(19)
(11)EP 2 278 678 B1

(12)EUROPEAN PATENT SPECIFICATION

(45)Mention of the grant of the patent:
07.04.2021 Bulletin 2021/14

(21)Application number: 10169014.7

(22)Date of filing:  09.07.2010
(51)International Patent Classification (IPC): 
H02J 1/10(2006.01)

(54)

System and method for combining the outputs of multiple, disparate types of power sources

System und Verfahren zur Kombination der Ausgänge mehrerer ungleicher Stromquellentypen

Système et procédé d'association des sorties de plusieurs types distincts de sources d'alimentation


(84)Designated Contracting States:
AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO SE SI SK SM TR

(30)Priority: 13.07.2009 US 225037 P

(43)Date of publication of application:
26.01.2011 Bulletin 2011/04

(73)Proprietor: ABB Schweiz AG
5400 Baden (CH)

(72)Inventors:
  • Fontana, Edward C.
    Rockwall, TX 75032 (US)
  • Smith, Paul
    Plano, TX 75023 (US)

(74)Representative: Aipex B.V. 
P.O. Box 30223
3001 DE Rotterdam
3001 DE Rotterdam (NL)


(56)References cited: : 
WO-A1-2004/001942
GB-A- 2 012 080
WO-A1-2006/102928
US-A1- 2007 273 210
  
      
    Note: Within nine months from the publication of the mention of the grant of the European patent, any person may give notice to the European Patent Office of opposition to the European patent granted. Notice of opposition shall be filed in a written reasoned statement. It shall not be deemed to have been filed until the opposition fee has been paid. (Art. 99(1) European Patent Convention).


    Description

    TECHNICAL FIELD



    [0001] This application is directed, in general, to power conversion and, more specifically, to a system and method for combining the outputs of multiple, disparate types of power sources.

    BACKGROUND



    [0002] GB 2 012 080 A discloses controlling load division between generators coupled in parallel by feedback techniques. The output power from each generator is controlled by an input control signal WO2006102928 A1 discloses detecting the power source capabilities of external power sources and selecting one of the external power sources according to the detection result.

    [0003] Telecommunication service providers are adding alternative (e.g., "green") power sources as options for powering evermore of their telecommunication sites, such as central offices and cell towers. This brings real benefits in operating costs and commercial electric power "grid" independence, yet it also introduces a host of new, often disparate equipment to the network that the service providers must maintain and replace as years go by. As a consequence, the equipment threatens the sustainability of the network and its quality of service.
    The risk is particularly acute when the equipment is exposed to weather and lightning, which is almost always the case.

    [0004] Complicating matters, disparate types of power sources have different priori ties of use. For example, renewable power sources, such as solar and wind power, should be preferred and therefore have a higher priority than fossil-fuel-powered backup generators and fee-based, and possibly also fossil-fuel-powered, commercial electric power. Being lower in priority, the latter should only be used only as necessary. Because they are typically reserved for emergency use, backup batteries may have the lowest priority.

    SUMMARY



    [0005] The present invention provides a system for combining the outputs of multiple, disparate types of power sources as defined in claim 1 and a method as defined in claim 6.

    BRIEF DESCRIPTION



    [0006] Reference is now made to the following descriptions taken in conjunction with the accompanying drawings, in which:

    FIG. 1 is a high-level block diagram of one embodiment of a system for combining the outputs of multiple, disparate types of power sources;

    FIG. 2 is an elevational view of one embodiment of an equipment rack containing multiple shelves and capable of containing a system for combining the outputs of multiple, disparate types of power sources;

    FIG. 3 is a block diagram of one embodiment of an isolated converter module of the system of FIG. 1; and

    FIG. 4 is a flow diagram of one embodiment of a method of combining the outputs of multiple, disparate types of power sources.


    DETAILED DESCRIPTION



    [0007] To date, suppliers of alternative energy equipment have used distributed generation (DG), colloquially known as "grid-tying," to incorporate alternative power sources. DG involves coupling alternative power sources to the commercial alternating current (AC) power grid such that the sources can synchronize with, and supply power to, the grid. The grid then supplies any and all loads, including the telecommunication equipment. Unfortunately, grid-tying incurs both AC conversion inefficiencies and the risk of propagating transient high voltage ("spikes") resulting from lightning. For these reasons, service providers have resisted grid-tying.

    [0008] Described herein are various embodiments of a system and method that employ standard power conversion modules to form a redundant, fault-tolerant system that can aggregate power from various, disparate, often both alternative and conventional, power sources while maintaining sufficient isolation to resist faults emanating from a particular power source. Power from the various sources is converted to direct current (DC) of appropriate voltage and then aggregated. Thereafter, the DC may be used to power DC loads or converted to AC, after which it may be used to power AC loads. In a telecommunication environment, these loads may include backup batteries and telecommunication equipment.

    [0009] The system and method call for the power sources to be galvanically isolated from one another to frustrate fault propagation. Various embodiments of the system and method employ transformers in the converters to provide isolation; a magnetic field transfers power while providing isolation. Those skilled in the art understand other circuits that can be employed to provide isolation. Various embodiments of the system and method employ diodes to aggregate power from the various sources in a straightforward manner. Those skilled in the art understand that other devices and circuits can be employed to aggregate the power.

    [0010] Certain embodiments of the system and method address the issues of spare parts stocking ("sparing") and network sustainability ("uptime") by employing uniform converter modules, which may be colloquially regarded as "identical," "universal" or "generic," that are configured to adapt themselves to convert power received from different types of power sources. A single type of converter module can be used to convert power from multiple source types, e. g.' solar, wind, water, geothermal, commercial grid, emergency generator or backup battery. A service provider need only stock the single converter type to ensure converter spare availability for any source.

    [0011] Certain other embodiments also address concerns that alternative power sources could put essential network functions at risk by accommodating priority operation, namely preferentially employing alternative power sources but ensuring that more conventional and perhaps reliable power sources are available to be employed if or when the alternative power sources are interrupted. In some of the embodiments described in detail herein, isolated converter modules are configured to recognize the type of power source from which they are receiving power, determine the priority that the type of power source should have, select parameters according to which the power received from the power source is converted and then convert that power to DC in accordance with the parameters.

    [0012] Still other embodiments are capable of operating at an increased efficiency by selectively turning off isolated converter modules when multiple such modules are coupled to an alternative power source and fewer than all such modules are capable of supplying the power received from the alternative power source. Further embodiments are capable of employing power factor correction to receive power from alternative power sources at optimally efficient output voltages for those alternative power sources and convert the power at optimally efficient DC-output converter input voltages.

    [0013] FIG. 1 is a high-level block diagram of one embodiment of a system 100 for combining the outputs of multiple, disparate types of power sources. The embodiment illustrated in FIG. 1 takes the form of a rack-mounted assemblage of modular equipment. Accordingly, the system 100 is illustrated as including a plurality of isolated converter modules 101a, 101b, 101c, ...,101n. A DC bus 102 couples the outputs of the plurality of isolated converter modules 101a, 101b, 101c, ..., 101n together and provides a DC output 103, as FIG. 1 indicates, suitable for powering a DC load 120. In one embodiment, a DC-DC converter may be employed to power a DC load that requires a voltage differing from that provided by the DC bus 102. For applications that would benefit from an AC output, the DC bus 102 may be coupled to an inverter 104 (a DC-AC converter), which provides an AC output 105, as FIG. 1 indicates, suitable for powering an AC load 130.

    [0014] The plurality of isolated converter modules 101a, 101b, 101c, ..., 101n receive power from a corresponding plurality of power sources 110a, 110b, 110c, ..., 110n. Because various embodiments are configured to determine relative priorities of the power sources 110a, 110b, 110c, ..., 110n, the power sources 110a, 110b, 110c are labeled priority power sources, indicating that they have (typically differing) priorities higher than a lowest priority, and the power source 110n is labeled a fallback power source, indicating that it has the lowest priority. In the illustrated embodiment, the priority power source 1 110a is a solar-derived power source (e.g., a solar panel), the priority power source 2 110b is a wind-derived power source (e.g., a turbine-driven generator), the priority power source 3 110c is the commercial electric power grid (which may also be regarded as a first backup power source), and the fallback power source 110n is a backup power source (e.g., one or more fuel cells, one or more batteries or one or more strings of batteries) · If the backup power source is one or more fuel cells, one or more batteries or one or more strings of batteries, it may be coupled directly to the DC bus 102 (as a broken line coupling the fallback power source 110 n and the DC bus 102 indicates) or isolated by a charger (not shown) that draws its power from the DC bus 102 or any of the other power sources 110a, 110b, 110c, As will be described in greater detail in conjunction with FIG. 2 below, each of the plurality of isolated converter modules 101a, 101b, 101c, ..., 101n is capable of operating independently of the others. However, the embodiment illustrated in FIG. 1 employs a system oversight controller 106 configured to monitor and supervise the plurality of isolated converter modules 101a, 101b, 101c, ..., 101n to ensure that they are cooperating properly and constructively with respect to one another. An oversight bus 107 couples the system oversight controller 106 to each of the plurality of isolated converter modules 101a, 101b, 101c, ..., 101n. In performing its functions, the system oversight controller 106 may make decisions based on input signals received from the plurality of isolated converter modules 101a, 101b, 101c, ..., 101n via the oversight bus 107 and one or more characteristics of the DC bus 102, e.g., sensed at a control point 108. The one or more characteristics may include voltage, current or any other desired characteristic.

    [0015] Turning briefly to FIG. 2, illustrated is an elevational view of one embodiment of an equipment rack 200 containing multiple shelves and capable of containing a system for combining the outputs of multiple, disparate types of power sources. The rack 200 may be, for example, a standard equipment rack in a conventional battery plant (e. g.' as may be located in a telecommunication facility such as a central office, or CO).

    [0016] FIG. 2 illustrates a plurality of shelves 210a, 210b, 210c, ..., 210n configured to support one or more isolated converter modules 101a, 101b, 101c, ..., 101n. In the illustrated embodiment, the isolated converter modules 101a, 101b, 101c, ... ' 101n on a given shelf 210a, 210b, 210c, ..., 210n are dedicated to a particular type of power source. For example, the isolated converter modules 101a on the shelf 210a may be dedicated to converting power received from one or more wind-driven energy sources, and the isolated converter modules 101n on the shelf 210n may be dedicated to converting power received from one or more backup batteries or battery strings. In one specific embodiment, separate isolated converter modules 101a are employed to convert each phase of a single wind-driven energy source. In another embodiment, a single isolated converter module 101a is employed to convert power received from multiple wind- driven energy sources. Those skilled in the art will understand that the isolated converter modules 101a, 101b, 101c, ..., 101n may be arranged in any manner, however.

    [0017] Each shelf 210a, 210b, 210c, ..., 210n may support one or more spare isolated converter modules, 101a, 101b, 101c, "'I 101n that are either wholly disconnected from the remainder of the system, connected to the remainder of the system and placed on standby or connected to the remainder of the system and operating at less than full output current. The latter two configurations are colloquially regarded as "hot-swappable." In a system having a "hot-swappable" module, one or more standby converter modules may be substituted for one or more malfunctioning converter modules automatically, and without requiring human knowledge or intervention. In the illustrated embodiment, the system oversight controller 106 may command this substitution, typically based at least in part on signals received from any malfunctioning converter modules. As described below in conjunction with FIG. 3, the isolated converter modules 101a, 101b, 101c, "'I 101n may perform power factor and voltage adjustments to increase the power received from a power source and optimize conversion efficiency.

    [0018] Inherent in the latter two configurations described above is the ability to perform "N+1 sparing" or, more generally, "N+M sparing," where N 1 or a greater integer. For example, N+1 isolated converter modules may be used for converting power from a given power source, when only N isolated converter modules are required to convert the power. Under N+1 sparing, each isolated converter module converts 1/(N+1)th of the power received from the power source. If one isolated converter module malfunctions, each of the remaining N isolated converter modules then converts 1/Nth of the power. N+M sparing would call for M isolated converter modules in excess of the N required to convert the power.

    [0019] FIG. 2 also shows one embodiment of the system oversight controller 106, which happens to be located over the shelves 210a, 210b, 210c, ..., 210n in the Although FIG. 2 does not show them, a DC bus and an oversight bus couple the various isolated converter modules 101a, 101b, 101c, ..., 101n and the system oversight controller 106 together as indicated above. In the illustrated embodiment, the DC and oversight buses run along a rear surface of the rack 200 and include backplane connectors that allow the isolated converter modules 101a, 101b, 101c, ..., 101n and perhaps the system oversight controller 106 to be plugged into them as they are inserted into the rack 200.

    [0020] As described above, the illustrated embodiment of each of the plurality of isolated converter modules 101a, 101b, 101c, ..., 101n of FIGs. 1 and 2 is configured to recognize the type of power source from which they are receiving power, determine the priority that the type of power source should have, select parameters according to which the power received from the power source is and then convert that power to DC in accordance with the parameters. Thus, various embodiments of one of the isolated converter modules 101a, 101b, 101c, ..., 101n will now be described.

    [0021] FIG. 3 is a block diagram of one embodiment of an isolated converter module 300 of the system of FIG. 1. The illustrated embodiment of the module 300 is embodied in a plurality of circuits mounted on a circuit board 301 and, in some embodiments, encased in a protective shell 302. In various embodiments, the module 300 features backplane connectors (not shown, since FIG. 3 shows the module 300 in conceptual, rather than physical, form) that allow the module to be inserted into the rack 200 of FIG. 2 and be coupled to the backplane thereof. Typically, the backplane connectors would provide for most, if not all, of the electrical connections that need to be made with the module 300.

    [0022] The module 300 may also include one or more status indicators (e.g., lights) on a front edge thereof (not shown) to indicate, among other things, the operating status of the module 300. In some embodiments, the dimensions of the protective shell and the placement of the backplane connectors are standardized that the modules are uniform and may be plugged into any one of a plurality of uniformly sized slots in a rack (e.g., the rack 200 of FIG. 2).

    [0023] The module 310 includes a power input 310 configured to receive power from a power source and a power output that leads to the DC bus 102. A source recognition circuit 320 receives, from a control point 330, a signal based on at least one characteristic of the power received via the power input 310. The at least one characteristic may be one or more of a voltage, a current, a frequency, a phase, a DC offset, an impedance, a power factor, a harmonic content or any other characteristic of interest. In the illustrated embodiment, the characteristic is voltage. The source recognition circuit 320 is configured to identify the type of the power source based on the characteristic.

    [0024] For example, a voltage signal having a relatively constant 50 or 60 Hz frequency indicates that the power source is either a fossil-fuel-powered AC backup generator or the commercial electric power grid. By monitoring the voltage signal over a substantial period of time, interruptions or substantial frequency variations may occur by which it can be inferred whether the power source is a fossil-fuel-powered AC backup generator or the commercial electric power grid.

    [0025] As another example, a voltage signal exhibiting significant frequency variations over time and often exceeding 60 Hz indicates an AC wind-driven power source. A low-frequency (e.g., less than 1 Hz) or DC voltage indicates that the power source is either a solar panel, a fossil-fuel-powered DC backup generator or a DC wind-driven power source. By monitoring the voltage signal over a substantial period of time (e.g., over a day and a night), interruptions or voltage variations may occur by which it can be inferred whether the power source is a solar panel, a fossil-fuel-powered DC backup generator or a DC wind-driven power source. Based on the characteristic, perhaps sensed over time, the source recognition circuit 320 is configured to recognize the type of the power source and provides a signal indicating the type.

    [0026] The illustrated embodiment of the module 300 is configured for use in systems in which disparate types of power sources have priori ties. Accordingly, a priority determination circuit 340 is coupled to the source recognition circuit 320. The priority determination circuit 340 is configured to receive the signal from the source recognition circuit 320 that indicates the type of the power source and determine a priority that the power source should have based on the signal. As stated above, power derived renewable energy sources are likely to have a higher priority than emergency power, power derived from fossil fuel or power that needs to be purchased (i.e., the commercial electric power grid). The priority determination circuit 340 is further configured to provide a signal indicating the priority.

    [0027] In the illustrated embodiment, priority is carried out by assigning nominal relative output voltages to the DC-output converters. In the illustrated embodiment, power from disparate sources is combined in a DC bus using diodes coupled to the outputs of the power converters corresponding to each source. In this embodiment, power sources are prioritized in the relative converter output voltages. A converter assigned a higher output voltage naturally causes that converter to supply more power to the DC bus 102 than another converter having a lower output voltage.

    [0028] For example, if the DC bus 102 is nominally a 48 V bus, a first converter may be assigned to operate in a range around a nominal 48 .1 V output voltage, a second converter may be assigned to operate in a range around a nominal 48.0 V output voltage, and a third converter may be assigned to operate in a range around a nominal 47.9 V output voltage. In this example, the first converter will naturally provide power to the DC bus 102 until it either reaches its current limit and output voltage begins to decrease. When the output voltage of the first converter reaches 48.0 V, the second converter will likely begin to contribute power to the DC bus 102. Likewise, the first and second converters will share the burden of providing power to the DC bus 102 until their output voltages decrease to 4 7. 9 V, at which point the third converter will likely begin to contribute its power to the DC bus 102 as well. Those skilled in the art will understand that if any of the power sources is interrupted outright, its corresponding converter will stop contributing power to the DC bus 102, and other converters will make up for the lost power. In a well- designed system, the converter having the lowest output voltage (i.e., the lowest priority) is assumed always to be available to provide power to the DC bus 102.

    [0029] A parameter selection circuit 350 is coupled to the priority determination circuit 340. The parameter selection circuit 350 is configured to select operating parameters appropriate for converting power received at the power input 310 to a form appropriate for the DC bus 102 (i.e., based on the type recognized by the source recognition circuit 320). In the illustrated embodiment, the parameter selection circuit 350 also selects operating parameters based on the priority determined by the priority determination circuit 340. For example, if the source recognition circuit 320 determines that the input power is DC power provided by a solar panel, the parameter selection circuit selects operating parameters appropriate for DC-DC conversion. Further, because solar energy typically has a relatively high priority, the operating parameters are likely to call for the module 300 to have a higher output voltage.

    [0030] In an alternative embodiment, priority is carried out by setting relative current limit points of the DC-output converters. Those skilled in the pertinent art are familiar with current limit control and how current limit control can be carried out to effect load sharing and, by extension, priority. Those skilled in the pertinent art will also understand that other techniques may be employed to establish load sharing and priority.

    [0031] A converter controller 360 is coupled to the parameter selection circuit 350. The converter controller 360 is configured to provide drive signals to an isolated DC-output converter 370 in accordance with the operating parameters provided by the parameter selection circuit 350. The converter controller 360 typically receives signals (e.g., voltage, current or temperature
    signals) back from the isolated DC-output converter 370 that allow it to adapt its control to accommodate
    changing circumstances (e. g.' changes in input or output voltage or current). Those skilled in the art are familiar with various converter topologies capable of converting DC or AC input power to DC form. Therefore, the operation of the isolated DC-output converter 370 will not be further described herein. It should also be noted that the converter controller 360 is coupled to the oversight bus 107. This allows the converter controller 360 to provide signals indicating its status and/or operation to the system oversight controller 106 of FIG. 1 and/or receive command signals from the system oversight controller 106 that can alter the operation of the converter controller 360.

    [0032] Many of the above-described circuits may be embodied as discrete or integrated circuits ("hardware") or as a sequence of instructions ("software" or "firmware") executable on a general-purpose processor to carry out desired functions. The scope of the invention includes all such embodiments.

    [0033] As stated above, the modules in a given system galvanically isolate the disparate types of power sources from one another and the DC bus. Accordingly, the module 300 provides galvanic isolation. In the illustrated embodiment, the isolated DC-output converter 370 provides isolation in the form of a transformer (not shown) having distinct primary and secondary windings, forcing power transfer to occur via the transformer's magnetic field. In alternative embodiments, isolation is provided outside of the converter 370 and/or by conventional or later-developed galvanic isolation techniques other than magnetic field-based techniques.

    [0034] In the illustrated embodiment, the DC-output converter 370 includes a DC-DC resonant stage (not shown) coupled to a secondary winding of the transformer. The DC-DC resonant stage is configured to employ zero-voltage switching to minimize switching stress and power dissipation. The illustrated embodiment of the DC-output converter 370 also includes a boost stage (not shown) coupled to a primary winding of the transformer. The boost stage is configured to adjust a power factor of the power and accommodate any voltage difference that may exist between an operating voltage of a renewable power source coupled to the power input 310 and the optimum input voltage of the DC-DC resonant stage. Those skilled in the art are familiar with DC-DC resonant stages, zero-voltage switching, boost stages and power factor adjustment. A general discussion of these will therefore not be undertaken herein.

    [0035] As stated above, the illustrated embodiment of the system employs diodes to combine the power from the disparate sources. In the illustrated embodiment, each module 300 in a given system incorporates a diode for that purpose. Accordingly, FIG. 3 shows a forward-biased diode 390 coupled to the output of the isolated DC-output converter 370. The diode 390 is forward-biased to attenuate substantial currents before they can enter the module 300 from the DC bus 102. This not only substantially prevents one converter module from providing power to another converter module, but at least partially prevents fault currents (e. g.' transients resulting from lightning strikes) from propagating into the module 300 and further at least partially prevents a malfunctioning module from draining power from the DC bus 102.

    [0036] Alternative embodiments employ a relay, a field-effect transistor (FET) or other type of controllable switch to combine the power from the disparate sources. Those skilled in the pertinent art understand that various conventional and later-developed devices or circuits may be employed to combine the power from the disparate sources and therefore fall within the broad scope of the invention.

    [0037] Turning back to FIG. 1, the operation of the illustrated embodiment of the system oversight controller 106 can now be described more fully. As stated above, the illustrated embodiment of the system oversight controller 106 may be capable of determining when a particular converter module malfunctioning and, in some embodiments, substituting another module for the malfunctioning module. In various embodiments, the system oversight controller 106 is also configured to monitor the DC bus 102 to regulate its voltage. In certain other embodiments, the system oversight controller 106 is configured to monitor the isolated converter modules 101a, 101b, 101c, ..., 101n to ensure that they are not exceeding their current limits or operating at excessive temperatures. The system oversight controller 106 may also be configured to monitor the isolated converter modules 101a, 101b, 101c, ..., 101n to determine whether or not the priorities are proper. The system oversight controller 106 may alternatively or further be configured to generate operating logs and/or maintenance or warning signals indicating conditions that need attention. The system oversight controller 106 may provide the operating logs and/or maintenance or warning signals via a network connection for remote storage or receipt. Those skilled in the pertinent art will understand that the system oversight controller 106 may be employed to perform alternative or additional functions from which a particular application or installation may benefit.

    [0038] FIG. 4 is a flow diagram of one embodiment of a method of combining the outputs of multiple, disparate types of power sources. The method begins in a start step 410. In a step 420, types of each of multiple power sources is recognized. In a step 430, priorities for the power sources are determined. In a step 440, operating parameters are selected for De-output converters corresponding to the power sources. In one embodiment, at least some of the operating parameters are based on the priorities for the corresponding power sources. In a step 450, the DC-output converters operate to convert power to DC form according to the converter controller parameters. In a step 460, the converted power is combined in a common DC bus. In a step 470, oversight is provided to the system. In a step 480, power is provided from the common DC bus to a load. DC power may be provided (1) directly to a DC load, (2) through a DC-DC converter to the DC load, or (3) through an inverter to an AC load. The method ends in an end step 490.


    Claims

    1. A system (100) for combining outputs of multiple, disparate types of power sources (110a, 110b, 110c... 110n), the system comprising:

    first and second isolated converter modules (300), each of the first and second isolated converter modules having:

    a power input (310) couplable to a power source;

    a source recognition circuit (320) configured to receive a signal indicating a variation in at least one characteristic of a power signal received from the power source coupled to the isolated converter module (300) via the power input (310), the power signal comprising electric power transferrable to the isolated converter module (300) from the power source connected thereto; and

    a DC-output converter (370) configured to convert power received from the power sources to DC power; and

    a DC bus (102) coupled to power outputs of the first and second isolated converter modules (300) and configured to receive and aggregate the DC power, the aggregated DC power being sufficient to power an electrical load connected to the DC bus (102);

    characterized in that the source recognition circuit (320) of the first isolated converter module (300) is configured to identify, based on the signal indicating the variation in the characteristic, the type of the power source connected thereto as being a renewable power source and the source recognition circuit (320) of the second isolated converter module (300) is configured to identify, based on the signal indicating the variation in the characteristic, the type of power source connected thereto as being a fossil fuel power source;

    each of the first and second isolated converter modules (300) is configured to select values of operating parameters of power being output by the isolated converter modules (300) to the DC bus (102), the selected values of the output power operating parameters generating output power that, when aggregated by the DC bus (102), is sufficient to power the electrical load, and to convert the power received from the power sources connected to the isolated converter modules (300) to the selected values of the output power operating parameters; and

    the first and second isolated converter modules (300) are configured to, in response to determining based on the identified type of power source, that a first priority associated with the renewable power source is greater than a second priority associated with the fossil fuel power source, power the electrical load using the selected values of output power operating parameters and according to the determined first and second priorities.


     
    2. The system as recited in Claim 1, further comprising a system oversight controller (106) coupled to the first and second isolated converter modules (300) and configured to monitor and supervise the first and second isolated converter modules (300) to power the electrical load according to the first and second priorities.
     
    3. The system as recited in Claim 2, wherein the system oversight controller (106) is further configured to, in response to detecting that power received at the first isolated converter module (300) is less than a predefined range, power the electrical load using the second isolated converter module (300).
     
    4. The system as recited in Claim 1, further comprising a rack (200) having shelves (210) configured to support the first and second isolated converter modules (300).
     
    5. The system as recited in Claim 1, wherein each of the first and second isolated converter modules (300) has a diode (390) coupled between the DC-output converter (370) and a power output of each of the first and second isolated converter modules (300).
     
    6. A method of combining outputs of multiple, disparate types of power sources, the method comprising:

    coupling power inputs (310) of a first isolated converter module (300) and a second isolated converter module (300) to corresponding power sources;

    receiving in a corresponding source recognition circuit (320) of each of the first and second isolated converter modules (310) a corresponding signal indicating a variation in a characteristic of a corresponding power signal received from the corresponding power source coupled to the isolated converter module (300) via the power input (310), the power signal comprising electric power transferrable to the isolated converter module (300) from the corresponding power source;

    converting power received from the power sources to DC power; and

    coupling a DC bus (102) to power outputs of first and second isolated converter modules (300) to receive and aggregate DC power to power an electrical load connected to the DC bus (102), characterized in

    identifying by the corresponding source recognition circuits (320), based on the corresponding signals indicating the variations in the characteristics, the type of power source connected to the first isolated converter module (300) as being a renewable power source and the type of power source connected to the second isolated converter module (300) as being a fossil fuel power source;

    selecting values of operating parameters of power being output by the first and second isolated converter modules (300) to the DC bus (102), the selected values of the output power operating parameters generating output power that, when aggregated by the DC bus (102), is sufficient to power the electrical load, and converting the power received from the power sources connected to the first and second isolated converter modules (300) to the selected values of the output power operating parameters;

    determining by the first and second isolated converter modules (300), based on the identified type of power source, that a first priority associated with the renewable power source is greater than a second priority associated with the fossil fuel power source; and

    powering the electrical load using the selected values of output power operating parameters and according to the determined first and second priorities.


     
    7. The system as recited in claim 1, wherein the renewable power source includes at least one of a wind-driven power source and a solar power source.
     
    8. The system as recited in claim 1, wherein the at least one characteristic used by the first and second isolated converter modules (300) to identify at least one of the renewable source and fossil fuel powered source is frequency.
     


    Ansprüche

    1. System (100) zur Kombination der Ausgänge mehrerer ungleicher Stromquellentypen (110a, 110b, 110c... 110n), wobei das System Folgendes umfasst:

    ein erstes und zweites isoliertes Wandlermodul (300), wobei jedes von dem ersten und zweiten isolierten Wandlermodul Folgendes aufweist:

    einen Stromeingang (310), der an die Stromquelle gekoppelt werden kann;

    eine Quellenerkennungsschaltung (320), die konfiguriert ist, um ein Signal zu empfangen, das eine Variation in zumindest einer Eigenschaft eines Stromsignals angibt, das von der Stromquelle empfangen wird, die über den Stromeingang (310) an das isolierte Wandlermodul (300) gekoppelt ist, wobei das Stromsignal elektrischen Strom umfasst, der von der Stromquelle, die an das isolierte Wandlermodul (300) angeschlossen ist, an diese übertragen werden kann; und

    einen DC-Ausgangswandler (370), der konfiguriert ist, um Strom, der von den Stromquellen empfangen wird, in DC-Strom umzuwandeln; und

    einen DC-Bus (102), der an Stromausgänge des ersten und zweiten isolierten Wandlermoduls (300) gekoppelt und konfiguriert ist, um den DC-Strom zu empfangen und zu aggregieren, wobei der aggregierte DC-Strom ausreichend ist, um einen elektrischen Verbraucher, der an den DC-Bus (102) angeschlossen ist, mit Strom zu versorgen;

    dadurch gekennzeichnet, dass die Quellenerkennungsschaltung (320) des ersten isolierten Wandlermoduls (300) konfiguriert ist, um auf Grundlage des Signals, das die Variation in der Eigenschaft angibt, den Typ der Stromquelle, die daran angeschlossen ist, als Quelle erneuerbaren Stroms zu identifizieren, und die Quellenerkennungsschaltung (320) des zweiten isolierten Wandlermoduls (300) konfiguriert ist, um auf Grundlage des Signals, das die Variation in der Eigenschaft angibt, den Typ der Stromquelle, die daran angeschlossen ist, als Quelle von Strom aus fossilen Brennstoffen zu identifizieren;

    wobei jedes von dem ersten und zweiten isolierten Wandlermodul (300) konfiguriert ist, um Werte von Betriebsparametern von Strom auszuwählen, der durch die isolierten Wandlermodule (300) an den DC-Bus (102) ausgegeben wird, wobei die ausgewählten Werte der Ausgabestrom-Betriebsparameter einen Ausgabestrom generieren, der, wenn er durch den DC-Bus (102) aggregiert wird, ausreichend ist, um den elektrischen Verbraucher mit Strom zu versorgen, und um den Strom, der von den Stromquellen empfangen wird, die an die isolierten Wandlermodule (300) angeschlossen sind, in die ausgewählten Werte der Ausgabestrom-Betriebsparameter umzuwandeln; und

    das erste und zweite isolierte Wandlermodul (300) konfiguriert sind, um als Reaktion auf Bestimmen auf Grundlage des identifizierten Stromquellentyps, dass eine erste Priorität, die der Quelle erneuerbaren Stroms zugeordnet ist, größer als eine zweite Priorität ist, die der Quelle von Strom aus fossilen Brennstoffen zugeordnet ist, unter Verwendung der ausgewählten Werte der Ausgabestrom-Betriebsparameter und gemäß der bestimmten ersten und zweiten Priorität den elektrischen Verbraucher mit Strom zu versorgen.


     
    2. System nach Anspruch 1, ferner umfassend eine Systemaufsichtssteuerung (106), die an das erste und zweite isolierte Wandlermodul (300) gekoppelt und konfiguriert ist, um das erste und zweite isolierte Wandlermodul (300) zu überwachen und zu beaufsichtigen, um den elektrischen Verbraucher gemäß der ersten und zweiten Priorität mit Strom zu versorgen.
     
    3. System nach Anspruch 2, wobei die Systemaufsichtssteuerung (106) ferner konfiguriert ist, um als Reaktion auf Erfassen, dass Strom, der an dem ersten isolierten Wandlermodul (300) empfangen wird, geringer als ein vordefinierter Bereich ist, unter Verwendung des zweiten isolierten Wandlermoduls (300) den elektrischen Verbraucher mit Strom zu versorgen.
     
    4. System nach Anspruch 1, ferner umfassend ein Gestell (200), das Ablagen (210) aufweist, die konfiguriert sind, um das erste und zweite isolierte Wandlermodul (300) zu stützen.
     
    5. System nach Anspruch 1, wobei jedes von dem ersten und zweiten isolierten Wandlermodul (300) eine Diode (390) aufweist, die zwischen dem DC-Ausgangswandler (370) und einem Stromausgang von jedem des ersten und zweiten isolierten Wandlermoduls (300) gekoppelt ist.
     
    6. Verfahren zur Kombination der Ausgänge mehrerer ungleicher Stromquellentypen, wobei das Verfahren Folgendes umfasst:

    Koppeln von Stromeingängen (310) eines ersten isolierten Wandlermoduls (300) und eines zweiten isolierten Wandlermoduls (300) an entsprechende Stromquellen;

    Empfangen eines entsprechenden Signals, das eine Variation in einer Eigenschaft eines entsprechenden Stromsignals angibt, das von der entsprechenden Stromquelle empfangen wird, die über den Stromeingang (310) an das isolierte Wandlermodul (300) gekoppelt ist, in einer entsprechenden Quellenerkennungsschaltung (320) von jedem von dem ersten und zweiten isolierten Wandlermodul (310), wobei das Stromsignal elektrischen Strom umfasst, der von der entsprechenden Stromquelle an das isolierte Wandlermodul (300) übertragen werden kann;

    Umwandeln des Stroms, der von den Stromquellen empfangen wird, in DC-Strom; und

    Koppeln eines DC-Busses (102) an Stromausgänge des ersten und zweiten isolierten Wandlermoduls (300) um einen DC-Strom zu empfangen und zu aggregieren, um einen elektrischen Verbraucher, der an den DC-Bus (102) angeschlossen ist, mit Strom zu versorgen, gekennzeichnet durch

    Identifizieren durch die entsprechenden Quellerkennungsschaltungen (320), auf Grundlage der entsprechenden Signale, welche die Variationen in den Eigenschaften angeben, den Typ der Stromquelle, die an das erste isolierte Wandlermodul (300) angeschlossen ist, als Quelle erneuerbaren Stroms und den Typ der Stromquelle, die an das zweite isolierte Wandlermodul (300) angeschlossen ist, als Quelle von Strom aus fossilen Brennstoffen;

    Auswählen von Werte von Betriebsparametern von Strom, der durch das erste und zweite isolierte Wandlermodule (300) an den DC-Bus (102) ausgegeben wird, wobei die ausgewählten Werte der Ausgabestrom-Betriebsparameter einen Ausgabestrom generieren, der, wenn er durch den DC-Bus (102) aggregiert wird, ausreichend ist, um den elektrischen Verbraucher mit Strom zu versorgen, und Umwandeln des Stroms, der von den Stromquellen empfangen wird, die an das erste und zweite isolierte Wandlermodule (300) angeschlossen sind, in die ausgewählten Werte der Ausgabestrom-Betriebsparameter;

    Bestimmen auf Grundlage des identifizierten Stromquellentyps, dass eine erste Priorität, die der Quelle erneuerbaren Stroms zugeordnet ist, größer ist als eine zweite Priorität, die der Quelle von Strom aus fossilen Brennstoffen zugeordnet ist, durch das erste und zweite isolierte Wandlermodul (300); und

    Versorgen des elektrischen Verbrauchs mit Strom unter Verwendung der ausgewählten Werte der Ausgabestrom-Betriebsparameter und gemäß der bestimmten ersten und zweiten Priorität.


     
    7. System nach Anspruch 1, wobei die Quelle erneuerbaren Stroms zumindest eine von einer windangetriebenen Stromquelle und einer Solar-Stromquelle einschließt.
     
    8. System nach Anspruch 1, wobei zumindest eine Eigenschaft, die durch das erste und zweite isolierte Wandlermodul (300) verwendet wird, um zumindest eine von der erneuerbaren Quelle und der durch fossile Brennstoffe angetriebene Quelle zu identifizieren, eine Frequenz ist.
     


    Revendications

    1. Système (100) pour combiner des sorties de plusieurs types disparates de sources d'énergie (110a, 110b, 110c... 110n), le système comprenant :
    des premier et deuxième modules convertisseurs isolés (300), chacun des premier et deuxième modules convertisseurs isolés ayant :

    une entrée de puissance (310) pouvant être couplée à une source d'énergie ;

    un circuit de reconnaissance de source (320) configuré pour recevoir un signal indiquant une variation d'au moins une caractéristique d'un signal de puissance reçu de la source d'énergie couplée au module convertisseur isolé (300) via l'entrée de puissance (310), le signal de puissance comprenant une puissance électrique pouvant être transférée au module convertisseur isolé (300) à partir de la source d'énergie reliée à celui-ci ; et

    un convertisseur de sortie CC (370) configuré pour convertir une puissance reçue des sources d'énergie en puissance CC ; et

    un bus CC (102) couplé à des sorties de puissance des premier et deuxième modules convertisseurs isolés (300) et configuré pour recevoir et agréger la puissance CC, la puissance CC agrégée étant suffisante pour alimenter une charge électrique reliée au bus CC (102) ;

    caractérisé en ce que le circuit de reconnaissance de source (320) du premier module convertisseur isolé (300) est configuré pour identifier, sur la base du signal indiquant la variation de la caractéristique, le type de la source d'énergie reliée à celui-ci comme étant une source d'énergie renouvelable et le circuit de reconnaissance de source (320) du deuxième module convertisseur isolé (300) est configuré pour identifier, sur la base du signal indiquant la variation de la caractéristique, le type de source d'énergie reliée à celui-ci comme étant une source d'énergie à combustibles fossiles ;

    chacun des premier et deuxième modules convertisseurs isolés (300) est configuré pour sélectionner des valeurs de paramètres de fonctionnement de la puissance qui est délivrée en sortie par les modules convertisseurs isolés (300) au bus CC (102), les valeurs sélectionnées des paramètres de fonctionnement de puissance délivrée en sortie générant une puissance de sortie qui, lorsqu'elle est agrégée par le bus CC (102), est suffisante pour alimenter la charge électrique et pour convertir la puissance reçue des sources d'énergie reliées aux modules convertisseurs isolés (300) en valeurs sélectionnées des paramètres de fonctionnement de puissance délivrée en sortie ; et

    les premier et deuxième modules convertisseurs isolés (300) sont configurés pour, en réponse à la détermination, sur la base du type identifié de source d'énergie, du fait qu'une première priorité associée à la source d'énergie renouvelable est supérieure à une deuxième priorité associée à la source d'énergie à combustibles fossiles, alimenter la charge électrique en utilisant les valeurs sélectionnées de paramètres de fonctionnement de puissance délivrée en sortie et selon les première et deuxième priorités déterminées.


     
    2. Système selon la revendication 1, comprenant en outre un dispositif de commande de surveillance de système (106) couplé aux premier et deuxième modules convertisseurs isolés (300) et configuré pour surveiller et superviser les premier et deuxième modules convertisseurs isolés (300) pour alimenter la charge électrique selon les première et deuxième priorités.
     
    3. Système selon la revendication 2, dans lequel le dispositif de commande de surveillance de système (106) est en outre configuré pour, en réponse à la détection du fait que la puissance reçue au niveau du premier module convertisseur isolé (300) est inférieure à une plage prédéfinie, alimenter la charge électrique en utilisant le deuxième module convertisseur isolé (300).
     
    4. Système selon la revendication 1, comprenant en outre un rayonnage (200) ayant des étagères (210) configurées pour supporter les premier et deuxième modules convertisseurs isolés (300).
     
    5. Système selon la revendication 1, dans lequel chacun des premier et deuxième modules convertisseurs isolés (300) a une diode (390) couplée entre le convertisseur de sortie CC (370) et une sortie de puissance de chacun des premier et deuxième modules convertisseurs isolés (300).
     
    6. Procédé de combinaison de sorties de plusieurs types disparates de sources d'énergie, le procédé comprenant le fait :

    de coupler des entrées de puissance (310) d'un premier module convertisseur isolé (300) et d'un deuxième module convertisseur isolé (300) à des sources d'énergie correspondantes ;

    de recevoir dans un circuit de reconnaissance de source correspondant (320) de chacun des premier et deuxième modules convertisseurs isolés (310) un signal correspondant indiquant une variation d'une caractéristique d'un signal de puissance correspondant reçu de la source d'énergie correspondante couplée au module convertisseur isolé (300) via l'entrée de puissance (310), le signal de puissance comprenant une puissance électrique pouvant être transférée au module convertisseur isolé (300) à partir de la source de puissance correspondante ;

    de convertir la puissance reçue des sources d'énergie en puissance CC ; et

    de coupler un bus CC (102) à des sorties de puissance des premier et deuxième modules convertisseurs isolés (300) pour recevoir et agréger une puissance CC pour alimenter une charge électrique reliée au bus CC (102), caractérisé par le fait

    d'identifier par les circuits de reconnaissance de source correspondants (320), sur la base des signaux correspondants indiquant les variations des caractéristiques, le type de source d'énergie reliée au premier module convertisseur isolé (300) comme étant une source d'énergie renouvelable et le type de source d'énergie reliée au deuxième module convertisseur isolé (300) comme étant une source d'énergie à combustibles fossiles ;

    de sélectionner des valeurs de paramètres de fonctionnement de la puissance qui est délivrée en sortie par les premier et deuxième modules convertisseurs isolés (300) au bus CC (102), les valeurs sélectionnées des paramètres de fonctionnement de puissance délivrée en sortie générant une puissance de sortie qui, lorsqu'elle est agrégée par le bus CC (102), est suffisante pour alimenter la charge électrique, et convertir la puissance reçue des sources d'énergie reliées aux premier et deuxième modules convertisseurs isolés (300) en valeurs sélectionnées des paramètres de fonctionnement de puissance délivrée en sortie ;

    de déterminer par les premier et deuxième modules convertisseurs isolés (300), sur la base du type identifié de source d'énergie, qu'une première priorité associée à la source d'énergie renouvelable est supérieure à une deuxième priorité associée à la source d'énergie à combustibles fossiles ; et

    d'alimenter la charge électrique en utilisant les valeurs sélectionnées de paramètres de fonctionnement de puissance délivrée en sortie et selon les première et deuxième priorités déterminées.


     
    7. Système selon la revendication 1, dans lequel la source d'énergie renouvelable comporte au moins l'une d'une source d'énergie éolienne et d'une source d'énergie solaire.
     
    8. Système selon la revendication 1, dans lequel l'au moins une caractéristique utilisée par les premier et deuxième modules convertisseurs isolés (300) pour identifier au moins l'une de la source renouvelable et de la source à combustibles fossiles est la fréquence.
     




    Drawing

















    Cited references

    REFERENCES CITED IN THE DESCRIPTION



    This list of references cited by the applicant is for the reader's convenience only. It does not form part of the European patent document. Even though great care has been taken in compiling the references, errors or omissions cannot be excluded and the EPO disclaims all liability in this regard.

    Patent documents cited in the description