(11)EP 2 289 600 B1


(45)Mention of the grant of the patent:
03.10.2018 Bulletin 2018/40

(21)Application number: 10251494.0

(22)Date of filing:  25.08.2010
(51)International Patent Classification (IPC): 
A62C 3/08(2006.01)
A62C 35/02(2006.01)
A62C 99/00(2010.01)


Fire suppressor system with pressure regulation

Feuerunterdrückungssystem mit Druckregulierung

Système ignifuge avec régulation de la pression

(84)Designated Contracting States:

(30)Priority: 28.08.2009 GB 0915123

(43)Date of publication of application:
02.03.2011 Bulletin 2011/09

(60)Divisional application:
14172995.4 / 2813266

(73)Proprietor: Kidde Technologies, Inc.
Wilson, NC 27896 (US)

  • Gatsonides, Josephine Gabrielle
    Dunstable Bedfordshire LU5 5DA (GB)
  • Dunster, Robert G.
    Slough Berkshire SL1 6ER (GB)

(74)Representative: Dehns 
St. Brides House 10 Salisbury Square
London EC4Y 8JD
London EC4Y 8JD (GB)

(56)References cited: : 
EP-A1- 2 233 175
US-A- 4 566 542
US-A- 5 857 525
    Note: Within nine months from the publication of the mention of the grant of the European patent, any person may give notice to the European Patent Office of opposition to the European patent granted. Notice of opposition shall be filed in a written reasoned statement. It shall not be deemed to have been filed until the opposition fee has been paid. (Art. 99(1) European Patent Convention).



    [0001] This application relates to a fire suppression system wherein a gas is directed into a compartment at a controlled pressure.

    [0002] Fire suppression systems are known, and are often used in aircraft, buildings, or other structures having contained areas. As an example, an aircraft is typically provided with a fire suppression system that can direct Halon into a compartment where a fire has been detected. The goal is to discharge an effective suppressing agent concentration into the compartment such that the fire will be suppressed before there is significant damage. Aircraft cargo systems, electronic bays, and other compartments may include such a system.

    [0003] EP 2233175 A discloses a fire suppression system and method, and is prior art under Art. 54(3) EPC. US 5857525 discloses an inert gas fire fighting system having a pressure control valve. US 4566542 discloses a fire protection system for an aircraft. WO 00/41769 discloses fire suppression apparatus and methods.

    [0004] In general, such systems have a first high rate discharge unit utilized initially to bring in a sufficiently high agent concentration into the compartment. After expiration of a period of time, then the system switches to a lower rate discharge unit to maintain the demanded inerting concentration in the compartment.

    [0005] Halon use has been prohibited by the Montreal Protocol except for critical use areas. The airplane industry is one of the last remaining industries still with a critical use exemption. Halon 1301 production has been banned in developed countries since 1994. Recently, there have been proposals to replace Halon as the fire suppression agent. Finding an acceptable alternative, both in performance and space / weight issues is beginning to be an issue of concern, as Halon supplies and time are running out.

    [0006] Proposals have been made to utilize inert gas, as an example.

    [0007] Aircraft manufacturers desire weight reduction, and other Halon replacement options (HFC's etc) have too high a weight penalty . Candidate systems for Halon replacement showing equally good fire suppression performance have such a significantly higher weight compared to Halon systems, such that environmental benefits are outweighed by the additional fuel required.


    [0008] In an aspect of the present invention, there is provided a fire suppression system as claimed in claim 1.

    [0009] Further, a system is disclosed wherein a single gas supply communicates through a manifold to each of a plurality of compartments.

    [0010] In addition, a system is disclosed wherein a primary gas supply container switches to secondary gas supply containers once a pressure within the primary gas supply container drops below a predetermined amount.

    [0011] These and other features of the present invention can be best understood from the following specification and drawings, the following of which is a brief description.



    Figure 1 shows a first embodiment.

    Figure 2 shows a second embodiment.


    [0013] A system 20 is illustrated in Figure 1, and is to be mounted on a vehicle such as an aircraft. A primary gas container 22 includes a supply of an inert gas, or mixture of gases. Secondary gas containers 24 also include an inert gas or mixture. A valve 26 receives a control pressure from a pneumatic control 34. The container 22 communicates to a manifold 23 and a flow line 25 downstream of the manifold 23. Flow line 25 includes a pressure regulating valve 30 which is also controlled by the pneumatic control 34. A high pressure gas supply 32 supplies a control gas, which may be air, through a valve 36 to the control 34. The control 34 has flow lines 40 associated with valves 48 for each of zones A, B, and C, and a tap 42 for directing the control gas to the pressure regulating valve 30 to control the pressure delivered across the valve 30, and to each of the compartments A, B, and C, as illustrated in Figure 1.

    [0014] While a pneumatic control 34 is disclosed and controls each of the valves as described below pneumatically, other valve controls may be utilized such as hydraulic, mechanical or electronic controls.

    [0015] The valve 26 is a toggle valve such that when the pressure within the primary container 22 drops below a predetermined amount, a valve 28 associated with the secondary container will then open the secondary container such that flow will then pass from the secondary container 24 to the manifold 23. This can happen serially with each of the plurality of secondary containers 24.

    [0016] When a fire is detected within a compartment A, B, or C by a fire detector 52, a signal is sent to a control 34. A temperature sensor 100 and a pressure sensor 102 may also be incorporated into the compartments A, B, and C to provide additional control signals after the initial fire suppression. As an example, the pressure sensor 102 may sense a change in ambient pressure, and the temperature sensor 100 may sense an increase in average temperature in the protected area. Signals from these sensors can be utilized by the pneumatic control 34, which in turn can adjust the lower rate discharge until the fire risk is again under control.

    [0017] Once a fire is detected in a compartment, compartment A for example, then the control 34 acts to open the container 22 at its valve 26, and deliver an inert gas through the valve 30, to a manifold 50, through a relay valve 48 associated with the compartment A, and delivers the inert gas to nozzles 56 within the compartment A. Compartment A may be, for example, a cargo compartment on an aircraft. Compartment B may be an electric bay, while compartment C may be an auxiliary power unit. The control 34 controls the relay valve 48 through a pneumatic chamber 250. Pneumatic chamber 250 receives its control signal from a tap 46.

    [0018] When a fire is detected, inert gas is directed from the container 22 into the compartment A at a relatively high pressure, and thus at a relatively high rate. This high rate discharge is restricted to a very limited time, demanded to assure an effectively fast response to a fire threat, but without the risk of overfilling, which could cause damage by over-pressurization of the compartment and excessive loss of suppressing agent. Thus, after the set period of time, at a pressure which is calculated to have allowed the inert gas or mixture of gases to safely fill the compartment A to the required concentration, then the control 34 may switch the valve 30 to a lower pressure mode of operation. This would be more of a "sustaining" mode that will ensure inert gas will continue to fill the compartment A at a lower rate, and replace any leaking inert gas to keep the compartment sufficiently inerted until the aircraft can land.

    [0019] An over-pressure valve 54 is mounted on the manifold 50.

    [0020] Figure 2 shows an alternative embodiment 120. Many components in the alternative embodiment 120 are similar to the embodiment 20, and include the same reference number, only with one-hundred added. Thus, the control 134 again operates to control the valve 130, and the relay valves 148.

    [0021] However, in this embodiment, the manifold 150 also selectively receives a supply of nitrogen-enriched air from an onboard inert gas generation system 160. Such systems take in air, and provide a nitrogen-enriched air, such as to a fuel tank 164. This system incorporates a multi-way selector valve 162 which can selectively direct some, or all, of this gas through a flow meter 158, and into the manifold 50. Thus, this system will allow the use of nitrogen-enriched air in combination with the inert gas, particularly in the low pressure mode of operation as described above, which is entered as a "sustaining" mode. In addition, a oxygen analyzer 166 is provided to ensure there is not too much oxygen in this supply of air. In this embodiment, once the nitrogen-enriched air is directed into the compartment in the maintenance mode, the flow from the primary containers may be stopped entirely by the valve 130.

    [0022] At any time, should the control 134 determine that the nitrogen-enriched air is not sufficient for maintenance mode, then the valve 130 may be again reopened.

    [0023] There are many benefits to the combined system, and several of the disclosed features do operate synergistically in combination with each other. As an example, having a pressure regulated valve 30/130 delivering the agent to the manifold 50, allows a single manifold, flow valve, and containers 22/24 to supply suppression to each of the compartments A, B, and C, irrespective of the different demands for high rate discharge or low rate discharge caused by volume or leakage of the specific compartment. The valve 30/130 can accurately control the amount of gas delivered to the protected area. Previous separate systems were needed for the high rate discharge and low rate discharge per protected compartment/volume.

    [0024] In addition, the system is very amenable to modular construction. The modular construction allows the suppression system to be easily adapted or reconfigured according to changed aircraft deployment or reconfiguration of the cargo compartments.

    [0025] The containers 22/24/122/124 can be formed of lightweight fiber reinforced materials. The manifolds and valves can be formed of ceramic materials.

    [0026] Although embodiments of this invention have been disclosed, a worker of ordinary skill in this art would recognize that certain modifications would come within the scope of this invention. For that reason, the following claims should be studied to determine the true scope and content of this invention.


    1. A fire suppression system incorporating:

    a container (22) for supplying a fire suppression gas into a compartment (A) to be protected, wherein said container (22) communicates with a flow line (25) for leading to the compartment (A);

    a control (34) for controlling the fire suppression system, said flow line (25) including a valve (30) on said flow line (25), wherein said control (34) is configured to control said valve (30) to deliver a variable pressure across said valve (30) and to said flow line (25) from said container (22);

    wherein said control (34) is configured to control said valve to initially deliver a high pressure to said flow line (25) for a period of time and then switch to a lower pressure for a maintenance period after expiration of said period of time;

    characterised in that said control (34) is configured to receive feedback of at least one of a pressure and temperature associated with the compartment after the control (34) has switched the valve (30) to the lower pressure, and selectively move the valve (30) back toward higher pressures based upon said feedback.
    2. The system as set forth in claim 1, wherein said container (22) includes a plurality of containers (22,24), and there is a valve (26) associated with a main container (22) that switches to a secondary container (24) when a pressure within said main container (22) drops below a predetermined amount.
    3. The system as set forth in claim 2, wherein said switch from said main container (22) to said secondary container (24) is provided by a pneumatic control.
    4. The system as set forth in any preceding claim, wherein said control (34) for controlling said system is a pneumatic control.
    5. The system as set forth in any preceding claim, wherein said flow line (25) communicates with a manifold (23), and said manifold (23) communicating with a plurality of compartments (A,B,C), with each of said plurality of compartments (A,B,C) having a relay valve (48) to control the flow of agent from said manifold (23) into each individual compartment (A,B,C).
    6. The system as set forth in claim 5, wherein said relay valves (48) are actuated by a or said pneumatic control when a fire is detected in an associated compartment.
    7. The system as set forth in any preceding claim, wherein a nitrogen enriched gas is generated and supplied into the compartment after expiration of a period of time.
    8. The system as set forth in claim 7, wherein a generator (160) for generating nitrogen enriched gas communicates with a flow valve (162), said nitrogen enriched gas normally being directed to a fuel tank (164) associated with a vehicle receiving the fire suppression system, and said valve (162) switching the delivery of at least a portion of said nitrogen enriched gas into the compartment (A).
    9. The system as set forth in any preceding claim, wherein said system is associated with an aircraft.


    1. Feuerunterdrückungssystem, umfassend:

    einen Behälter (22) zum Zuführen eines Feuerunterdrückungsgases in eine zu schützende Kammer (A), wobei der Behälter (22) zum Führen in die Kammer (A) mit einer Strömungsleitung (25) in Kommunikation steht;

    eine Steuerung (34) zum Steuern des Feuerunterdrückungssystems, wobei die Strömungsleitung (25) ein Ventil (30) an der Strömungsleitung (25) beinhaltet, wobei die Steuerung (34) dazu konfiguriert ist, das Ventil (30) so zu steuern, dass ein variabler Druck vom Behälter (22) über das Ventil (30) und in die Strömungsleitung (25) bereitgestellt wird;

    wobei die Steuerung (34), dazu konfiguriert ist, das Ventil so zu steuern, dass zunächst für einen Zeitraum ein Hochdruck an die Strömungsleitung (25) bereitgestellt wird und dann, nachdem der Zeitraum verstrichen ist, für einen Wartungszeitraum zu einem Niederdruck gewechselt wird;

    dadurch gekennzeichnet, dass die Steuerung (34) dazu konfiguriert ist, eine Rückmeldung bezüglich zumindest entweder eines Drucks oder einer Temperatur, die der Kammer zugeordnet sind, zu empfangen, nachdem die Steuerung (34) das Ventil (30) zum Niederdruck gewechselt hat, und das Ventil (30) als Reaktion auf die Rückmeldung zurück zu höheren Drücken zu wechseln.

    2. System nach Anspruch 1, wobei der Behälter (22) eine Vielzahl von Behältern (22, 24) beinhaltet und ein Ventil (26) einem Hauptbehälter (22) zugeordnet ist und zu einem sekundären Behälter (24) wechselt, wenn ein Druck im Hauptbehälter (22) unter eine vorher festgelegte Menge abfällt.
    3. System nach Anspruch 2, wobei der Wechsel vom Hauptbehälter (22) zum sekundären Behälter (24) durch eine pneumatische Steuerung bereitgestellt wird.
    4. System nach einem der vorhergehenden Ansprüche, wobei die Steuerung (34) zum Steuern des Systems eine pneumatische Steuerung ist.
    5. System nach einem der vorhergehenden Ansprüche, wobei die Strömungsleitung (25) mit einem Verteiler (23) in Kommunikation steht und der Verteiler (23) mit einer Vielzahl von Kammern (A, B, C) in Kommunikation steht, wobei jede der Vielzahl von Kammern (A, B, C) ein Relaisventil (48) zum Steuern des Stroms eines Wirkstoffs vom Verteiler (23) in jede individuelle Kammer (A, B, C) aufweist.
    6. System nach Anspruch 5, wobei die Relaisventile (48) durch eine oder die pneumatische Steuerung betätigt werden, wenn ein Feuer in einer zugehörigen Kammer erfasst wird.
    7. System nach einem der vorhergehenden Ansprüche, wobei ein stickstoffangereichertes Gas erzeugt und der Kammer zugeführt wird, nachdem ein Zeitraum verstrichen ist.
    8. System nach Anspruch 7, wobei ein Generator (160) zum Erzeugen des stickstoffangereicherten Gases mit einem Strömungsventil (162) in Kommunikation steht, wobei das stickstoffangereicherte Gas normalerweise zu einem Kraftstofftank (164) geleitet wird, der einem Fahrzeug zugeordnet ist, welches das Feuerunterdrückungssystem aufnimmt, und das Ventil (162) die Abgabe zumindest eines Teils des stickstoffangereicherten Gases in die Kammer (A) umwechselt.
    9. System nach einem der vorhergehenden Ansprüche, wobei das System einem Luftfahrzeug zugeordnet ist.


    1. Système ignifuge incorporant :

    un contenant (22) pour l'alimentation en un gaz ignifuge dans un compartiment (A) à protéger, dans lequel ledit contenant (22) communique avec une conduite de flux (25) pour mener au compartiment (A) ;

    une commande (34) pour la commande du système ignifuge, ladite conduite de flux (25) incluant une valve (30) sur ladite conduite de flux (25), dans lequel ladite commande (34) est configurée pour commander ladite valve (30) pour fournir une pression variable à travers ladite valve (30) et à ladite conduite de flux (25) depuis ledit contenant (22) ;

    dans lequel ladite commande (34) est configurée pour commander ladite valve pour fournir initialement une haute pression à ladite conduite de flux (25) pour une période de temps et commuter ensuite à une pression inférieure pour une période de maintenance après expiration de ladite période de temps ;

    caractérisé en ce que ladite commande (34) est configurée pour recevoir un retour d'au moins une d'une pression et température associées au compartiment après que la commande (34) a commuté la valve (30) à la pression inférieure, et redéplacer sélectivement la valve (30) vers des pressions supérieures sur la base dudit retour.

    2. Système selon la revendication 1, dans lequel ledit contenant (22) inclut une pluralité de contenants (22, 24) et une valve (26) associée à un contenant principal (22) commute à un contenant secondaire (24) lorsqu'une pression dans ledit contenant principal (22) diminue sous une quantité prédéterminée.
    3. Système selon la revendication 2, dans lequel ladite commutation dudit contenant principal (22) audit contenant secondaire (24) est assurée par une commande pneumatique.
    4. Système selon une quelconque revendication précédente, dans lequel ladite commande (34) pour la commande dudit système est une commande pneumatique.
    5. Système selon une quelconque revendication précédente, dans lequel ladite conduite de flux (25) communique avec un collecteur (23), et ledit collecteur (23) communiquant avec une pluralité de compartiments (A, B, C), avec chacun de ladite pluralité de compartiments (A, B, C) présentant une valve de relais (48) pour commander le flux d'agent dudit collecteur (23) dans chaque compartiment individuel (A, B, C).
    6. Système selon la revendication 5, dans lequel lesdites valves de relais (48) sont actionnées par une ou ladite commande pneumatique lorsqu'un incendie est détecté dans un compartiment associé.
    7. Système selon une quelconque revendication précédente, dans lequel un gaz enrichi en azote est généré et fourni dans le compartiment après l'expiration d'une période de temps.
    8. Système selon la revendication 7, dans lequel un générateur (160) pour la génération d'un gaz enrichi en azote communique avec une valve de flux (162), ledit gaz enrichi en azote étant normalement dirigé vers un réservoir de carburant (164) associé à un véhicule recevant le système ignifuge, et ladite valve (162) commutant la fourniture d'au moins une portion dudit gaz enrichi en azote dans le compartiment (A).
    9. Système selon une quelconque revendication précédente, dans lequel ledit système est associé à un aéronef.


    Cited references


    This list of references cited by the applicant is for the reader's convenience only. It does not form part of the European patent document. Even though great care has been taken in compiling the references, errors or omissions cannot be excluded and the EPO disclaims all liability in this regard.

    Patent documents cited in the description