(19)
(11)EP 2 293 114 B1

(12)EUROPEAN PATENT SPECIFICATION

(45)Mention of the grant of the patent:
06.09.2017 Bulletin 2017/36

(21)Application number: 10450055.8

(22)Date of filing:  09.04.2010
(51)Int. Cl.: 
G01T 3/02  (2006.01)

(54)

Neutron energy spectrometer

Neutronenenergiespektrometer

Spectromètre à énergie neutronique


(84)Designated Contracting States:
AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO SE SI SK SM TR

(30)Priority: 02.09.2009 US 239375 P

(43)Date of publication of application:
09.03.2011 Bulletin 2011/10

(73)Proprietor: 3833364 Canada Inc. (operating as DETEC)
Gatineau, QC J8T 4J1 (CA)

(72)Inventor:
  • Dubeau, Jaques
    Gatineau QC J8T 4J1 (CA)

(74)Representative: Ellmeyer, Wolfgang 
Patentanwalt Mariahilferstrasse 50
1070 Wien
1070 Wien (AT)


(56)References cited: : 
WO-A1-98/25160
US-A- 5 278 417
JP-A- 2001 042 048
  
      
    Note: Within nine months from the publication of the mention of the grant of the European patent, any person may give notice to the European Patent Office of opposition to the European patent granted. Notice of opposition shall be filed in a written reasoned statement. It shall not be deemed to have been filed until the opposition fee has been paid. (Art. 99(1) European Patent Convention).


    Description

    Field of the invention



    [0001] The present invention relates generally to the field of radiation measurement and specifically to neutron energy spectrometry at nuclear power reactor sites and other types of installations where neutrons can be present.

    Background of the invention



    [0002] Inside reactor buildings, neutrons can have energies ranging over 9 orders of magnitude, from 25 meV (thermal energies) to 20 MeV. Neutrons interact with nuclei of the atoms inside the human body and may present a significant health risk to workers working in environments where these neutral particles are found. Neutrons can also be found at accelerator sites and around natural and man-made radiation sources.

    [0003] For greater worker safety, radiation safety officers must, on a regular basis, characterize the neutron fields inside the nuclear power plants using elaborate and heavy instruments. The measurements provided by these instruments are essential in mapping "hot" areas inside a reactor building and can assist in determining if the personal dosimeters in service fulfill adequately the monitoring needs. The amount of biological damage suffered by an exposed individual is dependent on the energy per unit tissue mass imparted by the incoming neutrons, i.e. the radiation dose, multiplied by a weighting factor that depends on the incident neutron energy. The product of the dose and the weighting factor is called the dose equivalent. Because the weighting factor can range from I to 20 it is imperative that the neutron energy be measured if the dose equivalent cannot be measured directly.

    [0004] Many neutron detection and dosimetry techniques and neutron energy characterization methods have been devised over the years. The following paragraphs provide a description of prior attempts to address the problem of determining the neutron spectra. These include simple thermal neutron counters, neutron dosimeters and neutron spectrometry systems.

    [0005] Simple thermal neutron counters are devices that count the low energy neutrons with a certain efficiency. These devices are commercially available and any of them can be used as part of the invention. Included in the category of "simple" neutron counters are the following three examples. These describe the best available options to be used in the invention because of their high neutron counting efficiencies. However others are possible. The prior art on simple neutron counters includes the following.

    [0006] U.S. Patent No. 3,102,198 to Bonner (1963) describes the now commonly used and commercially available Helium-3 thermal neutron counter. It is a thermal neutron counter that uses Helium as a counting gas that is enriched with the Helium-3 isotope. This gas offers a high detection efficiency for thermal neutron through the 3He(n,p)3H nuclear reaction.

    [0007] Boron trifluoride is also used as a gas in a thermal neutron counter similar to the one described above. The gas is designated as 10BF3, as it is highly enriched in 10B. This isotope of Boron offers a high detection efficiency for thermal neutrons through the 10B(n,α)7Li reaction.

    [0008] 6LiI(Eu) is a solid scintillator that detects thermal neutrons through the 6Li(n,α)3H reaction with a high efficiency. Energy from the nuclear reaction is converted to light photons and detected with a light detector.

    [0009] Prior art on neutron dosimeters methods include the following. The Anderson-Braun (Andersson I.O., Braun J., A neutron rem counter, Nucleaonik, vol. 6, pp. 237-241 (1964)) and Leake (Leake J.W., An improved spherical dose equivalent neutron detector, Nuclear Instruments and Methods, vol. 63, pp. 329-332 (1968)) detectors are two types of neutron dosimeter for the measurement of the dose equivalent without resorting to the prior measurement of the neutron energy spectrum. They consist of a thermal neutron counter surrounded by a shell of moderator, usually made of plastic such as polyethylene, of about 25 cm in diameter. Incident energetic neutrons are slowed down through collisions with the hydrogen atoms present in the moderator. When they reach thermal energies, the neutrons are then efficiently detected by the thermal neutron counter at the centre of the moderator. The device is a useful dosimeter in the range of 25 meV to 20 MeV but presents an inaccuracy in response of up to a factor of 5. Such instruments are calibrated to give neutron dose equivalent but do not provide neutron energy information. The size of the moderator is fixed.

    [0010] PCT Patent application No, WO 98/25160 to British Nuclear Fuels PLC (1998) describes a dual energy window neutron counter that includes not one, but two neutron detectors in a fixed moderating assembly. The first detector gives counting rates for neutrons in the range of thermal to 100 keV, while the second (inner) detector measures neutrons above the 100 keV. The resulting output is summed in a dose rate. The dual energy window neutron counter does not provide a neutron energy distribution nor does it measure actual energy distribution of the neutrons of the radiation field. The full measurement of the energy distribution in a large number of energy intervals is determined through neutron spectrometers and not through neutron counters.The tissue equivalent thermal neutron counter, the so-called Rossi-counter (Rossi, H. H.: Measurement of absorbed dose as distributed in LET and other parameters. Proc. IXth International Congress of Radiology, Munich, 1959 (Rajewsky, B.,Ed.). Stuttgart: Thieme 1960), is a spherical thermal neutron counter, usually of 5 to 12 cm in diameter, whose external shell is made of conductive plastic and which is filled with a counting gas that has nearly the same atomic composition as human muscle. Incident neutrons interact with the walls of the detector and secondary charged particles enter the gas and their specific energy loss is measured. This device is an "energy loss spectrometer" which provides no information on the incident neutron energy but which allows the neutron dose equivalent to be determined for neutron of energies in excess of 100 keV.

    [0011] U.S. Patent 5,278,417 to Sun (1994) describes a spherical detector surrounded by perforated shells of different types of moderator (polyethylene, lead and borated polyethylene) to allow the spherical dosimeter to provide dose equivalent in the GeV range of energies. All shells are all present at once and are not removable. The device is also not a neutron energy spectrometer.

    [0012] Prior art on spectrometry systems include the following. H. Ing et al. (Ing H., Clifford T., McLean T., Cousins T., Dhermaine J., ROSPEC - A simple reliable high resolution neutron spectrometer, Radiation Protection Dosimetry vol. 70 [1-4], p. 273-278 (1997)) describe a proton recoil spectrometer, a transportable instrument consisting of one or more gas detectors, which deduces the neutron energies from the energy imparted to protons of the counting gas inside the detector. This system provides very good energy resolution of the neutrons. However, it responds only to neutrons above a few 10's of keV and the sensitivity is lower than that of a thermal neutron counter surrounded by a moderator. From the energy spectrum, other quantities of interest, such as the dose equivalent, can be found using conversion factors such as those published in ICRP report 74 (ICRP. "Conversion coefficients for use in radiological protection against external radiation", Publication 74, (Oxford: Pergamon Press) (1996)). This system consists of more than one neutron counter and does not directly make use of a moderator layer.

    [0013] Two Japanese patents, Application No. 01-217424 by Mikio (1989) and Application No. 2006-196235 by Masahiro describe a thermal neutron detector embedded inside concentric hollow spherical shells. The energy response of both systems can be changed by filling or emptying the different hollow shells with moderating material. In the first of the two patents, the proposed moderating material is a liquid while in the second case it is powder. The shells are fixed, only their content is changed. The invention proposed herein does not call upon the filling and emptying of fixed shells and is more practical for use in an operational setting. Other Japanese developments in this area are Application No. 03-297453 by Hiroo, and the other Application No. 63-235646 by Takeo, however neither is able to provide a solution to a spectrometer, providing measurements only in a narrow band.

    [0014] Bramblett et al. (Bramblett R.L., Ewing R.L., Bonner T.W., A new type of neutron spectrometer, Nuclear Instruments and Methods Vol 9, p. 1-12 (1960)) describe a neutron spectrometer commonly referred to as Bonner Sphere System. The full spectrum from 25 meV to 20 MeV is deduced from the count rates measured by a thermal neutron detector inside polyethylene spheres of radii from 3 inches to 15 inches. Typically 7 to 12 spheres are used. The user must insert the detector into each sphere in turn and take as many measurements as there are spheres. From the energy spectrum, other quantities of interest, such as the dose equivalent, can be found using conversion factors such as those published in ICRP report 74. The Bonner Sphere System provides the most valuable information, for the following reasons: 1) it provides full energy spectra in the range of energies of 25 meV to 20 MeV, 2) it is a sensitive instrument that counts up to 1000 times faster than a proton recoil spectrometer. The disadvantages of the Bonner Sphere System are the following: 1) it is heavy: the full set of polyethylene spheres can weigh as much as 25 kg, 2) it is large: transport of the equipment may require 40 L of carrying capacity, 3) the data analysis is laborious: the conversion of the acquired data into neutron energy spectra requires the intervention of an expert user. The basic design of the Bonner Sphere system has not changed in over 45 years, as evidenced by a publication by Vega-Carrillo et al. (Vega-Carrillo H.R., Manzanares-Acuna E., Hernandez-Davila V.M., Mercado-Sanchez G.A., Response Matrix of a Multi-sphere Neutron Spectrometer with an 3He Counter, Revista Mexicana de Fisica, 51 (1), pp. 47-52 (2005)). However, recent work by Wiegel et al. (Wiegel B., Alevra A.V., NEMUS - the PTB neutron multi-sphere spectrometer: Bonner spheres and more, Nuclear Instruments and Methods, vol. A276, pp. 36, 2002) and Howell et al. (Howell R.M., Burgett E., Hertel N.E., Kry S.F., Wang Z., Salehpour M., Measurement of high-energy neutron spectra with a Bonner sphere extension system, Radiation Protection, vol. 168, p. 333, 2009) has aimed to extend the sensitivity of the Bonner Sphere System to near 1 GeV by surrounding one of the moderating spheres with concentric shells of high atomic number material such as copper, tungsten and lead. A Bonner Sphere System with an extended energy range can be used in applications of neutron spectrometry in space, high altitude air travel and around particle accelerators.

    [0015] Therefore, there is a need for a neutron spectrometer, wherein the spectra may be determined using a device that is less bulky, heavy and awkward than the "Bonner Spheres"-type spectrometer in the art, yet retaining the high sensitivity and wide energy response qualities which are so beneficial and attractive in this type of spectrometer.

    Summary of the invention



    [0016] The neutron spectrometer disclosed consists of a thermal neutron counter surrounded by multiple removable shells of moderator material as defined in claim 1. The thickness of the moderator around the counter can be varied by adding or removing shells, which fit around the counter like cylindrical "Russian" dolls. By varying the moderator's thickness, the device is made to respond preferentially to neutrons of different energies. The data acquisition is controlled by a personal computer, which receives data from the counter. A data analysis procedure, performed on the personal computer or manually allows the energy distribution of the incident neutrons to be deduced. Cylindrically shaped moderator shells allow the moderator assembly to be designed in a "Russian doll" configuration where the thermal neutron counter and smaller moderator shells are inserted into the larger moderator shells and provides multiple benefits over the traditional Bonner Sphere System for the routine measurement of neutron radiation fields inside nuclear reactors or at other locations where neutrons are encountered.

    [0017] In a preferred embodiment, the neutron spectrometer consists of a Helium-3 thermal neutron counter connected by cable to signal and data processing circuits, and a series of moderator shells and moderator lids. The series of cylindrical moderator shells are designed to fit within one another, like Russian Matryoshka dolls, with the counter at the center. The counter is placed within the smallest cylindrical moderator shell, and then a circular lid matching the smallest shell is placed on the opening of the first shell to close the first shell. This first closed shell is then placed within a second shell, which shell is closed with its corresponding circular lid. The cable is routed through the series of shells, preferably through the lids. A method for using the invention is also disclosed wherein the counter reading is taken from the fully-assembled neutron spectrometer, after which the outer cylindrical shell and circular lid pair is removed, and another measurement of the counter is recorded. This process of removing shell and lid pairs, and recording counter measurements, is continued until the last shell is removed, and a measurement is recorded using the bare counter.

    Brief Description of the Drawings



    [0018] 

    Fig. 1 is a perspective cut-away view of the assembled neutron spectrometer, according to one embodiment of the present invention;

    Fig. 2 is the response function for the 8 configurations of moderator and spectrometer, according to one embodiment of the present invention;

    Fig. 3 is the response of the largest cylindrical moderating shell as a function of angle of incidence of the radiation according to one embodiment of the present invention;

    Fig. 4 is a 252Cf fission neutron energy spectrum unfolded from the 8 data points; and

    Fig. 5 is a flowchart showing the steps of a method of use of the invention, according to one embodiment of the present invention.


    Detailed Description



    [0019] With reference to Figure 1 and according to one embodiment of the present invention, the neutron spectrometer consists of a cylindrical Helium-3 thermal neutron counter 10, and a set of cylindrical moderator shells and a set of matching moderator lids. One skilled in the art would know that many other thermal neutron detectors may be substituted for said counter 10 and achieve the same result, and that thermal neutron detectors with a sensitivity of 1 to 100 count/s/nv (i.e. counting volume of 4 to 40 cm3) provide adequate sensitivity for radiation protection applications. He/she would also know that, in very high neutron fields where active thermal neutron counters are susceptible to pulse pile-up, passive detectors such as thermoluminescent detectors (TLD) or activation foils could be used as thermal neutron flux integrators. The counter 10 is surrounded by a multitude of cylindrical moderator shells, each of which has a lid, and each of which, with corresponding lid, fits within the next progressively-larger shell and lid. The counter 10 is at the center of the spectrometer, and its pulse signal is routed to the external signal processing electronics by a small diameter shielded coaxial cable 20.

    [0020] The counter 10 and signal cable 20 are encased in a first hollow cylindrical moderator shell 30. The counter 10 and cable 20 may be removed from the first moderator shell 30, if desired. The first moderator shell 30 may be placed within the second cylindrical moderator, and the top of the first shell 30 will be flush with the top of the second moderator shell 50, such that the second moderator lid 60 may fit on top and close the second shell 50. The counter 10 protrudes through the second moderator lid 60, however the cable 20 is routed through the center of all further lids 80, 100, 120, 140 160. The moderator shell 50 has a groove 55 around the circumference of its opening that is approximately half of the thickness of moderator shell 50. Moderator lid 60 corresponds to the opening of moderator shell 50 and has a lip 57 corresponding to the groove 55 of moderator shell 50, so that the moderator lid 60 fits within the moderator shell 50 in a positive way, with the lip 57 engaging groove 55.

    [0021] One skilled in the art would appreciate that there are other ways for cylindrical moderator shells to be closed, and that the above groove 55 and lip 57 form is merely one manner in which to close the shell with its lid. For instance, in other embodiments there may be two or more pins (not shown) attached to the moderator lid, which protrude in a downward direction and engage with corresponding holes on the top of the moderator shell. Further, one skilled in the art would appreciate that in other embodiments the cylinder may be closed in a manner other than a lid. For instance, the hollow cylindrical moderator shell may be composed of two halves of a hollow cylinder, each half closed on one end, which halves are joined together around the next-smaller cylindrical moderator shell.

    [0022] This pattern of hollow cylindrical moderator shells and disc-shaped moderator lids may continue up to eleven pairs of shells and lids. In the depicted seven-shell spectrometer, eight combinations are possible. First, the counter 10 on its own; second, the counter 10 within the first shell 30; as a third combination, the counter 10 within the first shell 30, which is in turn within the second shell and lid pair 50, 60; as a fourth combination, the third combination within the third shell and lid pair 70, 80; as a fifth combination, the fourth combination within the further shell and lid pair 90, 100; as a sixth combination, the fifth combination within the fifth shell and lid pair 110, 120; as a seventh combination, the sixth combination within the sixth shell and lid pair 130, 140; and as an eighth combination, the seventh combination within the seventh shell and lid pair 150, 160. In another embodiment, the first shell 30 may be replaced by a shell and lid pair, analogous to the other shell and lid pairs.

    [0023] Each smaller pair of cylindrical moderator shell and moderator lid fits within the next-larger pair, much like Russian nested dolls (Matryoshka dolls). The fit between pairs of shells and lids is very snug, so as to permit only limited airspaces 180, the size of which is determined by the manufacturing process. Permitting a small airspace 180, rather than no airspace at all, facilitates removal of the smaller pair of shell and lid from a larger shell. Small air gaps of the order of 1 mm are allowed between each cylindrical moderating shells to facilitate the assembly and disassembly of the different moderator configurations. This airspace 180 facilitates the sliding of a smaller cylinder into a larger one. However, there is no or only minimal airspace 180 at the flat end of the cylinder because it is neither required nor desirable in that location. The presence of air gaps between shells allows the easy removal and insertion of the moderating shells one inside the other. A system with nested hollow cylinders, that operates in this way, allows the result of a lighter and more compact system than the multi-sphere Bonner Sphere System. The use of spherical shells, rather than cylindrical shells, is an alternate embodiment of the present neutron spectrometer. However, while effective, this embodiment is not as practical, in an operational setting, as the proposed neutron spectrometer in the above embodiment. Furthermore, a system with nested hollow cylinders may allow the mechanized addition or removal of moderating shells, thus allowing the spectrometer to perform neutron spectrometry in an automated fashion.

    [0024] The walls of the shells are of uniform thickness, and the sizes of the shells correspond with the most desirable energy and angular response for obtaining radiation measurements. The walls of the shells may be varied in thickness to favor counts in other energy levels, in a custom manner or as different sets of shells which complement each other. The fully assembled system, in one embodiment of the present invention, will have external dimensions of about 22 cm in diameter and 22 cm in length. The system will then be easily portable.

    [0025] The shells are made of hydrogen rich plastic material such as polyethylene, Polyoxymethylene (Delrin™) or nylon. The length and the internal and external diameters of each cylindrical shells are such that a smaller shell can be inserted into the next largest in a "Russian doll" fashion. In this way, the user can easily assemble a thermal neutron spectrometer surrounded by varying amount of moderator. For all possible configurations of moderator, it is part of the design of the neutron spectrometer that the external length and diameter of moderator provide a neutron response that is nearly isotropic with the angle of incidence of the neutrons. A small aperture for cable routing at the center of each of the lids must be provided at one of the flat ends of the cylindrical moderator. This may possibly disrupt the angular response for neutrons incident near this aperture. Such a limitation, however, is present in all detectors surrounded by a moderator, and the tolerance of the reading takes this into account. The moderating assembly could consist of 7 cylindrical moderator assemblies of polyethylene of density of 0.92 to 0.96 g/cc. A lesser or greater number of shells could be used to reduce or augment the energy resolution of the system. Other dimensions and a different number of moderating shells are possible and part of the neutron spectrometer so long as the diameter to length ratio preserves the angular isotropic response. Also, other moderating material could be used to construct the cylindrical shells. Other possible materials include, but are not limited to: other plastics formulations to those already mentioned above, and graphite. The exact dimensions necessary to achieve an isotropic response depends, in part, on the shape and diameter/length ratio of the thermal neutron detector at the center of the assembly.

    [0026] The total number of moderating shells is dictated by the energy resolution that is required by the user. Typically, the total number of shells will range from 5 to 11. In the present embodiment, 7 moderator shells are used. The larger the number of shells surrounding the counter 10, the greater the barrier of moderator between the neutron source and the counter 10. As the counter's 10 range of detection peaks at a certain neutron energy level, each successive combination of moderator thickness permits a different level of energy of neutron to be detected, as the neutrons are slowed by the moderator material to within the range of detection of the counter. The faster the neutron, the thicker the moderator material must be, relatively, to slow the neutron into the detection range of the counter.

    [0027] In one embodiment of the invention, the neutron spectrometer is limited in sensitivity to neutrons of a maximum energy of approximately 20MeV. One skilled in the art would appreciate that in another embodiment the sensitivity of the invention can be extended beyond the 20 MeV to approximately 1GeV of energy by surrounding the detector and moderator with embedded shells of high atomic number elements such as copper, lead and tungsten or gold or any other material with high energy response enhancing properties. In this embodiment, one or more of the shells may be made of, or coated with, a high atomic number element such as copper, lead, tungsten or gold, for instance.

    [0028] Some example configurations will consist of the following: (1) thermal neutron counter 10 without moderator, for the preferential detection of neutrons at thermal energies near 25 meV; (2) thermal neutron counter 10 surrounded by the first moderating shell 30, for the preferential detection of neutrons peaked at 1 eV; and (3) thermal neutron counter 10 surrounded by the first moderating shell 30, as well as the second moderating shell 50 and lid 60, for the detection of neutrons peaked near 10 eV. The assembly of the shells, and collection of the neutron data by the counter 10, is continued in this fashion until a moderating assembly is obtained where the detector response is peaked at neutron energies in the MeV region.

    [0029] The neutron spectrometer in the preferred embodiment provides for the 8 configurations described below. The neutron energy response curve, for every configuration, is shown in Figure 2.

    Configuration 1 (C-1): thermal neutron counter 10 alone

    Configuration 2 (C-2): Configuration C-1 inside first shell 30

    Configuration 3 (C-3): C-2 inside second shell and lid 50, 60

    Configuration 4 (C-4): C-3 inside third shells and lid 70, 80

    Configuration 5 (C-5): C-4 inside fourth shell and lid 90, 100

    Configuration 6 (C-6): C-5 inside fifth shell and lid 110, 120

    Configuration 7 (C-7): C-6 inside sixth shell and lid 130, 140

    Configuration 8 (C-8): C-7 inside seventh shell and lid 150, 160

    Each configuration provides a different neutron energy response as a function of energy as shown in Figure 2. The larger configurations, those with the larger amount of moderator, provide an enhanced response to higher energy neutrons.

    [0030] At a measurement location, the system is used to count neutrons for a preset counting time for each of the 8 configurations described above. This yields 8 data points from which an energy spectrum in 50 energy groups, from thermal to 20 MeV, is extracted. The proposed neutron spectrometer may make use of an automated or semi-automated data analysis method, using a computer and spectrum unfolding software, thus enhancing further the usefulness of the neutron spectrometer for field measurements. The analysis may also be performed entirely manually or by means of a computer aiding in the manual analysis.

    [0031] With reference to Figure 1 and according to one embodiment of the present invention, in an operational setting the neutron spectrum measurement method proceeds as follows. The thermal neutron counter 10 resides at the centre of the multiple shell and lid assembly, described above. A cable 20 connects the thermal neutron counter 10 to external amplification electronics (not shown). The electronics (not shown), in turn, connected to a pulse counter and a computer (not shown). In step 1010 the system is initiated; the counter 10 is reset and prepared for acquiring measurements, the electronics and computer are prepared to accept data collected by the counter 10, and all the moderating shells are assembled and embedded within one another. Once initiation 1010 is completed, the counter 10, which at this point in the present embodiment is within all 7 shells, proceeds to count neutrons as step 1020. The faster the neutron, the thicker the moderator material must be, relatively, to slow the neutron into the detection range of the counter. Therefore, with the largest number of shells around it, the counter will be recording the fastest neutrons that are measurable by the neutron spectrometer, using only polyethylene moderating shells. The counter 10 counts neutrons for the duration of a counting period. At the end of the counting period, the count data result is recorded in step 1030 and transmitted in step 1040 to the computer (not shown). The seventh moderator shell 150 and lid 160 are then removed in step 1050. Once the seventh shell 150 and lid 160 are removed, the method returns to step 1020, the counter 10 again counts the number of neutrons detected for the duration of a counting period, this time with the combination of all shells surrounding it, missing the seventh moderator shell 150 and lid 160, which have been removed. The count data is recorded in step 1030, and the data is transmitted to the computer in step 1040. One skilled in the art would know that the data may be stored within the counter and transmitted after the counting is complete, before step 1060. Once again a shell, this time the sixth moderator shell 130 and lid 140 are removed in step 1050. Steps 1020 to 1050 are repeated, through the fifth, fourth, third and second shell and lid combinations, until the first moderator shell 30 is removed in step 1050, and the counting is then finally performed with a bare, uncovered thermal neutron counter 10, in steps 1020 through 1040. Step 1050 is not possible to perform in this iteration, since there is no further moderator shell to remove. The process would, as described above, resemble the disassembly of a "Russian doll", with the largest moderator shells progressively being removed from the spectrometer between measurements. In step 1060 the computer computes the data points and displays the data for the user. The number of data points would equal the number of cylindrical shells in the system plus the counts for the bare counter. A data analysis program would make use of individual response functions, such as those shown in Figure 2. One skilled in the art would know that an additional measurement may be taken with the bare detector 10 surrounded by a foil of thermal neutron absorbing cadmium to provide an additional data point on the thermal neutron component of the field, or to ensure the functionality of the detector 10. The result of the analysis is an energy spectrum consisting of many tens of energy bins. As an example, Figure 4 shows the Cf-252 fission neutron spectrum "unfolded" into 50 energy bins. The data may be manipulated on its own or with other data, using statistical software, to produce various statistical and dosimetric outputs, such as variation over time, and dose equivalent rates.

    [0032] One skilled in the art would appreciate that the order of the steps making up the method may be reversed, and still fall within the scope of the present invention. In fact, any order of shell configurations may be used, so long as the counter 10 is able to count the number of neutrons detected for the duration of a counting period. In the preferred embodiment, all shell combinations would produce measurements, and a measurement would be taken with the bare counter 10, however, a smaller number of shell combinations may be used (for example, 11 shells, 9 shells, 7 shells, 5 shells, 3 shells and 1 shell) and produce a less accurate count in that there are fewer data points, and a larger range of neutron energies are extrapolated from the known data.


    Claims

    1. A neutron spectrometer, comprising

    a. a thermal neutron counter (10);

    b. two or more removable moderator shells (30, 50, 70, 90, 110, 130, 150), each moderator shell progressively smaller and adapted to fit in a nested manner within the next-larger moderator shell;

    c. two or more removable moderator lids (60, 80, 100, 120, 140, 160), each adapted to mate to and close a corresponding moderator shell and of the same diameter as said moderator shell;

    wherein each of the moderator shells fit in a nested manner within the next-larger shell, each moderator shell being closed by its corresponding moderator lid, and the thermal neutron counter being positioned inside the smallest of the two or more moderator shells.
     
    2. The neutron spectrometer of claim 1 wherein said moderator shells are formed in a hollow cylinder form, and said moderator lids are formed in a disc form.
     
    3. The neutron spectrometer of claim 2 wherein the largest moderator shell is between 15 and 40 cm in diameter and 15 to 40 cm in height.
     
    4. The neutron spectrometer of claim 2 wherein the largest moderator shell is 22 cm in diameter and 22 cm in height.
     
    5. The neutron spectrometer of claim 1 wherein the number of moderating shells ranges from 5 to 11.
     
    6. The neutron spectrometer of claim 1 wherein said thermal neutron counter has a sensitivity between 1 to 100 count per second for a thermal neutron fluence rate of 1 neutron per cm2 per second (1 to 100 cps/nv).
     
    7. The neutron spectrometer of claim 1 further comprising a cable wherein the cable connects to the said thermal neutron counter and passes through said two or more moderator shells, and said cable is adapted to transmit signal impulses to signal processing electronics.
     
    8. The neutron spectrometer of claim 1 wherein said moderator lids and walls of said moderator shells have a uniform thickness and are made of a material selected from the group consisting of polyethylene, Delrin™, nylon, plastic, and graphite.
     
    9. The neutron spectrometer of claim 1 wherein said moderator shells and said moderator lids are made of polyethylene having a density of 0.92 and 0.96 g/cc.
     
    10. The neutron spectrometer of claim 1 wherein a one or more of said moderator shells are made of a high atomic number metal.
     
    11. A neutron spectrometer according to claim 1, wherein the two or more removable moderator shells are formed by seven removable cylindrical moderator shells, and the two and more removable moderator lids are formed by seven removable disc-shaped moderator lids.
     
    12. The neutron spectrometer of claim 11 wherein said thermal neutron counter has a sensitivity between 1 to 100 cps/nv.
     
    13. The neutron spectrometer of claim 11 wherein said moderator lids and walls of said moderator shells have a uniform thickness and are made of a material selected from the group consisting of polyethylene, Delrin™, nylon, plastic, and graphite.
     
    14. The neutron spectrometer of claim 11 wherein the largest moderator shell is between 15 and 40 cm in diameter and 15 to 40 cm in height.
     
    15. A method of using the neutron spectrometer of claims 1 and 11, comprising the following steps:

    a. a thermal neutron counter and a pulse counter are initiated and the neutron spectrometer is assembled;

    b. said thermal neutron counter counts neutrons for the duration of a counting period;

    c. a count data result is recorded;

    d. the count data result is transmitted to a computer;

    e. a moderating shell is removed from said neutron spectrometer;

    f. steps b through e are repeated until no further moderating shell remains to be removed from said neutron spectrometer; and

    g. said computer calculates the processes the data points and displays a result.


     


    Ansprüche

    1. Neutronenspektrometer, das Folgendes umfasst:

    a. eine Zählvorrichtung für thermische Neutronen (10);

    b. zwei oder mehr entfernbare Moderatorhüllen (30, 50, 70, 90, 110, 130, 150), wobei jede Moderatorhülle fortschreitend kleiner ist und geeignet ist, um in die nächstgrößere Moderatorhülle geschachtelt zu sein;

    c. zwei oder mehr entfernbare Moderatorabdeckungen (60, 80, 100, 120, 140, 160), die jeweils geeignet sind, in eine entsprechende Moderatorhülle einzugreifen und diese zu verschließen und denselben Durchmesser aufweisen wie diese Moderatorhülle;

    wobei jede der Moderatorhüllen in die nächstgrößere Hülle geschachtelt ist, jede Moderatorhülle durch die entsprechende Moderatorabdeckung verschlossen ist und die thermische Neutronenzählvorrichtung im Inneren der kleinsten der zwei oder mehreren Moderatorhüllen angeordnet ist.
     
    2. Neutronenspektrometer nach Anspruch 1, wobei die Moderatorhüllen in Hohlzylinderform ausgebildet sind und die Moderatorabdeckungen scheibenförmig ausgebildet sind.
     
    3. Neutronenspektrometer nach Anspruch 2, wobei die größte Moderatorhülle einen Durchmesser von 15 bis 40 cm und eine Höhe von 15 bis 40 cm aufweist.
     
    4. Neutronenspektrometer nach Anspruch 2, wobei die größte Moderatorhülle einen Durchmesser von 22 cm und eine Höhe von 22 cm aufweist.
     
    5. Neutronenspektrometer nach Anspruch 1, wobei die Anzahl an Moderatorhüllen 5 bis 11 beträgt.
     
    6. Neutronenspektrometer nach Anspruch 1, wobei die thermische Neutronenzählvorrichtung eine Sensibilität zwischen 1 und 100 Impulse je Sekunde für eine Flussrate thermischer Neutronen von 1 Neutron je cm2 je Sekunde (1 bis 100 cps/nv) aufweist.
     
    7. Neutronenspektrometer nach Anspruch 1, das ferner ein Kabel umfasst, wobei das Kabel mit der thermischen Neutronenzählvorrichtung verbunden ist und durch die zwei oder mehreren Moderatorhüllen verläuft und wobei das Kabel geeignet ist, um Signalimpulse an Signalverarbeitungselektronik zu übertragen.
     
    8. Neutronenspektrometer nach Anspruch 1, wobei die Moderatorabdeckungen und Wände der Moderatorhüllen eine einheitliche Dicke aufweisen und aus einem Material ausgewählt aus der Gruppe bestehend aus Polyethylen, Delrin™, Nylon, Kunststoff und Graphit bestehen.
     
    9. Neutronenspektrometer nach Anspruch 1, wobei die Moderatorhüllen und die Moderatorabdeckungen aus Polyethylen mit einer Dichte von 0,92 und 0,96 g/cm3 bestehen.
     
    10. Neutronenspektrometer nach Anspruch 1, wobei eine oder mehrere der Moderatorhüllen aus einem Metall mit hoher Kernladungszahl bestehen.
     
    11. Neutronenspektrometer nach Anspruch 1, wobei die zwei oder mehreren entfernbaren Moderatorhüllen durch sieben entfernbare zylinderförmige Moderatorhüllen gebildet werden und die zwei oder mehreren entfernbaren Moderatorabdeckungen durch sieben entfernbare scheibenförmige Moderatorabdeckungen gebildet werden.
     
    12. Neutronenspektrometer nach Anspruch 11, wobei die thermische Neutronenzählvorrichtung eine Sensibilität zwischen 1 und 100 cps/nv aufweist.
     
    13. Neutronenspektrometer nach Anspruch 11, wobei die Moderatorabdeckungen und Wände der Moderatorhüllen eine einheitliche Dicke aufweisen und aus einem Material ausgewählt aus der Gruppe bestehend aus Polyethylen, Delrin™, Nylon, Kunststoff und Graphit bestehen.
     
    14. Neutronenspektrometer nach Anspruch 11, wobei die größte Moderatorhülle einen Durchmesser von 15 bis 40 cm und eine Höhe von 15 bis 40 cm aufweist.
     
    15. Verfahren zur Verwendung eines Neutronenspektrometers nach den Ansprüchen 1 und 11, wobei das Verfahren folgende Schritte umfasst:

    a. Initiieren einer thermischen Neutronenzählvorrichtung und einer Impulszählvorrichtung und Zusammenfügen des Neutronenspektrometers;

    b. Zählen von Neutronen durch die thermische Neutronenzählvorrichtung über die Dauer einer Zählperiode hinweg;

    c. Aufzeichnen eines Zähldatenergebnisses;

    d. Übertragung des Zähldatenergebnisses an einen Computer;

    e. Entfernung einer Moderatorhülle von dem Neutronenspektrometer;

    f. Wiederholung der Schritte b bis e, bis keine weitere Moderatorhülle mehr von dem Neutronenspektrometer entfernt werden kann;

    g. Berechnung und Verarbeitung der Datenpunkte und Anzeige eines Ergebnisses durch den Computer.


     


    Revendications

    1. Spectromètre de neutrons comprenant :

    a. un compteur de neutrons thermiques (10) ;

    b. deux ou plusieurs revêtements modérateurs démontable (30, 50, 70, 90, 110, 130, 150), chacun desdits revêtements modérateurs étant plus petit que le précédent et adapté à être emboîté dans le revêtement modérateur immédiatement supérieur ;

    c. deux ou plusieurs couvercles modérateurs démontables (60, 80, 100, 120, 140, 160), chacun d'entre eux étant adapté à s'encliqueter dans et fermer le revêtement modérateur correspondant et ayant le même diamètre que ledit revêtement modérateur ;

    caractérisé en ce que chacun des revêtements modérateurs est emboîté dans le revêtement modérateur immédiatement supérieur, chacun des revêtements modérateurs est fermé par le couvercle modérateur correspondant et le compteur de neutrons thermiques est positionné à l'intérieur du plus petit des deux ou plusieurs revêtements modérateurs.
     
    2. Spectromètre de neutrons selon la revendication 1, caractérisé en ce que lesdits revêtements modérateurs sont en forme de cylindre creux et lesdits couvercles modérateurs sont en forme de disque.
     
    3. Spectromètre de neutrons selon la revendication 2, caractérisé en ce que le revêtement modérateur le plus grand est d'un diamètre de 15 à 40 cm et d'une hauteur de 15 à 40 cm.
     
    4. Spectromètre de neutrons selon la revendication 2, caractérisé en ce que le revêtement modérateur le plus grand d'un diamètre de 22 cm et d'une hauteur de 22 cm.
     
    5. Spectromètre de neutrons selon la revendication 1, caractérisé en ce que le nombre de revêtements modérateurs varie de 5 à 11.
     
    6. Spectromètre de neutrons selon la revendication 1, caractérisé en ce que ledit compteur de neutrons thermiques a une sensibilité de 1 à 100 coups par seconde pour un taux de fluence de neutrons thermiques d'un neutron par cm2 par seconde (1 à 100 cps/nv).
     
    7. Spectromètre de neutrons selon la revendication 1, comprenant davantage un câble, caractérisé en ce que ledit câble est relié audit compteur de neutrons thermiques et traverse lesdits deux ou plusieurs revêtements modérateurs et ledit câble est adapté à transmettre des impulsions de signaux à un dispositif électronique de traitement des données.
     
    8. Spectromètre de neutrons selon la revendication 1, caractérisé en ce que lesdits couvercles modérateurs et les parois desdits revêtements modérateurs sont d'une épaisseur uniforme et sont faits d'un matériau choisi du groupe qui comporte le polyéthylène, Delrin™, le nylon, les matières plastiques et le graphite.
     
    9. Spectromètre de neutrons selon la revendication 1, caractérisé en ce que lesdits revêtements modérateurs et lesdits couvercles modérateurs sont faits d'un polyéthylène avec une densité de 0,92 et 0,96 g/cm3.
     
    10. Spectromètre de neutrons selon la revendication 1, caractérisé en ce qu'un ou plusieurs desdits revêtements modérateurs est/sont fait/s d'un métal d'un nombre atomique élevé.
     
    11. Spectromètre de neutrons selon la revendication 1, caractérisé en ce que lesdits deux ou plusieurs revêtements modérateurs démontables sont formés par sept revêtements modérateurs cylindriques démontables et les deux ou plusieurs couvercles modérateurs démontables sont formés par sept couvercles modérateurs démontables en forme de disque.
     
    12. Spectromètre de neutrons selon la revendication 11, caractérisé en ce que ledit compteur de neutrons thermiques a une sensibilité de 1 à 100 cps/nv.
     
    13. Spectromètre de neutrons selon la revendication 11, caractérisé en ce que lesdits couvercles modérateurs et les parois desdits revêtements modérateurs sont d'une épaisseur uniforme et sont faits d'un matériau choisi du groupe qui comporte le polyéthylène, Delrin™, le nylon, les matières plastiques et le graphite.
     
    14. Spectromètre de neutrons selon la revendication 11, caractérisé en ce que le revêtement modérateur le plus grand est d'un diamètre entre 15 et 40 cm et d'une hauteur entre 15 et 40 cm.
     
    15. Procédé de l'utilisation d'un spectromètre de neutrons selon les revendications 1 et 11, le procédé comprenant les étapes suivantes :

    a. un compteur de neutrons thermiques et d'un compteur d'impulsion sont initiés et le spectromètre de neutrons est assemblé ;

    b. ledit compteur de neutrons compte les neutrons pendant la durée d'une période de comptage ;

    c. les données de comptage résultantes sont enregistrées ;

    d. lesdites données de comptage résultantes sont transmises à un ordinateur ;

    e. un revêtement modérateur est démonté dudit spectromètre de neutrons ;

    f. les étapes b à e sont répétées jusqu'à ce qu'il y n'ait plus de revêtement modérateur à démonter dudit spectromètre de neutrons ; et

    g. ledit ordinateur calcule et traite les points de données et affiche un résultat.


     




    Drawing


















    REFERENCES CITED IN THE DESCRIPTION



    This list of references cited by the applicant is for the reader's convenience only. It does not form part of the European patent document. Even though great care has been taken in compiling the references, errors or omissions cannot be excluded and the EPO disclaims all liability in this regard.

    Patent documents cited in the description




    Non-patent literature cited in the description