(19)
(11)EP 2 306 530 B1

(12)EUROPEAN PATENT SPECIFICATION

(45)Mention of the grant of the patent:
03.10.2018 Bulletin 2018/40

(21)Application number: 09800538.2

(22)Date of filing:  17.07.2009
(51)International Patent Classification (IPC): 
H01L 33/36(2010.01)
H01L 33/62(2010.01)
H01L 27/15(2006.01)
H01L 33/00(2010.01)
(86)International application number:
PCT/KR2009/003973
(87)International publication number:
WO 2010/011057 (28.01.2010 Gazette  2010/04)

(54)

SEMICONDUCTOR LIGHT-EMITTING DEVICE

LICHTEMITTIERENDES HALBLEITERBAUELEMENT

DISPOSITIF ELECTROLUMINESCENT A SEMICONDUCTEUR


(84)Designated Contracting States:
AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO SE SI SK SM TR

(30)Priority: 24.07.2008 KR 20080072184

(43)Date of publication of application:
06.04.2011 Bulletin 2011/14

(73)Proprietor: LG Innotek Co., Ltd.
Seoul, 04637 (KR)

(72)Inventor:
  • JEONG, Hwan Hee
    Ulsan 680-040 (KR)

(74)Representative: Zardi, Marco 
M. Zardi & Co. SA Via Pioda 6
6900 Lugano
6900 Lugano (CH)


(56)References cited: : 
EP-A2- 1 601 019
KR-A- 20060 004 504
US-A1- 2002 028 527
JP-A- 2007 157 926
KR-A- 20070 118 849
US-A1- 2005 167 680
  
      
    Note: Within nine months from the publication of the mention of the grant of the European patent, any person may give notice to the European Patent Office of opposition to the European patent granted. Notice of opposition shall be filed in a written reasoned statement. It shall not be deemed to have been filed until the opposition fee has been paid. (Art. 99(1) European Patent Convention).


    Description

    [Technical Field]



    [0001] The embodiment relates to a semiconductor light emitting device and a method for manufacturing the same.

    [Background Art]



    [0002] A III-V group nitride semiconductor has been variously applied as an optical device including blue/green light emitting diode (LED), high-speed switching devices such as a metal semiconductor field effect transistor (MOSFET), a hetero junction field effect transistor (HEMT), etc., and a light source of lighting and a display apparatus, etc. In particular, a light emitting device using the III group nitride semiconductor can implement a high efficiency light emission, having a direct transition type band gap that correspond to the region from visible rays to ultraviolet rays.

    [0003] The nitride semiconductor has been mainly used as a light emitting diode (LED) or a laser diode (LD), and studies for improving a manufacturing process or optical efficiency have been continued. An example of a semiconductor light emitting device according to the prior art is known from JP 2007 157926.

    [Disclosure]


    [Technical Problem]



    [0004] The embodiment provides a semiconductor light emitting device that
    comprises a light emitting unit comprising a plurality of compound semiconductor layers and an electrostatic protection unit.

    [0005] The embodiment provides a semiconductor light emitting device in which the light emitting unit and the electrostatic protection unit comprise the same semiconductor layer structure.

    [0006] The embodiment provides a semiconductor light emitting device that can reinforce the ESD (electrostatic discharge) immunity of the light emitting unit.

    [Technical Solution]



    [0007] An embodiment of the present invention provides a semiconductor light emitting device comprising: a second electrode layer; a light emitting unit comprising a plurality of compound semiconductor layers on one portion of the second electrode layer; a first insulating layer on the other portion of the second electrode layer; an electrostatic protection unit comprising a plurality of compound semiconductor layer on the first insulating layer; a first electrode layer electrically connecting the light emitting unit to the electrostatic protection unit; and a wiring layer electrically connecting the electrostatic protection unit to the second electrode layer, along with the further features as recited in claim 1.

    [Advantageous Effects]



    [0008] The embodiment can provide a semiconductor light emitting device having strong ESD immunity. The embodiment can provide a vertical semiconductor light emitting device having an electrostatic protection unit.

    [0009] The embodiment can implement the electrical reliability of the vertical semiconductor light emitting device.

    [Description of Drawings]



    [0010] These and other objects, features, and advantages of preferred embodiments of the present invention will be more fully described in the following detailed description, taken in conjunction with the accompanying drawings. In the drawings:

    FIG. 1 is a side cross-sectional view showing a semiconductor light emitting device according to the embodiment;

    FIG. 2 is a graph showing the operation characteristics of the light emitting device and the protection device of FIG. 1; and

    FIGS. 3 to 12 are diagrams showing manufacturing processes of the semiconductor light emitting device according to the embodiment.


    [Best Mode]



    [0011] Reference will now be made in detail to the embodiments of the present disclosure, examples of which are illustrated in the accompanying drawings.

    [0012] In the following description, it will be understood that when a layer or film is referred to as being 'on' another layer or substrate, it may be directly on the another layer or substrate, or intervening layers may also be present. Further, it will be understood that when a layer is referred to as being 'under' another layer, it may be directly under the another layer, and one or more intervening layers may also be present. In addition, it will also be understood that when a layer is referred to as being 'between' two layers, it may be the only layer between the two layers, or one or more intervening layers may also be present.

    [0013] FIG. 1 is a side cross-sectional view showing a semiconductor light emitting device according to the embodiment, and FIG. 2 is a graph showing the operation characteristics of FIG. 1.

    [0014] Referring to FIG. 1, the semiconductor light emitting device 100 comprises a light emitting unit 101, an electrostatic protection unit 103, a second electrode layer 160, a conductive supporting member 170, a first electrode layer 180, and a wiring layer 182.

    [0015] The semiconductor light emitting device 100 comprises a LED (light emitting diode) using a III-V group compound semiconductor, wherein the LED may be a colored LED that emits light having blue, green or red, etc. or a UV LED. The light emitted from the LED may be implemented variously within the technical scope of the embodiment.

    [0016] The light emitting unit 101 and the electrostatic protection unit 103 comprise a plurality of semiconductor layers using a III-V group compound semiconductor. Also, the light emitting unit 101 and the electrostatic protection unit 103 are formed having the same semiconductor layer structure.

    [0017] The light emitting unit 101 comprises a first conductivity type semiconductor layer 110 (first conductive type semiconductor layer 110), a first active layer 120, and a second conductivity type semiconductor layer 130 (second conductive type semiconductor layer 130). The electrostatic protection unit 103 comprises a third semiconductor layer 112 (third conductive type semiconductor layer 112), a second active layer 122, and a fourth semiconductor layer 132 (fourth conductive type semiconductor layer 132).

    [0018] The first conductive type semiconductor layer 110 is formed of the same semiconductor material as the third conductive type semiconductor layer 112. The first active layer 120 is formed of the same semiconductor material as the second active layer 122. The second conductive type semiconductor layer 130 is formed of the same semiconductor material as the fourth conductive type semiconductor layer 132.

    [0019] The first conductive type semiconductor layer 110 and the third conductive type semiconductor layer 112 may be selected from the III-V group compound semiconductor doped with a first conductive dopant, for example, GaN, A1N, AlGaN, InGaN, InN, InAlGaN, AlInN, AlGaAs, GaP, GaAs, GaAsP, and AlGaInP, etc. When the first conductive type is a N type semiconductor layer, the first conductive type dopant comprises a N type dopant such as Si, Ge, Sn, Se, and Te, etc. The first conductive type semiconductor layer 110 and the third conductive type semiconductor layer 112 may be formed in a single layer or a multi layer, and they are not limited thereto.

    [0020] A roughness pattern may be formed on the lower surface of the first conductive type semiconductor layer 110.

    [0021] The first active layer 120 is formed on the first conductive type semiconductor layer 110, and the second active layer 122 is formed on the third conductive type semiconductor layer 112.

    [0022] The first active layer 120 and the second active layer 122 may be formed having a single quantum well structure or a multi-quantum well structure. The first and second active layers 120 and 122 may be formed having a period of a well layer/a barrier layer using the III-V group compound semiconductor material, for example, having a period of InGaN well layer/GaN barrier layer.

    [0023] A conductive clad layer may be formed on and/or under the first active layer 120 and the second active layer 122, wherein the conductive clad layer may be formed a AlGaN based semiconductor.

    [0024] The second conductive type semiconductor layer 130 is formed on the first active layer 120, and the fourth conductive type semiconductor layer 132 is formed on the second active layer 120.

    [0025] The second conductive type semiconductor layer 130 and the fourth conductive type semiconductor layer 132 may be selected from the III-V group compound semiconductor doped with a second conductive dopant, for example, GaN, AlN, AlGaN, InGaN, InN, InAlGaN, AlInN, AlGaAs, GaP, GaAs, GaAsP, and AlGaInP, etc. When the second conductive type is a P type semiconductor layer, the second conductive type dopant comprises a P type dopant such as Mg and Ze, etc. The second conductive type semiconductor layer 130 and the fourth conductive type semiconductor layer 132 may be formed in a single layer or a multi layer, and they are not limited thereto.

    [0026] A third conductive type semiconductor layer, for example, a N type semiconductor layer or a P type semiconductor layer, may be formed on the second conductive type semiconductor layer 130. A third conductive type semiconductor layer, for example, a N type semiconductor layer or a P type semiconductor layer, may be formed on the fourth conductive type semiconductor layer 132.

    [0027] Here, the first and third conductive type semiconductor layers 110 and 112 may be formed as the P type semiconductors, and the second and fourth conductive type semiconductor layers 130 and 132 may be formed as the N type semiconductors. Therefore, the light emitting unit 110 and the electrostatic protection unit 103 may comprise at least one of a N-P junction structure, a P-N junction structure, N-P-N junction structure, and a P-N-P junction structure.

    [0028] Meanwhile, a first electrode layer 180 is formed under the first conductive type semiconductor layer 110. The first electrode layer 180 may be formed in a predetermined pattern, and it is not limited thereto. One end 180A of the first electrode layer 180 is connected to the lower part of the first conductive type semiconductor layer 110, and the other end 180B of the first electrode layer 180 is connected to a second contact layer 152 of the electrostatic protection unit 103.

    [0029] A wiring layer 182 is formed under the third conductive type semiconductor layer 112, wherein the wiring layer 182 may be formed in a predetermined wiring pattern.

    [0030] One end 182A of the wiring layer 182 is connected to the lower part of the third conductive type semiconductor 112, and the other end 182B thereof is directly or indirectly contacted to the conductive supporting member 170.

    [0031] A second electrode layer 160 is formed on the light emitting unit 101 and the electrostatic protection unit 103, and the conductive supporting member 170 is formed on the second electrode layer 160.

    [0032] The second electrode layer 160 may be formed of at least one of Al, Ag, Pd, Rh and Pt, a metal material of a reflectivity of 50% or more, etc. or a alloy thereof, and the conductive supporting member 170 may be implemented as copper (Cu), gold (Au), nickel (Ni), molybdenum (Mo), copper-tungsten (Cu-W), carrier wafers (e.g.: Si, Ge, GaAs, ZnO, and SiC etc.). The conductive supporting member 160 may be formed using an electro deposition method, and it is not limited thereto.

    [0033] The second electrode layer 160 and the conductive supporting member 170 may be defined as a second electrode unit that supplies power of a second polarity, and the second electrode unit may be formed of electrode material in a single layer or a multi layer, or may be attached using adhesives.

    [0034] A first insulating layer 140 is formed on the outer periphery of the lower surface of the second electrode layer 160. The first insulating layer 140 may be formed in any one shape of a band shape, a ring shape, and a frame shape. The first insulating layer 140 allows the interval between the second electrode layer 160 and the light emitting unit 101 to be spaced. The first insulating layer 140 is formed of insulating material such as SiO2, Si3N4, Al2O3, and TiO2, etc. The electrostatic protection unit 103 is disposed under the other portion of the first insulating layer 140.

    [0035] A first contact layer 150 may be formed between the second electrode layer 160 and the second conductive type semiconductor layer 130 of the light emitting unit 101, and a second contact layer 152 may be formed between the first insulating layer 140 and the fourth conductive type semiconductor layer 132 of the electrostatic protection unit 103.

    [0036] The first contact layer 150 and the second contact layer 152 may be selectively formed of ITO, IZO(In-ZnO), GZO(Ga-ZnO), AZO (Al-ZnO), AGZO(Al-Ga ZnO), IGZO (In-Ga ZnO), IrOx, RuOx, Ni/IrOx/Au, Ni/IrOx/Au/ITO, Ag, Ni, Al, Rh, Pd, Ir, Ru, Mg, Zn, Pt, Au, Hf, a metallic oxide and material consisting of a selective combination thereof. The first contact layer 150 and the second contact layer 152 are formed as ohmic contact characteristics, making it possible to improve electrical characteristics.

    [0037] The first contact layer 150 and/or the second contact layer 152 may be formed in a layer or plural patterns, and they may be modified variously within the technical range of the embodiment. Also, the first contact layer 150 may not be formed.

    [0038] The first insulating layer 140 is formed on the second contact layer 152 to allow it to be electrically opened with the second electrode layer 160.

    [0039] The first electrode layer 180 electrically connects the first conductive type semiconductor layer 110 to the second contact layer 152. The second insulating layer 125 prevents the interlayer short of the light emitting unit 101. The second insulating layer 125 is formed between the first electrode layer 180 and the respective layers 110, 120, and 130 of the light emitting unit 101, thereby preventing the interlayer short of the light emitting unit 101 by the first electrode layer 180.

    [0040] The wiring layer 182 allows between the third conductive type semiconductor layer 112 of the electrostatic protection unit 103 and the second electrode layer 160 to be electrically connected. A third insulating layer 127 prevents the interlayer short of the electrostatic protection unit 103. The third insulating layer 127 is formed between the respective layers 112, 122, and 132 of the electrostatic protection unit 103, thereby preventing the interlayer short of the electrostatic protection unit 103 by the wiring layer 182.

    [0041] The first insulating layer 140, the second insulating layer 125, and the third insulating layer may be formed having a thickness of about 0.1 to 2µm, respectively, and they are not limited thereto.

    [0042] The electrostatic protection unit 103 is connected to the light emitting unit 101 in parallel based on the second electrode layer 160, making it possible to protect the light emitting unit 101. Here, the electrostatic protection unit 103 may be formed having a size less than 50% within the semiconductor light emitting device 100.

    [0043] The light emitting unit 101 and the electrostatic protection unit 103 are spaced and integrated in the semiconductor light emitting device 100, making it possible to protect the light emitting unit 101 from ESD.

    [0044] If a forward direction bias is supplied through the first electrode layer 180 and the conductive supporting member 170, the semiconductor light emitting device 100 is operated in a LED region as shown in FIG. 2. Also, if abnormal voltage is applied such as ESD (electrostatic discharge), the electrostatic protection unit 103 is operated in a zener area as shown in FIG. 2, thereby protecting the light emitting unit 101. Here, if the size of the electrostatic protection unit 103 is increased, the protecting characteristics of the zener area is moved to a M1 direction, thereby making it possible to protect the light emitting unit 100 from ESD of 5KV or more.

    [0045] The embodiment can provide the vertical semiconductor light emitting device 100 having the electrostatic protection unit and having the strong ESD immunity, making it possible to improve the electrical reliability of the vertical semiconductor light emitting device.

    [0046] FIGS. 3 to 12 are diagrams showing manufacturing processes of the semiconductor light emitting device according to the embodiment.

    [0047] Referring to FIGS. 3 and 4, a substrate 105 is loaded as a growth apparatus. The growth apparatus may be formed by an electron beam evaporator, a physical vapor deposition (PVD), a chemical vapor depositing (CVD), a plasma laser deposition (PLD), a dual-type thermal evaporator, a sputtering, and a metal organic chemical vapor deposition (MOCVD), etc., but it is not limited thereto.

    [0048] A plurality of semiconductor layers may be formed on the substrate 105 using a II to VI group compound semiconductor.

    [0049] A first conductive type semiconductor layer 110 is formed on the substrate 105, a first active layer 120 is formed on the first conductive type semiconductor layer 110, and a second conductive type semiconductor layer 130 is formed on the first active layer 120.

    [0050] The substrate 105 may be selected from a group consisting of sapphire substrate (Al2O3), GaN, SiC, ZnO, Si, GaP, InP, Ga2O3, an insulation substrate, a conductive substrate, and GaAs, etc. An unevenness pattern may be formed on the upper surface of the substrate 105. Also, a layer using the II-VI group compound semiconductor, for example, a buffer layer and/or an undoped semiconductor layer, may also be formed on the substrate 105.

    [0051] The first conductive type semiconductor layer 110 may be selected from the III-V group compound semiconductor doped with a first conductive dopant, for example, GaN, AlN, AlGaN, InGaN, InN, InAlGaN, AlInN, AlGaAs, GaP, GaAs, GaAsP, and AlGaInP, etc. When the first conductive type is a N type semiconductor layer, the first conductive type dopant comprises a N type dopant such as Si, Ge, Sn, Se, and Te, etc. The first conductive type semiconductor layer 110 may be formed in a single layer or a multi layer, and it is not limited thereto.

    [0052] The first active layer 120 is formed on the first conductive type semiconductor layer 110, wherein the first active layer 120 may be formed having a single quantum well structure or a multi quantum well structure.

    [0053] The first active layer 120 may be formed having a period of a well layer/a barrier layer using the III-V group compound semiconductor material, for example, having a period of InGaN well layer/GaN barrier layer.

    [0054] A conductive clad layer may be formed on and/or under the first active layer 120, wherein the conductive clad layer may be formed a AlGaN based semiconductor.

    [0055] The second conductive type semiconductor layer 130 is formed on the first active layer 120, wherein the second conductive type semiconductor layer 130 may be selected from the III-V group compound semiconductor doped with a second conductive dopant, for example, GaN, AlN, AlGaN, InGaN, InN, InAlGaN, AlInN, AlGaAs, GaP, GaAs, GaAsP, and AlGaInP, etc. When the second conductive type is a P type semiconductor layer, the second conductive type dopant comprises a P type dopant such as Mg and Ze, etc. The second conductive type semiconductor layer 130 may be formed in a single layer or a multi layer, and it is not limited thereto.

    [0056] A third conductive type semiconductor layer, for example, a N type semiconductor layer or a P type semiconductor layer, may be formed on the second conductive type semiconductor layer 130.

    [0057] Here, the first conductive type semiconductor layer 110 may be formed as the P type semiconductor, and the second conductive type semiconductor layer 130 may be formed as the N type semiconductor. Therefore, at least any one of a N-P junction structure, a P-N junction structure, N-P-N junction structure, and a P-N-P junction structure may be formed on the substrate 105.

    [0058] A first contact layer 150 is formed in one area on the second conductive type semiconductor layer 130, and a second contact layer 152 is formed on the other area thereon. The first contact layer 150 may not be formed.

    [0059] The first and second contact layers 150 and 152 may be selectively formed of ITO, IZO(In-ZnO), GZO(Ga-ZnO), AZO (Al-ZnO), AGZO(Al-Ga ZnO), IGZO (In-Ga ZnO), IrOx, RuOx, Ni/IrOx/Au, Ni/IrOx/Au/ITO, Ag, Ni, Al, Rh, Pd, Ir, Ru, Mg, Zn, Pt, Au, Hf, a metallic oxide, and material consisting of a selective combination thereof. The first contact layer 150 and the second contact layer 152 are formed as ohmic contact characteristics, making it possible to improve electrical characteristics.

    [0060] The first contact layer 150 and/or the second contact layer 152 may be formed in a layer or a pattern, and they may be modified variously within the technical range of the embodiment. Also, the first contact layer 150 may not be formed.

    [0061] Referring to FIG. 5, a first insulating layer 140 is formed on the outer periphery of the upper surface of the second conductive type semiconductor layer 130. The first insulating layer 140 may be formed of insulating material such as SiO2, Si3N4, Al2O3, and TiO2, etc., having a thickness of 0.1 to 2µm.

    [0062] The first insulating layer 140 is formed on the area other than the first contact layer 150 thereby sealing the second contact layer 152.

    [0063] Referring to FIGS. 6 and 7, a second electrode layer 160 is formed on the first insulating layer 140 and the first contact layer 150. The second electrode layer 160 may be formed at least one of Al, Ag, Pd, Rh, and Pt, a metal material of a reflectivity of 50% or more, etc. or an alloy thereof, etc.

    [0064] A conductive supporting member 170 is formed on the second electrode layer 160, wherein the conductive supporting member 170 may be implemented as copper (Cu), gold (Au), nickel (Ni), molybdenum (Mo), copper-tungsten (Cu-W), carrier wafers (e.g.: Si, Ge, GaAs, ZnO, and SiC etc.).

    [0065] Referring to FIGS. 7 and 8, after the conductive supporting member 170 is positioned on a base, the substrate 105 is removed. The substrate 105 may be removed using a physical and/or chemical method. With the physical method, the substrate 105 is removed through a laser lift off (LLO) process. In other words, the substrate 105 is separated using the method (LLO: Laser Lift Off) to emit laser having a wavelength in a predetermined area to the substrate 105. With the chemical method, when any semiconductor layer (e.g.: a buffer layer) is formed between the substrate 105 and the first conductive type semiconductor layer 110, the substrate may be separated by removing the buffer layer using a wet etching method. A polishing process in an inductively coupled plasma/reactive ion etching (ICP/RIE) may be performed on the first conductive type semiconductor layer 110 of which substrate 105 is removed.

    [0066] A roughness pattern may be formed on the lower surface of the first conductive type semiconductor layer 110, but it is not limited thereto.

    [0067] The first contact layer 150 reinforces the adhesion between the second conductive type semiconductor layer 130 and the conductive supporting member 170, thereby protection the semiconductor light emitting device from the external impact. Therefore, the electrical reliability of the semiconductor light emitting device can be improved.

    [0068] Referring to FIG.9, after the conductive supporting member 170 is positioned on a base, a light emitting unit 101 and an electrostatic protection unit 103 that are electrically separated by being etched from the first conductive type semiconductor layer 110 to the second conductive type semiconductor layer 130 are formed. In other words, the structure of the first conductive type semiconductor layer 110, first active layer 120, and second conductive type semiconductor layer 130 is separated into two areas by performing wet and/or dry etching process on the boundary area between the light emitting unit 101 and the electrostatic protection unit 103 and the periphery of the chip.

    [0069] Thereby, a third conductive type semiconductor layer 112 is separated from the first conductive type semiconductor layer 110, a second active layer 122 is separated from the first active layer 120, and a fourth conductive type semiconductor layer 132 is separated from the second conductive type semiconductor layer 130. The second contact layer 152 is disposed on the fourth conductive type semiconductor layer 132 of the electrostatic protection layer 103.

    [0070] Referring to FIG. 10, a wiring groove 145 that exposes from the lower surface of the first insulating layer 140 to the reflective electrode layer 160 or the portion of the conductive supporting member 170 is formed. The wiring groove 145 is formed on the other side of the electrostatic protection unit 103 to be spaced from the second contact layer 152.

    [0071] Referring to FIGS. 11 and 12, a second insulating layer 125 is formed the other sides of the respective layers 110, 120, and 130 of the light emitting unit 101. The second insulating layer 125 is formed on the outer side of the light emitting unit 101 to prevent the short between the respective layers 110, 120, and 130 of the light emitting unit 101.

    [0072] A third insulating layer 127 is formed on the other sides of the respective layers 112, 122, and 132 of the electrostatic protection unit 103. The third insulating layer 127 is formed on the outer side of the electrostatic protection unit 103, making it possible to prevent the short between the respective layers 112, 122, and 132 of the electrostatic protection unit 103.

    [0073] The second insulating layer 125 and the third insulating layer 127 may selectively use the material of the first insulating layer 140, having the thickness of about 0.1 to 2µm.

    [0074] A first electrode layer 180 connects the light emitting unit 101 electrically to the electrostatic protection unit 103, and the wiring layer 182 connects the electrostatic protection unit 103 electrically to the conductive supporting member 170.

    [0075] One end 180A of the first electrode layer 180 is connected to the first conductive type semiconductor layer 110, and the other end 180B thereof is connected to the second contact layer 152 of the electrostatic protection unit 103. One end 182A of the wiring layer 182 is connected to the third conductive type semiconductor layer 112, and the other end 182B thereof is connected to the second electrode layer 160 and/or the conductive supporting member 170. The second electrode layer 125 is disposed under the first electrode layer 180, and the third insulating layer 127 is disposed under the wiring layer 182.

    [0076] As shown in FIG. 12, a light emitting unit 101 is formed on one portion of the semiconductor light emitting device 100, and an electrostatic protection unit 103 is formed on the other portion thereof. The electrostatic protection unit 103 is connected to the light emitting unit 101 in parallel based on the second electrode layer 160.

    [0077] The light emitting unit 101 and the electrostatic protection unit 103 are connected to the first electrode layer 180 in common, and the electrostatic protection unit 103 is connected to the conductive supporting member 170 in common through the wiring layer 182. Thereby, power may be supplied through the first electrode layer 180 and the conductive supporting member 180.

    [0078] Also, abnormal voltage, for example, ESD, passes through the electrostatic protection unit 103, making it possible to protect the light emitting unit 101.

    [0079] The embodiment can provide a vertical semiconductor light emitting device having the electrostatic protection unit and the strong ESD immunity, making it possible to improve electrical reliability of the vertical semiconductor light emitting device.

    [0080] Although embodiments have been described with reference to a number of illustrative embodiments thereof, it should be understood that numerous other modifications and embodiments may be devised by those skilled in the art that will fall within the scope of this disclosure. More particularly, various variations and modifications are possible in the component parts and/or arrangements of the subject combination arrangement within the scope of the disclosure, the drawings and the appended claims. In addition to variations and modifications in the component parts and/or arrangements, alternative uses will also be apparent to those skilled in the art. The invention is defined by the appended claims.

    [Industrial Applicability]



    [0081] The embodiment can provide the semiconductor light emitting device such as a LED.

    [0082] The embodiment can improve the electrical reliability of the semiconductor light emitting device.

    [0083] The embodiment can improve the optical efficiency of the semiconductor light emitting device.

    [0084] The embodiment can apply the light source packaging the semiconductor light emitting device to a lighting field, an indication field, and a display field, etc.


    Claims

    1. A semiconductor light emitting device comprising:

    - a second electrode layer (160);

    - a light emitting unit (101) comprising a plurality of compound semiconductor layers (110, 130) under one portion of the second electrode layer (160),
    wherein the light emitting unit (101) comprises a second conductivity type semiconductor layer (130) under the second electrode layer (160); a first active layer (120) under the second conductivity type semiconductor layer (130); and a first conductivity type semiconductor layer (110) under the first active layer (120);

    - a first insulating layer (140) under the other portion of the second electrode layer (160);

    - an electrostatic protection unit (103) comprising a plurality of compound semiconductor layers (132, 112) under the first insulating layer (140),
    wherein the electrostatic protection unit (103) comprises a fourth semiconductor layer (132) under the first insulating layer (140); a second active layer (122) under the fourth semiconductor layer (132); and a third semiconductor layer (112) under the second active layer (122),
    wherein the light emitting unit (101) and the electrostatic protection unit (103) have the same semiconductor layer structure and the first conductivity type semiconductor layer (110) is formed of the same semiconductor material as the third semiconductor layer (112), the first active layer (120) is formed of the same semiconductor material as the second active layer (122), and the second conductivity type semiconductor layer (130) is formed of the same semiconductor material as the fourth semiconductor layer (132);

    - a first electrode layer (180) electrically connecting the light emitting unit (101) to the electrostatic protection unit (103),
    wherein the first electrode layer (180) is electrically connected between a first conductivity type semiconductor layer (110) of the light emitting unit (101) and the fourth semiconductor layer (132) of the electrostatic protection unit (103);

    - a wiring layer (182) electrically connecting the electrostatic protection unit (103) to the second electrode layer (160),
    wherein the wiring layer (182) is electrically connected between a third semiconductor layer (112) of the electrostatic protection unit (103) and the second electrode layer (160);

    - a second insulating layer (125) between the first electrode layer (180) and semiconductor layers of the light emitting unit (101); and

    - a third insulating layer (127) between the wiring layer (182) and semiconductor layers of the electrostatic protection unit (103);

    wherein the second electrode layer (160) is electrically connected to the second conductivity type semiconductor layer (130);
    characterised in that the first insulating layer (140) is also formed on the outer periphery of the upper surface of the second conductivity type semiconductor layer (130) between the second electrode layer (160) and the light emitting unit (101).
     
    2. The semiconductor light emitting device according to claim 1, comprising: a conductive supporting member (170) on the second electrode layer (160).
     
    3. The semiconductor light emitting device according to any one of claims 1 to 2, wherein the second electrode layer comprises at least one of Al, Ag, Pd, Rh or Pt.
     
    4. The semiconductor light emitting device according to any one of laims 1 to 3, wherein the second electrode layer (160) comprises reflective metal
     
    5. The semiconductor light emitting device according to claim 4, wherein the light emitting unit (101) and the electrostatic protection unit (103) comprise a P type semiconductor layer (130), an active layer (120) under the P type semiconductor layer (130), and a N type semiconductor layer (110) under the active layer (120).
     
    6. The semiconductor light emitting device according to claim 5, wherein the first electrode layer (180) connects a N type semiconductor layer (110) of the light emitting unit (101) to a P type semiconductor layer (132) of the electrostatic protection unit (103), and the wiring layer (182) connects a N type semiconductor layer of the electrostatic protection unit (103) to the second electrode layer (160).
     
    7. The semiconductor light emitting device according to claim 5, wherein the electrostatic protection unit (103) is formed having a size less than 50% compared to an area under the second electrode layer (160).
     
    8. The semiconductor light emitting device according to claim 5, comprising:

    a first contact layer (150) between the light emitting unit (101) and the second electrode layer (160); and

    a second contact layer (152) between the electrostatic protection unit (103) and the first insulating layer (140),

    wherein the first contact layer (150) and the second contact layer (152) are formed of ITO, IZO(In-ZnO), GZO(Ga-ZnO), AZO (Al-ZnO), AGZO(Al-Ga ZnO), IGZO (In-Ga ZnO), IrOx, RuOx, Ni/IrOx/Au, Ni/IrOx/Au/ITO, Ag, Ni, Al, Rh, Pd, Ir, Ru, Mg, Zn, Pt, Au, Hf, a metallic oxide, and material consisting of a selective combination thereof.
     


    Ansprüche

    1. Halbleiterlichtemittierungsvorrichtung umfassend:

    - eine zweite Elektrodenschicht (160);

    - eine Lichtemittierungseinheit (101) umfassend eine Vielzahl von Verbundhalbleiterschichten (110, 130) unter einem Abschnitt der zweiten Elektrodenschicht (160),
    wobei die Lichtemittierungseinheit (101) eine Halbleiterschicht eines zweiten Leitfähigkeitstyps (130) unter der zweiten Elektrodenschicht (160); eine erste aktive Schicht (120) unter der Halbleiterschicht des zweiten Leitfähigkeitstyps (130); und eine Halbleiterschicht eines ersten Leitfähigkeitstyps (110) unter der ersten aktiven Schicht (120) umfasst;

    - eine erste Isolierschicht (140) unter dem anderen Abschnitt der zweiten Elektrodenschicht (160);

    - eine elektrostatische Schutzeinheit (103) umfassend eine Vielzahl von Verbundhalbleiterschichten (132, 112) unter der ersten Isolierschicht (140),
    wobei die elektrostatische Schutzeinheit (103) eine vierte Halbleiterschicht (132) unter der ersten Isolierschicht (140); eine zweite aktive Schicht (122) unter der vierten Halbleiterschicht (132); und eine dritte Halbleiterschicht (112) unter der zweiten aktiven Schicht (122) umfasst,
    wobei die Lichtemittierungseinheit (101) und die elektrostatische Schutzeinheit (103) die gleiche Halbleiterschichtstruktur aufweisen und die Halbleiterschicht des ersten Leitfähigkeitstyps (110) aus dem gleichen Halbleitermaterial wie die dritte Halbleiterschicht (112) gebildet ist, die erste aktive Schicht (120) aus dem gleichen Halbleitermaterial wie die zweite aktive Schicht (122) gebildet ist, und die Halbleiterschicht des zweiten Leitfähigkeitstyps (130) aus dem gleichen Halbleitermaterial wie die vierte Halbleiterschicht (132) gebildet ist;

    - eine erste Elektrodenschicht (180), die die Lichtemittierungseinheit (101) elektrisch mit der elektrostatischen Schutzeinheit (103) verbindet,
    wobei die erste Elektrodenschicht (180) zwischen einer Halbleiterschicht eines ersten Leitfähigkeitstyps (110) der Lichtemittierungseinheit (101) und der vierten Halbleiterschicht (132) der elektrostatischen Schutzeinheit (103) elektrisch verbunden ist;

    - eine Verdrahtungsschicht (182), die die elektrostatische Schutzeinheit (103) elektrisch mit der zweiten Elektrodenschicht (160) verbindet,
    wobei die Verdrahtungsschicht (182) zwischen einer dritten Halbleiterschicht (112) der elektrostatischen Schutzeinheit (103) und der zweiten Elektrodenschicht (160) elektrisch verbunden ist;

    - eine zweite Isolierschicht (125) zwischen der ersten Elektrodenschicht (180) und Halbleiterschichten der Lichtemittierungseinheit (101); und

    - eine dritte Isolierschicht (127) zwischen der Verdrahtungsschicht (182) und Halbleiterschichten der elektrostatischen Schutzeinheit (103);

    wobei die zweite Elektrodenschicht (160) mit der Halbleiterschicht des zweiten Leitfähigkeitstyps (130) elektrisch verbunden ist;
    dadurch gekennzeichnet, dass die erste Isolierschicht (140) auch an dem äußeren Umfang der oberen Oberfläche der Halbleiterschicht des zweiten Leitfähigkeitstyps (130) zwischen der zweiten Elektrodenschicht (160) und der Lichtemittierungseinheit (101) gebildet ist.
     
    2. Halbleiterlichtemittierungsvorrichtung nach Anspruch 1, umfassend: ein leitendes Trägerelement (170) an der zweiten Elektrodenschicht (160).
     
    3. Halbleiterlichtemittierungsvorrichtung nach einem der Ansprüche 1 bis 2, wobei die zweite Elektrodenschicht Al, Ag, Pd, Rh und/oder Pt umfasst.
     
    4. Halbleiterlichtemittierungsvorrichtung nach einem der Ansprüche 1 bis 3, wobei die zweite Elektrodenschicht (160) ein reflektierendes Metall umfasst.
     
    5. Halbleiterlichtemittierungsvorrichtung nach Anspruch 4, wobei die Lichtemittierungseinheit (101) und die elektrostatische Schutzeinheit (103) eine P-Typ-Halbleiterschicht (130), eine aktive Schicht (120) unter der P-Typ-Halbleiterschicht (130) und eine N-Typ-Halbleiterschicht (110) unter der aktiven Schicht (120) umfassen.
     
    6. Halbleiterlichtemittierungsvorrichtung nach Anspruch 5, wobei die erste Elektrodenschicht (180) eine N-Typ-Halbleiterschicht (110) der Lichtemittierungseinheit (101) mit einer P-Typ-Halbleiterschicht (132) der elektrostatischen Schutzeinheit (103) verbindet, und die Verdrahtungsschicht (182) eine N-Typ-Halbleiterschicht (130) der elektrostatischen Schutzeinheit (103) mit der zweiten Elektrodenschicht (160) verbindet.
     
    7. Halbleiterlichtemittierungsvorrichtung nach Anspruch 5, wobei die elektrostatische Schutzeinheit (103) mit einer Größe von weniger als 50% verglichen mit einem Bereich unter der zweiten Elektrodenschicht (160) gebildet ist.
     
    8. Halbleiterlichtemittierungsvorrichtung nach Anspruch 5, umfassend:

    eine erste Kontaktschicht (150) zwischen der Lichtemittierungseinheit (101) und der zweiten Elektrodenschicht (160); und

    eine zweite Kontaktschicht (152) zwischen der elektrostatischen Schutzeinheit (103) und der ersten Isolierschicht (140),

    wobei die erste Kontaktschicht (150) und die zweite Kontaktschicht (152) aus ITO, IZO(In-ZnO), GZO(Ga-ZnO), AZO (Al-ZnO), AGZO(Al-Ga ZnO), IGZO (In-Ga ZnO), IrOx, RuOx, Ni/IrOx/Au, Ni/IrOx/Au/ITO, Ag, Ni, Al, Rh, Pd, Ir, Ru, Mg, Zn, Pt, Au, Hf, einem Metalloxid und Material gebildet sind, das aus einer selektiven Kombination aus diesen besteht.


     


    Revendications

    1. Un dispositif d'émission de lumière à semi-conducteur comprenant :

    - une deuxième couche (160) formant électrode ;

    - une unité (101) d'émission de lumière comprenant une pluralité de couches semi-conductrices composées (110, 130) sous une partie de la deuxième couche (160) formant électrode,
    l'unité (101) d'émission de lumière comprenant une couche de semi-conducteur (130) d'un deuxième type de conductivité sous la deuxième couche (160) formant électrode ; une première couche active (120) sous la couche de semi-conducteur (130) du deuxième type de conductivité ; et une couche de semi-conducteur (110) d'un premier type de conductivité sous la première couche active (120) ;

    - une première couche isolante (140) sous l'autre partie de la deuxième couche (160) formant électrode ;

    - une unité (103) de protection électrostatique comprenant une pluralité de couches semi-conductrices composées (132, 112) sous la première couche isolante (140),
    l'unité (103) de protection électrostatique comprenant une quatrième couche de semi-conducteur (132) sous la première couche isolante (140) ; une deuxième couche active (122) sous la quatrième couche de semi-conducteur (132) ; et une troisième couche de semi-conducteur (112) sous la deuxième couche active (122),
    l'unité (101) d'émission de lumière et l'unité (103) de protection électrostatique ayant la même structure de couche de semi-conducteur et la couche de semi-conducteur (110) du premier type de conductivité étant formée du même matériau semi-conducteur que la troisième couche de semi-conducteur (112), la première la couche active (120) étant formée du même matériau semi-conducteur que la deuxième couche active (122), et la couche de semi-conducteur (130) du deuxième type de conductivité étant formée du même matériau semi-conducteur que la quatrième couche de semi-conducteur (132) ;

    - une première couche (180) formant électrode connectant électriquement l'unité (101) d'émission de lumière à l'unité (103) de protection électrostatique,
    la première couche (180) formant électrode étant connectée électriquement entre une couche de semi-conducteur (110) d'un premier type de conductivité de l'unité (101) d'émission de lumière et la quatrième couche de semi-conducteur (132) de l'unité (103) de protection électrostatique ;

    - une couche de câblage (182) connectant électriquement l'unité (103) de protection électrostatique à la deuxième couche (160) formant électrode, la couche de câblage (182) étant connectée électriquement entre une troisième couche de semi-conducteur (112) de l'unité (103) de protection électrostatique et la deuxième couche (160) formant électrode ;

    - une deuxième couche isolante (125) entre la première couche (180) formant électrode et des couches semi-conductrices de l'unité (101) d'émission de lumière ; et

    - une troisième couche isolante (127) entre la couche de câblage (182) et les couches semi-conductrices de l'unité (103) de protection électrostatique ;

    la deuxième couche (160) formant électrode étant connectée électriquement à la couche de semi-conducteur (130) du deuxième type de conductivité ;
    caractérisé en ce que la première couche isolante (140) est également formée sur la périphérie extérieure de la surface supérieure de la couche de semi-conducteur (130) du deuxième type de conductivité entre la deuxième couche (160) formant électrode et l'unité (101) d'émission de lumière.
     
    2. Le dispositif d'émission de lumière à semi-conducteur selon la revendication 1, comprenant : un élément de support conducteur (170) sur la deuxième couche (160) formant électrode.
     
    3. Le dispositif d'émission de lumière à semi-conducteur selon l'une quelconque des revendications 1 à 2, dans lequel la deuxième couche formant électrode comprend au moins l'un parmi Al, Ag, Pd, Rh ou Pt.
     
    4. Le dispositif d'émission de lumière à semi-conducteur selon l'une quelconque des revendications 1 à 3, dans lequel la deuxième couche (160) formant électrode comprend un métal réfléchissant.
     
    5. Le dispositif d'émission de lumière à semi-conducteur selon la revendication 4, dans lequel l'unité (101) d'émission de lumière et l'unité (103) de protection électrostatique comprennent une couche de semi-conducteur (130) de type P, une couche active (120) sous la couche de semi-conducteur (130) de type P et une couche de semi-conducteur (110) de type N sous la couche active (120).
     
    6. Le dispositif d'émission de lumière à semi-conducteur selon la revendication 5, dans lequel la première couche (180) formant électrode relie une couche de semi-conducteur (110) de type N de l'unité (101) d'émission de lumière à une couche de semi-conducteur (132) de type P de l'unité (103) de protection électrostatique et la couche de câblage (182) connecte une couche de semi-conducteur de type N de l'unité (103) de protection électrostatique à la deuxième couche (160) formant électrode.
     
    7. Le dispositif d'émission de lumière à semi-conducteur selon la revendication 5, dans lequel l'unité (103) de protection électrostatique est formée de façon à avoir une taille inférieure à 50% par rapport à une zone située sous la deuxième couche (160) formant électrode.
     
    8. Le dispositif d'émission de lumière à semi-conducteur selon la revendication 5, comprenant :

    une première couche de contact (150) entre l'unité (101) d'émission de lumière et la deuxième couche (160) formant électrode ; et

    une deuxième couche de contact (152) entre l'unité (103) de protection électrostatique et la première couche isolante (140),

    la première couche de contact (150) et la deuxième couche de contact (152) étant formées d'ITO, IZO(In-ZnO), GZO(Ga-ZnO), AZO (Al-ZnO), AGZO (Al-Ga ZnO), IGZO (In-Ga ZnO), IrOx, RuOx, Ni/IrOx/Au, Ni/IrOx/Au/ITO, Ag, Ni, Al, Rh, Pd, Ir, Ru, Mg, Zn, Pt, Au, Hf, un oxyde métallique et un matériau consistant en une combinaison sélective de ceux-ci.
     




    Drawing

















    Cited references

    REFERENCES CITED IN THE DESCRIPTION



    This list of references cited by the applicant is for the reader's convenience only. It does not form part of the European patent document. Even though great care has been taken in compiling the references, errors or omissions cannot be excluded and the EPO disclaims all liability in this regard.

    Patent documents cited in the description