(19)
(11)EP 2 332 319 B1

(12)EUROPEAN PATENT SPECIFICATION

(45)Mention of the grant of the patent:
11.03.2020 Bulletin 2020/11

(21)Application number: 09786775.8

(22)Date of filing:  31.07.2009
(51)Int. Cl.: 
H04L 29/14  (2006.01)
H04W 76/32  (2018.01)
H04L 29/08  (2006.01)
(86)International application number:
PCT/IB2009/053348
(87)International publication number:
WO 2010/015981 (11.02.2010 Gazette  2010/06)

(54)

SYSTEMS AND METHODS FOR BULK RELEASE OF RESOURCES ASSOCIATED WITH NODE FAILURE

SYSTEME UND VERFAHREN ZUR BULK-FREIGABE VON MIT KNOTENAUSFÄLLEN ASSOZIIERTEN BETRIEBSMITTELN

SYSTÈMES ET PROCÉDÉS DE LIBÉRATION MASSIVE DE RESSOURCES ASSOCIÉE À UNE DÉFAILLANCE DE NOEUD


(84)Designated Contracting States:
AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO SE SI SK SM TR

(30)Priority: 07.08.2008 US 86851 P
23.10.2008 US 256853

(43)Date of publication of application:
15.06.2011 Bulletin 2011/24

(73)Proprietor: Telefonaktiebolaget LM Ericsson (publ)
164 83 Stockholm (SE)

(72)Inventor:
  • QIANG, Zu
    Kirkland Québec H9H 4R4 (CA)

(74)Representative: Ericsson 
Patent Development Torshamnsgatan 21-23
164 80 Stockholm
164 80 Stockholm (SE)


(56)References cited: : 
  
  • ERICSSON: "Pseudo-CR on GTP Error Handling" 3GPP DRAFT; C4-081559-GTP_ERROR_HANDLING, 3RD GENERATION PARTNERSHIP PROJECT (3GPP), MOBILE COMPETENCE CENTRE ; 650, ROUTE DES LUCIOLES ; F-06921 SOPHIA-ANTIPOLIS CEDEX ; FRANCE, vol. CT WG4, no. Zagreb; 20080613, 13 June 2008 (2008-06-13), XP050040250 [retrieved on 2008-06-13]
  • MUHANNA M KHALIL NORTEL S GUNDAVELLI CISCO SYSTEMS K CHOWDHURY STARENT NETWORKS P YEGANI CISCO SYSTEMS A: "Binding Revocation for IPv6 Mobility; draft-muhanna-mext-binding-revo cation-02.txt" BINDING REVOCATION FOR IPV6 MOBILITY; DRAFT-MUHANNA-MEXT-BINDING-REVO CATION-02.TXT, INTERNET ENGINEERING TASK FORCE, IETF; STANDARDWORKINGDRAFT, INTERNET SOCIETY (ISOC) 4, RUE DES FALAISES CH- 1205 GENEVA, SWITZERLAND, no. 2, 11 July 2008 (2008-07-11), XP015059603
  • ERICSSON: "Bulk revocation support" 3GPP DRAFT; C4-082852- BULK REVOCATION PA4, 3RD GENERATION PARTNERSHIP PROJECT (3GPP), MOBILE COMPETENCE CENTRE ; 650, ROUTE DES LUCIOLES ; F-06921 SOPHIA-ANTIPOLIS CEDEX ; FRANCE, no. Phoenix; 20081013, 13 October 2008 (2008-10-13), XP050313609 [retrieved on 2008-10-13]
  • ERICSSON: "Partial Node Fault Restoration Procedures for PGW, SGW and MME" 3GPP DRAFT; C4-082602_CR_23.007_PARTIAL_NODE_FAULT_PA2 , 3RD GENERATION PARTNERSHIP PROJECT (3GPP), MOBILE COMPETENCE CENTRE ; 650, ROUTE DES LUCIOLES ; F-06921 SOPHIA-ANTIPOLIS CEDEX ; FRANCE, no. Phoenix; 20081013, 13 October 2008 (2008-10-13), XP050313384 [retrieved on 2008-10-13]
  • ERICSSON: "Pseudo-CR on Partial Node Fault in GTPv2-C" 3GPP DRAFT; C4-082603-CR_PARTIAL_NODE_FAULT_IN_GTPV2_P A2, 3RD GENERATION PARTNERSHIP PROJECT (3GPP), MOBILE COMPETENCE CENTRE ; 650, ROUTE DES LUCIOLES ; F-06921 SOPHIA-ANTIPOLIS CEDEX ; FRANCE, no. Phoenix; 20081013, 13 October 2008 (2008-10-13), XP050313385 [retrieved on 2008-10-13]
  
Note: Within nine months from the publication of the mention of the grant of the European patent, any person may give notice to the European Patent Office of opposition to the European patent granted. Notice of opposition shall be filed in a written reasoned statement. It shall not be deemed to have been filed until the opposition fee has been paid. (Art. 99(1) European Patent Convention).


Description

TECHNICAL FIELD



[0001] The present invention relates generally to telecommunications systems and, in particular, to methods and systems for performing resource release.

BACKGROUND



[0002] Radiocommunication networks were originally developed primarily to provide voice services over circuit-switched networks. The introduction of packet-switched bearers in, for example, the so-called 2.5G and 3G networks enabled network operators to provide data services as well as voice services. Eventually, network architectures will likely evolve toward all Internet Protocol (IP) networks which provide both voice and data services. However, network operators have a substantial investment in existing infrastructures and would, therefore, typically prefer to migrate gradually to all IP network architectures in order to allow them to extract sufficient value from their investment in existing infrastructures. Also to provide the capabilities needed to support next generation radiocommunication applications, while at the same time using legacy infrastructure, network operators could deploy hybrid networks wherein a next generation radiocommunication system is overlaid onto an existing circuit-switched or packet-switched network as a first step in the transition to an all IP-based network. Alternatively, a radiocommunication system can evolve from one generation to the next while still providing backward compatibility for legacy equipment.

[0003] One example of such an evolved network is based upon the Universal Mobile Telephone System (UMTS) which is an existing third generation (3G) radiocommunication system that is evolving into High Speed Packet Access (HSPA) technology. Yet another alternative is the introduction of a new air interface technology within the UMTS framework, e.g., the so-called Long Term Evolution (LTE) technology. Target performance goals for LTE systems include, for example, support for 200 active calls per 5 MHz cell and sub 5 ms latency for small IP packets. Each new generation, or partial generation, of mobile communication systems add complexity and abilities to mobile communication systems and this can be expected to continue with either enhancements to proposed systems or completely new systems in the future.

[0004] Building upon these systems, 3GPP Release 8 standardizes more of the LTE/Evolved Packet Core (EPC) systems and subsystems to include 3GPP and non-3GPP system access. To support this, the core network allows for either Proxy Mobile IP (PMIP) or GPRS Tunneling Protocol (GTP) to be used as the mobility protocol between gateways, e.g., Packet Data Network Gateway (PGW), Serving Gateway (SGW) and non-3GPP access gateways. These ongoing efforts to improve communication systems allow for the interoperability of the various generations of systems, and is fueled by both the increase of devices which can use these systems as well as the increase in services offered over these systems.

[0005] From 3GPP C4-081559 "Pseudo-CR on GTP Error Handling", it is known that when a PDN connection is first created, each node exchanges a list of resource-IDs piggybacked in a Create Default bearer Request and Create Default Bearer Response. These resource IDs are internal resources that are likely to fail in the future. Each node receiving such a list, stores it in the PDN connection record for the newly established PDN connection. It also relays a resource-ID down the line with the Create Default Bearer Request/Response. This creates a fully linked mesh of PDN connection records. When a node detects that a resource fails it simply sends a "release resource-ID request" with the resource-ID of the failed component.

[0006] Accordingly, methods and systems for improving the efficiency of use for these communication systems are desirable.

SUMMARY



[0007] The present invention is defined in the appended independent claims. Exemplary embodiments of the present invention are given in the dependent claims.

BRIEF DESCRIPTION OF THE DRAWINGS



[0008] The accompanying drawings illustrate exemplary embodiments, wherein:

Figure 1 depicts a long term evolution (LTE) radio access network (RAN) and a system architecture evolution (SAE) core network (CN) in communication with other devices in which exemplary embodiments can be implemented;

Figure 2 depicts communications between a mobile access gateway (MAG) and a local mobility anchor (LMA);

Figure 3 shows the format for a generic routing encapsulation (GRE) key;

Figure 4 illustrates gateway combinations according to exemplary embodiments;

Figure 5 shows a node in communication with a connected resource group according to exemplary embodiments;

Figure 6 shows a Binding Revocation Indicator (BRI) message;

Figure 7 illustrates a new mobility option according to exemplary embodiments;

Figure 8 shows a communications node according to exemplary embodiments; and

Figure 9 illustrates a process flow for releasing resources according to exemplary embodiments.


DETAILED DESCRIPTION



[0009] The following detailed description of the exemplary embodiments refers to the accompanying drawings. The same reference numbers in different drawings identify the same or similar elements. Also, the following detailed description does not limit the invention. Instead, the scope of the invention is defined by the appended claims.

[0010] As mentioned above, it is desirable to provide mechanisms and methods for improving efficiency in communication systems, e.g., mobile communication systems. More particularly, the following exemplary embodiments describe methods and systems for improving the efficiency of communication systems by reducing the message traffic associated with releasing resources upon the partial failure of, one or more nodes (or components of nodes) used in various communication systems. Additionally, when a partial node failure occurs, some part of the node is still "alive", e.g., the control plane and able to communicate the failure. In order to provide some context for this discussion, an exemplary communications architecture in which the exemplary embodiments may be used is shown in Figure 1, although those skilled in the art will appreciate that the present invention is not limited to usage in such architectures.

[0011] According to exemplary embodiments, a long term evolution (LTE) radio access network (RAN)/system architecture evolution (SAE) core network (CN) 100 which also allows access by equipment designed in accordance with other architectures, e.g., non-third generation partnership project (3GPP) architectures, is shown in Figure 1. Initially, MS 10 is in radio communication with an eNodeB (not shown) which resides within an Evolved-Universal Terrestrial Radio Access Network (E-UTRAN) 12 (also known as an LTE RAN), and which contains various control functions for connection mobility control, scheduling and radio resource management. The E-UTRAN 12 communicates in the control plane via an S1-MME interface with a mobility management entity (MME) 14. MME 14 manages, for example, the distribution of paging messages to eNodeB(s) and is also involved in handoff signaling. Additionally, the MME 14 is in communication with a home subscriber server (HSS) 16, which is a database containing subscriber information and which handles authorization/authentication issues associated with the MS 10's communications in the network.

[0012] The E-UTRAN 12 also communicates in the user plane via an S1-UP interface with a Serving SAE Gateway (SGW) 18 which performs a variety of functions, such as packet routing and forwarding, mobility anchoring for inter-3GPP mobility as well as being the gateway which terminates the interface towards the E-UTRAN 12. The SGW 18 has a communications link with the MME 14 through the S11 interface and is also in communications with a Packet Data Network SAE Gateway (PDN SAE GW or PGW) 20 over the S5/S8 interfaces. The PGW 20 performs a variety of functions, such as IP address allocation for UE 10, and may also perform the 3GPP pre-release 8 version functions that were previously associated with a gateway general packet radio service (GPRS) support node (GGSN).

[0013] Additionally, the PGW 20 allows access to the operator's IP services 22 where, for example, IP Multimedia Subsystem (IMS) services to support telephony services can reside. In this exemplary architecture, the PGW 20 also communicates with a non-3GPP access gateway 26, over the S2a and S2b interfaces, for granting devices associated with other communication systems, e.g., a mobile node (MN) 28 associated with an older generation architecture, access to an operator's IP services 22. A Policy and Charging Rules Function (PCRF) 24 is in communications with both the PGW 20 and the operator's IP Services 22. The PCRF 24 handles, for example, functions including the allowance or refusal of certain types of traffic, e.g., based upon local regulations, and rules dealing with packet grouping. The various interfaces and other elements of this exemplary LTE/SAE network 100 are further described in their associated standards documents, for example, the 3GPP TS 23.401 Release 8, which is available online at www.3gpp.org.

[0014] As shown in Figure 1, the interfaces for communication between the SGW 18 and the PGW 20 are referred to as the S5 and the S8 interfaces. The S5 interface provides, for example, user plane tunneling and tunnel management between these two gateways. The S8 interface performs generally the same functions as the S5 interface, but for inter-public land mobile networks (PLMNs) communications, e.g., when the SGW 18 is in a visiting PLMN and the PGW 20 is in the home PLMN. Various protocols can be used for information exchange between the SGW 18 and the PGW 20 over the S5/S8 interfaces such as Proxy Mobile IP (PMIP) and GPRS Tunneling Protocol (GTP). The choice of the protocol to be used in communicating over these interfaces is dependent upon, for example, the protocol used by the network via which the mobile device is connected to these nodes. Additionally, as shown in Figure 1, when the PDN SAE gateway 20 is handling communications associated with the creation of a session for a mobile device connected to the system 100 through a non-3GPP access gateway 26, i.e., over the S2a or S2b interfaces, the PMIP protocol will be used.

[0015] Gateways can be used for, among other things, forwarding resource requests to the proper resource controlling node(s) during the process of session setup for a mobile device with a resource or resources, e.g., resources associated with services providing text messaging, weather information, traffic information and the like, associated with an operator network, and releasing resources upon session tear-down. For example, a PGW 20 can send requests to its peer node, SAE gateway 18, associated with obtaining resources for session setup in the exemplary architecture of Figure 1. Such requests can, for example, involve the usage of resource identifiers as shown in Figure 2. Therein, mobile nodes (MN-1 through MN-4) are in communication with a mobile access gateway (MAG) 202. Using the PMIP protocol, the MAG 202 communicates with a local mobility anchor (LMA) 204 via a Proxy Mobile IPv6 Tunnel 206. As needed, the requests from the mobile nodes are forwarded from the LMA 204 to various resources in the operator network 208, which can be an IP network. For each resource requested by a mobile node, a generic routing encapsulation (GRE) key is assigned. This GRE key 302, which is an identifier associated with the requested resource, can be provided in the format shown in Figure 3, which format is described in, for example, the document entitled "GRE Key Option for Proxy Mobile IPv6 draft-ietf-netlmm-grekey-option-01.txt", found at www.tools.ietf.org. Uplink and downlink GRE keys can be created by the MAG 202 and LMA 204, respectively, and transmitted between the two gateways in a Proxy Binding Update message and a Proxy Binding Acknowledgement message. Additionally, these GRE keys can be used by nodes and peer nodes for marking each mobile node's data flow, e.g., sessions and their associated resources.

[0016] The gateway configuration shown in Figure 2, can be combined with the architecture shown in Figure 1 to create the gateway and interface configuration shown in Figure 4. Like Figure 1, Figure 4 includes an SGW 18, PGW 20 and a non-3GPP access GW 26. However, these gateways have additional functions. For example, the SGW 18 and the non-3GPP access GW 26 also include the functionality of a MAG 202, and the PGW 20 includes the functionality of an LMA 204. This allows these gateways to assign GRE keys, as described above, to mobile devices, e.g., MNs 28 and/or UEs 10, which in turn permits the tracking and correlation of resources to each mobile device. Therefore, any of the SGW 18, PGW 20, and non-3GPP access GW 26 acting as a MAG 202 or an LMA 204, can release the session by sending a Binding Revocation Indicator (BRI) message, if the PMIP protocol was used for session setup, or by sending a Delete Bearer Request message, if the GTP protocol was used for the session setup. This conventional release mechanism is operative for a single mobile device and a single resource. While this conventional release mechanism may be adequate for the release of a single session, e.g., when a user terminates his or her service session, it is inefficient for other situations. For example, if a circuit board associated with a node, e.g., PGW 20, fails, then it might be necessary to release thousands of resources simultaneously. Under such circumstances, releasing resources using a single message per resource would be inefficient.

[0017] Accordingly, exemplary embodiments provide for techniques which enable bulk release of resources in such systems. Consider that, at any given time, multiple UEs 10 are typically in communications with an operator network and are requesting services which use resources, e.g., chat sessions using instant messaging. The routing and assignment of these requests can be made through a single node, through multiple nodes, through peer nodes and/or any combination thereof. To simplify and generalize the discussion, a purely illustrative example is used below wherein resource requests pass through a single node, which has a plurality of subcomponents, and which is in communication with a connected resource group as shown in Figure 5.

[0018] According to exemplary embodiments, a node 502 is in communications with a connected resource group 510 and either directly or indirectly to a gateway, e.g., an SGW 18, a PGW 20 or a non-3GPP access gateway 26. Alternatively, node 502 may be one of the gateways 18, 20 or 26. For example, node 502 may represent PGW 20. In this example, node 502 includes three subcomponents, NIC1 504, NIC2 506 and NIC3 508, which may be implemented as different circuit boards. Each network interface card (NIC) routes requests from a plurality of mobile devices to a resource group (RG), e.g., RG1 512, RG2 514 and RG3 516 located in connected resource group 510, and each plurality or grouping of devices is associated with a range of addresses associated described by, for example, GRE keys in PMIP or Tunnel Endpoint Identifier (TEID) values in GTP. The resource groups may, for example, be managed by a peer node 510, e.g., SGW 18, associated with the node 502, e.g., PGW 20. These addresses (GRE keys or TEID values) can be used to identify a session and the resource being used by a mobile device. This allows node 502 to know the addresses of resources which are currently allocated to ongoing sessions with mobile devices. Also, while NICs have been shown as exemplary elements or subcomponents within node 502 that could be points of failure within a node, it will be appreciated that other hardware elements can be present in node 502 which could also fail and result in the bulk release of resources according to these exemplary embodiments.

[0019] As mentioned above, currently when releasing these resources at the end of a session or due to some type of failure, the resources are released at a rate of one session and its related resource per release message by, e.g., sending a Binding Revocation Indicator message and/or a Delete Bearer Request message. However, when, for example, one or more of the NICs 504, 506 or 508 fail, this partial node failure impacts a subset of all of the sessions which a node 502 coordinates. In such a partial node failure, if the gateway associated with the node (or the gateway itself) is not fully redundant, then that gateway needs to send potentially thousands of the release messages, e.g., one per session, in order to clean up the allocated resources, e.g., in the peer node. This manner of releasing one resource per message will create a lot of network signaling traffic. Additionally, for a complete node failure bulk release of resources can be performed but such methods used for a complete failure are not fully compatible for use with a partial node failure. For example, for a complete node failure an additional identification method can be used which requires both peer systems to keep all identification information in their respective memories as well as understanding the node internal structure by the peer system (this allows the peer system to understand which session belongs to which group).

[0020] According to exemplary embodiments, methods and systems for the bulk release of resources for a partial node failure will be described below. In an evolved packet system (EPS) network, the GRE key is required for each PMIP session and the TEID is required for each GTP session. The GRE key or TEID can, for example, be assigned to each NIC (board or other relevant subcomponent) on a group basis. This assignment process allows for a bulk resource releasing solution using a plurality of GRE keys or TEID, e.g., a range of GRE keys or TEID. For example, as a node 502 assigns/supports sessions/resources, e.g., a part of a binding cache, through its subcomponents, the node 502 knows the values of the assigned GRE keys, i.e., the node 502 may store, in each subcomponent, the highest and lowest GRE key (or TEID value) according to one exemplary embodiment. Therefore, when a subcomponent fails, the node 502 knows the identities of the resources that need to be released based on the known, correlated understanding of the GRE keys associated with their respective resources which have been grouped together into a continuous range of GRE keys or TEID values for that subcomponent. Additionally, node 502's control component, e.g., a processor linked to memory, typically has the capability to know or determine when its respective payload subcomponents are either operational or have failed. The control component shall also have the knowledge of the address range used by each payload components.

[0021] According to exemplary embodiments, the address range (GRE key or TEID values) which are associated with a partial node failure can be transmitted in a single bulk resource releasing message to the peer node. Upon receiving the BRI message, the peer node can release the resources associated with the address range. For example, when using PMIP, a node 502 can transmit a Binding Revocation Indication message which includes the range of the GRE keys which were being used to support sessions in a failed subcomponent, e.g., a failed board or NIC. An example of a Binding Revocation Indication message 602 according to this exemplary embodiment is shown in Figure 6. Upon receiving this Binding Revocation Indication (BRI) message 602, a peer node (or similar logical entity which includes the resources) can look up the received GRE key range and release all sessions and associated resources within the indicated GRE key range.

[0022] To support this feature, a new mobility option can be used in the BRI message 602 which includes, for example, a range of GRE keys. A purely illustrative example of this new mobility option 700 is shown in Figure 7, although it will be appreciated that other formats can be used. Breaking down the description of this exemplary mobility option by octets, octet 1 includes the type 702 to be defined by the internet assigned number association, octet 2 describes the length 704, e.g., an eight bit unsigned integer indicating the length in octets of the option, excluding the type and length field, having a value, e.g. 10. Octets 304 are reserved 706 for future use, however at this time to support current standards, the value can be initialized to 0 by the sender and can be ignored by the receiver. In this example, octets 5-8 describe the lowest GRE key identifier 708 in a four byte field containing the lowest GRE key identifier in the range and octets 9-12 describe the highest GRE key identifier in a four byte field containing the highest GRE key identifier 710 in the range.

[0023] According to another exemplary embodiment, the new mobility option described above can be used in other protocols for allowing a bulk release of resources upon a partial node failure. For example, the new mobility option 700 shown in Figure 7 can be used in the Delete Bearer Request message as used in GTP. The new mobility option 700 can be inserted into a field in the Delete Bearer Request message in a manner similar to that described above for the BRI message.

[0024] According to an exemplary embodiment, bulk release of resources for a partial node failure can be performed in a non-GPRS system which uses PMIP. A BRI message can be used for the bulk release of resources, but instead of using a range of GRE keys in the new mobility option 700 as shown in Figure 7, alternative addressing methods can be used. For example, instead of using a range of values, a single value that is representative of a range of values could be used and inserted into the new mobility option to replace the high and low GRE key values.

[0025] The exemplary embodiments described above provide for, among other features, systems and methods for a bulk release of resources. An exemplary communications node 800 will now be described with respect to Figure 8. Communications node 800 can contain a processor 802 (or multiple processor cores), a memory 804, one or more secondary storage devices 806 and a communications interface unit 808 (which can include a plurality of subcomponents, e.g., NICs) to facilitate communications between communications node 800 and other networks and devices. When communications node 800 performs the function of routing session information, including resource requests, to resources, the communications node 800 is capable of storing the associated GRE keys and/or GRE key ranges used by its subcomponents which are associated with each session, e.g., in its memory 804. This information then allows communications node 800 to transmit a bulk resource release message when a (partial) node failure occurs.

[0026] Utilizing the above-described exemplary systems according to exemplary embodiments, a method for communicating information associated with the release of resources is shown in the flowchart of Figure 9. Therein, at step 900, sessions between a plurality of devices and a plurality of resources are supported. At step 902, a hardware failure is detected which is associated with the sessions using the plurality of resources. A bulk resource release message, which includes at least one value associated with the address range of said plurality of resources, is then transmitted at step 904.

[0027] The above-described exemplary embodiments are intended to be illustrative in all respects, rather than restrictive, of the present invention. All such variations and modifications are considered to be within the scope of the present invention as defined by the following claims. No element, act, or instruction used in the description of the present application should be construed as critical or essential to the invention unless explicitly described as such. Also, as used herein, the article "a" is intended to include one or more items.


Claims

1. A method for releasing a plurality of resources comprising:

- supporting sessions between a plurality of devices and said plurality of resources;

- determining that a hardware failure has occurred which is associated with the sessions using said plurality of resources; characterised by

- transmitting a bulk resource release message which includes a range of values associated with an address range of said plurality of resources;
wherein each value within said range of values corresponds to a resource to be released.


 
2. The method of claim 1, wherein said step of determining that said hardware failure has occurred which is associated with said plurality of resources further comprises:

- determining that a subcomponent of a communications node has failed.


 
3. The method of claim 1, wherein said at least one value identifies a plurality of generic router encapsulation (GRE) keys.
 
4. The method of claim 2, wherein said range is a continuous range of GRE keys.
 
5. The method of claim 3, further comprising the step of:

- assigning said plurality of GRE keys by a gateway node.


 
6. The method of claim 5, wherein said gateway node is one of a serving gateway, a packet data network gateway and a non-third generation partnership project access gateway.
 
7. A communication node comprising:

- at least one component for supporting sessions between a plurality of devices and a plurality of resources; and

- a processor for determining that a hardware failure associated with said at least one component has occurred,

the communication node being characterised in that the processor is configured to transmit a bulk resource release message which includes a range of values associated with an address range of said plurality of resources;
wherein each value within said range of values corresponds to a resource to be released.
 
8. The communication node of claim 7, wherein said at least one component is a network interface card (NIC).
 
9. The communication node of claim 7, wherein said at least one value is a range of values, wherein each value within said range of values corresponds to a resource to be released.
 
10. The communication node of claim 7, wherein said at least one value identifies a plurality of generic router encapsulation (GRE) keys.
 
11. The communication node of claim 9, wherein said range is a continuous range of GRE keys.
 
12. The communication node of claim 10, wherein said processor also assigns said plurality of GRE keys.
 
13. The communication node of claim 7, wherein said communication node is one of a serving gateway, a packet data network gateway and a non-third generation partnership project access gateway.
 
14. The communications node of claim 7, wherein said hardware failure associated with said at least one component is a partial node failure.
 


Ansprüche

1. Verfahren zur Freigabe einer Mehrzahl von Ressourcen, umfassend:

- Unterstützen von Sitzungen zwischen einer Mehrzahl von Vorrichtungen und der Mehrzahl von Ressourcen;

- Bestimmen, dass ein Hardwarefehler aufgetreten ist, der mit den Sitzungen assoziiert ist, welche die Mehrzahl von Ressourcen verwenden;
gekennzeichnet durch

- Senden einer Bulk-Ressourcenfreigabenachricht, die einen Bereich von Werten umfasst, die mit einem Adressbereich der Mehrzahl von Ressourcen assoziiert sind;
wobei jeder Wert innerhalb des Wertebereichs einer Ressource entspricht, die freigegeben werden soll.


 
2. Verfahren nach Anspruch 1, wobei der Schritt des Bestimmens, dass der Hardwarefehler aufgetreten ist, der mit der Mehrzahl von Ressourcen assoziiert ist, ferner umfasst:

- Bestimmen, dass eine Teilkomponente eines Kommunikationsknoten ausgefallen ist.


 
3. Verfahren nach Anspruch 1, wobei der mindestens eine Wert eine Mehrzahl von Generic-Routing-Encapsulation, GRE,-Schlüsseln identifiziert.
 
4. Verfahren nach Anspruch 2, wobei der Bereich ein kontinuierlicher Bereich von GRE-Schlüsseln ist.
 
5. Verfahren nach Anspruch 3, ferner umfassend den folgenden Schritt:

- Zuordnen der Mehrzahl von GRE-Schlüsseln durch einen Gateway-Knoten.


 
6. Verfahren nach Anspruch 5, wobei der Gateway-Knoten eines von einem versorgenden Gateway, einem Paketdatennetzwerk-Gateway und einem anderen als einem Zugangs-Gateway des Partnerschaftsprojekts der dritten Generation ist.
 
7. Kommunikationsknoten, umfassend:

- mindestens eine Komponente zum Unterstützen von Sitzungen zwischen einer Mehrzahl von Vorrichtungen und einer Mehrzahl von Ressourcen; und

- einen Prozessor zum Bestimmen, dass ein Hardwarefehler aufgetreten ist, der mit der mindestens einen Komponente assoziiert ist,
wobei der Kommunikationsknoten dadurch gekennzeichnet ist, dass der Prozessor so konfiguriert ist, dass er eine Bulk-Ressourcenfreigabenachricht sendet, die einen Bereich von Werten umfasst, die mit einem Adressbereich der Mehrzahl von Ressourcen assoziiert sind;
wobei jeder Wert innerhalb des Wertebereichs einer Ressource entspricht, die freigegeben werden soll.


 
8. Kommunikationsknoten nach Anspruch 7, wobei die mindestens eine Komponente einer Netzwerkschnittstellenkarte, NIC, ist.
 
9. Kommunikationsknoten nach Anspruch 7, wobei der mindestens eine Wert ein Bereich von Werten ist, wobei jeder Wert innerhalb des Wertebereichs einer Ressource entspricht, die freigegeben werden soll.
 
10. Kommunikationsknoten nach Anspruch 7, wobei der mindestens eine Wert eine Mehrzahl von Generic-Routing-Encapsulation, GRE,-Schlüsseln identifiziert.
 
11. Kommunikationsknoten nach Anspruch 9, wobei der Bereich ein kontinuierlicher Bereich von GRE-Schlüsseln ist.
 
12. Kommunikationsknoten nach Anspruch 10, wobei der Prozessor außerdem die Mehrzahl von GRE-Schlüsseln zuordnet.
 
13. Kommunikationsknoten nach Anspruch 7, wobei der Kommunikationsknoten eines von einem versorgenden Gateway, einem Paketdatennetzwerk-Gateway und einem anderen als einem Zugangs-Gateway des Partnerschaftsprojekts der dritten Generation ist.
 
14. Kommunikationsknoten nach Anspruch 7, wobei der Hardwarefehler, der mit der mindestens einen Komponente assoziiert ist, ein Teilausfall des Knotens ist.
 


Revendications

1. Procédé de libération d'une pluralité de ressources comprenant :

- la prise en charge de sessions entre une pluralité de dispositifs et ladite pluralité de ressources ;

- la détermination qu'il s'est produit une défaillance matérielle qui est associée aux sessions utilisant ladite pluralité de ressources ;
caractérisé par

- la transmission d'un message de libération massive de ressources qui inclut une plage de valeurs associées à une plage d'adresses de ladite pluralité de ressources ;
dans lequel chaque valeur à l'intérieur de ladite plage de valeurs correspond à une ressource à libérer.


 
2. Procédé selon la revendication 1, dans lequel ladite étape de la détermination de la survenance de ladite défaillance matérielle qui est associée à ladite pluralité de ressources comprend en outre :

- la détermination qu'un sous-composant d'un nœud de communication est défaillant.


 
3. Procédé selon la revendication 1, dans lequel ladite au moins une valeur identifie une pluralité de clés d'encapsulation de routeur générique (GRE).
 
4. Procédé selon la revendication 2, dans lequel ladite plage est une plage continue de clés GRE.
 
5. Procédé selon la revendication 3, comprenant en outre l'étape de :

- l'assignation de ladite pluralité de clés GRE par un nœud de passerelle.


 
6. Procédé selon la revendication 5, dans lequel ledit nœud de passerelle est l'une d'une passerelle de desserte, d'une passerelle de réseau de données en paquets et d'une passerelle d'accès non-projet de partenariat de troisième génération.
 
7. Nœud de communication comprenant :

- au moins un composant pour la prise en charge de sessions entre une pluralité de dispositifs et ladite pluralité de ressources ; et

- un processeur pour la détermination qu'il s'est produit une défaillance matérielle associée audit au moins un composant ;
le nœud de communication étant caractérisé en ce que le processeur est configuré pour la transmission d'un message de libération massive de ressources qui inclut une plage de valeurs associées à une plage d'adresses de ladite pluralité de ressources ;
dans lequel chaque valeur à l'intérieur de ladite plage de valeurs correspond à une ressource à libérer.


 
8. Nœud de communication selon la revendication 7, dans lequel ledit au moins un composant est une carte d'interface de réseau (NIC).
 
9. Nœud de communication selon la revendication 7, dans lequel ladite au moins une valeur est une plage de valeurs, dans lequel chaque valeur à l'intérieur de ladite plage de valeurs correspond à une ressource à libérer.
 
10. Nœud de communication selon la revendication 7, dans lequel ladite au moins une valeur identifie une pluralité de clés d'encapsulation de routeur générique (GRE) .
 
11. Nœud de communication selon la revendication 9, dans lequel ladite plage est une plage continue de clés GRE.
 
12. Nœud de communication selon la revendication 10, dans lequel ledit processeur assigne également ladite pluralité de clés GRE.
 
13. Nœud de communication selon la revendication 7, dans lequel ledit nœud de communication est l'une d'une passerelle de desserte, d'une passerelle de réseau de données en paquets et d'une passerelle d'accès non-projet de partenariat de troisième génération.
 
14. Nœud de communication selon la revendication 7, dans lequel ladite défaillance matérielle associée audit au moins un composant est une défaillance partielle de nœud.
 




Drawing