(19)
(11)EP 2 334 759 B1

(12)EUROPEAN PATENT SPECIFICATION

(45)Mention of the grant of the patent:
11.12.2019 Bulletin 2019/50

(21)Application number: 09785023.4

(22)Date of filing:  28.08.2009
(51)International Patent Classification (IPC): 
C10G 11/02(2006.01)
C10G 11/18(2006.01)
C10G 11/05(2006.01)
(86)International application number:
PCT/GB2009/002094
(87)International publication number:
WO 2010/023456 (04.03.2010 Gazette  2010/09)

(54)

USE OF A CATALYST IN A METHOD FOR THE PRODUCTION OF LIGHT OLEFINS IN A CATALYTIC CRACKING UNIT WITH ENERGY DEFICIENCY TO MAXIMISE THE YIELD OF PROPYLENE AND ETHYLENE AND TO MINIMISE THE ENERGY DEFICIENCY

VERWENDUNG EINES KATALYSATORS IN EINEM VERFAHREN ZUR HERSTELLUNG VON LEICHTEN OLEFINEN IN KATALYTISCHEN WIRBELSCHICHTSPALTUNGSANLAGEN MIT ENERGIEMANGEL ZUR MAXIMIERUNG DER ETHYLEN- UND PROPYLEN PRODUKTION UND ZUR MINIMIERUNG DER ENERGIEMANGEL

UTILISATION D'UN CATALYSEUR DANS UN PROCÉDÉ DE PRODUCTION D'OLÉFINES LÉGÈRES DANS UNE UNITÉ DE CRAQUAGE CATALYTIQUE DE FLUIDE À UNE DÉFICIENCE EN ÉNERGIE AFIN DE MAXIMISER LA PRODUCTION DE ÉTHYLÈNE ET DE PROPYLÈNE ET DE MINIMISER LA DÉFICIENCE EN ÉNERGIE


(84)Designated Contracting States:
AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO SE SI SK SM TR

(30)Priority: 29.08.2008 BR 0803718

(43)Date of publication of application:
22.06.2011 Bulletin 2011/25

(73)Proprietor: Petróleo Brasileiro S.A. Petrobras
Rio de Janeiro, RJ (BR)

(72)Inventors:
  • DE REZENDE PINHO, Andrea
    CEP: 21.941-070 Rio de Janeiro, RJ (BR)
  • LAU, Lam, Yiu
    CEP: 22280-040 Rio de Janeiro, RJ (BR)

(74)Representative: J A Kemp LLP 
14 South Square Gray's Inn
London WC1R 5JJ
London WC1R 5JJ (GB)


(56)References cited: : 
EP-A1- 0 355 928
WO-A1-02/18516
AU-B2- 776 247
US-A- 4 658 081
EP-A1- 0 381 870
WO-A1-97/08268
US-A- 4 265 787
US-A- 5 294 332
  
      
    Note: Within nine months from the publication of the mention of the grant of the European patent, any person may give notice to the European Patent Office of opposition to the European patent granted. Notice of opposition shall be filed in a written reasoned statement. It shall not be deemed to have been filed until the opposition fee has been paid. (Art. 99(1) European Patent Convention).


    Description

    FIELD OF THE INVENTION



    [0001] The present invention relates to the field of processes for the production of light olefins, more particularly ethylene and propylene, in circulating fluidized-bed reactors by means of catalytic conversion with solid acids, being applicable to a feed comprising light hydrocarbons. The present invention teaches the use of a special catalyst for producing light olefins and depositing an appreciable amount of coke on the catalyst. Besides increasing the selectivity for light olefins and maximizing the production of propylene and, in particular, ethylene, at the same time use of the method minimizes the energy deficiency of catalytic cracking in petrochemical operations with light hydrocarbons.

    BACKGROUND OF THE INVENTION



    [0002] In the fluidized-bed catalytic cracking process, the cracking reactions of hydrocarbons take place by contact of a feed with a catalyst in conditions of dynamic flow, in a tubular reactor in ascending flow, also known as riser, or in descending flow, also known as downflow, converting the feed into streams of lighter hydrocarbons of greater economic value. Thus, streams of hydrocarbons in petroleum refining with boiling points between 350°C and 550°C are converted to lighter hydrocarbons, predominantly constituted of gasoline with a distillation range between 35°C and 220°C. The typical catalyst of the process has zeolite Y as the principal active component and the reaction temperatures, in the reactor, are around 540°C at reactor outlet.

    [0003] In catalytic cracking managed for production of petrochemicals, the main objective of the process is the production of hydrocarbons of molecular weights even lower than those found in gasoline, mainly light olefins with two to four carbon atoms (C2= to C4=). To achieve this objective, the catalytic system is modified using a special component that is able to convert olefins of five to ten carbon atoms to lower olefins. The presence of this specific component, for example zeolite ZSM-5, in itself only increases the yields of light olefins, but results in much less deposition of coke than is produced with zeolite Y. Optionally, it is also possible to increase the reaction temperature, to a value that may exceed 600°C at reactor outlet, to increase the yields of light olefins.

    [0004] The cracking reactions for production of light olefins are highly endothermic, drastically increasing the thermal demand in the reactor, which makes it difficult to meet the energy demand. In conventional catalytic cracking, this thermal demand is supplied by burning the coke that was deposited on the catalyst in the reaction section. The catalyst is burnt with air in a regenerating section at temperatures around 700°C. In this way, its catalytic activity is restored and the heated catalyst can be returned to the reaction section, to supply the heat necessary for the endothermic reactions. The problem of meeting the thermal demand is aggravated if the streams used as feed are formed by light hydrocarbons, such as diesel or naphtha, which usually deposit smaller amounts of coke on the catalyst compared with the heavier feeds such as vacuum gas oils or atmospheric residues. Nevertheless, besides the increase in the heat of reaction, the thermal demand is not met for three main reasons:
    1. 1) the actual feed used is not a good precursor for formation of coke, having low Ramsbottom carbon residue,
    2. 2) light hydrocarbons are more refractory to cracking, requiring higher reaction temperatures;
    3. 3) conventional zeolites ZSM-5 do not produce much deposition of coke on the catalyst and the amount that must be used in the catalytic system is very large.


    [0005] The energy deficiency in catalytic cracking directed towards light olefins is normally supplied by burning torch oil, also known as heating oil, in the regenerator. With this approach, the regenerator is transformed to a combustor, where burning of the oil generates sufficient heat for heating the catalyst. The regenerator bed must be heated to temperatures around 700°C. Temperatures lower than 680°C make it difficult to burn the heating oil in the regenerating bed and cause uncontrolled circulation of catalyst in the direction of the cracking reactor. The heat generated is transported to the reaction section, generally a riser, by the catalyst itself. The burning of oil in the regenerating bed promotes the development of various problems in operation of the regenerator. For example, the heating oil to be used must be selected carefully, as heating oils with very low distillation point can cause afterburning, i.e., combustion outside of the bed. The temperature differential between the bed and the combustion gases may reach 300°C, generating high temperatures in the cyclones and in other equipment inside and outside of the regenerator. Another problem that may arise is wear of the atomizers for introducing the heating oil into the regenerator. There may also be premature deactivation of the catalyst, owing to the generation of points of high temperature in the combustion bed.

    [0006] The patent literature discloses various methods for the production of light olefins by means of the use of solid catalysts, including those described in patents US 4,980,053 and US 6,210,562 and in the publication EP 0922744. However, none of these relates to solution of the problem of energy deficiency of the converter, since they use heavy hydrocarbons, generally atmospheric residues or heavy vacuum gas oils of paraffinic origin, as process feed. There is no reference to one that offers a method capable of solving the problem arising from the energy deficiency resulting from operations with light hydrocarbons.

    [0007] WO 02/18516A1 describes an FCC process incorporating crystalline microporous oxide catalysts having increased Lewis acidity.

    [0008] US 5294332 describes a process and catalyst for the catalytic cracking of hydrocarbon feedstock to catalytic cracking conversion products. The catalyst is prepared by exposing a crystalline molecular sieve to an ion exchange solution comprising at least one trivalent cation, a trivalent cation binding agent and a hydroxide-producing component.

    [0009] EP 0381870 describes a process for the production of olefins (with three or more carbon atoms) and aromatics (especially benzene).

    [0010] AU 776247 describes a process for the upgradation of undesirable olefinic liquid hydrocarbon streams.

    [0011] US 4658081 describes a process employing hydrogen sulfide or a hydrogen sulfide precursor to crack feed hydrocarbons comprising propane and butane to propylene and ethylene.

    [0012] EP 0355928 describes a process for the catalytic cracking of a hydrocarbon feedstock using a dual zeolite catalyst comprising a zeolite I having a pore-diameter larger than 0.7 Å and a zeolite II having a pore-diameter smaller than 0.7 Å.

    [0013] US 4265787 describes a cracking catalyst containing between 0.01 to 100 ppm of a metal selected from the group platinum, palladium, iridium, osmium, rhodium, ruthenium and rhenium.

    [0014] WO 97/08268 describes FCC regenerator NOx reduction by homogeneous and catalytic conversion.

    [0015] As described below, the present invention advantageously presents gains in selectivity for the production of light olefins, propylene and in particular ethylene, while at the same time minimizing the problems caused by the energy deficiency arising in the process.

    SUMMARY OF THE INVENTION



    [0016] The present invention provides use of a catalyst in a method for the production of light olefins in a catalytic cracking unit with energy deficiency wherein said catalyst comprises a solid acid which is a zeolite from the pentasil family selected from the group ZSM-5, ZSM-8 and ZSM-11, and between 1.0 and 15%, based on the weight of the catalyst, of a hydrogenation metal, said hydrogenation metal comprising a metal or combination of metals with dehydrogenation power selected from Ni, Fe, Mn, Co, Mo and/or Ga and is used to maximise the yield of propylene and ethylene and to minimise the energy deficiency in the catalytic cracking of light hydrocarbons with boiling points above 150 °C, and wherein said method comprises:
    1. 1) supplying a stream of light hydrocarbons to a reactor of a fluid catalytic cracking unit, wherein the stream of light hydrocarbons comprises a stream of naphtha, diesel or kerosene or other effluent from the distillation of petroleum or from delayed coking units, hydrocracking units, hydrofining units or other refining units;
    2. 2) promoting contact between the stream of hydrocarbons and the heated catalyst;
    3. 3) allowing vapour-phase reactions to occur at a reaction temperature of from 550 to 750 °C and catalyst to oil feed ratio between 10 and 50 to obtain a mixture of hydrocarbons, steam and coked catalyst;
    4. 4) separating the coked catalyst from products resulting from the reactions;
    5. 5) directing the coked catalyst to a steam rectification section;
    6. 6) directing rectified coked catalyst to a heating section, to allow combustion of coke deposited on the catalyst and the burning of torch oil, with a stream of air, and to obtain a heated catalyst capable of supplying the process with energy;
    7. 7) returning the heated catalyst to the feed of the reactor to begin the cracking process again;
    8. 8) directing the hydrocarbon stream generated to a separating and fractionating section, for separating the products obtained.


    [0017] In a preferred aspect of the invention, said catalyst comprises a solid acid and between 1.0 and 15%, based on the weight the catalyst, of Ni.

    [0018] In a preferred aspect of the invention, said reactor is a reactor with ascending or descending flow.

    [0019] In another preferred aspect of the invention, said stream of hydrocarbons, provided for feeding the catalytic cracking unit, is a stream of hydrocarbons, preferably light hydrocarbons, with Ramsbottom carbon residue less than 1.5% w/w.

    [0020] In another preferred aspect of the invention, said catalyst contains less than 60% w/w of solid acid, between 0% and 50% w/w of alumina, between 0% and 40% w/w of silica and the remainder kaolin.

    [0021] In another preferred aspect of the invention, said catalyst is regenerated at a temperature between 650 °C and 750 °C.

    [0022] In another aspect of the invention, there is the introduction of rapid cooling or quench in an intermediate section of the reactor.

    [0023] The present disclosure provides a method of production of light olefins through the catalytic cracking of light hydrocarbons, for production of propylene and ethylene at high reaction temperature and with high catalyst/oil ratio by using a catalyst containing a solid acid, preferably a high-silica zeolite, whose composition also includes a dehydrogenating metal. Said solid acid is a zeolite in the pentasil family selected from the group ZSM-5, ZSM-8, and ZSM-11.

    [0024] In the present disclosure, light olefins are produced, such as ethylene and propylene, and moreover an appreciable amount of coke is deposited on the catalyst. Gains are observed in selectivity for light olefins, and at the same time the energy deficiency of catalytic cracking in petrochemical operations with light hydrocarbons is minimized, avoiding the problems caused by the burning of heating oil in the regenerating section of the catalyst to make up for the energy deficiency of the converter.

    DETAILED DESCRIPTION OF THE INVENTION



    [0025] The reactions of catalytic cracking take place in a tubular reactor, with ascending or descending flow, where the catalyst in the form of solid particles is entrained by the vapours produced and by other auxiliary vapours introduced into the process, without the addition of hydrogen. The velocity of the vapours must be sufficient to ensure stable flow of the catalyst, performing injection of auxiliary vapour, called carrier vapour, below the point of feed injection, to convey the catalyst as far as the feed injection nozzles. The liquid feed, injected near the reactor bottom, evaporates and the subsequent chemical reactions form products that contribute to entrainment of the particles of catalyst that pass through the tubular reactor. A rapid cooling (quench) can be introduced in the intermediate section of the reactor if necessary. A series of cyclones separates the catalyst from the reaction products. After passing through the reactor, firstly, the catalyst is rectified by the injection of vapour, i.e. the more volatile hydrocarbons that were entrained by the catalyst are separated. Next, the coke deposited on the surface of the catalyst is burnt in the regenerator. Thus, the regenerated catalyst is obtained, and is returned to the beginning of the reactor at an elevated temperature. A new cycle of reactions begins in the process, when the regenerated catalyst comes in contact with a new feed introduced into the reactor.

    [0026] The method not only maximizes the production of light olefins (propylene and in particular ethylene), but also generates a significant amount of coke. It comprises the following stages:
    1. 1) supply of a feed constituted of hydrocarbons as the feed of a tubular reactor;
    2. 2) supply of a heated stream of special catalyst, the composition of which contains at least one dehydrogenating metal, M;
    3. 3) promotion of contact between the stream of hydrocarbons and the stream of special catalyst and making it possible for reactions to occur in the vapour phase, to obtain a mixture of hydrocarbons and coked catalyst;
    4. 4) separation of the catalyst from the products discharged from the reactor;
    5. 5) rectification of the coked catalyst with steam;
    6. 6) regeneration of the coked catalyst with air, directing it to a heating section, to permit combustion of the coke deposited on the catalyst and the burning of torch oil, with a stream of air, and to obtain a heated catalyst capable of supplying the process with the necessary energy;
    7. 7) returning the regenerated and heated catalyst to the tubular reactor to begin the process again;
    8. 8) directing the hydrocarbon stream generated to a separating and fractionating section, for separating the products obtained.


    [0027] The process feed can be constituted of streams from petroleum refining containing light hydrocarbons with boiling points above 150°C. The vapour-phase reactions must take place at temperatures between 550°C and 750°C and with catalyst/feed ratio between 10 and 50.

    [0028] The special catalyst used in the present invention has a triple function;
    1. 1) to convert paraffins to olefins by reactions of dehydrogenation, promoted by the dehydrogenating metal present in the special catalyst;
    2. 2) to convert the olefins thus generated and other olefins present to lower olefins, with two to four carbon atoms, increasing the yield of light olefins to the detriment of the yield of gasoline;
    3. 3) to promote the formation of an amount of coke on the catalyst sufficient to supply the energy deficiency.


    [0029] Special catalysts are used in the present invention.The catalysts are ZSM-5, which have a pore size between 6 Å and 7 Å, ZSM-8 or ZSM-11.

    [0030] The special catalyst can be prepared by any method traditionally used for incorporation of metals, such as ion exchange, coprecipitation, impregnation on the zeolite before it is processed to the microsphere format, as well as deposition of metals during or after formation of microspheres.

    [0031] There are also various methods for incorporation of zeolites that are selective for olefins, in various matrices, forming microspheres suitable for the FCC process. These methods can be used for incorporating a zeolite ZSM-5 or a zeolite M/ZSM-5 (ZSM-5 modified with one or more than one dehydrogenating metal, M).

    [0032] M is selected from metals with high dehydrogenating power: nickel, iron, manganese, cobalt, molybdenum and/or gallium. The amount of M varies between 1.0% and 15%, calculated as the percentage by weight of metal relative to the weight of catalyst.

    [0033] Maximization of the production of light olefins is confirmed by the higher yields of products leaving the reactor, by at least 10% for ethylene and 15% for coke, compared with the yields that are obtained by other methods, without the use of said special catalyst.

    [0034] The ethylene is separated from the stream of fuel gas (FG) and the propylene is separated from the stream of liquefied petroleum gas (LPG), thus identified in the tables of test results in the examples, providing evidence of the gains in selectivity obtained by the method taught in the present invention.

    [0035] Thus, the present disclosure relates to a method for fluidized-bed catalytic cracking of a stream of light hydrocarbons, which maximizes the production of light olefins, chiefly of propylene C3= and in particular ethylene C2=, and at the same time produces an appreciable deposition of coke on the catalyst, lessens the energy deficiency of the converter and thereby reduces the need to burn heating oil in the regenerator.

    [0036] The use of a special catalyst, with high content of dehydrogenating metal, minimizes or even eliminates the need to burn heating oil in the regenerator. In addition, the special catalyst aids in the conversion of paraffins to olefins, which are promptly cracked in the pores of the catalyst and give rise to olefins of lower molecular weight.

    [0037] The reactions of dehydrogenation are decisive for the conversion of saturated hydrocarbons to olefins with more than five carbon atoms, precursors of light olefins, besides directly converting small saturated compounds to light olefins of low molecular weight. The gains achieved by application of the method of the present invention can be seen from the results obtained and presented in the following examples. The examples are only illustrative and do not constitute a restriction of the scope of this invention.

    EXAMPLES



    [0038] First, two suspensions of modified zeolite were prepared. In the first, 1 kg of zeolite type ZSM-5 was added to 2.4 litres of 0.10-molar aqueous solution of chloride or nitrate of a dehydrogenating metal M. The suspension was held at 80°C for 2 h, stirring slowly to prevent sedimentation (solutions with higher concentrations of M are used for altering this operation and generating modified zeolites with higher contents of M). This suspension of M/ZSM-5 was used for preparing samples of special catalyst A, B, and C. A suspension with the same zeolite ZSM-5, but without modification with metal M, was used for the preparation of two reference catalysts, R1 and R2.

    [0039] A special catalyst D was prepared using a second suspension of M/ZSM-5 obtained by an alternative method, which comprises another embodiment of the present invention. The suspension of M/ZSM-5 obtained previously was filtered, washed, and dried at 120°C for 16 h. Then it was calcined at 500°C for 1 h, obtaining M/ZSM-5 in powder form. This powder was suspended in water again, for preparing the special catalyst, D. In this way, suspensions with more suitable solids contents of M/ZSM-5 can make its use feasible in methods such as those mentioned previously.

    [0040] The special catalysts were prepared from a hydrosol containing a mixture of colloidal silica and colloidal alumina. The suspension of zeolite ZSM-5 or, as taught in the present invention, a suspension of M/ZSM-5, was added to the suspension of colloidal particles at a temperature below 50°C. Then a suspension of kaolin with solids content of 30% and a 30% w/w solution of phosphoric acid were added to the mixture. The final mixture was dried in a spray dryer.

    [0041] Samples of the catalysts prepared underwent hydrothermal treatment with 100% steam, at 788°C, for 5 hours in a fixed bed before each catalytic test. For carrying out the catalytic tests, an equilibrium catalyst obtained from an industrial unit was mixed with each catalyst sample prepared, and an ACE laboratory unit (made by Kayser Technology) was used. Maximization of the production of light olefins (C2= and C3=) by the catalytic cracking of a stream of gas oil was observed, and the process variables remained controlled.

    [0042] Table 1 shows the properties of the feeds used in the examples.

    [0043] Table 2 shows some characteristics of the catalysts investigated.
    TABLE 1
    Characteristics of the feeds used in the catalytic tests
    FeedC1C2
    °API 16.9 26.7
    Density 0.9497 0.8899
    Aniline Point (°C) 75.2 65.2
    Total Sulphur (% w/w) 0.79 0.552
    Total Nitrogen (ppm) 3185 1870
    Basic Nitrogen (ppm) 1254 892
    Ramsbottom carbon residue (%) 0.7 -
    TABLE 2
    Characteristics of the catalysts prepared
    CatalystR1R2ABCD
    Chemical composition (%):            
    SiO2 63.0 62.3 62.0 60.5 57.20 64.0
    Na2O 0.23 0.38 0.04 0.00 0.01 0.03
    Al2O3 22.5 23.4 21.6 20.3 18.5 20.5
    TiO2 0.72 0.97 0.62 0.82 0.68 0.48
    Fe2O3 1.09 0.83 1.10 1.13 0.97 0.96
    P2O5 1.21 11.5 13.92 12.28 11.89 12.57
    NiO 0.00 0.00 0.55 5.35 11.58 1.46
    Textural properties:            
    Micropore volume (mL/g) 0.033 0.030 0.031 0.046 0.050 0.030
    Area of mesopores (m2/g) 19 18 16 24 51 21
    Surface area (m2/g) 89 81 82 123 159 84
    Physical properties:            
    d50% (µm) 85 - 80 75 90 76

    EXAMPLE 1



    [0044] After the hydrothermal treatment, an amount of equilibrium catalyst E1, obtained from a commercial unit, equivalent to a weight ratio of 8% to 92% of E1, was mixed with each sample investigated. Catalytic tests were carried out using feed C1 at a temperature of 535°C.

    [0045] Table 3 presents the most important results of the catalytic tests.
    Table 3
    Catalytic tests performed in the ACE unit with feed C1
    Condition (mixture 92% E1 + 8% catalyst)12345
    Catalyst R1 A B C D
    Conditions:          
    Reaction temperature (°C) 535 535 535 535 535
    Catalyst/feed ratio (w/w) 5.0 5.0 5.0 5.0 5.0
    Balance relative to the feed:          
    FG - Fuel gas (% w/w) 3.0 3.1 3.7 3.4 3.4
    LPG - Liquefied gas (% w/w) 19.2 19.6 19.5 19.3 18.7
    Gasoline: C5 - 220°C (% w/w) 33.8 32.6 32.6 32.5 33.1
    + 220°C (% w/w) 39.8 39.6 38.6 38.8 39.7
    Coke (% w/w) 4.2 5.1 5.6 6.0 5.1
    Coke relative to catalyst R1 - + 22% + 32% + 43% + 22%
    Total (% w/w) 100.0 100.0 100.0 100.0 100.0
    Light olefins relative to the feed:          
    Propylene (% w/w) 7.6 7.9 7.9 7.7 7.7
    Ethylene (% w/w) 1.14 1.31 1.6 1.3 1.41
    Ethylene relative to catalyst R1 - + 15% + 40% + 17% + 24%


    [0046] Comparing condition 1 with the other conditions 2 to 5, it can be seen that the method taught in the present invention (using modified zeolite) provides an increase in the yield of ethylene between 15% and 40%. Furthermore, there is an increase in the yield of coke between 22% and 43%, providing an increase in coke deposited on the catalyst. Therefore the method described provides gains in selectivity and in conversion in the production of light olefins, mainly propylene and in particular ethylene, by reactions of catalytic cracking, as well as offering additional gains in the energy balance of the unit, by generating extra coke.

    EXAMPLE 2



    [0047] After the hydrothermal treatment, an amount of equilibrium catalyst E2, obtained from a commercial unit, equivalent to a weight ratio of 80% to 20% of E2, was mixed with the sample investigated. It should be pointed out that in this example catalytic tests were carried out at 600°C, a higher reaction temperature within the range of reaction temperature employed for production of light olefins, and feed C2, typical of middle distillates with low coke forming potential.

    [0048] The results are shown in Table 4.
    TABLE 4
    Catalytic tests performed in the ACE unit with feed C2
    Condition (mixture 80% catalyst + 20% E2)(6)(7)
    Catalyst R2 D
    Conditions:    
    Reaction temperature (°C) 600 600
    Catalyst/feed ratio (w/w) 5.0 5.0
    Balance relative to the feed:    
    FG - Fuel gas (% w/w) 8.40 11.24
    LPG - liquefied gas (% w/w) 22.7 17.4
    Gasoline: C5 - 220°C (% w/w) 25.6 28.0
    > 220°C (% w/w) 39.5 39.0
    Coke (% w/w) 3.77 4.36
    Coke relative to catalyst R2 - + 16%
    Total (% w/w) 100.0 100.0
    Light olefins relative to the feed:    
    Ethylene (% w/w) 5.29 6.01
    Ethylene relative to catalyst R2 - + 15%


    [0049] Comparing condition (7) with condition (6), it can be seen that the method taught in the present invention (using modified zeolite) provided an increase of 15% in the yield of ethylene. Furthermore, there was an increase of 16% in the yield of coke, giving an increase in the coke deposited on the catalyst.


    Claims

    1. Use of a catalyst in a method for the production of light olefins in a catalytic cracking unit with energy deficiency wherein said catalyst comprises a solid acid which is a zeolite from the pentasil family selected from the group ZSM-5, ZSM-8 and ZSM-11, and between 1.0 and 15%, based on the weight of the catalyst, of a hydrogenation metal, said hydrogenation metal comprising a metal or combination of metals with dehydrogenation power selected from Ni, Fe, Mn, Co, Mo and/or Ga and is used to maximise the yield of propylene and ethylene, and to minimise the energy deficiency in the catalytic cracking of light hydrocarbons with boiling points above 150 °C, and wherein said method comprises

    1) supplying a stream of light hydrocarbons to a reactor of a fluid catalytic cracking unit, wherein the stream of light hydrocarbons comprises a stream of naphtha, diesel or kerosene or other effluent from the distillation of petroleum or from delayed coking units, hydrocracking units, hydro fining units or other refining units;

    2) promoting contact between the stream of hydrocarbons and the heated catalyst;

    3) allowing vapour-phase reactions to occur at a reaction temperature of from 550 to 750 °C and catalyst to oil feed ratio between 10 and 50 to obtain a mixture of hydrocarbons, steam and coked catalyst;

    4) separating the coked catalyst from products resulting from the reactions;

    5) directing the coked catalyst to a steam rectification section;

    6) directing rectified coked catalyst to a heating section, to allow combustion of coke deposited on the catalyst and the burning of torch oil, with a stream of air, and to obtain a heated catalyst capable of supplying the process with energy;

    7) returning the heated catalyst to the feed of the reactor to begin the cracking process again;

    8) directing the hydrocarbon stream generated to a separating and fractionating section, for separating the products obtained.


     
    2. The use according to claim 1, characterized in that said catalyst comprises a solid acid and between 1.0 and 15%, based on the weight of the catalyst, of Ni.
     
    3. The use according to claims 1 or 2, characterized in that said reactor is a reactor with ascending or descending flow.
     
    4. The use according to any one of claims 1-3, characterized in that said stream of hydrocarbons, provided for feeding the catalytic cracking unit, is a stream of hydrocarbons, preferably light hydrocarbons, with Ramsbottom carbon residue less than 1.5% w/w.
     
    5. The use according to any one of claims 1 to 4, characterized in that said catalyst contains less than 60% w/w of solid acid, between 0% and 50% w/w of alumina, between 0% and 40% w/w of silica and the remainder kaolin.
     
    6. The use according to any one of claims 1 to 5, characterized in that said catalyst is regenerated at a temperature between 650 °C and 750 °C.
     
    7. The use according to any one of claims 1 to 6, characterized by the introduction of rapid cooling or quench in an intermediate section of the reactor.
     


    Ansprüche

    1. Verwendung eines Katalysators in einem Verfahren zur Herstellung von leichten Olefinen in einer katalytischen Crackeinheit mit Energiemangel, wobei der Katalysator eine feste Säure umfasst, die ein Zeolith aus der Pentasil-Familie ist, ausgewählt aus der Gruppe ZSM-5, ZSM-8 und ZSM-11, und zwischen 1,0 und 15 %, bezogen auf das Gewicht des Katalysators, eines Hydriermetalls, wobei das Hydriermetall ein Metall oder eine Kombination von Metallen mit Dehydrierungsleistung umfasst, ausgewählt aus Ni, Fe, Mn, Co, Mo und/oder Ga, und verwendet wird, um den Ertrag von Propylen und Ethylen zu maximieren, und um den Energiemangel beim katalytischen Cracken von leichten Kohlenwasserstoffen mit Siedepunkten über 150 °C zu minimieren, und wobei das Verfahren Folgendes umfasst

    1) Zuführen eines Stroms von leichten Kohlenwasserstoffen zu einem Reaktor einer fluidkatalytischen Crackeinheit, wobei der Strom von leichten Kohlenwasserstoffen einen Strom von Naphtha, Diesel oder Kerosin oder anderem Abfluss aus der Destillation von Erdöl oder aus verzögerten Verkokungseinheiten, Hydrocrackeinheiten, Wasserstoffraffinationseinheiten oder anderen Raffinationseinheiten umfasst;

    2) Fördern eines Kontakts zwischen dem Strom von Kohlenwasserstoffen und dem erhitzten Katalysator;

    3) Ermöglichen, dass Dampfphasenreaktionen bei einer Reaktionstemperatur von 550 bis 750 °C und einem Zuführungsverhältnis Katalysator-Öl von 10 bis 50 erfolgen, um ein Gemisch aus Kohlenwasserstoffen, Dampf und verkoktem Katalysator zu erlangen;

    4) Trennen des verkokten Katalysators von den aus den Reaktionen resultierenden Produkten;

    5) Leiten des verkokten Katalysators zu einem Dampfrektifikationsabschnitt;

    6) Leiten von rektifiziertem verkoktem Katalysator zu einem Heizabschnitt, um eine Verbrennung von auf dem Katalysator abgeschiedenem Koks und die Verbrennung von Brennöl mit einem Luftstrom zu ermöglichen, und um einen erhitzten Katalysator zu erlangen, der in der Lage ist, den Prozess mit Energie zu versorgen;

    7) Rückführen des erhitzten Katalysators in die Zuführung des Reaktors, um den Crackprozess erneut zu beginnen;

    8) Leiten des erzeugten Kohlenwasserstoffstroms zu einem Trenn- und Fraktionierungsabschnitt, um die erlangten Produkte zu trennen.


     
    2. Verwendung nach Anspruch 1, dadurch gekennzeichnet, dass der Katalysator eine feste Säure und zwischen 1,0 und 15 % Ni, bezogen auf das Gewicht des Katalysators, umfasst.
     
    3. Verwendung nach den Ansprüchen 1 oder 2, dadurch gekennzeichnet, dass der Reaktor ein Reaktor mit auf- oder absteigender Strömung ist.
     
    4. Verwendung nach einem der Ansprüche 1-3, dadurch gekennzeichnet, dass der Strom von Kohlenwasserstoffen, der zum Beschicken der katalytischen Crackeinheit bereitgestellt wird, ein Strom von Kohlenwasserstoffen, vorzugsweise leichten Kohlenwasserstoffen, mit einem Ramsbottom-Kohlenstoffrest von weniger als 1,5 Gew.-% ist.
     
    5. Verwendung nach einem der Ansprüche 1 bis 4, dadurch gekennzeichnet, dass der Katalysator weniger als 60 Gew.-% feste Säure, zwischen 0 und 50 Gew.-% Aluminiumoxid, zwischen 0 und 40 Gew.-% Siliziumdioxid enthält und der Rest Kaolin ist.
     
    6. Verwendung nach einem der Ansprüche 1 bis 5, dadurch gekennzeichnet, dass der Katalysator bei einer Temperatur zwischen 650 °C und 750 °C regeneriert wird.
     
    7. Verwendung nach einem der Ansprüche 1 bis 6, gekennzeichnet durch die Einführung einer schnellen Abkühlung oder Abschreckung in einem Zwischenabschnitt des Reaktors.
     


    Revendications

    1. Utilisation d'un catalyseur dans un procédé de production d'oléfines à faibles poids moléculaires dans une unité de craquage catalytique en déficit énergétique, où ledit catalyseur comprend un acide solide lequel est une zéolite issue de la famille des pentasils choisie dans le groupe ZSM-5, ZSM-8 et ZSM-11, et entre 1,0 et 15 % sur la base du poids du catalyseur, d'un métal d'hydrogénation, ledit métal d'hydrogénation comprenant un métal ou une combinaison de métaux ayant un pouvoir de déshydrogénation choisi parmi Ni, Fe, Mn, Co, Mo et/ou Ga et est utilisé pour maximiser la rendement de propylène et d'éthylène, et minimiser le déficit énergétique dans le craquage catalytique des hydrocarbures à faibles poids moléculaires avec des températures d'ébullition supérieures à 150° C, et où ledit procédé comprend :

    1) l'introduction d'un flux d'hydrocarbures à faibles poids moléculaires dans un réacteur d'une unité de craquage catalytique en lit fluidisé, où le flux des hydrocarbures à faibles poids moléculaires comprend un flux de naphta, de diesel ou de kérosène ou d'un autre effluent provenant de la distillation du pétrole ou provenant d'unités de cokéfaction différée, d'unités d'hydrocraquage, d'unités d'hydrodésulfuration ou d'autres unités de raffinage ;

    2) la promotion du contact entre le flux d'hydrocarbures et le catalyseur chauffé ;

    3) la possibilité que les réactions en phase vapeur se produisent à une température réactionnelle allant de 550 à 750° C et à un ratio catalyseur sur charge de pétrole entre 10 et 50 pour obtenir un mélange d'hydrocarbures, de vapeur et de catalyseur cokéfié ;

    4) la séparation du catalyseur cokéfié des produits résultant des réactions ;

    5) l'acheminement du catalyseur cokéfié vers une section de rectification par entraînement à la vapeur ;

    6) l'acheminement du catalyseur cokéfié rectifié vers une section de chauffage, pour permettre la combustion du coke déposé sur le catalyseur et le brûlage de l'huile de torche, avec un flux d'air, et pour obtenir un catalyseur chauffé en mesure d'alimenter le procédé en énergie ;

    7) le retour du catalyseur chauffé à l'introduction du réacteur pour recommencer le procédé de craquage ;

    8) l'acheminement du flux des hydrocarbures généré vers une section de fractionnement et de séparation, pour séparer les produits obtenus.


     
    2. Utilisation selon la revendication 1, caractérisée en ce que ledit catalyseur comprend un acide solide et entre 1,0 et 15 % sur la base du poids du catalyseur, de Ni.
     
    3. Utilisation selon la revendication 1 ou la revendication 2, caractérisée en ce que ledit réacteur est un réacteur à flux ascendant ou descendant.
     
    4. Utilisation selon l'une quelconque des revendications 1 à 3, caractérisée en ce que ledit flux d'hydrocarbures, apporté pour alimenter l'unité de craquage catalytique, est un flux d'hydrocarbures, de préférence d'hydrocarbures à faibles poids moléculaires, aux résidus de carbone Ramsbottom inférieurs à 1,5 % poids/poids.
     
    5. Utilisation selon l'une quelconque des revendications 1 à 4, caractérisée en ce que ledit catalyseur contient moins de 60 % poids/poids d'acide solide, entre 0 % et 50 % poids/poids d'alumine, entre 0 % et 40 % poids/poids de silice et le reste de kaolin.
     
    6. Utilisation selon l'une quelconque des revendications 1 à 5, caractérisée en ce que ledit catalyseur est régénéré à une température entre 650° C et 750° C.
     
    7. Utilisation selon l'une quelconque des revendications 1 à 6, caractérisée par l'introduction d'un refroidissement rapide ou d'une trempe dans une section intermédiaire du réacteur.
     






    Cited references

    REFERENCES CITED IN THE DESCRIPTION



    This list of references cited by the applicant is for the reader's convenience only. It does not form part of the European patent document. Even though great care has been taken in compiling the references, errors or omissions cannot be excluded and the EPO disclaims all liability in this regard.

    Patent documents cited in the description