(19)
(11)EP 2 335 237 B1

(12)EUROPEAN PATENT SPECIFICATION

(45)Mention of the grant of the patent:
29.11.2017 Bulletin 2017/48

(21)Application number: 09792954.1

(22)Date of filing:  24.09.2009
(51)Int. Cl.: 
G09G 3/36  (2006.01)
(86)International application number:
PCT/US2009/058221
(87)International publication number:
WO 2010/039576 (08.04.2010 Gazette  2010/14)

(54)

USE OF ON-CHIP FRAME BUFFER TO IMPROVE LCD RESPONSE TIME BY OVERDRIVING

VERWENDUNG EINES BILDSPEICHERS AUF EINEM CHIP ZUR VERBESSERUNG DER LCD-REAKTIONSZEIT MITTELS ÜBERSTEUERUNG

UTILISATION D'UN TAMPON DE TRAME SUR PUCE POUR AMÉLIORER UN TEMPS DE RÉPONSE D'UN AFFICHAGE LCD PAR SURALIMENTATION


(84)Designated Contracting States:
AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO SE SI SK SM TR

(30)Priority: 02.10.2008 US 194994 P
22.01.2009 US 321639

(43)Date of publication of application:
22.06.2011 Bulletin 2011/25

(73)Proprietor: APPLE INC.
Cupertino, CA 95014 (US)

(72)Inventors:
  • CULBERT, Michael
    Cupertino, California 95014 (US)
  • MILLET, Timothy J.
    Cupertino, California 95014 (US)

(74)Representative: Rooney, John-Paul 
Withers & Rogers LLP 4 More London Riverside
London SE1 2AU
London SE1 2AU (GB)


(56)References cited: : 
EP-A2- 1 521 237
US-A1- 2002 175 907
US-A1- 2006 290 642
US-A1- 2008 013 126
US-A1- 2002 044 151
US-A1- 2005 001 802
US-A1- 2007 164 949
US-A1- 2008 192 061
  
  • KOBAYASHI H ET AL: "Feedback level adaptive overdrive technology applicable to digital hd lc-tvs" IDW. PROCEEDINGS OF THE INTERNATIONAL DISPLAY WORKSHOPS, XX, XX, 4 December 2002 (2002-12-04), pages 323-326, XP009049492
  
Note: Within nine months from the publication of the mention of the grant of the European patent, any person may give notice to the European Patent Office of opposition to the European patent granted. Notice of opposition shall be filed in a written reasoned statement. It shall not be deemed to have been filed until the opposition fee has been paid. (Art. 99(1) European Patent Convention).


Description

BACKGROUND



[0001] The present disclosure relates generally to reducing artifacts in a display by dynamically adjusting a signal to the display.

Description of the Related Art



[0002] This section is intended to introduce the reader to various aspects of art that may be related to various aspects of the present disclosure, which are described and/or claimed below. This discussion is believed to be helpful in providing the reader with background information to facilitate a better understanding of the various aspects of the present disclosure. Accordingly, it should be understood that these statements are to be read in this light, and not as admissions of prior art.

[0003] Liquid Crystal Displays (LCDs) are widely used as display devices for modern electronics. Typically, LCD's include an array of pixels that may be illuminated to generate a set of images. The response time of an LCD may measure the time it takes the liquid crystals that form each pixel to transition from a present intensity level to a new target intensity level. For example, the response time may be the time required for an LCD pixel to change from fully active (black) to fully inactive (white), or from fully active to fully inactive and then back to fully active again. Response time is important with respect to LCD's because if the response time of the display is too slow, the pixels may be unable to keep up with the information transmitted to the pixels, which can result in digital noise displayed or ghosting on the LCD. Tied to the response time of an LCD is the refresh period of the LCD, which defines how often the display is instructed to change the displayed image. In certain instances, however, the response time of an LCD can exceed its refresh period. In these cases, the LCD may display screen artifacts that users may find undesirable. Accordingly, there is a need for techniques that can accelerate the response time of an LCD.

[0004] US 2008/192061 discloses a system for response speed compensation in liquid crystal display using embedded memory device and method of controlling frame data of image. KOBAYASHI H ET AL: "Feedback level adaptive overdrive technology applicable to digital hd lc-tvs", IDW. PROCEEDINGS OF THE INTERNATIONAL DISPLAY WORKSHOPS vol. XX, no. XX, 4 December 2002 (2002-12-04), pages 323-326, XP009049492 discloses feedback level-adapted overdrive method for multimedia LCDs. US 2008/013126 A1 discloses liquid crystal display and overdriving method thereof. US 2002/044151 A1 discloses a liquid crystal display. US 2006/290642 A1 discloses a method of overdriving LCD device and overdriving circuit for LCD device. US 2007/164949A1 discloses a device and method for driving a liquid crystal display. US 2005/001802 A1 discloses a liquid crystal display apparatus and method for driving the same. EP 1 521 237 A2 discloses a system for displaying images on a display, and the appended claims are characterised over this document.

SUMMARY



[0005] Certain aspects of embodiments disclosed herein by way of example are summarized below. It should be understood that these aspects are presented merely to provide the reader with a brief summary of certain embodiments and that these aspects are not intended to limit the scope of the claims. Indeed, the disclosure and claims may encompass a variety of aspects that may not be set forth below.

[0006] An electronic device having signal adjusting circuitry is provided. In one embodiment, the signal adjusting circuitry may be used to adjust a signal being sent to one or more pixels of an LCD. The signal adjusting circuitry may determine that a given target pixel intensity for a particular pixel location of a target picture frame may be difficult to achieve on the LCD during a given frame refresh period. This determination may be based on the current pixel intensity being displayed on the LCD and/or the target pixel intensity. When this occurs, the signal adjusting circuitry may adjust the target pixel level for a given pixel location and send the adjusted signal to an LCD driver to cause it to overdrive the target pixel for one or more frame periods. Although overdriving the target pixel will typically not cause the intensities of the pixel to reach the adjusted target level, it typically will cause the intensities of the pixel to reach the originally given target level.

[0007] The signal adjusting circuitry may include a lookup table used to store the overdrive levels used to achieve a target pixel intensity. The signal adjusting circuitry may access the lookup table and adjust the target pixel level for any given pixel location before sending the adjusted signal to the LCD driver. Based on the level selected from the lookup level, and the actual pixel intensity from the previous picture frame, the signal adjusting circuitry may attempt to drive a particular pixel location to an adjusted intensity level. The lookup table may also include information as to what intensity the pixel location will ultimately reach during one frame period, when overdriven at a certain intensity level. The signal adjusting circuitry may store the pixel levels that will be achieved and displayed on the LCD while sending the adjusted picture frame to the video controller for display on the LCD.

BRIEF DESCRIPTION OF DRAWINGS



[0008] These and other features, aspects, and advantages of the present disclosure will become better understood when the following detailed description of certain exemplary embodiments is read with reference to the accompanying drawings in which like characters represent like parts throughout the drawings, wherein:

FIG. 1 is a perspective view illustrating an example of an electronic device, such as a portable media player, in accordance with one embodiment;

FIG. 2 is a simplified block diagram of the electronic device of FIG. 1 in accordance with one embodiment;

FIG. 3 is a flowchart depicting an example of the operation of the electronic device of FIG. 1 in overdriving a display in accordance with one embodiment;

FIG. 4 is a simplified block diagram of the signal adjusting circuitry of FIG. 2 in accordance with one embodiment;


DETAILED DESCRIPTION OF SPECIFIC EMBODIMENTS



[0009] One or more specific embodiments will be described below. In an effort to provide a concise description of these exemplary embodiments, all features of an actual implementation may not be described in the specification. It should be appreciated that in the development of any such actual implementation, as in any engineering or design project, numerous implementation-specific decisions must be made to achieve the developers' specific goals, such as compliance with system-related and business-related constraints, which may vary from one implementation to another. Moreover, it should be appreciated that such a development effort might be complex and time consuming, but would nevertheless be a routine undertaking of design, fabrication, and manufacture for those of ordinary skill having the benefit of this disclosure.

[0010] Turning now to the figures, FIG. 1 illustrates an electronic device 10 that may be a handheld device incorporating the functionality of one or more portable devices, such as a media player, a cellular phone, a personal data organizer, and so forth. Depending, of course, on the functionalities provided by the electronic device 10, a user may listen to music, play games, record video, take pictures, and place telephone calls, while moving freely with the device 10. In addition, the electronic device 10 may allow a user to connect to and communicate through the Internet or through other networks, such as local or wide area networks. For example, the electronic device 10 may allow a user to communicate using e-mail, text messaging, instant messaging, or other forms of electronic communication. The electronic device 10 also may communicate with other devices using short-range connections, such as Bluetooth and near field communication. By way of example, the electronic device 10 may be a model of an iPhone® available from Apple Inc. of Cupertino, California.

[0011] In the depicted embodiment, the device 10 includes an enclosure 12 that protects the interior components from physical damage and shields them from electromagnetic interference. The enclosure 12 may be formed from any suitable material such as plastic, metal, or a composite material and may allow certain frequencies of electromagnetic radiation to pass through to wireless communication circuitry within the device 10 to facilitate wireless communication.

[0012] The enclosure 12 allows access to user input structures 14, 16, 18, 20, and 22 through which a user may interface with the device. Each user input structure 14, 16, 18, 20, and 22 may be configured to control a device function when actuated. For example, the input structure 14 may include a button that when pressed causes a "home" screen or menu to be displayed on the device. The input structure 16 may include a button for toggling the device 10 between a sleep mode and a wake mode. The input structure 18 may include a two-position slider that silences a ringer for the cell phone application. The input structures 20 and 22 may include buttons for increasing and decreasing the volume output of the device 10. In general, the electronic device 10 may include any number of user input structures existing in various forms including buttons, switches, control pads, keys, knobs, scroll wheels, or other suitable forms.

[0013] The device 10 also includes a display 24 which may display various images generated by the device. For example, the display 24 may show photos, movies, album art, and/or data, such as text documents, spreadsheets, text messages, and email, among other things. The display 24 also may display system indicators 26 that provide feedback to a user, such as power status, signal strength, call status, external device connection, and the like. The display 24 may be any type of display such as a liquid crystal display (LCD), a light emitting diode (LED) display, an organic light emitting diode (OLED) display, or other suitable display. Additionally, the display 24 may include a touch-sensitive element, such as a touch screen.

[0014] The display 24 may be used to display a graphic user interface (GUI) 28 that allows a user to interact with the device. The GUI 28 may include various layers, windows, screens, templates, elements, or other components that may be displayed in all, or a portion, of the display 24. Generally, the GUI 28 may include graphical elements that represent applications and functions of the device 10. The graphical elements may include icons and other images representing buttons, sliders, menu bars, and the like. In certain embodiments, the user input structure 14 may be used to display a home screen of the GUI 28. For example, in response to actuation of the input structure 14, the device may display graphical elements, shown here as icons 30, of the GUI 28. The icons 30 may correspond to various applications of the device 10 that may open upon selection of an icon 30. The icons 30 may be selected via a touch screen included in the display 24, or may be selected by user input structures, such as a wheel or button.

[0015] The icons 30 may represent various layers, windows, screens, templates, elements, or other components that may be displayed in some or all of the areas of the display 24 upon selection by the user. Furthermore, selection of an icon 30 may lead to a hierarchical navigation process, such that selection of an icon 30 leads to a screen that includes one or more additional icons or other GUI elements. Textual indicators 32 may be displayed on or near the icons 30 to facilitate user interpretation of each icon 30. It should be appreciated that the GUI 30 may include various components arranged in hierarchical and/or non-hierarchical structures.

[0016] When an icon 30 is selected, the device 10 may be configured to open an application associated with that icon and display a corresponding screen. For example, when the Weather icon 30 is selected, the device 10 may be configured to open a weather application with a user interface that may provide the current weather conditions to a user. Indeed, for each icon 30, a corresponding application that may include various GUI elements may be opened and displayed on the display 24.

[0017] The electronic device 10 also may include various input and output (I/O) ports 34, 36, and 38 that allow connection of the device 10 to external devices. For example, the I/O port 34 may be a connection port for transmitting and receiving data files, such as media files. Furthermore, the I/O port 34 may be a proprietary port from Apple Inc. The I/O port 36 may be a connection slot for receiving a subscriber identify module (SIM) card. The I/O port 38 may be a headphone jack for connecting audio headphones. In other embodiments, the device 10 may include any number of I/O ports configured to connect to a variety of external devices, including but not limited to a power source, a printer, and a computer. In other embodiments, multiple ports may be included on a device. Additionally, the ports may be any interface type, such as a universal serial bus (USB) port, serial connection port, Firewire port, IEEE-1394 port, or AC/DC power connection port.

[0018] The electronic device 10 may also include various audio input and output structures 40 and 42. For example, the audio input structures 40 may include one or more microphones for receiving voice data from a user. The audio output structures 42 may include one or more speakers for outputting audio data, such as data received by the device 10 over a cellular network. Together, the audio input and output structures 40 and 42 may operate to provide telephone functionality. Further, in some embodiments, the audio input structures 40 may include one or more integrated speakers serving as audio output structures for audio data stored on the device 10. For example, the integrated speakers may be used to play music stored in the device 10. Additional details of the illustrative device 10 may be better understood through reference to FIG. 2, which is a block diagram illustrating various components and features of the device 10 in accordance with one embodiment.

[0019] FIG. 2 is a block diagram that illustrates the components that may be utilized by the electronic device 10 to operate. In the presently illustrated embodiment, the device 10 may include the elements described in reference to FIG.1, such as the display 24. In addition, as discussed in greater detail below, the electronic device 10 may include includes a central processing unit (CPU) 44, a power source 46, a communications interface 48, internal components 50, long-term storage 52, short term storage 54, signal adjusting circuitry 56, and a video controller 58.

[0020] As set forth above, the electronic device 10 may include a CPU 44. The CPU 44 may include a single processor or it may include a plurality of processors. For example, The CPU 44 may also include one or more "general-purpose" microprocessors, a combination of general and special purpose microprocessors, and/or ASICS, as well as one or more reduced instruction set (RISC) processors, graphics processors, video processors, and/or related chip sets. The CPU 44 may provide the processing capability to execute the operating system, programs, the GUI 28, and any other functions of the device 10.

[0021] The electronic device 10 also may include a power source 46. The power source 46 may be used to power the electronic device 10 via, for example, one or more batteries, such as a Li-Ion battery, which may be user-removable or secured to the enclosure 12 and, which may be rechargeable. Additionally, the power source 46 may be connected to an I/O port that alternately allows for the power source 46 to receive power from an external AC or a DC power source, such as an electrical outlet or a car cigarette lighting mechanism.

[0022] The electronic device 10 may further include a communication interface 48. The communication interface 48 may include one or more connectivity channels for receiving and transmitting information between the device 10 and, for example, an external network. For example, the device 10 may connect to a personal computer via the communication interface to send and receive data files, such as media files. The communication interface 48 may represent, for example, one or more network interface cards (NIC) and/or a network controller, as well as associated communication protocols. The communication interface 48 may also include several types of interfaces, including but not limited to, a local area network (LAN) interface for connection to, for example, a wired Ethernet-based network wireless or a wireless LAN, such as an IEEE 802.11 x wireless network, a wide area network (WAN) interface for connection to, for example, a cellular data network, such as the Enhanced Data rates for GSM Evolution (EDGE) network or the 3G network, and/or a personal area network (PAN) interface for connection to, for example, a Bluetooth® network. Use of these interfaces may allow the device 10 to, for example, make and receive phone calls, access the internet, and/or transmit and receive real-time text messages.

[0023] The electronic device 10 may also include internal components 50. The internal components 50 may include sub-circuits that perform specialized functions of the electronic device 10. These internal components 50 may include phone circuitry, camera circuitry, video circuitry, and audio circuitry. The phone circuitry may allow a user to receive or make a telephone call through user interaction with the audio input and output structures 40 and 42. The camera circuitry may allow a user to take digital photographs. Additionally, the video circuitry and the audio circuitry may be used to encode and decode video samples taken by the user in conjunction with the camera circuitry or downloaded from an external source such as the internet, as well as allow for the playing of audio files such as compressed music files, respectively.

[0024] The electronic device 10 may further include long term storage 52. The long-term storage 52 of electronic device 10 may be used for storing data utilized for the operation of the CPU 44, as well as other components of the device 10, such as the communications interface 48 and/or the internal components 50. For example, the long term storage 52 may store the firmware for the electronic device 10 usable by the CPU 44, such as an operating system, other programs that enable various functions of the electronic device 10, user interface functions, and/or processor functions. Additionally, the long term storage 52 may store data files such as media (e.g., music and video files), image data, software, preference information (e.g., media playback preferences), wireless connection information (e.g., information that may enable the device 10 to establish a wireless connection, such as a telephone connection), subscription information (e.g., information that maintains a record of podcasts, television shows or other media to which a user subscribes), telephone information (e.g., telephone numbers), and any other suitable data. The long term storage 52 may be non-volatile memory such as read only memory (ROM), flash memory, a hard drive, or any other suitable optical, magnetic, or solid-state storage medium, as well as a combination thereof.

[0025] In addition to the long term storage 52, the device 10 may include short term storage 54. The short term storage 54 may include volatile memory, such as random access memory (RAM), and may be used to store a variety of information. For example, the CPU 44 may use the short term storage 54 for buffering or caching data during operation of the device 10. Additionally, the short term storage 54 may be used to store image data that is to be displayed on the display 24. This image data may be retrieved, for example, by the CPU 44 and/or the signal adjusting circuitry 56 of the electronic device 10.

[0026] As described above, the signal adjusting circuitry 56 of electronic device 10 may be utilized to retrieve image data from the short term memory 54. This image data may include pixel intensity levels to be sent to the video controller 58, for translation into voltages used to create images on the display 24. The signal adjusting circuitry 56 may determine if one or more pixel intensity levels in the image data corresponds to a voltage that is beyond the capability of the display 24 to achieve during a single frame. If any of the pixel intensity levels correspond to a voltage level unachievable by display 24, the signal adjusting circuitry may adjust the pixel intensity level transmitted to the video controller 58 to a higher level. While the adjusted intensity level also may not be reached by the display 24, the display 24 may reach, or come close to reaching, the original pixel intensity level.

[0027] The signal adjusting circuitry 56 that may be utilized in performing the above process may be an application specific integrated circuit (ASIC), or any other circuitry configured to adjust image data to be sent to the video controller 58. Moreover, while the above process includes the signal adjusting circuitry 56 actively retrieving the image data, thus freeing the CPU 44 to engage in various other tasks, in another embodiment, the signal adjusting circuitry 56 may receive the image data directly from the CPU 44. Furthermore, any other device capable of processing image data, such as a video card, may transmit the image data to either the signal adjusting circuitry 56 directly, or to the short term storage 54. Additionally, the CPU 44 may instead retrieve the image data from a device capable of processing image data, as well as from the communication interface 48, from one or more of the internal components 50, and/or from the long-term storage 52 prior to transmitting send the image data to the signal adjusting circuitry 56 for possible adjustments to any pixel intensity levels.

[0028] Additionally, as described above, the electronic device 10 may include a video controller 58 that operates to generate images on the display 24 of the electronic device 10. The video controller 58 may be a device that receives pixel intensity levels from the signal adjusting circuitry 56 and may transmit voltage signals corresponding to those pixel intensity levels to the display 24. The pixel intensity levels may be, for example, numerical levels that correspond to respective pixel intensities to be shown on the display 24. The display 24 may thus receive the voltage signals from the video controller 58 as input signals, and may produce an image corresponding to the received voltage signals. For example, the display 24 may be a liquid crystal display (LCD), which may include the use of a liquid crystal substance disposed between two substrates with electrodes residing on or in the substrates. A voltage signal from the video controller 58 may be applied to the electrodes, thereby creating an electric field across the liquid crystals. The liquid crystals may change in alignment in response to the electric field, thus modifying the amount of light that may be transmitted through the liquid crystal substance and viewed at a specified pixel. In this manner, and through the use of various color filters to create colored sub-pixels, color images may be represented on across individual pixels of the LCD in a pixilated manner.

[0029] In operation, the signal adjusting circuit 56 may perform a method 60 for overdriving the display 24 as illustrated by the flowchart of FIG. 3. The method 60 may occur during a single frame, which may be a regular interval at which the display 24 produces or refreshes an image. For example, if the display 24 is set to produce images at 60Hz, then each frame may occur every 1/60 of a second. However, the present method is not limited to displays set at this speed, and any other speed suitable for displaying images is also contemplated.

[0030] The method 60 begins in step 62 when a target picture frame is stored. A target picture frame may contain image data, such as pixel levels, that correspond to a picture image or video image to be displayed. The storage may be any device capable of storing image data such as the long term storage 52 or the short term storage 54. In an embodiment, the target picture frame may be generated by one or more of the internal components 50, such as video circuitry in the electronic device 10, and then transmitted to storage, such as the short term storage 54, prior to display of the target picture frame on the display 24.

[0031] In step 64, the target picture frame is transmitted to the signal adjusting circuitry 56. In one embodiment, a video processing device may be utilized to retrieve the target picture frame and transmit the target picture frame to the signal adjusting circuitry 56. For example, the video processing device may be the CPU 44, or may be any other device capable of processing image or video data such as a video processor or a DMA controller. In another embodiment, the functions performed by the video processing device may instead be performed entirely by the signal adjusting circuitry 56. For example, the signal adjusting circuitry 56 may be configured to actively retrieve the target picture frame from short term storage 54, or from any other device capable of generating and/or storing the target picture frame. In yet another embodiment, the video processing device may not be aware of the signal adjusting circuitry 56. For example, the video processing device may transmit the target picture frame along a path to the video controller 58. During transmission, the signal adjusting circuitry 56 may intercept the target picture, and may modify the target picture frame as required, before forwarding the target picture frame to the video controller 58.

[0032] In step 66, the signal adjusting circuitry 56 may examine each pixel intensity level in the target picture frame and determine whether adjustment for any pixel intensity levels is desired. An adjustment may be desired, for example, if the display 24 cannot successfully transition, within one frame, from a current pixel intensity level to a target pixel intensity level of the target picture frame. For example, while a given pixel in the display 24 may be able to transition from the color black to the color white in 25ms, moving from one shade of grey to another shade of grey at a given pixel may take hundreds of milliseconds to complete. Thus, although the display 24 may be refreshed at 60Hz, moving from, for example, one grey shade to another may only be accomplished at 25-30Hz, leading to smearing of the images on the display 24. Accordingly, the signal adjusting circuitry 56 may overdrive each pixel, which may allow transitions from one pixel intensity level to another to occur more rapidly. Overdriving a pixel may be a process whereby a pixel is driven past a target pixel intensity level in order to achieve an actual pixel intensity level at or near the target pixel intensity level within a specified amount of time, i.e., one frame. Thus, while the overdriven pixel may fall short of reaching the overdriven pixel intensity level in a specified amount of time, the actual pixel intensity level reached when the pixel is overdriven may be equal to the original target pixel intensity level. In this manner, through overdriving techniques, the signal adjusting circuitry 56 may achieve the original target pixel intensity level specified in the received picture frame. Thus, the signal adjusting circuitry 56 may determine when to overdrive a particular pixel, as well as how much to overdrive a given pixel to achieve an actual pixel intensity level within a given time constraint, such as one frame. Furthermore, the decision as to when to overdrive a pixel as well as how much to overdrive a pixel may be made using a lookup table that provides adjusted pixel levels, or may be made by incorporating any other suitable algorithm or method.

[0033] In step 68, the signal adjusting circuitry 56 produces an adjusted picture frame and an achievable picture frame. An adjusted picture frame may contain adjusted pixel levels to be transmitted video controller 58 for overdriving pixels in display 24. However, even with overdriving the pixels of the display 24, on occasion the pixels may not be able to achieve the target picture frame within a set time. For example, a pixel location may be overdriven for two or more frames before the target pixel intensity level is reached. Thus, an achievable picture frame may be determined by the signal adjusting circuitry 56 that contains the achievable pixel intensity levels that the display 24 may actually produce in one frame after application of the adjusted picture frame. In such a scenario, the target picture frame, the adjusted picture, and the achievable picture may be different picture frames containing different pixel levels.

[0034] However, it should be noted that between the target picture frame, the adjusted picture frame, and the achievable picture frame, there may be certain instances where some or all of these picture frames are equivalent. For example, if between frames an image remains unchanged, then no adjustment is needed, and the above-mentioned picture frames will all be equivalent. The same is true in instances where the display 24 can successfully transition to the target picture frame within one frame. Also by way of example, if the display 24, only after applying an adjusted picture frame, can successfully transition to the target picture frame within one frame, then the target picture frame and the achievable picture frame will be equivalent to each other, but different from the adjusted picture frame.

[0035] In step 70, after making any adjustments to the target picture frame in generating an adjusted picture frame, the signal adjusting circuitry 56 may send the adjusted picture frame to the video controller 58. Additionally, the signal adjusting circuitry 56 may store the achievable picture frame for comparison against the next target picture frame corresponding to the next frame. Finally, in step 72, the video controller 58 may send voltage signals corresponding to the data contained in the adjusted picture frame to the display 24 for generation of an image.

[0036] Additional details of the signal adjusting circuitry 56 may be better understood through reference to Fig. 4, which illustrates a simple block diagram of certain components of the signal adjusting circuitry 56. The signal adjusting circuitry 56 may be a LCD driver circuit that processes image data for display on the display 24. The signal adjusting circuitry 56 may also be connected to short term storage 54 and may retrieve the image data therefrom. Furthermore, the signal adjusting circuitry 56 may be coupled to the video controller 58 for transmission of picture frames to be displayed on the display 24. While the signal adjusting circuitry 56 has been illustrated in Fig. 4 as separate from the video controller 58, in some embodiments, the signal adjusting circuitry 56 and the video controller 58 may be part of, for example, a single ASIC. In the illustrated embodiment, the signal adjusting circuitry 56 may also comprise a buffer 74, a lookup table 76, and adjustment circuitry 78, which may also be part of a single ASIC.

[0037] The buffer 74 of the signal adjusting circuitry may be used to temporary store data, such as a picture frame from a particular frame. For example, the buffer 74 may store a previous picture frame from a previous frame that may be updatable with an achievable picture frame from a current frame. In one embodiment, the buffer 74 may have the capacity to store one picture frame. Additionally, the buffer 74 may be located in the short term storage 54, or in any other area or device capable of temporarily storing a picture frame or image data.

[0038] The signal adjusting circuitry 56 may also include a lookup table 76. The lookup table 76 may hold current pixel intensity levels, target pixel intensity levels, and overdrive pixel intensity levels that may allow target pixel intensity levels of a target picture frame to be reached in one or more frames. These levels stored in the lookup table may depend on the ability of the display 24 to transition, in one frame, from previous pixel intensities of a current picture frame to target pixel intensities of a target picture frame to be displayed. In one embodiment, the lookup table 76 may contain current pixel intensity levels, target pixel intensity levels, and overdrive pixel intensity levels for a generic display 14 that is compatible with device 10. In another embodiment, the lookup table 76 may contain pixel levels respective to various models and manufacturers of displays 14, such that each model may have its own set of adjusted pixel levels and achievable pixel levels. In another yet another embodiment, the lookup table 76 may contain pixel levels specific to the actual display 24 currently in the device 10. Furthermore, it should also be noted that alternative embodiments of the present invention may use an algorithm, curve, or any other formula instead of a lookup table to obtain adjusted pixel levels and achievable pixel levels, which may also still be dependent on the model or manufacturer of the display 14. In addition, in one embodiment, the lookup table 76 may be located within the signal adjusting circuitry 56, as depicted in Fig.4. In alternative embodiments, the lookup table 76 may be located in any other device capable of storing data such as the short term storage 54, or in any other area or device capable of temporarily storing a picture frame or image data.

[0039] The signal adjusting circuitry 56 may further include adjustment circuitry 78. The adjustment circuitry 78 may receive a target picture frame, as well as retrieve a current picture frame stored in the buffer 74. Based on the two picture frames, the adjustment circuitry 78 may access the lookup table 76 to determine whether adjustment for any pixel intensity levels is desired, as well as the overdrive level that will allow the target pixel intensity level to be reached. An adjustment may be desired, for example, if the display 24 cannot successfully transition, within one frame, from a current pixel intensity level to a target pixel intensity level of the target picture frame. The adjustment circuitry 78 may then, based on the overdrive levels from the lookup table 76, transmit adjusted pixel intensity levels to the video controller 58 in order to achieve actual pixel intensity levels at or near the target pixel intensity levels within a specified amount of time, i.e., one frame. The adjustment circuitry 78 may also overwrite the picture frame in the buffer 74 with a picture frame corresponding to the actual pixel intensity levels that will be achieved, based on the adjusted pixel intensity levels transmitted to the video controller 58.

[0040] It should be noted that for a particular picture frame transition to a target picture frame, some, none or all of the pixel intensity levels may be adjusted. As such, in certain instances, some pixel intensity levels may remain the same (i.e. when the target pixel intensity level is equivalent to the current pixel intensity level), some pixels may be able transition to target pixel intensity levels without any adjustment (i.e. driving the pixel to the target pixel intensity level is achieved within a single frame by transmitting a pixel intensity level equal to the target pixel intensity level), and some pixels may use adjusted pixel intensity levels to successfully transition to the target pixel intensity level intensity in one frame (i.e. driving the pixel to the target pixel intensity level is achieved within a single frame by overdriving the pixel with a pixel intensity level that exceeds the target pixel intensity level).

[0041] Furthermore, some pixels, even when overdriven, may not reach the target pixel intensity level in a single frame because achievable pixel intensity levels may not depend on the absolute range of transition from a current pixel intensity level to a target intensity pixel level. This is because transitions from one pixel intensity may be more difficult to make than transitions from a second pixel intensity. Accordingly, when a pixel may not reach the target pixel intensity level in a single frame, the adjustment circuitry 78 may drive the pixel to the target pixel intensity level by overdriving the pixel with a pixel intensity level that exceeds the target pixel intensity level in a first frame, and subsequently driving or overdriving the pixel to the target pixel intensity level in one or more subsequent frames, until the target pixel intensity level is reached or until a new target pixel intensity is established in a subsequently received target picture frame.

[0042] Specific embodiments have been shown by way of example in the drawings and have been described in detail herein. However, it should be understood that the claims are not intended to be limited to the particular forms disclosed. Rather, the claims are to cover all modifications, equivalents, and alternatives falling within their scope.


Claims

1. A method (60) for overdriving a display (24), comprising:

receiving (64) a target picture frame that corresponds to target pixel intensity levels to be displayed on a display (24) for each of a plurality of pixels of the display (24);

comparing the target picture frame with a current picture frame that corresponds to current pixel intensity levels currently displayed on the display for each of the plurality of pixels of the display;

determining (66) adjustments to be made to the target picture frame based on a comparison of the target picture frame and the current picture frame; and

characterized by:

generating (68) an adjusted picture frame based on the determined adjustments by overdriving at least one of the plurality of pixels to an overdrive pixel intensity level that exceeds the corresponding at least one target pixel intensity level when it is determined that the at least one target pixel intensity level cannot be reached in a given period of time.


 
2. The method (60) of claim 1, wherein comparing the target picture frame with the current picture frame comprises performing a pixel-by-pixel comparison of the target picture frame and the current picture frame.
 
3. The method (60) of claim 2, wherein determining (66) adjustments to be made to the target picture frame comprises:

accessing a lookup table (76) adapted to store pixel intensity levels corresponding to first pixel intensity levels for generating a first image on a display, second pixel intensity levels for generating a second image on the display, and overdrive pixel intensity levels for transitioning between the first and second pixel intensity levels;

comparing the pixel-by-pixel comparison of the target picture frame and the current picture frame with the first and second pixel intensity levels accessed in the lookup table; and

retrieving the overdrive levels associated with any matches between the pixel-by-pixel comparison of the target picture frame and the current picture frame with the first and second pixel intensity levels.


 
4. The method (60) of claim 3, wherein the adjustments determined to be made to the target picture comprise overdriving any pixel of the display (24) that corresponds to a match between the pixel-by-pixel comparison of the target picture frame and the current picture frame with the first and second pixel intensity levels.
 
5. The method (60) of claim 1, wherein the adjustments determined to be made to the target picture comprise overdriving select target pixel intensity levels to a specified higher level.
 
6. The method (60) of claim 5, wherein the specified higher level corresponds an overdrive level related to any difference between the current pixel intensity level and the target pixel intensity level for any one of the plurality of pixels of the display (24).
 
7. The method (60) of claim 1, comprising generating an achievable picture frame that corresponds to actual pixel intensity levels to be displayed on a display (24) for each of the plurality of pixels of the display.
 
8. The method (60) of claim 1, comprising transmitting the adjusted picture frame to the display (24) for generation of an image.
 
9. A signal adjusting circuit (56), comprising:

a lookup table (76) adapted to store pixel intensity levels corresponding to first pixel intensity levels for generating a first image on a display, second pixel intensity levels for generating a second image on the display, and overdrive pixel intensity levels for transitioning between the first and second pixel intensity levels;

a buffer adapted to store a current picture frame that corresponds to current pixel intensity levels for each of a plurality of pixels of the display at a first time; and

adjustment circuitry adapted to:

receive a target picture frame that corresponds to target pixel intensity levels for each of the plurality of pixels of the display at a second time; and

characterized by:

modify the target picture frame based on information stored in the lookup table to generate an adjusted picture frame containing adjustments to the target pixel intensity levels by overdriving at least one pixel of the display to an overdrive pixel intensity level that exceeds the corresponding at least one target pixel intensity level of the at least one pixel when it is determined that the at least one target pixel intensity level of the at least one pixel cannot be reached in a given period of time.


 
10. The signal adjusting circuit (56) of claim 9, wherein the adjustment circuitry is adapted to generate an achievable picture frame corresponding to actual pixel intensities generated on the display in conjunction with the adjusted picture frame.
 
11. The signal adjusting circuit (56) of claim 10, wherein the adjustment circuitry is adapted to transmit the adjusted picture frame to a display for generation of an image.
 
12. The signal adjusting circuit (56) of claim 11, wherein the adjustment circuitry is adapted to update the buffer with the achievable picture frame.
 
13. An electronic device (10), comprising:

a display (24) comprising a plurality of pixels;

a buffer (74) adapted to store a current picture frame that corresponds to current pixel intensity levels for each of the plurality of pixels of the display (24) at a first time; and

adjustment circuitry (78) adapted to:

receive a target picture frame that corresponds to target pixel intensity levels for each of the plurality of pixels of the display (24) at a second time;

calculate an adjusted picture frame containing adjustments to the target pixel intensity levels by determining pixel intensity levels corresponding to first pixel intensity levels for generating a first image on a display, determining second pixel intensity levels for generating a second image on the display, and determining overdrive pixel intensity levels for transitioning between the first and second pixel intensity levels; and

characterized by:

modify the target picture frame to generate the adjusted picture frame containing adjustments to the target pixel intensity levels to overdrive at least one pixel of the display to an overdrive pixel intensity level that exceeds the corresponding at least one target pixel intensity level of the at least one pixels when it is determined that the at least one target pixel intensity level of the at least one pixels cannot be reached in a given period of time.


 
14. The electronic device (10) of claim 13, wherein the adjustment circuitry (78) is adapted to generate an achievable picture frame corresponding to actual pixel intensities generated on the display (24) in conjunction with the adjusted picture frame.
 
15. The electronic device (10) of claim 13, wherein the adjustment circuitry (78) is adapted to transmit the adjusted picture frame to the display (24) for generation of an image.
 


Ansprüche

1. Verfahren (60) zum Übersteuern einer Anzeige (24), das aufweist:

Empfangen (64) eines Zielbildrahmens, der Zielpixel-Intensitätsniveaus entspricht, die auf einer Anzeige (24) für jedes einer Vielzahl von Pixeln der Anzeige (24) angezeigt werden sollen;

Vergleichen des Zielbildrahmens mit einem derzeitigen Bildrahmen, der den derzeitigen Intensitätsniveaus von Pixeln entspricht, die derzeit auf der Anzeige angezeigt werden, für jedes der Vielzahl von Pixeln der Anzeige;

Bestimmen (66) von Anpassungen, die an dem Zielbildrahmen gemacht werden müssen, basierend auf einem Vergleich des Zielbildrahmens und des derzeitigen Bildrahmens; und

gekennzeichnet durch:

Erzeugen (68) eines angepassten Bildrahmens basierend auf den vorbestimmten Anpassungen durch Übersteuern zumindest eines der Vielzahl von Pixeln auf ein Pixel-Übersteuerungsintensitätsniveau, das das entsprechende zumindest eine Zielpixel-Intensitätsniveau überschreitet, wenn bestimmt ist, dass das zumindest eine Zielpixel-Intensitätsniveau nicht in einer gegebenen Zeitperiode erreicht werden kann.


 
2. Verfahren (60) gemäß Anspruch 1, wobei das Vergleichen des Zielbildrahmens mit dem derzeitigen Bildrahmen Durchführen eines Pixel-für-Pixel-Vergleichs des Zielbildrahmens und des derzeitigen Bildrahmens umfasst.
 
3. Verfahren (60) gemäß Anspruch 2, wobei das Bestimmen (66) von Anpassungen, die an dem Zielbildrahmen gemacht werden müssen, aufweist:

Zugreifen auf eine Lookup-Tabelle (76), die geeignet ist, um Intensitätsniveaus von Pixeln zu speichern, die ersten Pixel-Intensitätsniveaus, um ein erstes Bild auf einer Anzeige zu erzeugen, zweiten Pixel-Intensitätsniveaus, um ein zweites Bild auf der Anzeige zu erzeugen, und Pixel-Übersteuerungsintensitätsniveaus, um zwischen den ersten und zweiten Pixel-Intensitätsniveaus überzugehen, entsprechen;

Vergleichen des Pixel-für-Pixel-Vergleichs des Zielbildrahmens und des derzeitigen Bildrahmens mit den ersten und zweiten Pixel-Intensitätsniveaus, auf die in der Lookup-Tabelle zugegriffen worden ist; und

Wiedergewinnen der Übersteuerungsniveaus, die allen Übereinstimmungen zwischen dem Pixel-für-Pixel-Vergleich des Zielbildrahmens und des derzeitigen Bildrahmens mit den ersten und zweiten Pixel-Intensitätsniveaus zugeordnet sind.


 
4. Verfahren (60) gemäß Anspruch 3, wobei die Anpassungen, die ermittelt worden sind, um an dem Zielbild gemacht zu werden, Übersteuern jedes Pixels der Anzeige (24) umfassen, das einer Übereinstimmung zwischen dem Pixel-für-Pixel-Vergleich des Zielbildrahmens und des derzeitigen Bildrahmens mit den ersten und zweiten Pixel-Intensitätsniveaus entspricht.
 
5. Verfahren (60) gemäß Anspruch 1, wobei die Anpassungen, die ermittelt worden sind, um an dem Zielbild gemacht zu werden, Übersteuern ausgewählter Zielpixel-Intensitätsniveaus auf ein spezifiziertes höheres Niveau umfassen.
 
6. Verfahren (60) gemäß Anspruch 5, wobei das spezifizierte höhere Niveau einem Übersteuerungsniveau entspricht, das in Relation zu jeder Differenz zwischen dem derzeitigen Pixel-Intensitätsniveau und dem Zielpixel-Intensitätsniveau für jedes der Vielzahl von Pixeln der Anzeige (24) steht.
 
7. Verfahren (60) gemäß Anspruch 1, das Erzeugen eines erreichbaren Bildrahmens umfasst, der tatsächlichen Pixel-Intensitätsniveaus entspricht, die auf einer Anzeige (24) für jedes der Vielzahl von Pixeln der Anzeige angezeigt werden sollen.
 
8. Verfahren (60) gemäß Anspruch 1, das Übertragen des angepassten Bildrahmens an die Anzeige (24) zum Erzeugen eines Bildes umfasst.
 
9. Signalanpassschaltung (56), die aufweist:

eine Lookup-Tabelle (76), die geeignet ist, um Pixel-Intensitätsniveaus zu speichern, die ersten Pixel-Intensitätsniveaus, um ein erstes Bild auf einer Anzeige zu erzeugen, zweiten Pixel-Intensitätsniveaus, um ein zweites Bild auf der Anzeige zu erzeugen, und Pixel-Übersteuerungsintensitätsniveaus, um zwischen den ersten und zweiten Pixel-Intensitätsniveaus überzugehen, entsprechen;

einen Puffer, der geeignet ist, um einen derzeitigen Bildrahmen zu speichern, der den derzeitigen Pixel-Intensitätsniveaus für jedes einer Vielzahl von Pixeln der Anzeige zu einem ersten Zeitpunkt entspricht; und

eine Anpassschaltung, die angepasst ist, um:

einen Zielbildrahmen zu empfangen, der den Zielpixel-Intensitätsniveaus für jedes der Vielzahl von Pixeln der Anzeige zu einem zweiten Zeitpunkt entspricht; und

gekennzeichnet durch:

Modifizieren des Zielbildrahmens basierend auf Information, die in der Lookup-Tabelle gespeichert ist, um einen angepassten Bildrahmen zu erzeugen, der Anpassungen an den Zielpixel-Intensitätsniveaus durch Übersteuern zumindest eines Pixels der Anzeige auf ein Pixel-Übersteuerungsintensitätsniveau enthält, das das entsprechende zumindest eine Zielpixel-Intensitätsniveau des zumindest einen Pixels überschreitet, wenn bestimmt ist, dass das zumindest eine Zielpixel-Intensitätsniveau des zumindest einen Pixels nicht innerhalb einer gegebenen Zeitperiode erreicht werden kann.


 
10. Signalanpassschaltung (56) gemäß Anspruch 9, wobei die Anpassschaltung geeignet ist, um einen erreichbaren Bildrahmen zu erzeugen, der den tatsächlichen Pixelintensitäten entspricht, die auf der Anzeige in Verbindung mit dem angepassten Bildrahmen erzeugt werden.
 
11. Signalanpassschaltung (56) gemäß Anspruch 10, wobei die Anpassschaltung geeignet ist, um den angepassten Bildrahmen an eine Anzeige zum Erzeugen eines Bildes zu übertragen.
 
12. Signalanpassschaltung (56) gemäß Anspruch 11, wobei die Anpassschaltung geeignet ist, um den Puffer mit dem erreichbaren Bildrahmen zu aktualisieren.
 
13. Elektronische Vorrichtung (10), die aufweist:

eine Anzeige (24), die eine Vielzahl von Pixeln aufweist;

einen Puffer (74), der geeignet ist, um einen derzeitigen Bildrahmen zu speichern, der den derzeitigen Pixel-Intensitätsniveaus für jedes der Vielzahl von Pixeln der Anzeige (24) zu einem ersten Zeitpunkt entspricht; und

eine Anpassschaltung (78), die geeignet ist, um:

einen Zielbildrahmen zu empfangen, der den Zielpixel-Intensitätsniveaus für jedes der Vielzahl von Pixeln der Anzeige (24) zu einem zweiten Zeitpunkt entspricht;

einen angepassten Bildrahmen zu berechnen, der Anpassungen an den Zielpixel-Intensitätsniveaus enthält, durch Bestimmen von Pixel-Intensitätsniveaus, die ersten Pixel-Intensitätsniveaus entsprechen, um ein erstes Bild auf einer Anzeige zu erzeugen, Bestimmen von zweiten Pixel-Intensitätsniveaus, um ein zweites Bild auf der Anzeige zu erzeugen, und Bestimmen von Pixel-Übersteuerungsintensitätsniveaus, um zwischen den ersten und zweiten Pixel-Intensitätsniveaus überzugehen; und

gekennzeichnet durch:

Modifizieren des Zielbildrahmens, um den angepassten Bildrahmen zu erzeugen, der Anpassungen an den Zielpixel-Intensitätsniveaus enthält, um zumindest ein Pixel der Anzeige auf ein Pixel-Übersteuerungsintensitätsniveau zu übersteuern, das das entsprechende zumindest eine Zielpixel-Intensitätsniveau des zumindest einen Pixels überschreitet, wenn bestimmt ist, dass das zumindest eine Zielpixel-Intensitätsniveau des zumindest einen Pixels nicht innerhalb einer gegebenen Zeitperiode erreicht werden kann.


 
14. Elektronische Vorrichtung (10) gemäß Anspruch 13, wobei die Anpassschaltung (78) geeignet ist, um einen erreichbaren Bildrahmen zu erzeugen, der tatsächlichen Pixelintensitäten entspricht, die auf der Anzeige (24) in Verbindung mit dem angepassten Bildrahmen erzeugt werden.
 
15. Elektronische Vorrichtung (10) gemäß Anspruch 13, wobei die Anpassschaltung (78) geeignet ist, um den eingestellten Bildrahmen an die Anzeige (24) zum Erzeugen eines Bildes zu übertragen.
 


Revendications

1. Un procédé (60) de surcontrôle d'un afficheur (24), comprenant :

la réception (64) d'une trame d'image cible qui correspond à des niveaux cible d'intensité de pixel à afficher sur un afficheur (24) pour chaque pixel d'une pluralité de pixels de l'afficheur (24) ;

la comparaison de la trame d'image cible à une trame d'image courante qui correspond à des niveaux courants d'intensité de pixel en cours d'affichage sur l'afficheur pour chaque pixel de la pluralité de pixels de l'afficheur ;

la détermination (66) d'ajustements à effectuer sur la trame d'image cible sur la base d'une comparaison de la trame d'image cible et de la trame d'image courante ; et

caractérisé par :

la génération (68) d'une trame d'image ajustée sur la base des ajustements déterminés, par surcontrôle d'au moins un pixel de la pluralité de pixels à un niveau de surcontrôle d'intensité de pixel qui dépasse le au moins un niveau cible d'intensité de pixel correspondant lorsqu'il est déterminé que le au moins un niveau cible d'intensité de pixel ne peut pas être atteint en une période de temps donnée.


 
2. Le procédé (60) de la revendication 1, dans lequel la comparaison de la trame d'image cible à la trame d'image courante comprend l'exécution d'une comparaison pixel par pixel de la trame d'image cible et de la trame d'image courante.
 
3. Le procédé (60) de la revendication 2, dans lequel la détermination (66) d'ajustements à effectuer sur la trame d'image cible comprend :

l'accès à une table de correspondance (76) apte à stocker des niveaux d'intensité de pixel correspondant à des premiers niveaux d'intensité de pixel pour la génération d'une première image sur un afficheur, des seconds niveaux d'intensité de pixel pour la génération d'une seconde image sur l'afficheur, et des niveaux de surcontrôle d'intensité de pixel pour la transition entre les premiers et les seconds niveaux d'intensité de pixel ;

la comparaison pixel par pixel de la trame d'image cible et de la trame d'image courante aux premiers et seconds niveaux d'intensité de pixel accédés dans la table de correspondance ; et

l'extraction des niveaux de surcontrôle associés à toutes les concordances entre la comparaison pixel par pixel de la trame d'image cible et de la trame d'image courante avec les premiers et seconds niveaux d'intensité de pixel.


 
4. Le procédé (60) de la revendication 3, dans lequel les ajustements qu'il est déterminé d'apporter à l'image cible comprennent le surcontrôle de tout pixel de l'afficheur (24) qui correspond à une concordance entre la comparaison pixel par pixel de la trame d'image cible et de la trame d'image courante avec les premiers et les seconds niveaux d'intensité de pixel.
 
5. Le procédé (60) de la revendication 1, dans lequel les ajustements qu'il est déterminé d'apporter à l'image cible comprennent le surcontrôle de niveaux cible sélectionnés d'intensité de pixel à un niveau supérieur spécifié.
 
6. Le procédé (60) de la revendication 5, dans lequel le niveau supérieur spécifié correspond à un niveau de surcontrôle lié à toute différence entre le niveau courant d'intensité de pixel et le niveau cible d'intensité de pixel pour un quelconque pixel de la pluralité de pixels de l'afficheur (24).
 
7. Le procédé (60) de la revendication 1, comprenant la génération d'une trame d'image possible à obtenir qui correspond à des niveaux réels d'intensité de pixel à afficher sur un afficheur (24) pour chaque pixel de la pluralité de pixels de l'afficheur.
 
8. Le procédé (60) de la revendication 1, comprenant la transmission de la trame d'image ajustée à l'afficheur (24) pour la génération d'une image.
 
9. Un circuit d'ajustement de signal (56), comprenant :

une table de correspondance (76) apte à stocker des niveaux d'intensité de pixel correspondant à des premiers niveaux d'intensité de pixels pour la génération d'une première image sur un afficheur, des seconds niveaux d'intensité de pixel pour la génération d'une seconde image sur l'afficheur, et des niveaux de surcontrôle d'intensité de pixel pour la transition entre les premiers et les seconds niveaux d'intensité de pixel ;

un tampon apte à stocker une trame d'image courante qui correspond à des niveaux courants d'intensité de pixel pour chaque pixel d'une pluralité de pixels de l'afficheur à un premier instant ; et

une circuiterie d'ajustement apte à :

recevoir une trame d'image cible qui correspond à des niveaux cible d'intensité de pixel pour chaque pixel de la pluralité de pixels de l'afficheur à un second instant ; et

caractérisé par :

la modification de la trame d'image cible sur la base d'informations stockées dans la table de correspondance pour générer une trame d'image ajustée contenant des ajustements aux niveaux cible d'intensité de pixels par surcontrôle d'au moins un pixel de l'afficheur à un niveau de surcontrôle d'intensité de pixel qui dépasse le au moins un niveau cible d'intensité de pixel correspondant du au moins un pixel lorsqu'il est déterminé que le au moins un niveau cible d'intensité de pixel du au moins un pixel ne peut pas être atteint dans une période de temps donnée.


 
10. Le circuit d'ajustement de signal (56) de la revendication 9, dans lequel la circuiterie d'ajustement est apte à générer une trame d'image qu'il est possible d'obtenir qui correspond à des intensités réelles de pixel généré sur l'afficheur en combinaison avec la trame d'image ajustée.
 
11. Le circuit d'ajustement de signal (56) de la revendication 10, dans lequel la circuiterie d'ajustement est apte à transmettre la trame d'image ajustée à un afficheur pour génération d'une image.
 
12. Le circuit d'ajustement de signal (56) de la revendication 11, dans lequel la circuiterie d'ajustement est apte à mettre à jour le tampon avec la trame d'image qu'il est possible d'obtenir.
 
13. Un dispositif électronique (10), comprenant :

un afficheur (24) comprenant une pluralité de pixels ;

un tampon (74) apte à stocker une trame d'image courante qui correspond à des niveaux courants d'intensité de pixel pour chaque pixel de la pluralité de pixels de l'afficheur (24) à un premier instant ; et

une circuiterie d'ajustement (78) apte à :

recevoir une trame d'image cible qui correspond à des niveaux cible d'intensité de pixel pour chaque pixel de la pluralité de pixels de l'afficheur (24) à un second instant ;

calculer une trame d'image ajustée contenant des ajustements aux niveaux cible d'intensité de pixel par détermination de niveaux d'intensité de pixel correspondant aux premiers niveaux d'intensité de pixel pour la génération d'une première image sur un afficheur, détermination de seconds niveaux d'intensité de pixel pour la génération d'une seconde image sur l'afficheur, et détermination de niveaux de surcontrôle d'intensité de pixel pour la transition entre les premiers et les seconds niveaux d'intensité de pixel ; et

caractérisé par :

modifier la trame d'image cible pour la génération de la trame d'image ajustée contenant des ajustements aux niveaux cible d'intensité de pixel pour le surcontrôle d'au moins un pixel de l'afficheur à un niveau de surcontrôle d'intensité de pixel qui dépasse le au moins un niveau cible d'intensité de pixel correspondant du au moins un pixel lorsqu'il est déterminé que le au moins un niveau cible d'intensité de pixel du au moins un pixel ne peut pas être atteint en une période de temps donnée.


 
14. Le dispositif électronique (10) de la revendication 13, dans lequel la circuiterie d'ajustement (78) est apte à générer une trame d'image qu'il est possible d'obtenir correspondant à des intensités réelles de pixel générées sur l'afficheur (24) en combinaison avec la trame d'image ajustée.
 
15. Le dispositif électronique (10) de la revendication 13, dans lequel la circuiterie d'ajustement (78) est apte à transmettre la trame d'image ajustée à l'afficheur (24) pour la génération d'une image.
 




Drawing












REFERENCES CITED IN THE DESCRIPTION



This list of references cited by the applicant is for the reader's convenience only. It does not form part of the European patent document. Even though great care has been taken in compiling the references, errors or omissions cannot be excluded and the EPO disclaims all liability in this regard.

Patent documents cited in the description




Non-patent literature cited in the description