (22) durch einen zweiten Verdrehsicherungshohlraum (24) und ein Rückmeldemerkmal (34) getrennt ist, wobei die vergrößerte Nut (110) einen maximalen Durchmesser aufweist, der größer als ein Durchmesser des zweiten Verdrehsicherungshohlraums (24) und des Rückmeldemerkmals (34) ist;

    ein Abutment (40) mit einem Schaft (44) und einer Durchgangsbohrung (60), wobei der Schaft (44) in die Innenbohrung (20) des Dentalimplantats (10) passt, wobei der Schaft (44) einen nachgiebigen Abschnitt (56) umfasst, der einen Durchmesser hat, der größer als der Durchmesser des zweiten Verdrehsicherungshohlraums (24) und des Rückmeldemerkmals (34) des Dentalimplantats (10) ist, wobei sich der nachgiebige Abschnitt (56) des Abutments (40) beim Einfügen in die Innenbohrung (20) des Dentalimplantats (10) anfänglich zusammenzieht, wenn er sich an dem zweiten Verdrehsicherungshohlraum (24) und dem Rückmeldemerkmal (34) vorbei bewegt, und sich dann als Reaktion auf die richtige Verbindung des Abutments (40) mit dem Dentalimplantat (10) nach außen in die vergrößerte Nut (110) ausdehnt, wobei der nachgiebige Abschnitt (54) und die vergrößerte Nut (110) zusammenwirken, um eine Rückmeldung betreffend das Abutment (40) bereitzustellen, wobei der Schaft (44) ferner einen unrunden Querschnittsabschnitt (48) für einen Verdrehsicherungseingriff mit dem ersten Verdrehsicherungshohlraum (22) des Dentalimplantats (10) umfasst;

    und eine Schraube (70), die durch die Durchgangsbohrung (60) des Abutments (40) verläuft, wobei die Innenbohrung (20) des Dentalimplantats (10) einen Gewindeabschnitt (36) umfasst und die Schraube (70) schraubbar in den Gewindeabschnitt (36) der Innenbohrung (20) des Dentalimplantats (10) eingreift, wobei die Schraube (70) das Abutment (40) axial auf dem Dentalimplantat (10) festhält.


     
    2. Dentalimplantatsystem nach Anspruch 1, wobei die vergrößerte Nut (110) in Umfangsrichtung um die Bohrung (20) angeordnet ist.
     
    3. Dentalimplantatsystem nach Anspruch 1, wobei sich die vergrößerte Nut (110) über dem Gewindeabschnitt (36) befindet.
     
    4. Dentalimplantatsystem nach Anspruch 1, wobei der nachgiebige Abschnitt (54) eine Vielzahl von Fingern (56) umfasst.
     
    5. Dentalimplantatsystem nach Anspruch 1, wobei die Schraube (70) einen Kopf (72) umfasst, der in der Durchgangsbohrung (60) des Abutments (40) sitzt, wenn die Schraube (70) im Eingriff mit dem Gewindeabschnitt (36) der Innenbohrung (20) ist.
     
    6. Dentalimplantatsystem nach Anspruch 1, wobei die bereitgestellte Rückmeldung hörbar ist.
     
    7. Dentalimplantatsystem nach Anspruch 1, wobei sich der nachgiebige Abschnitt (54) des Schafts (44) unter dem unrunden Querschnittsabschnitt (48) des Schafts (44) befindet.
     
    8. Dentalimplantatsystem nach Anspruch 1, wobei die bereitgestellte Rückmeldung sowohl hörbar als auch fühlbar ist.
     
    9. Dentalimplantatsystem nach Anspruch 1, wobei ein Eingriff des nachgiebigen Abschnitts (54) und der vergrößerten Nut (110) einer axialen Bewegung des Abutments (40) relativ zum Implantat (10) entgegenwirkt.
     
    10. Dentalimplantatsystem nach Anspruch 1, wobei ein Eingriff des nachgiebigen Abschnitts (54) und der vergrößerten Nut (110) eine axiale Haltekraft auf das Abutment (40) ausübt.
     
    11. Dentalimplantatsystem nach Anspruch 1, wobei der nachgiebige Abschnitt (56) entfernt von dem unrunden Querschnittsabschnitt (48) des Abutments (40) ist.
     
    12. Dentalimplantatsystem nach Anspruch 1, wobei sich der zweite Verdrehsicherungshohlraum (24) fern vom ersten Verdrehsicherungshohlraum (22) befindet.
     
    13. Dentalimplantatsystem nach Anspruch 12, wobei der Schaft (44) einen nicht sperrenden Abschnitt (46) nahe dem unrunden Querschnittsabschnitt (48) umfasst, wobei der nicht sperrende Abschnitt (46) dazu eingerichtet ist, in dem unrunden Querschnittsabschnitt (22) der Innenbohrung (20) angeordnet zu sein.
     
    14. Dentalimplantatsystem nach Anspruch 12, wobei der unrunde Querschnittsabschnitt (48) des Abutments (40) dazu eingerichtet ist, in dem unrunden Querschnittsabschnitt (24) der Innenbohrung (20) angeordnet zu sein.
     


    Revendications

    1. Système d'implant dentaire comprenant :

    un implant dentaire (10) possédant un alésage interne (20), l'alésage interne (20) comprenant une première cavité anti-rotation (22), et une rainure élargie (110), la rainure élargie (110) étant séparée de la première cavité anti-rotation (22) par une deuxième cavité anti-rotation (24) et une caractéristique de rétroaction (34), la rainure élargie (110) présentant un diamètre maximal qui est supérieur à un diamètre de la deuxième cavité anti-rotation (24) et de la caractéristique de rétroaction (34) ;

    un pilier (40) possédant une tige (44) et un trou traversant (60), la tige (44) s'ajustant à l'intérieur de l'alésage interne (20) de l'implant dentaire (10), la tige (44) comprenant une section élastique (56) qui présente un diamètre qui est supérieur au diamètre de la deuxième cavité anti-rotation (24) et de la caractéristique de rétroaction (34) de l'implant dentaire (10), la section élastique (56) du pilier (40), lors de l'insertion dans l'alésage interne (20) de l'implant dentaire (10), se contractant initialement lorsqu'elle se déplace dans la deuxième cavité anti-rotation (24) et la caractéristique de rétroaction (34), puis se dilatant vers l'extérieur dans la rainure élargie (110) en réponse à l'accouplement correct du pilier (40) et de l'implant dentaire (10), la section élastique (54) et la rainure élargie (110) se combinant pour fournir une rétroaction concernant le pilier (40), la tige (44) comprenant en outre une partie de section transversale non circulaire (48) pour une mise en prise anti-rotationnelle avec la première cavité anti-rotation (22) de l'implant dentaire (10) ;

    et une vis (70) traversant le trou traversant (60) du pilier (40), l'alésage interne (20) de l'implant dentaire (10) comprenant une section taraudée (36) et la vis (70) entrant en prise par vissage avec la section taraudée (36) de l'alésage interne (20) de l'implant dentaire (10), la vis (70) retenant le pilier (40) axialement sur l'implant dentaire (10).
     
    2. Système d'implant dentaire selon la revendication 1, la rainure élargie (110) étant située de manière circonférentielle autour de l'alésage (20).
     
    3. Système d'implant dentaire selon la revendication 1, la rainure élargie (110) étant située au-dessus de la section taraudée (36).
     
    4. Système d'implant dentaire selon la revendication 1, la section élastique (54) comprenant une pluralité de doigts (56) .
     
    5. Système d'implant dentaire selon la revendication 1, la vis (70) comprenant une tête (72) qui est logée à l'intérieur du trou traversant (60) du pilier (40) lorsque la vis (70) est en prise avec la section taraudée (36) de l'alésage interne (20).
     
    6. Système d'implant dentaire selon la revendication 1, la rétroaction fournie étant audible.
     
    7. Système d'implant dentaire selon la revendication 1, la section élastique (54) de la tige (44) étant située au-dessous de la partie de section transversale non circulaire (48) de la tige (44).
     
    8. Système d'implant dentaire selon la revendication 1, la rétroaction fournie étant à la fois audible et tactile.
     
    9. Système d'implant dentaire selon la revendication 1, une mise en prise de la section élastique (54) et de la rainure élargie (110) résistant au mouvement axial du pilier (40) par rapport à l'implant (10).
     
    10. Système d'implant dentaire selon la revendication 1, une mise en prise de la section élastique (54) et de la rainure élargie (110) appliquant une force de retenue axiale au pilier (40).
     
    11. Système d'implant dentaire selon la revendication 1, la section élastique (56) étant distale par rapport à la partie de section transversale non circulaire (48) du pilier (40).
     
    12. Système d'implant dentaire selon la revendication 1, la deuxième cavité anti-rotation (24) étant située de manière distale par rapport à la première cavité anti-rotation (22).
     
    13. Système d'implant dentaire selon la revendication 12, la tige (44) comprenant une partie de non-verrouillage (46) côté proximal par rapport à la partie de section transversale non circulaire (48), la partie de non-verrouillage (46) étant conçue pour être positionnée dans la partie de section transversale non circulaire (22) de l'alésage interne (20).
     
    14. Système d'implant dentaire selon la revendication 12, la partie de section transversale non circulaire (48) du pilier (40) étant conçue pour être positionnée dans la partie de section transversale non circulaire (24) de l'alésage interne (20) .
     




    Drawing
































    Cited references

    REFERENCES CITED IN THE DESCRIPTION



    This list of references cited by the applicant is for the reader's convenience only. It does not form part of the European patent document. Even though great care has been taken in compiling the references, errors or omissions cannot be excluded and the EPO disclaims all liability in this regard.

    Patent documents cited in the description