(19)
(11)EP 2 328 055 B1

(12)EUROPEAN PATENT SPECIFICATION

(45)Mention of the grant of the patent:
02.11.2016 Bulletin 2016/44

(21)Application number: 09814338.1

(22)Date of filing:  25.02.2009
(51)Int. Cl.: 
G05D 1/08  (2006.01)
B25J 13/08  (2006.01)
B62K 17/00  (2006.01)
A63H 17/25  (2006.01)
B25J 5/00  (2006.01)
B62K 1/00  (2006.01)
A63H 11/12  (2006.01)
G05D 7/00  (2006.01)
(86)International application number:
PCT/JP2009/053354
(87)International publication number:
WO 2010/032493 (25.03.2010 Gazette  2010/12)

(54)

FALL PREVENTION CONTROLLER AND COMPUTER PROGRAM

FALLVERHINDERUNGSSTEUERGERÄT UND COMPUTERPROGRAMM DAFÜR

DISPOSITIF DE COMMANDE ANTI-CHUTE ET PROGRAMME INFORMATIQUE


(84)Designated Contracting States:
AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO SE SI SK TR

(30)Priority: 17.09.2008 JP 2008237483

(43)Date of publication of application:
01.06.2011 Bulletin 2011/22

(73)Proprietor: Murata Manufacturing Co. Ltd.
Kyoto 617-8555 (JP)

(72)Inventors:
  • TSUJI, Shigeru
    Nagaokakyo-shi Kyoto 617-8555 (JP)
  • FUKUNAGA, Shigeki
    Nagaokakyo-shi Kyoto 617-8555 (JP)
  • NAMURA, Mitsuhiro
    Nagaokakyo-shi Kyoto 617-8555 (JP)
  • KAWAI, Koji
    Nagaokakyo-shi Kyoto 617-8555 (JP)
  • SHIRATO, Kenichi
    Nagaokakyo-shi Kyoto 617-8555 (JP)

(74)Representative: Lloyd, Patrick Alexander Desmond et al
Reddie & Grose LLP 16 Theobalds Road
London WC1X 8PL
London WC1X 8PL (GB)


(56)References cited: : 
EP-A1- 1 955 936
WO-A1-2007/063665
JP-A- 2004 276 727
JP-A- 2007 280 408
WO-A1-2007/001083
WO-A1-2008/041732
JP-A- 2005 342 818
JP-A- 2008 089 531
  
      
    Note: Within nine months from the publication of the mention of the grant of the European patent, any person may give notice to the European Patent Office of opposition to the European patent granted. Notice of opposition shall be filed in a written reasoned statement. It shall not be deemed to have been filed until the opposition fee has been paid. (Art. 99(1) European Patent Convention).


    Description

    TECHNICAL FIELD



    [0001] The present invention relates to a falling prevention controlling device and a computer program for preventing even a monocycle from falling in a pitch direction.

    BACKGROUND ART



    [0002] Conventionally, when, for example, two-wheeled vehicles and two-legged walking robots move, a main body swings in a roll direction, which is a substantially front-back direction as the axis, and therefore it is necessary to control an operation to move or stop the vehicle or robot without falling by controlling the balance in the roll direction. To prevent falling in the roll direction, it is necessary to accurately detect the inclination in the roll direction. A method of detecting the inclination of the body to control the balance in the roll direction includes, for example, a method of detecting an angular velocity using an angular velocity sensor and estimating the inclination by integrating the detected value, and a method of detecting the inclination using a weight (deadweight).

    [0003] However, with the method of integrating an angular velocity using an angular velocity sensor, when an angular velocity output detected by the angular velocity sensor includes a noise and an offset, the noise and the offset are amplified by integration. The amplified noise and offset accumulate, and therefore there is a problem that a shift from a target value increases and therefore estimation of an inclined angle and control of falling prevention cannot be continued.

    [0004] By contrast with this, with the method of detecting the inclination using a weight, the inclination cannot be reflected instantly due to the influence of the gravity and therefore the responsivity is poor and the inclination is detected in the vertical direction, and therefore there is a problem that the inclination with respect to the balanced state cannot be detected. When, for example, the gravity center position is shifted in the roll direction, if, for example, a side wind is blown, the balanced state is not necessarily kept in the vertical direction. In order to prevent falling, it is necessary to restore the inclined state to the balanced state and detect the inclination with respect to the balanced state.

    [0005] For example, International Publication No. 2007/063665 (Patent Document 1) proposes a falling prevention controlling device which has: an angular velocity sensor which orients a detection axis toward a substantially front-back direction of the main body; a motor which orients a rotation axis toward the substantially front-back direction of the main body; a rotation sensor which detects the rotation position or the rotation velocity of the motor; and an inertia rotor which is connected to the rotation axis of the motor, which estimates the inclined angle of the main body with respect to the balanced state, from the angular velocity output of the angular velocity sensor and the torque command given to the motor, and which corrects the inclination of the main body using the estimated inclined angle.

    [0006] According to Patent Document 1, the angular velocity output needs not to be integrated and therefore a noise and an offset are not accumulated, and, moreover, the inclined angle with respect to the balanced state can be estimated, so that the inclined state can be corrected to the balanced state in the left-right direction using the estimated inclined angle. However, although, for example, two-wheeled vehicles can prevent falling as long as the balance in the left-right direction can be controlled, monocycles, for example, fall in the front-back direction if the balance in the front-back direction is not controlled even though the balance in the left-right direction is controlled.

    [0007] According to "Monocycle Attitude Control", Takashi KASAI, master thesis of Doctoral Course in Graduate School of System Information Technology, University of Tsukuba, January 2005, page 1 to 37 Non-Patent Document 1), a gyro sensor and two acceleration sensors are used to estimate the inclination of a monocycle in the front-back direction. When acceleration sensors are spaced apart more from the rotation axis, vibration is applied to the acceleration sensors, and therefore a correct value is estimated by canceling the acceleration due to the vibration using the two acceleration sensors. The angle θa calculated from the two acceleration sensors and the angle θz of an integral value of the angular velocity obtained from the gyro sensor are outputted, θa and θz are filtered to cancel high frequency noises included therein, and the deviation e of the filtered values is inputted to provide as dθz the output multiplied by an observer gain, and use an estimated value θz hat obtained by correcting the angle θz by dθz for controlling.

    [0008] According to Non-Patent Document 1, although the angle θz obtained by simply integrating the angular velocity acquired in the gyro sensor is shifted over time, the estimated value θz obtained by correcting the angle θz can maintain a constant value, so that it is possible to correct a shift of an offset of the angle calculated from the angular velocity acquired in the gyro sensor, by using the corrected estimated value θz hat.

    [0009] JP 2005-342818 discloses a one-leg spherical wheel moving robot comprising a driving mechanism, a posture controlling actuator and a controller for controlling the driving mechanism and the posture controlling actuator. WO 2008/041732 discloses a moving object having a tilt angle estimating mechanism provided with a means for estimating a first tilt angle in accordance with a detected acceleration, a means for estimating a second tilt angle in accordance with a detected angular velocity and a means for estimating a further tilt angle in accordance with the first and the second estimated tilt angles. JP 2007-280408 discloses a communication robot including a truck supported by two coaxial wheels. The wheels and a waist joint are controlled by a computer as two coaxial wheel inverted pendulum models.

    SUMMARY OF THE INVENTION



    [0010] However, with the monocycle of Non-Patent Document 1, although the inclination with respect to the gravity direction (vertical direction) is measured by acceleration sensors, the balanced state in the vertical direction is not necessarily kept in the front-back direction similar to the above left-right direction. Therefore, there is a problem that, when the balanced state is not kept in the vertical direction, the inclined state cannot be corrected to the balanced state. Further, two acceleration sensors are required in addition to a gyro sensor to estimate the inclination, and therefore there is a problem that it is difficult to simplify and miniaturize a configuration of a falling prevention controlling device.

    [0011] The present invention is made in view of the above problem and an aim of the present invention is to provide a falling prevention controlling device and a computer program that, with a simple configuration, can precisely correct the inclination in a pitch direction with respect to the balanced state while securing movement in the front-back direction, without accumulating a noise and an offset, and prevent a falling in the pitch direction.

    [0012] The invention is defined in the independent claims to which reference is now directed. Preferred features are set out in the dependent claims.

    [0013] According to the present invention, there is provided a falling prevention controlling device which includes: a wheel which rotates and moves in a front-back direction, and a main body which is connected to a rotation axis of the wheel and which swings in a pitch direction and a roll direction above the wheel; the main body including: a pitch angular velocity sensor which detects a pitch angular velocity which is an angular velocity of an inclined angle in the pitch direction; a pitch motor which rotates the wheel in conjunction with a rotation of the wheel; and a pitch rotation sensor which detects a rotation position or a rotation velocity of the pitch motor; the falling prevention controlling device correcting an inclination of the main body in the pitch direction by utilizing a reaction torque resulting from the rotation of the wheel, the falling prevention controlling device including: an advance/retreat command receiving unit which receives an advance or a retreat command of the wheel; a target pitch angle calculating unit which calculates a target pitch angle which is a target inclined angle in the pitch direction, based on a rotation velocity deviation in the pitch direction calculated from the received advance or retreat command and the rotation angle detected in the pitch rotation sensor; a pitch inclined angle estimating unit which estimates a pitch inclined angle which is an angle at which the main body is inclined in the pitch direction with respect to a balanced state, from the pitch angular velocity detected in the pitch angular velocity sensor and a pitch torque command generated based on the target pitch angle and given to the pitch motor; and a pitch torque command generating unit which generates the pitch torque command based on the target pitch angle and the pitch inclined angle.

    [0014] Preferably, the advance/retreat command receiving unit receives the advance or the retreat command of the wheel as a rotation velocity or a rotation angle.

    [0015] Preferably, the falling prevention controlling device further includes a target pitch angular velocity calculating unit which calculates a target pitch angular velocity which is an angular velocity of a target inclined angle in the pitch direction, from a pitch angular deviation obtained by subtracting the pitch inclined angle from the target pitch angle, wherein the pitch torque command generating unit generates the pitch torque command based on a deviation between the target pitch angular velocity and the detected pitch angular velocity.

    [0016] Preferably, the falling prevention controlling device, further includes: a pitch direction external torque estimating unit which estimates a pitch direction external torque for inclining the main body in the pitch direction, based on the pitch inclined angle; and a torque correcting unit which corrects the pitch torque command in a direction in which the estimated pitch direction external torque is canceled.

    [0017] Preferably, the main body includes: a roll angular velocity sensor which detects a roll angular velocity which is an angular velocity of an inclined angle in the roll direction; an inertia rotor which rotates in the roll direction; a roll motor which rotates the inertia rotor in conjunction with a rotation of the inertia rotor; and a roll rotation sensor which detects a rotation position or a rotation velocity of the roll motor, the falling prevention controlling device comprising: a target roll angle calculating unit which calculates a target roll angle which is a target inclined angle in the roll direction, based on the rotation velocity in the roll direction detected in the roll rotation sensor; a roll inclined angle estimating unit which estimates a roll inclined angle which is an angle at which the main body is inclined in the roll direction with respect to the balanced state, from the roll angular velocity detected in the roll angular velocity sensor and a roll torque command generated based on the target roll angle and given to the roll motor; a target roll angular velocity calculating unit which calculates a target roll angular velocity which is an angular velocity of a target inclined angle in the roll direction, from a roll angular deviation obtained by subtracting the roll inclined angle from the target roll angle; and a roll torque command generating unit which generates the roll torque command based on a deviation between the target roll angular velocity and the detected roll angular velocity.

    [0018] Preferably, a detection axis of the roll angular velocity sensor is oriented toward a front-back direction and a horizontal direction in a state where a gravity center of the main body is on a vertical line crossing the rotation axis of the wheel.

    [0019] Preferably, the rotation ratio of the rotation of the wheel is lower than a rotation of the pitch motor.

    [0020] According to the invention there is further provided a computer program which can be executed by a computer mounted in a falling prevention controlling device which includes: a wheel which rotates and moves in a front-back direction, and a main body which is connected to a rotation axis of the wheel and which swings in a pitch direction and a roll direction above the wheel; the main body comprising: a pitch angular velocity sensor which detects a pitch angular velocity which is an angular velocity of an inclined angle in the pitch direction; a pitch motor which rotates the wheel in conjunction with a rotation of the wheel; and a pitch rotation sensor which detects a rotation position or a rotation velocity of the pitch motor; the computer program correcting an inclination of the main body in the pitch direction utilizing a reaction torque resulting from the rotation of the wheel, the computer program causing the computer to function as: an advance/retreat command receiver which receives an advance or a retreat command of the wheel; a target pitch angle calculator which calculates a target pitch angle which is a target inclined angle in the pitch direction, based on a rotation velocity deviation in the pitch direction calculated from the received advance or retreat command and the rotation angle detected in the pitch rotation sensor; a pitch inclined angle estimator which estimates a pitch inclined angle which is an angle at which the main body is inclined in the pitch direction with respect to a balanced state, from the pitch angular velocity detected in the pitch angular velocity sensor and a pitch torque command generated based on the target pitch angle and given to the pitch motor; and a pitch torque command generator which generates the pitch torque command based on the target pitch angle and the pitch inclined angle.

    [0021] Preferably, the computer program causes the advance/retreat command receiver to function as a receiver which receives the advance or the retreat command of the wheel as a rotation velocity or a rotation angle.

    [0022] Preferably, the computer program causes the computer to function as a target pitch angular velocity calculator which calculates a target pitch angular velocity which is an angular velocity of a target inclined angle in the pitch direction, from a pitch angular deviation obtained by subtracting the pitch inclined angle from the target pitch angle, wherein the pitch torque command generator is caused to function as a generator which generates the pitch torque command based on a deviation between the target pitch angular velocity and the detected pitch angular velocity.

    [0023] Preferably, the computer program causes the computer to function as: a pitch direction external torque estimator which estimates a pitch direction external torque for inclining the main body in the pitch direction, based on the pitch inclined angle; and a torque corrector which corrects the pitch torque command in a direction in which the estimated pitch direction external torque is canceled.

    [0024] Preferably, the main body comprises: a roll angular velocity sensor which detects a roll angular velocity which is an angular velocity of an inclined angle in the roll direction; an inertia rotor which rotates in the roll direction; a roll motor which rotates the inertia rotor in conjunction with a rotation of the inertia rotor; and a roll rotation sensor which detects a rotation position or a rotation velocity of the roll motor, the computer program causing the computer to function as: a target roll angle calculator which calculates a target roll angle which is a target inclined angle in the roll direction based on the rotation velocity in the roll direction detected in the roll rotation sensor; a roll inclined angle estimator which estimates a roll inclined angle which is an angle at which the main body is inclined in the roll direction with respect to the balanced state, from the roll angular velocity detected in the roll angular velocity sensor and a roll torque command generated based on the target roll angle and given to the roll motor; a target roll angular velocity calculator which calculates a target roll angular velocity which is an angular velocity of a target inclined angle in the roll direction, from a roll angular deviation obtained by subtracting the roll inclined angle from the target roll angle; and a roll torque command generator which generates the roll torque command based on a deviation between the target roll angular velocity and the detected roll angular velocity.

    [0025] Embodiments of the invention receive an advance or a retreat command of a wheel, and calculate a target pitch angle which is a target inclined angle in the pitch direction, based on a rotation velocity deviation in the pitch direction calculated from the received advance or retreat command and the rotation angle detected in the pitch rotation sensor. From the pitch angular velocity detected in the pitch angular velocity sensor and the pitch torque command generated based on the target pitch angle and given to the pitch motor, the pitch inclined angle, which is an angle at which the main body is inclined in the pitch direction with respect to the balanced state, is estimated. The pitch torque command is generated based on the target pitch angle and the pitch inclined angle. Consequently, it is possible to precisely estimate the pitch inclined angle at which the main body is inclined in the pitch direction with respect to the balanced state, and the pitch angular velocity of the pitch angular velocity sensor is not integrated and therefore a calculation error of the target pitch angle due to the accumulation of a noise and an offset is not produced, so that it is possible to precisely correct the inclination in the pitch direction with respect to the balanced state by utilizing a reaction torque resulting from a rotation of a wheel, and prevent falling in the pitch direction.

    [0026] Here, the "pitch inclined angle" refers to a deviation angle between the main body in a basic position and the main body inclined in the pitch direction when the balanced state in the pitch direction is the basic position. The "balanced state" refers to a state where the sum of external torques such as torques produced by the gravity applied to, for example, the main body in the pitch direction and torques produced by, for example, a headwind and tailwind becomes 0 (zero).

    [0027] Preferred embodiments of the invention receive an advance or a retreat command of a wheel as a rotation velocity or a rotation angle, and calculate a target pitch angle based on a rotation velocity deviation in the pitch direction calculated from the received advance or retreat command of the wheel and the rotation angle detected in the pitch rotation sensor, and, consequently, can correct the inclination in the pitch direction while securing the rotation velocity for the commanded movement. Further, it is possible to simplify and miniaturize a falling prevention controlling device with a simple configuration which does not additionally require, for example, an acceleration sensor, and in which an angular velocity sensor is only added, in addition to, for example, a motor required to drive a wheel.

    [0028] By calculating a target pitch angular velocity which is an angular velocity of a target inclined angle in the pitch direction, from a pitch angular deviation obtained by subtracting a pitch inclined angle from a target pitch angle, and generating a pitch torque command based on the deviation between the target pitch angular velocity and the detected pitch angular velocity, preferred embodiments of the invention can generate a pitch torque command to adequately correct the inclination of the main body in the pitch direction while suppressing accumulation of errors.

    [0029] By estimating a pitch direction external torque for inclining the main body in the pitch direction based on the pitch inclined angle and correcting a pitch torque command in a direction in which the pitch direction external torque estimated in a torque correcting unit is canceled, preferred embodiments of the invention can more adequately control rotation of a pitch motor taking into account the influence of the pitch direction external torque, so that it is possible to more precisely correct the inclination in the pitch direction with respect to the balanced state and prevent falling in the pitch direction.

    [0030] Here, the "pitch direction external torque" refers to a torque combining a torque produced by the gravity applied to, for example, the main body when the main body is inclined in the pitch direction with respect to the balanced state, and torques in the direction (pitch direction) in which the main body is inclined by, for example, a headwind and tailwind. Further, the "torque correcting unit" has a function of correcting a pitch torque command in the direction in which the pitch direction external torque is canceled, and a pitch motor torque command voltage calculating unit 50 described below is included as part of the torque correcting unit.

    [0031] Preferred embodiments of the invention calculate a target roll angle which is the target inclined angle in the roll direction, based on the rotation velocity in the roll direction detected in the roll rotation sensor. The preferred embodiments of the invention estimate a roll inclined angle which is the angle at which the main body is inclined in the roll direction with respect to the balanced state, from the roll angular velocity detected in a roll angular velocity sensor and a roll torque command generated based on the target roll angle and given to a roll motor. The preferred embodiments of the invention calculate the target roll angular velocity which is an angular velocity of the target inclined angle in the roll direction, from the roll angular deviation obtained by subtracting the roll inclined angle from the target roll angle, and generate a roll torque command based on a deviation between the target roll angular velocity and the detected roll angular velocity. Consequently, it is possible to precisely estimate the roll inclined angle at which the main body is inclined in the roll direction with respect to the balanced state, and the roll angular velocity of the roll angular velocity sensor is not integrated and therefore a calculation error of the target roll angle due to the accumulation of a noise and an offset is not produced, so that it is possible to precisely correct the inclination in the roll direction with respect to the balanced state by utilizing a reaction torque resulting from rotation of the inertia rotor, and prevent a falling in the roll direction.

    [0032] By orienting the detection axis of the roll angular velocity sensor toward the front-back direction and the horizontal direction in a state where the gravity center of the main body is on the vertical line crossing the rotation axis of the wheel, the roll angular velocity sensor of preferred embodiments of the invention can detect an accurate angular velocity in the roll direction, so that the inclination in the roll direction can be precisely corrected. In embodiments of the invention, a roll angular velocity sensor using a vibrator obtains the angular velocity by detecting a signal corresponding to the force in the direction orthogonal to the vibrating direction of the vibrator. The detection axis of the roll angular velocity sensor is attached to the main body with being oriented toward the substantially front-back direction, and therefore the direction of the force to be detected by the roll angular velocity sensor is a substantially vertical direction orthogonal to the detection axis of the substantially front-back direction. When the angular velocity is detected in a state where the detection axis of the roll angular velocity sensor is oriented toward the front-back direction and the horizontal direction, the force in the vertical direction can be detected, so that it is possible to accurately obtain the angular velocity ω which is actually produced in the roll direction. However, when the angular velocity is detected in a state where the gravity center of the main body is deviated and, for example, the front side of the detection axis of the roll angular velocity sensor rather than the horizontal direction is inclined forward low, the angular velocity ωcosθ is obtained by detecting the force in the direction which is shifted by a predetermined angle θ from the vertical direction, and the angular velocity lower than the actual angular velocity ω is detected.

    [0033] By, for example, driving by a pitch motor the wheel through bevel gears, pulleys and a belt such that the rotation ratio of the rotation of the wheel becomes lower than the rotation of the pitch motor, and increasing a reduction ratio of the pulley on the pitch motor side three times as much as the pulley on the wheel side, preferred embodiments of the invention can control the wheel with a torque which is one third of the torque of the pitch motor. Further, the preferred embodiments of the invention can control the wheel at a torque ratio lower than the torque of the pitch motor and the substantial critical torque of the motor increases, so that it is possible to increase an allowable angle of the inclined angle at which a falling can be prevented.

    [0034] Consequently, according to embodiments of the present invention, it is possible to precisely estimate the pitch inclined angle at which the main body is inclined in the pitch direction with respect to the balanced state, and the pitch angular velocity of the pitch angular velocity sensor is not integrated and therefore a calculation error of the target pitch angle due to the accumulation of a noise and an offset is not produced, so that it is possible to precisely correct the inclination in the pitch direction with respect to the balanced state by utilizing a reaction torque resulting from a rotation of a wheel, and prevent a falling in the pitch direction. Further, by receiving an advance or a retreat command of a wheel, and calculating a target pitch angle based on a rotation velocity deviation in the pitch direction calculated from the received advance or retreat command and the rotation angle detected in the pitch rotation sensor, it is possible to correct the inclination in the pitch direction while securing the rotation velocity for the commanded movement. Furthermore, it is possible to simplify and miniaturize a falling prevention controlling device with a simple configuration which does not additionally require, for example, an acceleration sensor, and in which an angular velocity sensor is only added in addition to, for example, a motor required to drive a wheel.

    BRIEF EXPLANATION OF DRAWINGS



    [0035] Embodiments of the invention will now be described, by way of example only, with reference to the accompanying drawings, in which:

    FIG. 1 is a front view and a lateral side view schematically illustrating a configuration of a monocycle robot to which a falling prevention controlling device according to an embodiment of the present invention is applied.

    FIG. 2 is a schematic view illustrating a pitch direction, a roll direction and a yaw direction.

    FIG. 3 is a control block diagram illustrating an example of control for preventing a monocycle robot from falling in a pitch direction.

    FIG. 4 is a schematic view showing a model of a monocycle robot from a lateral side.

    FIG. 5 is a schematic view illustrating a configuration for driving a wheel through bevel gears, pulleys and a belt by a pitch motor.

    FIG. 6 is a schematic view illustrating an example of a configuration for directly driving a wheel by a pitch motor through gears.

    FIG. 7 is a schematic view illustrating another example of a configuration for directly driving a wheel by a pitch motor through gears.

    FIG. 8 is a schematic view illustrating a configuration for driving a wheel by a pitch motor through bevel gears and a gear.

    FIG. 9 is a view illustrating a realistic monocycle robot which employs a driving mechanism illustrated in FIG. 5.

    FIG. 10 is a control block diagram illustrating an example of control for preventing a monocycle robot from falling in the roll direction.

    FIG. 11 is a schematic view showing a monocycle robot from the front.

    FIG. 12 is a schematic view illustrating the sensitivity of an angular velocity detected in a roll gyro sensor according to the gravity center position of a main body.

    FIG. 13 is a flowchart illustrating falling prevention processing steps in the pitch direction by a controller of a control board of a monocycle robot.

    FIG. 14 is a flowchart illustrating falling prevention processing steps in a roll direction by a controller of a control board of a monocycle robot.


    DESCRIPTION OF REFERENCE SYMBOLS



    [0036] 

    1 MONOCYCLE ROBOT (FALLING PREVENTION CONTROLLING DEVICE)

    2 WHEEL

    3 MAIN BODY

    4 FRAME

    5 BEVEL GEAR

    6 BELT

    31 PITCH GYRO SENSOR (PITCH ANGULAR VELOCITY SENSOR)

    32 PITCH MOTOR

    33 PITCH ENCODER (PITCH ROTATION SENSOR)

    35 CONTROL BOARD

    36 BATTERY

    41 PITCH COUNTER UNIT

    42 ADVANCE/RETREAT COMMAND RECEIVING UNIT

    43 PITCH ROTATION VELOCITY CALCULATING UNIT

    44 TARGET PITCH ANGLE CALCULATING UNIT

    45 PITCH AD CONVERTER UNIT

    46 PITCH ANGULAR VELOCITY CALCULATING UNIT

    47 PITCH INCLINED ANGLE ESTIMATING UNIT

    48 TARGET PITCH ANGULAR VELOCITY CALCULATING UNIT

    49 PITCH TORQUE COMMAND GENERATING UNIT

    50 PITCH MOTOR TORQUE COMMAND VOLTAGE CALCULATING UNIT

    51 PITCH DA CONVERTER UNIT

    52 PITCH DIRECTION EXTERNAL TORQUE ESTIMATING UNIT O, O1, O2 ROTATION CENTER

    m1 MASS OF MAIN BODY

    m2 MASS OF INERTIA ROTOR

    I1p INERTIA MOMENT OF MAIN BODY AROUND O

    I2p INERTIA MOMENT OF WHEEL AROUND O

    I1r INERTIAL MOMENT OF MAIN BODY AROUND O1

    I2r INERTIA MOMENT OF INERTIA ROTOR AROUND O2

    θ1p INCLINED ANGLE OF MAIN BODY IN PITCH DIRECTION WITH RESPECT TO VERTICAL AXIS

    θ2p ROTATION ANGLE OF WHEEL WITH RESPECT TO MAIN BODY

    θ1r INCLINED ANGLE OF MAIN BODY IN ROLL DIRECTION WITH RESPECT TO VERTICAL AXIS

    θ2r ROTATION ANGLE OF INERTIA ROTOR WITH RESPECT TO MAIN BODY

    τ1p DISTURBANCE TORQUE AROUND O WHICH IS APPLIED TO MAIN BODY

    τ2p TORQUE WHICH IS APPLIED TO WHEEL

    l2P DISTANCE FROM O TO MAIN BODY GRAVITY CENTER POSITION

    Ir DISTANCE FROM O1 TO O2

    lGr DISTANCE FROM O1 TO MAIN BODY GRAVITY CENTER POSITION

    r RADIUS OF WHEEL

    g GRAVITY ACCELERATION


    DETAILED DESCRIPTION OF PREFERRED EMBODIMENTS OF THE INVENTION



    [0037] Hereinafter, an example will be specifically described based on drawings where a falling prevention controlling device according to an embodiment of the present invention is applied to a monocycle robot which moves back and forth without falling due to a rotation of a monocycle while the main body mounted on the monocycle swings.

    [0038] FIG. 1 is a front view and a lateral side view schematically illustrating a configuration of a monocycle robot to which a falling prevention controlling device according to an embodiment of the present invention is applied. FIG. 1(a) is a front view and FIG. 1 (b) is a right side view. The falling prevention controlling device according to the present embodiment functions to prevent the monocycle robot from falling in the pitch direction and the roll direction.

    [0039] As illustrated in FIGS. 1 (a) and (b), a monocycle robot 1 is formed with a wheel 2 which rotates and moves in the front-back direction, and a main body 3 which is connected to the rotation axis of the wheel 2 and which swings in the pitch direction and the roll direction above the wheel 2. With the examples of FIGS. 1 (a) and (b), although the main body 3 is a humanoid robot, the main body 3 is not limited to this.

    [0040] Here, the pitch direction and the roll direction will be clarified. FIG. 2 is a schematic view illustrating the pitch direction, roll direction and the yaw direction. As illustrated in FIG. 2, when the monocycle robot 1 advances toward +x axis direction on the xy plane or retreats toward the -x axis direction, the rotation direction about the y axis is the pitch direction. When the monocycle robot 1 rotates counterclockwise facing the +y axis direction, the main body 3 is inclined forward and, when the monocycle robot 1 rotates clockwise facing the +y axis direction, the main body 3 is inclined backward. Further, the rotation axis about the x axis is the roll direction, and the rotation direction when the main body 3 swings in the left-right direction. Furthermore, the rotation direction about the z axis is the yaw direction, and the rotation direction when the orientation of the wheel 2 is inclined with respect to the x axis direction.

    [0041] As illustrated in FIGS. 1 (a) and (b), the main body 3 has: a pitch gyro sensor (pitch angular velocity sensor) 31 which detects the pitch angular velocity which is an angular velocity of the inclined angle in the pitch direction; a pitch motor 32 which rotates the wheel 2 in conjunction with rotation of the wheel 2; and a pitch encoder (pitch rotation sensor) 33 which detects the rotation position or the rotation velocity of the pitch motor 32. The pitch gyro sensor 31 is attached to the main body 3 orienting a detection axis (not illustrated) which detects the pitch angular velocity in a substantially left-right direction. Here, the "substantially left-right direction" means that the direction may include a slightly greater or less angular shift with respect to the strict left-right direction. The main body 3 and wheel 2 are connected through frame 4 which rotatably supports the wheel 2, and a rotation of the pitch motor 32 is transmitted to the wheel 2 through the bevel gears 5 and belt 6 included in the main body 3. The frame 4 is a part of the main body 3, and, with the examples of FIGS. 1 (a) and (b), serves as the legs of a humanoid robot which is the main body 3. In addition, the pitch angular velocity sensor only needs to detect the pitch angular velocity and is not limited to a gyro sensor.

    [0042] Further, in the back of the humanoid robot which is the main body 3, a control board 35 which controls the pitch motor 32 and a battery 36 are mounted. On the control board 35, for example, a driver which drives and rotates the pitch motor 32, an A/D converter, a D/A converter, a counter and a controller are mounted. To be more specific, the controller is, for example, a microprocessor, CPU or LSI. In order to keep the balance in the pitch direction, the monocycle robot 1 performs control of keeping the balance by utilizing a reaction caused when the wheel 2 is driven. FIG. 3 is a control block diagram illustrating an example of control for preventing the monocycle robot 1 from falling in the pitch direction.

    [0043] As illustrated in FIG. 3, a pitch counter unit 41 counts output pulses of the pitch encoder 33. The advance/retreat command receiving unit 42 receives an advance command or a retreat command of the wheel 2 as the rotation velocity or the rotation angle. When the advance command or the retreat command is outputted as the rotation velocity, a pitch rotation velocity calculating unit 43 subtracts the number of pulses counted in the pitch counter unit 41, from the number of pulses of a pulse signal of the advance command or the retreat command, converts the number of pulses resulting from the subtraction into the rotation angle, and then differentiates the converted rotation angle to obtain the rotation velocity of the pitch motor 32. A LPF (Low Pass Filter) for noise cancellation may be mounted.

    [0044] From the rotation velocity of the pitch motor 32 obtained in the pitch rotation velocity calculating unit 43, a target pitch angle calculating unit 44 multiplies the rotation velocity of the pitch motor 32 by a proportionality coefficient such that, when the pitch motor 32 rotates in a direction in which the wheel 2 advances, the target pitch angle is set in a direction in which the wheel 2 advances and, when the pitch motor 32 rotates in a direction in which the wheel 2 retreats, the target pitch angle is set in a direction in which the wheel 2 retreats. By this means, it is possible to correct the inclination in the pitch direction while securing the rotation velocity for the commanded movement.

    [0045] By contrast with this, a pitch AD converter unit 45 measures a pitch angular velocity output of the pitch gyro sensor 31. A pitch angular velocity calculating unit 46 multiplies the pitch angular velocity output by a conversion coefficient to calculate a pitch angular velocity ω1p.

    [0046] From the pitch angular velocity ω1p and the pitch torque command τ2p described below, a pitch inclined angle estimating unit 47 calculates the pitch inclined angle according to (equation 18), which will be described below, derived based on a motion equation of the inclined angle direction (pitch direction) in the system including the main body 3 and wheel 2. By adding in series a first-order lag element for providing a more adequate estimated velocity and stabilizing a loop, an estimated value of the pitch inclined angle is calculated. More specifically, although, for example, 1/(0.1S+1) is added as the first-order lag element in series to the calculated value obtained by (equation 18), the lag element is not limited to this and a random lag element may be added to have an adequate estimated velocity.

    [0047] A pitch direction external torque estimating unit 52 multiplies the estimated value of the pitch inclined angle by a conversion coefficient, calculates the estimated value of the pitch direction external torque applied to the main body 3, and generates a pitch correction torque (corresponding to the estimated value of the pitch direction external torque) τ3P.

    [0048] A target pitch angular velocity calculating unit 48 multiplies by a proportional gain a pitch angular deviation obtained by subtracting the estimated value of the pitch inclined angle from the target pitch angle to calculate a target pitch angle velocity (ω2p. A pitch torque command generating unit 49 generates a pitch torque command τ0P by, for example, performing PI control with respect to the deviation between the target pitch angular velocity ω2p and the pitch angular velocity ω1p. A pitch motor torque command voltage calculating unit 50 multiplies by a conversion coefficient the pitch torque command τ2p obtained by adding the pitch torque command τ0P and the pitch correction torque τ3P to generate a command voltage. Finally, a pitch DA converter unit 51 outputs the command voltage to the driver to control a rotation of the pitch motor 32.

    [0049] Here, the method of deriving an equation of calculating the pitch inclined angle represented by (equation 18) will be described below. FIG. 4 is a schematic view showing the model of the monocycle robot 1 from the lateral side. FIG. 4 schematically illustrates only the wheel 2, main body 3 and the pitch gyro sensor 31 attached to the main body 3, where the direction of an arrow is the advancing direction and the body 3 is inclined forward. First, the motion equation is derived according to a Lagrange equation. An overall kinetic energy T and a potential energy U of the main body 3 and the wheel 2 in total are as follows.
    [1]



    where:

    I1p: inertia moment of main body around rotation center O,

    θ1p: inclined angle of main body in pitch direction with respect to vertical axis,

    I2p: inertia moment of wheel around rotation center O,

    θ2p: rotation angle of wheel with respect to main body,

    M1: mass of main body,

    lGp: distance from rotation center O to main body gravity center position,

    g: gravity acceleration,

    r: radius of wheel, and

    m2: mass of inertia rotor.



    [0050] The differential quantum of the generalized coordinate and generalized velocity is as follows.
    [2]













    [0051] (Equation 3) to (equation 8) are substituted in Lagrange equations of (equation 9) and (equation 10).
    [3]



    where:

    τ1p: torque around rotation center O which is applied to main body, and

    τ2p: torque which is applied to wheel.



    [0052] As a result, the following (equation 11) and (equation 12) are acquired as motion equations.
    [4]





    [0053] (Equation 13) is provided by modifying (equation 12).
    [5]



    [0054] (Equation 14) is provided by substituting (equation 13) in (equation 11) and approximating sinθ1p by θ1p. According to (equation 14), the motion of the main body 3 is irrelevant to the angle and the angular velocity of the wheel 2.
    [6]


    -Estimation of Pitch Inclined Angle



    [0055] Although the pitch inclined angle can also be obtained by integrating the output of the pitch gyro sensor 31, the deviation accumulates, thereby making the pitch inclined angle inaccurate, and therefore the pitch inclined angle needs to be obtained by another method. Hence, using the motion equation of the model illustrated in FIG. 4, the pitch inclined angle is estimated from the pitch angular velocity ω1p outputted from the pitch gyro sensor 31 and the pitch torque command τ2p. (Equation 15) is provided by modifying the motion equation of (equation 14).
    [7]



    [0056] By contrast with this, the pitch angular velocity ω1p outputted from the pitch gyro sensor 31 is represented by (equation 16).
    [8]



    [0057] Further, when a torque τ1p in the direction (pitch direction) in which the main body 3 is inclined by, for example, a headwind or tailwind is produced, an apparent balanced inclined angle θ0P provides (equation 17).
    [9]



    [0058] Accordingly, the deviation angle (pitch inclined angle) of the current inclined angle θ1p in the pitch direction with respect to the apparent balanced inclined angle can be estimated by calculating equation 18 derived from above equation 15, equation 16, and equation 17. Meanwhile, the first-order lag element is preferably added to provide an adequate estimated velocity and stabilize the loop. In addition, (equation 18) is an example of a calculation equation of estimating the pitch inclined angle, and the calculation equation of estimating the pitch inclined angle changes depending on a target model.
    [10]



    [0059] By estimating the pitch inclined angle which is the angle at which the main body 3 is inclined in the pitch direction with respect to the balanced state, from the pitch angular velocity ω1p outputted from the pitch gyro sensor 31 and the pitch torque command τ2p generated based on the target pitch angle and given to the pitch motor 32, it is possible to precisely estimate the pitch inclined angle. Further, the pitch angular velocity of the pitch gyro sensor 31 is not integrated, and therefore a calculation error of the target pitch angle due to the accumulation of a noise and an offset is not produced, so that it is possible to precisely correct the inclination in the pitch direction with respect to the balanced state by utilizing a reaction torque resulting from a rotation of the wheel 2, and prevent falling in the pitch direction.

    -Pitch Direction External Torque Feed Forward-



    [0060] Based on the deviation angle (pitch inclined angle) estimated in (equation 18), the pitch direction external torque is compensated.
    [11]



    [0061] (Equation 19) is added as a torque.
    [12]



    [0062] When (equation 20) holds, the motion equation of (equation 14) provides (equation 21), so that it is possible to compensate for the pitch direction external torque. It is possible to estimate the pitch direction external torque produced by the inclined angle in the pitch direction with respect to the balanced state according to (equation 18) of estimating the pitch inclined angle which is an angle at which the main body 3 is inclined in the pitch direction with respect to the balanced state, and, consequently, calculate the correction torque of canceling the estimated pitch direction external torque. Accordingly, it is possible to more adequately control a rotation of the pitch motor 32 taking into account the influence of the pitch direction external torque and, consequently, more precisely correct the inclination in the pitch direction with respect to the balanced state, and prevent a falling in the pitch direction. Particularly, even when the response frequency of an inclined angular loop and an inclined angular velocity loop is low, it is possible to continue a falling prevention control by compensating for the pitch direction external torque by feed forward control and, consequently, a stable control is possible.
    [13]



    [0063] The corrected pitch torque command is outputted to the driver through the pitch DA converter unit 51 to control a rotation of the pitch motor 32. The rotation of the pitch motor 32 is transmitted to the wheel 2. FIG. 5 is a schematic view illustrating a configuration where the pitch motor 32 drives the wheel 2 through the bevel gears 5, pulleys and belt 6. FIG. 5(a) is a front view and FIG. 5(b) is a right side view. FIG. 5 illustrates only the wheel 2 and parts of the main body 3 on the wheel 2 side which are used to drive the wheel 2 in the monocycle robot 1.

    [0064] As illustrated in FIGS. 5(a) and (b), a rotation of the pitch motor 32 is transmitted to the wheel 2 sequentially through the motor shaft 321, bevel gears 5 and 5, the pulley 7 on the main body 3 side, belt 6, and the pulley 8 on the wheel 2 side. The monocycle robot 1 makes the rotation ratio of the rotation of the wheel 2 lower than the rotation of the pitch motor 32. More specifically, the monocycle robot 1 makes the reduction ratio of the pulley 7 on the pitch motor 32 side, that is, on the main body 3 side, higher than the pulley 8 on the wheel 2 side.

    [0065] By, for example, increasing the reduction ratio three times, the wheel 2 can be controlled with the torque which is one third of the torque produced by the pitch motor 32, that is, the torque produced according to the above corrected pitch torque command. Consequently, it is possible to increase a substantial critical torque of the pitch motor 32 and increase an allowable angle of the inclined angle at which a falling can be prevented.

    [0066] FIG. 6 is a schematic view illustrating an example of a configuration where the pitch motor 32 directly drives the wheel 2 through gears. FIG. 6(a) is a front view and FIG. 6(b) is a right side view. As illustrated in FIGS. 6(a) and (b), a rotation of the pitch motor 32 is directly transmitted to a tire 325 of the wheel 2 by a gear 324 which co-rotates coaxially with the gear 323 meshing with a gear 322 of the motor shaft 321 of the pitch motor 32.

    [0067] FIG. 7 is a schematic view illustrating another example of a configuration where the pitch motor 32 directly drives the wheel 2 through gears. FIG. 7(a) is a front view and FIG. 7(b) is a right side view. In addition, the front view of FIG. 7(a) illustrates the cross section of the wheel 2 for description. As illustrated in FIGS. 7(a) and (b), similar to the configuration of FIG. 6, a rotation of the pitch motor 32 is directly transmitted to the wheel 2 by the gear 324 which co-rotates coaxially with the gear 323 meshing with the gear 322 of the motor shaft 321 of the pitch motor 32. However, the difference from the configuration of FIG. 6 is that the rotation is not transmitted to the tire 325 of the wheel 2 as in the configuration of FIG. 6 and is transmitted to the gear formed in the wheel part 362 of the wheel 2.

    [0068] The monocycle robot 1 may also employ the driving mechanism illustrated in FIG. 6 or FIG. 7. Meanwhile, with the driving mechanism illustrated in FIG. 6, the gear 324 is directly pressed against the tire of the wheel 2 to transmit a rotation, and therefore, when, for example, slippage occurs, it is difficult to precisely control the rotation of the wheel 2.

    [0069] FIG. 8 is a schematic view illustrating a configuration where the pitch motor 32 drives the wheel 2 through the bevel gears 5 and 5 and gear 9. FIG. 8(a) is a front view and FIG. 8(b) is a right side view. As illustrated in FIGS. 8(a) and (b), a rotation of the pitch motor 32 is transmitted to the wheel 2 by the gear 9 which co-rotates with the rotation axis of the wheel 2, from the bevel gears 5 through the motor shaft 321 of the pitch motor 32. With the driving mechanism illustrated in FIG. 8, similar to the driving mechanism illustrated in FIG. 5, a so-called backlash of looseness produced by meshing of the gears 5 or gear 9 only occurs and, for example, slippage as illustrated in the driving mechanisms illustrated in FIG. 6 and FIG. 7 does not occur, so that it is possible to precisely control a rotation of the wheel 2. Further, with the driving mechanism illustrated in FIG. 8, by changing the gear ratio (reduction ratio) by interposing an additional gear between the bevel gears 5 and gear 9, it is also possible to increase a substantial critical torque of the pitch motor 32 as in the driving mechanism illustrated in FIG. 5.

    [0070] FIG. 9 is a view illustrating the realistic monocycle robot 1 which employs the driving mechanism illustrated in FIG. 5. FIG. 9(a) is a front view and FIG. 9(b) is a right side view. The driving mechanism illustrated in FIGS. 9(a) and (b) is the same as in FIG. 5, and therefore description of the configuration will be omitted. As illustrated in FIG. 9, the bevel gears 5, pulleys 7 and 8 and belt 6 can be accommodated inside the frame 4 so as not to be seen from the lateral side, so that it is possible to provide an effect in terms of design compared to the configuration where, for example, the gear 9 is seen as in the driving mechanism illustrated in FIG. 8. Accordingly, although the monocycle robot 1 may adopt any one of the driving mechanisms illustrated in FIG. 5 to FIG. 8, it is particularly preferable to adopt the driving mechanism illustrated in FIG. 5 which can provide the above various effects.

    [0071] The monocycle robot 1 functions to prevent a falling in the pitch direction and the roll direction as described above, and therefore the configuration of preventing a falling in the roll direction will be described below.

    [0072] As illustrated in FIGS. 1(a) and (b), in addition to the above configuration of preventing a falling in the pitch direction, the body 3 has: a roll gyro sensor (roll angular velocity sensor) 61 which detects the roll angular velocity which is the angular velocity of the inclined angle in the roll direction; an inertia rotor 64 which rotates in the roll direction; a roll motor 62 which rotates the inertia rotor 64 in conjunction with a rotation of the inertia rotor 64 and a roll encoder (roll rotation sensor) 63 which detects the rotation position or the rotation velocity of the roll motor 62. The roll gyro sensor 61 is attached to the main body 3 orienting the detection axis (not illustrated) which detects the roll angular velocity, toward the substantially front-back direction. Here, the "substantially front-back direction" means that the direction may include a slightly greater or less angular shift with respect to the strict front-back direction. In addition, the roll angular velocity sensor 61 only needs to detect the roll angular velocity and is not limited to a gyro sensor.

    [0073] Further, the above control board 35 mounted on the back of the humanoid robot which is the main body 3 not only controls the pitch motor 32 but also controls the roll motor 62. FIG. 10 is a control block diagram illustrating an example of control for preventing the monocycle robot 1 from falling in the roll direction.

    [0074] As illustrated in FIG. 10, a roll counter unit 71 counts output pulses of the roll encoder 63. A roll rotation velocity calculating unit 73 converts the output of the roll counter unit 71 into the rotation angle, and then integrates the rotation angle to obtain the rotation velocity of the roll motor 62. A LPF (Low Pass Filter) for noise cancellation may be mounted.

    [0075] A target roll angle calculating unit 74 multiplies the rotation velocity of the roll motor 62 by a proportionality coefficient such that, when the roll motor 62 rotates to the left seen from the front of the monocycle robot 1, the target roll angle is set in the right direction seen from the front of the monocycle robot 1 and, when the roll motor 62 rotates to the right seen from the front of the monocycle robot 1, the target roll angle is set in the left direction seen from the front of the monocycle robot 1. In addition, an integrator is preferably added to prevent the inertia rotor 64 from continuing steady rotation.

    [0076] By contrast with this, a roll AD converter unit 75 acquires a roll angular velocity output of the roll gyro sensor 61. A roll angular velocity calculating unit 76 multiplies the roll angular velocity output by a conversion coefficient to calculate a roll angular velocity ω1r.

    [0077] From the roll angular velocity ω1r and roll torque command τ2r described below, a roll inclined angle estimating unit 77 calculates the roll inclined angle represented by (equation 25), which will be described below, derived based on a motion equation of the inclined angle direction (roll direction) in the system including the main body 3 (the portion other than the inertia rotor 64) and inertia rotor 64. By adding in series a first-order lag element for providing a more adequate estimated velocity and for stabilizing a loop, an estimated value of the roll inclined angle is calculated. More specifically, although, for example, 1/(0.1S + 1) is added as the first-order lag element in series to the calculated value calculated using (equation 25), the lag element is not limited to this and a random lag element may be added to have an adequate estimated velocity.

    [0078] A roll direction external torque estimating unit 82 multiplies the estimated value of the roll inclined angle by a conversion coefficient, calculates the estimated value of the roll direction external torque applied to the main body 3, and generates a roll correction torque (corresponding to the estimated value of the roll direction external torque) τ3r.

    [0079] A target roll angular velocity calculating unit 78 multiplies by a proportional gain a roll angular deviation obtained by subtracting the estimated value of the roll inclined angle from the target roll angle to generate a target roll angle velocity ω2r. A roll torque command generating unit 79 generates a roll torque command τ0r by, for example, performing PI control with respect to the deviation between the target roll angular velocity ω2r and roll angular velocity ω1r. A roll motor torque command voltage calculating unit 80 multiplies by a conversion coefficient the roll torque command τ2r obtained by adding the roll torque command τ0r and roll correction torque τ3r to generate a command voltage. Finally, a roll DA converter unit 81 outputs the command voltage to the driver to control a rotation of the roll motor 62.

    [0080] Here, the method of deriving an equation of calculating the roll inclined angle represented by (equation 25) will be described below. FIG. 11 is a schematic view showing the monocycle robot 1 from the front. FIG. 11 schematically illustrates only the main body 3 and the inertia rotor 64 attached to the main body 3. First, the motion equation is derived according to a Lagrange equation. The overall kinetic energy T and potential energy U of the main body 3 (the portion other than the inertia rotor 64) and inertia rotor 64 in total are as follows.
    [14]



    where:

    l1r: inertia moment of main body around rotation center O1,

    θ1r: inclined angle of main body in roll direction with respect to vertical axis,

    l2r: inertia moment of inertia rotor around rotation center O2,

    θ2r: rotation angle of inertia rotor with respect to main body,

    lr: distance from rotation center O1 to O2, and

    lGr: distance from rotation center O1 to main body gravity center position.



    [0081] (Equation 24) is provided from (equation 22) and (equation 23) in the same manner of deriving the above calculation equation of calculating the pitch inclined angle. According to (equation 24), the motion of the main body 3 is irrelevant to the angle and the angular velocity of the inertia rotor 64.
    [15]

    where:

    τ1r: torque around rotation center O1 which is applied to main body, and

    τ2r: torque which is applied to inertia rotor


    -Estimation of Roll Inclined Angle



    [0082] Similar to the above pitch inclined angle, although the roll inclined angle can also be obtained by integrating the output of the roll gyro sensor 61, the deviation accumulates, thereby making the roll inclined angle inaccurate, and therefore the roll inclined angle needs to be obtained by another method. In the same manner of estimating the above pitch inclined angle, using the motion equation of the model illustrated in FIG. 11, the roll inclined angle is estimated from the roll angular velocity ω1r outputted from the roll gyro sensor 61 and the roll torque command τ2r.

    [0083] When a torque τ1r in the direction (roll direction) in which the main body 3 is inclined by, for example, the centrifugal force due to a side wind or curve driving, the deviation (roll inclined angle) of the current inclined angle θ1r in the roll direction with respect to an apparent balanced inclined angle can be estimated according to (equation 25) from the equation obtained by modifying the motion equation of (equation 24) and the roll angular velocity ω1r outputted from the roll gyro sensor 61. Meanwhile, the first-order lag element is preferably added to provide an adequate estimated velocity and stabilize the loop. In addition, (equation 25) is an example of a calculation equation of estimating a roll inclined angle, and the calculation equation of estimating a roll inclined angle changes depending on a target model.
    [16]



    [0084] By estimating the roll inclined angle which is the angle at which the main body 3 is inclined in the roll direction with respect to the balanced state, from the roll angular velocity ω1r outputted from the roll gyro sensor 61 and the roll torque command τ2r generated based on the target roll angle and given to the roll motor 62, it is possible to precisely estimate the roll inclined angle similar to the pitch angle. Further, the roll angular velocity of the roll angular velocity sensor is not integrated, and therefore a calculation error of the target roll angle due to the accumulation of a noise and an offset is not produced, so that it is possible to precisely correct the inclination in the roll direction with respect to the balanced state by utilizing a reaction torque resulting from rotation of the wheel 2, and prevent falling in the roll direction.

    -Roll Direction External Torque Feed Forward-



    [0085] Based on the deviation angle estimated in (equation 25), the roll direction external torque is compensated.
    [17]



    [0086] (Equation 26) is added as a torque.
    [18]



    [0087] When (equation 27) holds, the motion equation of (equation 24) provides (equation 28), so that it is possible to compensate for the roll direction external torque. Accordingly, it is possible to more adequately control a rotation of the roll motor 62 taking into account the influence of the roll direction external torque and, consequently, more precisely correct the inclination in the roll direction with respect to the balanced state, and prevent a falling in the roll direction.
    [19]



    [0088] FIG. 12 is a schematic view illustrating the sensitivity of the angular velocity detected by the roll gyro sensor 61 according to the gravity center position of the main body 3. FIG. 12 is view showing the monocycle robot 1 from the right side, where the bold arrow a indicates the advancing direction and the monocycle robot 1 keeps the balanced state in the pitch direction. The roll gyro sensor 61 is an angular velocity sensor which uses a vibrator, and obtains the angular velocity by detecting a signal corresponding to the force in the direction orthogonal to the vibrating direction of the vibrator. In addition, the direction of the force to be detected is a substantially vertical direction orthogonal to the detection axis of the substantially front-back direction. As illustrated in FIG. 12, the gravity center G of the main body 3 is not on the axis 38 and is to the rear of the main body 3, and therefore, with the monocycle robot 1, the axis 38 of the main body 3 is not in the vertical direction and is inclined forward in the balanced state in the pitch direction. The roll gyro sensor 61 is attached to the main body 3 to orient the detection axis toward the front-back direction and the horizontal direction in a state where the axis 38 of the main body 3 is in the vertical direction and detect the signal corresponding to the force in the vertical direction.

    [0089] In the balanced state in the pitch direction as illustrated in FIG. 12, the detection axis of the roll gyro sensor 61 is oriented toward the arrow b and its front side beyond the horizontal direction is inclined forward low. Although the roll gyro sensor 61 detects the signal corresponding to the force indicated by the arrow d in a state where the detection axis inclined forward, the angular velocity which is actually produced in the roll direction corresponds to the force indicated by the arrow c. When the angular velocity corresponding to the force indicated by the arrow c is ω, the angular velocity corresponding to the force indicated by the arrow d is ωcosθ and the angular velocity detected by the roll gyro sensor 61 is lower than the actual angular velocity. When the roll gyro sensor 61 cannot accurately detect the actual angular velocity, it is not possible to precisely estimate the roll inclined angle and precisely correct the inclination in the roll direction.

    [0090] Accordingly, in order to accurately detect the angular velocity which is actually produced in the roll direction, the roll gyro sensor 61 is preferably attached to the main body 3 such that the detection axis of the roll gyro sensor 61 is oriented toward the front-back direction and the horizontal direction in the balanced state in the pitch direction as in FIG. 12, that is, in a state where the main body 3 has the gravity center G on the vertical line crossing the axis of the wheel 2. By this means, it is possible to accurately detect the angular velocity which is actually produced in the roll direction in the balanced state in the pitch direction, and detect the roll angular velocity with a high sensitivity and with a small difference from the actual roll angular velocity even in a state where the main body 3 swings at a minute angle in the pitch direction with respect to the balanced state in the pitch direction.

    [0091] Next, the control operation of the monocycle robot 1 configured by the above control block illustrated in FIG. 3 will be described based on the flowchart. For ease of description, a falling prevention control in the pitch direction and a falling prevention control in the roll direction will be separately described. FIG. 13 is a flowchart illustrating falling prevention processing steps in the pitch direction by the controller of the control board 35 of the monocycle robot 1.

    [0092] As illustrated in FIG. 13, the controller of the control board 35 counts the number of pulses of an output (pulse signal) of the pitch encoder 33 which detects rotation of the pitch motor 32 (step S1201). The controller receives the advance (or retreat) command of the wheel 2 as a pulse signal of the rotation velocity (step S1202).

    [0093] The controller calculates the rotation velocity deviation in the pitch direction from the number of pulses obtained by subtracting the number of pulses of the output (pulse signal) of the pitch encoder 33 from the number of pulses of the pulse signal of the advance (or retreat) command (step S1203). More specifically, the controller converts the number of pulses resulting from the subtraction into the rotation angle and then differentiates the rotation angle to obtain the rotation velocity deviation. The controller calculates the target pitch angle which is the target inclined angle in the pitch direction, based on the rotation velocity deviation in the pitch direction (step S1204).

    [0094] The controller subtracts the pitch inclined angle estimated in step S1212 described below from the calculated target pitch angle to calculate a pitch angular deviation (step S1205), and multiplies the calculated pitch angular deviation by a proportional gain to calculate a target pitch angular velocity ω2p (step S1206).

    [0095] The controller calculates the pitch angular velocity deviation between the target pitch angular velocity ω2p and the pitch angular velocity ω1p calculated in step S1211 described below (step S1207), and generates the pitch torque command τ0P by, for example, performing PI control of the calculated pitch angular velocity deviation (step S1208).

    [0096] The controller corrects the generated pitch torque command τ0P using the pitch direction external torque τ3P estimated in step S1213 described below, and generates a pitch torque command τ2p (step S1209).

    [0097] The controller performs A/D conversion of the output of the pitch angular velocity outputted from the pitch gyro sensor 31 to acquire the A/D converted output (step S1210). The controller multiplies the acquired output of the pitch angular velocity by a conversion coefficient to calculate a pitch angular velocity ω1p (step S1211).

    [0098] Using (equation 18), the controller estimates the pitch inclined angle at which the main body 3 is inclined in the pitch direction with respect to the balanced state, from the calculated pitch angular velocity ω1p and the pitch torque command τ2p generated in above step S1209 (step S1212). The controller estimates the pitch direction external torque for inclining the main body 3 in the pitch direction, based on the estimated pitch inclined angle (step S1213).

    [0099] The controller decides whether or not the pitch torque command τ2p is generated in step S1209 (step S1214).

    [0100] When the controller decides that the pitch torque command τ2p is generated (step S1214: YES), the controller multiplies the generated pitch torque command τ2p by a conversion coefficient to calculate a command voltage (step S1215). The controller performs D/A conversion of the calculated command voltage to output to the driver which drives and rotates the pitch motor 32 (step S1216). The controller returns processing back to step S1201 and step S1210, and repeats the above processing.

    [0101] By contrast with this, when the controller decides that the pitch torque command τ2p is not generated (step S1214: NO), the main body 3 is in the balanced state without receiving no advance/retreat command, and therefore the controller finishes the processing. Although the processing steps have been described with the above example where the rotation angle is received as the advance command or the retreat command, even when the rotation velocity is received as the advance command or the retreat command, it is possible to perform a falling prevention control according to the same processing steps by obtaining the angular velocity deviation.

    [0102] FIG. 14 is a flowchart illustrating falling prevention processing steps in the roll direction by the controller of the control board 35 of the monocycle robot 1. As illustrated in FIG. 14, the controller of the control board 35 counts the number of pulses of an output (pulse signal) of the roll encoder 63 which detects a rotation of the roll motor 62 (step S1301).

    [0103] The controller calculates the rotation velocity in the roll direction based on the counted number of pulses (step S1302). More specifically, the controller converts the counted number of pulses into the rotation angle and then integrates the rotation angle to obtain the rotation velocity. The controller calculates the target roll angle which is the target inclined angle in the roll direction, based on the rotation velocity in the roll direction (step S1303).

    [0104] The controller subtracts the roll inclined angle estimated in step S1311 described below from the calculated target roll angle to calculate a roll angular deviation (step S1304), and multiplies the calculated roll angular deviation by a proportional gain to calculate a target roll angular velocity ω2r (step S1305).

    [0105] The controller calculates the roll angular velocity deviation between the target roll angular velocity ω2r and the roll angular velocity ω1r calculated in step S1310 described below (step S1306), and generates the roll torque command τ0r by, for example, performing PI control of the calculated roll angular velocity deviation (step S1307).

    [0106] The controller corrects the generated roll torque command τ0r using the roll direction external torque τ3r estimated in step S1312 described below, and generates the roll torque command τ2r (step S1308).

    [0107] The controller performs A/D conversion of the output of the roll angular velocity outputted from the roll gyro sensor 61 to acquire the A/D converted output (step S1309). The controller multiplies the acquired output of the roll angular velocity by a conversion coefficient to calculate a roll angular velocity ω1r (step S1310).

    [0108] Using (equation 25), the controller estimates the roll inclined angle at which the main body 3 is inclined in the roll direction with respect to the balanced state, from the calculated roll angular velocity ω1r and the roll torque command τ2r generated in above step S1308 (step S1311). The controller estimates the roll direction external torque for inclining the main body 3 in the roll direction, based on the estimated roll inclined angle (step S1312).

    [0109] The controller decides whether or not the roll torque command τ2r is generated in step S1308 (step S1313).

    [0110] When the controller decides that the roll torque command τ2r is generated (step S1313: YES), the controller multiplies the generated roll torque command τ2r by a conversion coefficient to calculate a command voltage (step S1314). The controller performs D/A conversion of the calculated command voltage to output to the driver which drives and rotates the roll motor 62 (step S1315). The controller returns processing back to step S1301 and step S1309, and repeats the above processing.

    [0111] By contrast with this, when the controller decides that the roll torque command τ2r is not generated (step S1313: NO), the main body 3 is in the balanced state, and therefore the controller finishes the processing.

    [0112] As described above, according to the present embodiment, it is possible to precisely estimate the pitch inclined angle at which the main body is inclined in the pitch direction with respect to the balanced state, and the pitch angular velocity of the pitch angular velocity sensor is not integrated and therefore a calculation error of the target pitch angle due to the accumulation of a noise and an offset is not produced, so that, it is possible to precisely correct the inclination in the pitch direction with respect to the balanced state by utilizing a reaction torque resulting from a rotation of a wheel, and prevent a falling in the pitch direction. Further, by receiving an advance or a retreat command of a wheel, and calculating a target pitch angle based on a rotation velocity deviation in the pich direction calculated from the received advance or retreat command and the rotation angle detected in the pitch rotation sensor, it is possible to correct the inclination in the pitch direction while securing the rotation velocity for the commanded movement. Furthermore, it is possible to simplify and miniaturize a falling prevention controlling device with a simple configuration which does not additionally require, for example, an acceleration sensor, and in which an angular velocity sensor is only added in addition to, for example, a motor required to drive a wheel.

    [0113] Moreover, it is possible to precisely estimate the roll inclined angle at which the main body is inclined in the roll direction with respect to the balanced state, and the roll angular velocity of the roll angular velocity sensor is not integrated and therefore a calculation error of the target roll angle due to the accumulation of a noise and an offset is not produced, so that it is possible to precisely correct the inclination in the roll direction with respect to the balanced state by utilizing a reaction torque resulting from a rotation of the inertia rotor, and prevent a falling in the roll direction.

    [0114] In addition, it goes without saying that the above embodiment can be changed within the scope of the present invention. The falling prevention controlling device according to the above embodiment may be applied not only to monocycle robots but also to, for example, two-legged walking robots and two-wheeled vehicles which rotate and move in the front-back direction about the one axis in the left-right direction, and can provide the same effects as the above effects.


    Claims

    1. A falling prevention controlling device comprising:

    a wheel (2) rotatable and movable in a front-back direction, and a main body (3) connected to a rotation axis of the wheel and arranged to swing in a pitch direction and a roll direction above the wheel;

    the main body comprising:

    a pitch angular velocity sensor (31) configured to detect a pitch angular velocity which is an angular velocity of an inclined angle in the pitch direction;

    a pitch motor (32) configured to rotate the wheel in conjunction with a rotation of the wheel; and

    a pitch rotation sensor (33) configured to detect a rotation position or a rotation velocity of the pitch motor;

    the falling prevention controlling device configured to correct an inclination of the main body in the pitch direction by utilizing a reaction torque resulting from the rotation of the wheel, the falling prevention controlling device comprising:

    an advance/retreat command receiving unit (42) arranged to receive an advance or a retreat command of the wheel;

    a target pitch angle calculating unit configured to calculate a target pitch angle which is a target inclined angle in the pitch direction, based on a rotation velocity deviation in the pitch direction calculated from the received advance or retreat command and the rotation angle detected in the pitch rotation sensor;

    a pitch inclined angle estimating unit (47) configured to estimate a pitch inclined angle which is an angle at which the main body is inclined in the pitch direction with respect to a balanced state, from the pitch angular velocity detected in the pitch angular velocity sensor and a pitch torque command generated based on the target pitch angle and given to the pitch motor; and

    a pitch torque command generating unit (49) configured to generate the pitch torque command based on the target pitch angle and the pitch inclined angle.


     
    2. The falling prevention controlling device according to claim 1, wherein the advance/retreat command receiving unit (42) can receive the advance or the retreat command of the wheel (2) as a rotation velocity or a rotation angle.
     
    3. The falling prevention controlling device according to claim 1 or 2, further comprising a target pitch angular velocity calculating unit (48) configured to calculate a target pitch angular velocity which is an angular velocity of a target inclined angle in the pitch direction, from a pitch angular deviation obtained by subtracting the pitch inclined angle from the target pitch angle,
    wherein the pitch torque command generating unit (49) is configured to generate the pitch torque command based on a deviation between the target pitch angular velocity and the detected pitch angular velocity.
     
    4. The falling prevention controlling device according to any one of claims 1 to 3, further comprising:

    a pitch direction external torque estimating unit (52) configured to estimate a pitch direction external torque for inclining the main body (3) in the pitch direction, based on the pitch inclined angle; and

    a torque correcting unit configured to correct the pitch torque command in a direction in which the estimated pitch direction external torque is canceled.


     
    5. The falling prevention controlling device according to any one of claims 1 to 4 in which the main body (3) comprises:

    a roll angular velocity sensor (61) configured to detect a roll angular velocity which is an angular velocity of an inclined angle in the roll direction;

    an inertia rotor (64) arranged to rotate in the roll direction;

    a roll motor (62) arranged to rotate the inertia rotor in conjunction with a rotation of the inertia rotor; and

    a roll rotation sensor (63) configured to detect a rotation position or a rotation velocity of the roll motor, the falling prevention controlling device comprising:

    a target roll angle calculating unit (74) configured to calculate a target roll angle which is a target inclined angle in the roll direction, based on the rotation velocity in the roll direction detected in the roll rotation sensor;

    a roll inclined angle estimating unit (77) configured to estimate a roll inclined angle which is an angle at which the main body is inclined in the roll direction with respect to the balanced state, from the roll angular velocity detected in the roll angular velocity sensor and a roll torque command generated based on the target roll angle and given to the roll motor;

    a target roll angular velocity calculating unit (78) configured to calculate a target roll angular velocity which is an angular velocity of a target inclined angle in the roll direction, from a roll angular deviation obtained by subtracting the roll inclined angle from the target roll angle; and

    a roll torque command generating unit (79) configured to generate the roll torque command based on a deviation between the target roll angular velocity and the detected roll angular velocity.


     
    6. The falling prevention controlling device according to claim 5, wherein a detection axis of the roll angular velocity sensor (61) is oriented toward a front-back direction and a horizontal direction in a state where a gravity center of the main body (3) is on a vertical line crossing the rotation axis of the wheel (2).
     
    7. The falling prevention controlling device according to any one of claims 1 to 6, wherein the rotation ratio of the rotation of the wheel (2) is lower than a rotation of the pitch motor (32).
     
    8. A computer program which can be executed by a computer mounted in a falling prevention controlling device comprising:

    a wheel (2) rotatable and movable in a front-back direction, and a main body (3) connected to a rotation axis of the wheel and arranged to swing in a pitch direction and a roll direction above the wheel;

    the main body comprising:

    a pitch angular velocity sensor (31) configured to detect a pitch angular velocity which is an angular velocity of an inclined angle in the pitch direction;

    a pitch motor (32) arranged to rotate the wheel in conjunction with a rotation of the wheel; and

    a pitch rotation sensor (33) configured to detect a rotation position or a rotation velocity of the pitch motor; the computer program configured to correct an inclination of the main body in the pitch direction utilizing a reaction torque resulting from the rotation of the wheel, the computer program configured to cause the computer to function as:

    an advance/retreat command receiver which can receive an advance or a retreat command of the wheel;

    a target pitch angle calculator which can calculate a target pitch angle which is a target inclined angle in the pitch direction, based on a rotation velocity deviation in the pitch direction calculated from the received advance or retreat command and the rotation angle detected in the pitch rotation sensor;

    a pitch inclined angle estimator which can estimate a pitch inclined angle which is an angle at which the main body is inclined in the pitch direction with respect to a balanced state, from the pitch angular velocity detected in the pitch angular velocity sensor and a pitch torque command generated based on the target pitch angle and given to the pitch motor; and

    a pitch torque command generator which can generate the pitch torque command based on the target pitch angle and the pitch inclined angle.


     
    9. The computer program according to claim 8, configured to cause the advance/retreat command receiver to function as a receiver which can receive the advance or the retreat command of the wheel (2) as a rotation velocity or a rotation angle.
     
    10. The computer program according to claim 8 or 9, configured to cause the computer to function as a target pitch angular velocity calculator which can calculate a target pitch angular velocity which is an angular velocity of a target inclined angle in the pitch direction, from a pitch angular deviation obtained by subtracting the pitch inclined angle from the target pitch angle,
    wherein the pitch torque command generator can be caused to function as a generator which generates the pitch torque command based on a deviation between the target pitch angular velocity and the detected pitch angular velocity.
     
    11. The computer program according to any one of claims 8 to 10, configured to cause the computer to function as:

    a pitch direction external torque estimator which can estimate a pitch direction external torque for inclining the main body (3) in the pitch direction, based on the pitch inclined angle; and

    a torque corrector which can correct the pitch torque command in a direction in which the estimated pitch direction external torque is canceled.


     
    12. The computer program according to any one of claims 8 to 11, wherein the main body (3) comprises:

    a roll angular velocity sensor (61) configured to detect a roll angular velocity which is an angular velocity of an inclined angle in the roll direction;

    an inertia rotor (64) arranged to rotate in the roll direction;

    a roll motor (62) arranged to rotate the inertia rotor in conjunction with a rotation of the inertia rotor; and

    a roll rotation sensor (63) configured to detect a rotation position or a rotation velocity of the roll motor, the computer program configured to cause the computer to function as:

    a target roll angle calculator which can calculate a target roll angle which is a target inclined angle in the roll direction based on the rotation velocity in the roll direction detected in the roll rotation sensor;

    a roll inclined angle estimator which can estimate a roll inclined angle which is an angle at which the main body is inclined in the roll direction with respect to the balanced state, from the roll angular velocity detected in the roll angular velocity sensor and a roll torque command generated based on the target roll angle and given to the roll motor;

    a target roll angular velocity calculator which can calculate a target roll angular velocity which is an angular velocity of a target inclined angle in the roll direction, from a roll angular deviation obtained by subtracting the roll inclined angle from the target roll angle; and

    a roll torque command generator which can generate the roll torque command based on a deviation between the target roll angular velocity and the detected roll angular velocity.


     


    Ansprüche

    1. Fallverhütungssteuervorrichtung, die Folgendes umfasst:

    ein Rad (2), das in einer Vor-Zurück-Richtung drehbar und beweglich ist, und einen mit einer Drehachse des Rades verbundenen Hauptkörper (3) zum Schwingen in einer Nickrichtung und einer Rollrichtung über dem Rad;

    wobei der Hauptkörper Folgendes umfasst:

    einen Nickwinkelgeschwindigkeitssensor (31), konfiguriert zum Erkennen einer Nickwinkelgeschwindigkeit, die eine Winkelgeschwindigkeit eines geneigten Winkels in der Nickrichtung ist;

    einen Nickmotor (32), konfiguriert zum Drehen des Rades in Verbindung mit einer Drehung des Rades; und

    einen Nickdrehsensor (33), konfiguriert zum Erkennen einer Drehposition oder einer Drehgeschwindigkeit des Nickmotors;

    wobei die Fallverhütungssteuervorrichtung zum Korrigieren einer Neigung des Hauptkörpers in der Nickrichtung durch Nutzen eines von der Drehung des Rades resultierenden Reaktionsmoments konfiguriert ist, wobei die Fallverhütungssteuervorrichtung Folgendes umfasst:

    eine Vor-/Rückzugsbefehlsempfangseinheit (42) zum Empfangen eines Vor- oder Rückzugsbefehls des Rades;

    eine Ziel-Nickwinkelrecheneinheit, konfiguriert zum Berechnen eines Ziel-Nickwinkels, der ein Ziel-Neigungswinkel in der Nickrichtung ist, auf der Basis einer Drehgeschwindigkeitsabweichung in der Nickrichtung, berechnet anhand des empfangenen Vor- oder Rückzugsbefehls und des im Nickdrehsensor erkannten Drehwinkels;

    eine Nickneigungswinkel-Schätzeinheit (47), konfiguriert zum Schätzen eines Nickneigungswinkels, der ein Winkel ist, bei dem der Hauptkörper in der Nickrichtung mit Bezug auf einen Ausgleichszustand geneigt ist, anhand der im Nickwinkelgeschwindigkeitssensor detektierten Nickwinkelgeschwindigkeit und eines auf der Basis des Ziel-Nickwinkels erzeugten und an den Nickmotor weitergegebenen Nickdrehmomentbefehls; und

    eine Nickmomentbefehlserzeugungseinheit (49), konfiguriert zum Erzeugen des Nickmomentbefehls auf der Basis des Ziel-Nickwinkels und des Nickneigungswinkels.


     
    2. Fallverhütungssteuervorrichtung nach Anspruch 1, wobei die Vor-/Rückzugsbefehlempfangseinheit (42) den Vor- oder Rückzugsbefehl des Rades (2) als Drehgeschwindigkeit oder als Drehwinkel empfangen kann.
     
    3. Fallverhütungssteuervorrichtung nach Anspruch 1 oder 2, die ferner eine Ziel-Nickwinkelgeschwindigkeits-Recheneinheit (48) umfasst, konfiguriert zum Berechnen einer Ziel-Nickwinkelgeschwindigkeit, die eine Winkelgeschwindigkeit eines Ziel-Neigungswinkels in der Nickrichtung ist, anhand einer Nickwinkelabweichung, die durch Subtrahieren des Nickneigungswinkels vom Ziel-Nickwinkel erhalten wird,
    wobei die Nickmomentbefehlserzeugungseinheit (49) zum Erzeugen des Nickmomentbefehls auf der Basis einer Abweichung zwischen der Ziel-Nickwinkelgeschwindigkeit und der erkannten Nickwinkelgeschwindigkeit konfiguriert ist.
     
    4. Fallverhütungssteuervorrichtung nach einem der Ansprüche 1 bis 3, die ferner Folgendes umfasst:

    eine Nickrichtungsaußenmoment-Schätzeinheit (52), konfiguriert zum Schätzen eines Nickrichtungaußenmoments zum Neigen des Hauptkörpers (3) in der Nickrichtung auf der Basis des Nickneigungswinkels; und

    eine Drehmomentkorrektureinheit, konfiguriert zum Korrigieren des Nickmomentbefehls in einer Richtung, in der das geschätzte Nickrichtungsaußenmoment storniert wird.


     
    5. Fallverhütungssteuervorrichtung nach einem der Ansprüche 1 bis 4, wobei das Hauptgehäuse (3) Folgendes umfasst:

    einen Rollwinkelgeschwindigkeitssensor (61), konfiguriert zum Erkennen einer Rollwinkelgeschwindigkeit, die eine Winkelgeschwindigkeit eines Neigungswinkels in der Rollrichtung ist;

    einen Trägheitsrotor (64) zum Drehen in der Rollrichtung;

    einen Rollmotor (62) zum Drehen des Trägheitsrotors in Verbindung mit einer Drehung des Trägheitsrotors; und

    einen Rolldrehsensor (63), konfiguriert zum Erkennen einer Drehposition oder einer Drehgeschwindigkeit des Rollmotors, wobei die Fallverhütungssteuervorrichtung Folgendes umfasst:

    eine Ziel-Rollwinkelrecheneinheit (74), konfiguriert zum Berechnen eines Ziel-Rollwinkels, der ein Ziel-Neigungswinkel in der Rollrichtung ist, auf der Basis der im Rolldrehsensor erkannten Drehgeschwindigkeit in der Rollrichtung;

    eine Rollneigungswinkel-Schätzeinheit (77), konfiguriert zum Schätzen eines Rollneigungswinkels, der ein Winkel ist, in dem das Hauptgehäuse in der Rollrichtung mit Bezug auf den Ausgleichszustand geneigt ist, anhand der im Rollwinkelgeschwindigkeitssensor erkannten Rollwinkelgeschwindigkeit und eines auf der Basis des Ziel-Rollwinkels erzeugten und an den Rollmotor übermittelten Rollmomentbefehls;

    eine Ziel-Rollwinkelgeschwindigkeits-Recheneinheit (78), konfiguriert zum Berechnen einer Ziel-Rollwinkelgeschwindigkeit, die eine Winkelgeschwindigkeit eines Ziel-Neigungswinkels in der Rollrichtung ist, anhand einer Rollwinkelabweichung, die durch Subtrahieren des Rollneigungswinkels vom Ziel-Rollwinkel erhalten wird; und

    eine Rollmomentbefehlserzeugungseinheit (79), konfiguriert zum Erzeugen des Rollmomentbefehls auf der Basis einer Abweichung zwischen der Ziel-Rollwinkelgeschwindigkeit und der erkannten Rollwinkelgeschwindigkeit.


     
    6. Fallverhütungssteuervorrichtung nach Anspruch 5, wobei eine Erkennungsachse des Rollwinkelgeschwindigkeitssensors (61) in einer Vor-Zurück-Richtung und einer horizontalen Richtung in einem Zustand orientiert ist, in dem ein Schwerpunkt des Hauptgehäuses (3) auf einer vertikalen Linie ist, die die Drehachse des Rades (2) kreuzt.
     
    7. Fallverhütungssteuervorrichtung nach einem der Ansprüche 1 bis 6, wobei das Drehverhältnis der Drehung des Rades (2) geringer ist als eine Drehung des Nickmotors (32).
     
    8. Computerprogramm, das von einem in einer Fallverhütungssteuervorrichtung montierten Computer abgearbeitet werden kann, die Folgendes umfasst:

    ein Rad (2), das in einer Vor-Zurück-Richtung drehbar und beweglich ist, und einen mit einer Drehachse des Rades verbundenen Hauptkörper (3) zum Schwingen in einer Nickrichtung und einer Rollrichtung über dem Rad;

    wobei der Hauptkörper Folgendes umfasst:

    einen Nickwinkelgeschwindigkeitssensor (31), konfiguriert zum Erkennen einer Nickwinkelgeschwindigkeit, die eine Winkelgeschwindigkeit eines Neigungswinkels in der Nickrichtung ist;

    einen Nickmotor (32), ausgelegt zum Drehen des Rades in Verbindung mit einer Drehung des Rades;

    einen Nickdrehungssensor (33), konfiguriert zum Erkennen einer Drehposition oder einer Drehgeschwindigkeit des Nickmotors; wobei das Computerprogramm zum Korrigieren einer Neigung des Hauptgehäuses in Nickrichtung unter Nutzung eines Reaktionsmoments konfiguriert ist, das von der Drehung des Rades resultiert, wobei das Computerprogramm so konfiguriert ist, dass es bewirkt, dass der Computer funktioniert als:

    Vor-/Rückzugsbefehlsempfänger, der einen Vor- oder Rückzugsbefehl des Rades empfangen kann;

    ein Ziel-Nickwinkelkalkulator, der einen Ziel-Nickwinkel berechnen kann, der ein Ziel-Neigungswinkel in der Nickrichtung ist, auf der Basis einer Drehgeschwindigkeitsabweichung in der Nickrichtung, berechnet anhand des empfangenen Vor- oder Rückzugsbefehls und des im Nickdrehsensor erkannten Drehwinkels;

    ein Nickneigungswinkel-Schätzglied, das einen Nickneigungswinkel schätzen kann, der ein Winkel ist, bei dem das Hauptgehäuse in der Nickrichtung mit Bezug auf einen Ausgleichszustand geneigt ist, anhand der im Nickwinkelgeschwindigkeitssensor erkannten Nickwinkelgeschwindigkeit und eines auf der Basis des Ziel-Nickwinkels erzeugten und an den Nickmotor übermittelten Nickmomentbefehls; und

    einen Nickmomentbefehlsgenerator, der den Nickmomentbefehl auf der Basis des Ziel-Nickwinkels und des Nickneigungswinkels erzeugen kann.


     
    9. Computerprogramm nach Anspruch 8, konfiguriert zum Bewirken, dass der Vor-/Rückzugsbefehlsempfänger als Empfänger wirkt, der den Vor- oder den Rückzugsbefehl des Rades (2) als Drehgeschwindigkeit oder als Drehwinkel empfangen kann.
     
    10. Computerprogramm nach Anspruch 8 oder 9, konfiguriert zum Bewirken, dass der Computer als Ziel-Nickwinkelgeschwindigkeitskalkulator fungiert, der eine Ziel-Nickwinkelgeschwindigkeit berechnen kann, die eine Winkelgeschwindigkeit eines Ziel-Neigungswinkels in Nickrichtung ist, anhand einer Nickwinkelabweichung, die durch Subtrahieren des Nickneigungswinkels vom Ziel-Nickwinkel erhalten wird,
    wobei der Nickmomentbefehlsgenerator veranlasst werden kann, als Generator zu fungieren, der den Nickmomentbefehl auf der Basis einer Abweichung zwischen der Ziel-Nickwinkelgeschwindigkeit und der erkannten Nickwinkelgeschwindigkeit erzeugt.
     
    11. Computerprogramm nach einem der Ansprüche 8 bis 10, konfiguriert zum Bewirken, dass der Computer fungiert als:

    ein Nickrichtungsaußenmoment-Schätzglied, das ein Nickrichtungsaußendrehmoment zum Neigen des Hauptgehäuses (3) in Nickrichtung auf der Basis des Nickneigungswinkels schätzen kann; und

    ein Drehmomentkorrekturglied, das den Nickdrehmomentbefehl in einer Richtung korrigieren kann, in der das geschätzte Nickrichtungsaußenmoment storniert wird.


     
    12. Computerprogramm nach einem der Ansprüche 8 bis 11, wobei das Hauptgehäuse (3) Folgendes umfasst:

    einen Rollwinkelgeschwindigkeitssensor (61), konfiguriert zum Erkennen einer Rollwinkelgeschwindigkeit, die eine Winkelgeschwindigkeit eines Neigungswinkels in der Rollrichtung ist;

    einen Trägheitsrotor (64) zum Drehen in der Rollrichtung;

    einen Rollmotor (62) zum Drehen des Trägheitsrotors in Verbindung mit einer Drehung des Trägheitsrotors; und

    einen Rolldrehsensor (63), konfiguriert zum Erkennen einer Drehposition oder einer Drehgeschwindigkeit des Rollmotors, wobei das Computerprogramm konfiguriert ist zu bewirken, dass der Computer funktioniert als:

    ein Ziel-Rollwinkelkalkulator, der einen Ziel-Rollwinkel berechnen kann, der ein Ziel-Neigungswinkel in der Rollrichtung ist, auf der Basis der im Rolldrehsensor erkannten Drehgeschwindigkeit in der Rollrichtung;

    ein Rollneigungswinkel-Schätzglied, das einen Rollneigungswinkel schätzen kann, der ein Winkel ist, bei dem das Hauptgehäuse in der Rollrichtung mit Bezug auf den Ausgleichszustand geneigt ist, anhand der im Rollwinkelgeschwindigkeitssensor erkannten Rollwinkelgeschwindigkeit und einem auf der Basis des Zielrollwinkels erzeugten und an den Rollmotor übermittelten Rollmomentbefehl;

    einen Ziel-Rollwinkelgeschwindigkeitskalkulator, der eine Ziel-Rollwinkelgeschwindigkeit berechnen kann, die eine Winkelgeschwindigkeit eines Ziel-Neigungswinkels in der Rollrichtung ist, anhand einer Rollwinkelgeschwindigkeit, die durch Subtrahieren des Rollneigungswinkels vom Ziel-Rollwinkel erhalten wird; und

    einen Rolldrehmomentbefehlsgenerator, der den Rolldrehmomentbefehl auf der Basis einer Abweichung zwischen der Ziel-Rollwinkelgeschwindigkeit und der erkannten Rollwinkelgeschwindigkeit erzeugen kann.


     


    Revendications

    1. Dispositif de contrôle anti-chute, comprenant :

    une roue (2) rotative et mobile dans une direction d'avant en arrière, et un corps principal (3) raccordé à un axe de rotation de la roue et arrangé pour basculer dans une direction de tangage et dans une direction de roulis au-dessus de la roue ;

    le corps principal comprenant :

    un capteur de vitesse angulaire de tangage (31) configuré pour détecter une vitesse angulaire de tangage qui est une vitesse angulaire d'un angle incliné dans la direction de tangage ;

    un moteur de tangage (32) configuré pour tourner la roue conjointement avec une rotation de la roue ; et

    un capteur de rotation de tangage (33) configuré pour détecter une position de rotation ou une vitesse de rotation du moteur de tangage ;

    le dispositif de contrôle anti-chute étant configuré pour corriger une inclinaison du corps principal dans la direction de tangage en utilisant un couple de réaction résultant de la rotation de la roue, le dispositif de contrôle anti-chute comprenant :

    une unité de réception de commande d'avance/recul (42) arrangée pour recevoir une commande d'avance ou de recul de la roue ;

    une unité de calcul d'angle de tangage cible configurée pour calculer un angle de tangage cible qui est un angle incliné cible dans la direction de tangage, sur la base d'une déviation de vitesse de rotation dans la direction de tangage calculée à partir de la commande d'avance ou de recul reçue et de l'angle de rotation détecté dans le capteur de rotation de tangage ;

    une unité d'estimation d'angle incliné de tangage (47) configurée pour estimer un angle incliné cible qui est un angle auquel le corps principal est incliné dans la direction de tangage par rapport à un état équilibré, à partir de la vitesse angulaire de tangage détectée dans le capteur de vitesse angulaire de tangage et d'une commande de couple de tangage générée sur la base de l'angle de tangage cible et donnée au moteur de tangage ; et

    une unité de génération de commande de couple de tangage (49) configurée pour générer une commande de couple de tangage sur la base de l'angle de tangage cible et de l'angle incliné de tangage.


     
    2. Dispositif de contrôle anti-chute selon la revendication 1, dans lequel l'unité de réception de commande d'avance/recul (42) peut recevoir la commande d'avance ou de recul de la roue (2) comme une vitesse de rotation ou un angle de rotation.
     
    3. Dispositif de contrôle anti-chute selon la revendication 1 ou 2, comprenant en outre une unité de calcul de vitesse angulaire de tangage cible (48) configurée pour calculer une vitesse angulaire de tangage cible qui est une vitesse angulaire d'un angle incliné cible dans la direction de tangage, à partir d'une déviation angulaire de tangage obtenue en soustrayant l'angle incliné de tangage de l'angle de tangage cible,
    où l'unité de génération de commande de couple de tangage (49) est configurée pour générer la commande de couple de tangage sur la base d'une déviation entre la vitesse angulaire de tangage cible et la vitesse angulaire de tangage détectée.
     
    4. Dispositif de contrôle anti-chute selon l'une quelconque des revendications 1 à 3, comprenant en outre :

    une unité d'estimation de couple externe de direction de tangage (52) configurée pour estimer un couple externe de direction de tangage pour incliner le corps principal (3) dans la direction de tangage, sur la base de l'angle incliné de tangage ; et

    une unité de correction de couple configurée pour corriger la commande de couple de tangage dans une direction dans laquelle le couple externe de direction de tangage estimé est annulé.


     
    5. Dispositif de contrôle anti-chute selon l'une quelconque des revendications 1 à 4, dans lequel le corps principal (3) comprend :

    un capteur de vitesse angulaire de roulis (61) configuré pour détecter une vitesse angulaire de roulis qui est une vitesse angulaire d'un angle incliné dans la direction de roulis ;

    un rotor à inertie (64) arrangé pour tourner dans la direction de roulis ;

    un moteur de roulis (62) arrangé pour tourner le rotor à inertie conjointement avec une rotation du rotor à inertie ; et

    un capteur de rotation de roulis (63) configuré pour détecter une position de rotation ou une vitesse de rotation du moteur de roulis, le dispositif de contrôle anti-chute comprenant :

    une unité de calcul d'angle de roulis cible (74) configurée pour calculer un angle de roulis cible qui est un angle incliné cible dans la direction de roulis, sur la base de la vitesse de rotation dans la direction de roulis détectée dans le capteur de rotation de roulis;

    une unité d'estimation d'angle incliné de roulis (77) configurée pour estimer un angle incliné de roulis qui est un angle auquel le corps principal est incliné dans la direction de roulis par rapport à l'état équilibré, à partir de la vitesse angulaire de roulis dans le capteur de vitesse angulaire de roulis et d'une commande de couple de roulis générée sur la base de l'angle de roulis cible et donnée au moteur de roulis ;

    une unité de calcul de vitesse angulaire de roulis cible (78) configurée pour calculer une vitesse angulaire de roulis cible qui est une vitesse angulaire d'un angle incliné cible dans la direction de roulis, à partir d'une déviation angulaire de roulis obtenue en soustrayant l'angle incliné de roulis de l'angle de roulis cible ; et

    une unité de génération de commande de couple de roulis (79) configurée pour générer la commande de couple de roulis sur la base d'une déviation entre la vitesse angulaire de roulis cible et la vitesse angulaire de roulis détectée.


     
    6. Dispositif de contrôle anti-chute selon la revendication 5, dans lequel un axe de détection du capteur de vitesse angulaire de roulis (61) est orienté vers une direction d'avant en arrière et une direction horizontale dans un état dans lequel un centre de gravité du corps principal (3) est sur une ligne verticale traversant l'axe de rotation de la roue (2).
     
    7. Dispositif de contrôle anti-chute selon l'une quelconque des revendications 1 à 6, dans lequel le rapport de rotation de la rotation de la roue (2) est plus faible qu'une rotation du moteur de tangage (32).
     
    8. Programme informatique qui peut être exécuté par un ordinateur monté dans un dispositif de contrôle anti-chute comprenant :

    une roue (2) rotative et mobile dans une direction d'avant en arrière, et un corps principal (3) raccordé à un axe de rotation de la roue et arrangé pour basculer dans une direction de tangage et dans une direction de roulis au-dessus de la roue ;

    le corps principal comprenant :

    un capteur de vitesse angulaire de tangage (31) configuré pour détecter une vitesse angulaire de tangage qui est une vitesse angulaire d'un angle incliné dans la direction de tangage ;

    un moteur de tangage (32) arrangé pour tourner la roue conjointement avec une rotation de la roue ; et

    un capteur de rotation de tangage (33) configuré pour détecter une position de rotation ou une vitesse de rotation du moteur de tangage ; le programme informatique étant configuré pour corriger une inclinaison du corps principal dans la direction de tangage en utilisant un couple de réaction résultant de la rotation de la roue, le programme informatique étant configuré pour faire que l'ordinateur fonctionne comme :

    un récepteur de commande d'avance/recul qui peut recevoir une commande d'avance ou de recul de la roue ;

    un calculateur d'angle de tangage cible qui peut calculer un angle de tangage cible qui est un angle incliné cible dans la direction de tangage, sur la base d'une déviation de vitesse de rotation dans la direction de tangage calculée à partir de la commande d'avance ou de recul reçue et de l'angle de rotation détecté dans le capteur de rotation de tangage ;

    un estimateur d'angle incliné de tangage qui peut estimer un angle incliné de tangage qui est un angle auquel le corps principal est incliné dans la direction de tangage par rapport à un état équilibré, à partir de la vitesse angulaire de tangage détectée dans le capteur de vitesse angulaire de tangage et d'une commande de couple de tangage générée sur la base de l'angle de tangage cible et donnée au moteur de tangage ; et

    une unité de génération de commande de couple de tangage qui peut générer la commande de couple de tangage sur la base de l'angle de tangage cible et de l'angle incliné de tangage.


     
    9. Programme informatique selon la revendication 8, configuré pour faire que le récepteur de commande d'avance/recul fonctionne comme un récepteur qui peut recevoir la commande d'avance ou de recul de la roue (2) comme une vitesse de rotation ou un angle de rotation.
     
    10. Programme informatique selon la revendication 8 ou 9, configuré pour faire que l'ordinateur fonctionne comme un calculateur de vitesse angulaire de tangage cible qui peut calculer une vitesse angulaire de tangage cible qui est une vitesse angulaire d'un angle incliné cible dans la direction de tangage, à partir d'une déviation angulaire de tangage obtenue en soustrayant l'angle incliné de tangage de l'angle de tangage cible,
    où le générateur de commande de couple de tangage peut être amener à fonctionner comme un générateur qui génère la commande de couple de tangage sur la base d'une déviation entre la vitesse angulaire de tangage cible et la vitesse angulaire de tangage détectée.
     
    11. Programme informatique selon l'une quelconque des revendications 8 à 10, configuré pour faire que l'ordinateur fonctionne comme :

    un estimateur de couple externe de direction de tangage qui peut estimer un couple externe de direction de tangage pour incliner le corps principal (3) dans la direction de tangage, sur la base de l'angle incliné de tangage ; et

    un correcteur de couple qui peut corriger la commande de couple de tangage dans une direction dans laquelle le couple externe de direction de tangage estimé est annulé.


     
    12. Programme informatique selon l'une quelconque des revendications 8 à 11, dans lequel le corps principal (3) comprend :

    un capteur de vitesse angulaire de roulis (61) configuré pour détecter une vitesse angulaire de roulis qui est une vitesse angulaire d'un angle incliné dans la direction de roulis ;

    un rotor à inertie (64) arrangé pour tourner dans la direction de roulis ;

    un moteur de roulis (62) arrangé pour tourner le rotor à inertie conjointement avec une rotation du rotor à inertie ; et

    un capteur de rotation de roulis (63) configuré pour détecter une position de rotation ou une vitesse de rotation du moteur de roulis, le programme informatique étant configuré pour faire que l'ordinateur fonctionne comme :

    un calculateur d'angle de roulis cible qui peut calculer un angle de roulis cible qui est un angle incliné cible dans la direction de roulis, sur la base de la vitesse de rotation dans la direction de roulis détectée dans le capteur de rotation de roulis ;

    un estimateur d'angle incliné de roulis qui peut estimer un angle incliné de roulis qui est un angle auquel le corps principal est incliné dans la direction de roulis par rapport à l'état équilibré, à partir de la vitesse angulaire de roulis détectée dans le capteur de vitesse angulaire de roulis et d'une commande de couple de roulis générée sur la base de l'angle de roulis cible et donnée au moteur de roulis ;

    un calculateur de vitesse angulaire de roulis cible qui peut calculer une vitesse angulaire de roulis cible qui est une vitesse angulaire d'un angle incliné cible dans la direction de roulis, à partir d'une déviation angulaire de roulis obtenue en soustrayant l'angle incliné de roulis de l'angle de roulis cible ; et

    un générateur de commande de couple de roulis qui peut générer la commande de couple de roulis sur la base d'une déviation entre la vitesse angulaire de roulis cible et la vitesse angulaire de roulis détectée.


     




    Drawing













































    REFERENCES CITED IN THE DESCRIPTION



    This list of references cited by the applicant is for the reader's convenience only. It does not form part of the European patent document. Even though great care has been taken in compiling the references, errors or omissions cannot be excluded and the EPO disclaims all liability in this regard.

    Patent documents cited in the description




    Non-patent literature cited in the description