(19)
(11)EP 2 337 075 B1

(12)EUROPEAN PATENT SPECIFICATION

(45)Mention of the grant of the patent:
25.10.2017 Bulletin 2017/43

(21)Application number: 10195489.9

(22)Date of filing:  16.12.2010
(51)International Patent Classification (IPC): 
H01L 27/146(2006.01)

(54)

Solid-state imaging apparatus, method of fabrication and driving method

Festkörperabbildungsvorrichtung, Herstellungsverfahren und Ansteuerverfahren dafür

Appareil d'imagerie à l'état solide, procédé de fabrication et procédé de commande


(84)Designated Contracting States:
AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

(30)Priority: 21.12.2009 JP 2009289509

(43)Date of publication of application:
22.06.2011 Bulletin 2011/25

(73)Proprietor: Sony Corporation
Tokyo 108-0075 (JP)

(72)Inventor:
  • Mabuchi, Keiji
    Tokyo 108-0075 (JP)

(74)Representative: D Young & Co LLP 
120 Holborn
London EC1N 2DY
London EC1N 2DY (GB)


(56)References cited: : 
JP-A- H01 252 078
US-A1- 2006 128 050
JP-A- 2006 120 922
US-A1- 2009 166 787
  
      
    Note: Within nine months from the publication of the mention of the grant of the European patent, any person may give notice to the European Patent Office of opposition to the European patent granted. Notice of opposition shall be filed in a written reasoned statement. It shall not be deemed to have been filed until the opposition fee has been paid. (Art. 99(1) European Patent Convention).


    Description


    [0001] The present invention relates to a solid-state imaging apparatus having a photoelectric conversion film, a driving method, and a camera.

    [0002] US 2006/0128050 A1 describes methods of fabricating image sensors including local interconnections.

    [0003] US 2009/0166787 A1 describes an image sensor and method for manufacturing the same.

    [0004] JP H01-252078 describes a solid-state image pickup device. JP 2006-120922 describes a configuration in which a photoelectric conversion film is applied to a CCD solid-state imaging apparatus.

    [0005] Fig. 1 illustrates the imaging apparatus described in JP 2006-120922.

    [0006] A solid-state imaging apparatus 1 includes a p-well 3 on a semiconductor substrate 2, the p-well 3 including a charge accumulation unit 4, a barrier unit 5, a contact unit 6, and a charge transfer unit 7.

    [0007] An insulating film 8 is provided on the p-well 3. On the insulating film 8, a photoelectric conversion film 9, an upper electrode 10, and a lower electrode 11 are provided. The lower electrode 11 and the contact unit 6 are connected via a contact 12 provided through the insulating film 8.

    [0008] In the solid-state imaging apparatus 1, electrons generated by photoelectric conversion at the photoelectric conversion film 9 are accumulated in the charge accumulation unit 4.

    [0009] The photoelectric conversion film 9 and the charge accumulation unit 4 are not directly connected; the barrier unit 5 is provided therebetween to overflow the barrier and guide the electrons to the charge accumulation unit 4.

    [0010] The advantages of such configuration are as follows:

    The electric potential of the lower electrode 11 in the photoelectric conversion film 9 equals the electric potential of the barrier unit 5.



    [0011] This electric potential does not change even when a charge is accumulated in the charge accumulation unit 4.

    [0012] As a result, the electrical field across the photoelectric conversion film 9 does not change depending on the signal.

    [0013] Moreover, the linearity of the signal is good.

    [0014] In this configuration, the contact unit 6 is separated from the charge accumulation unit 4. Thus, the electric potential of the contact unit 6 can be low. The electric potential of the charge accumulation unit 4 should be high for photoelectric accumulation.

    [0015] As a result, the dark currents generated at the contact unit 6 can be reduced.

    [0016] The solid-state imaging apparatus described in JP 2006-120922 is a CCD type apparatus. With a MOS type solid-state imaging apparatus, images during the exposure period are not synchronized, causing moving subjects to be distorted. JP 2004-140149 describes a solid-state imaging apparatus including a photodiode that has a discharge transistor to synchronize images during the exposure period.

    [0017] Fig. 2 illustrates a solid-state imaging apparatus described in JP 2004-140149.

    [0018] This solid-state imaging apparatus 20 includes a transfer transistor 21, an amplifier transistor 22, a selecting transistor 23, a reset transistor 24, a discharge transistor 25, and photodiode (PD) 26.

    [0019] In such a case, the charge of the PD 26 is transferred to a floating diffusion (FD) in all pixels simultaneously, and the charge photoelectrically converted at the PD 26 while waiting for the signal to be read out one row at a time is discarded at a power supply Vdd via the discharge transistor 25.

    [0020] Similar types of solid-state imaging apparatuses are also described in JP 11-239299, JP 2004-11590, JP 2009-49870, and JP 2008-258474.

    [0021] When a solid-state imaging apparatus having a photoelectric conversion film and a barrier unit, as described in JP 2006-120922, is modified into a MOS type solid-state imaging apparatus, synchronicity may be achieved in a screen by providing a discharge transistor, such as that described in JP 2004-140149.

    [0022] However, the inventors have recognized that there is still a problem. This problem will be discussed below.

    [0023] Although not prior art, Fig. 3 illustrates the solid-state imaging apparatus of JP 2006-120922, which is modified in a particular manner to be a MOS type solid-state imaging apparatus and further including a discharge transistor 13.

    [0024] Photons that are generated at the photoelectric conversion film during the exposure period overflow to the accumulation unit by passing through the barrier unit, which is an electric potential barrier.

    [0025] After the exposure period, the discharge transistor 13 is turned on, and the photons are discarded at the drain (A) of discharge transistor 13 so that the signals from the charge accumulation unit 4 are not damaged.

    [0026] During this period, the electric potential of a contact unit (D) 6 should be higher than that of the barrier unit 5.

    [0027] Then, the discharge transistor 13 is turned off before entering the next exposure period. However, since the electric potential of the contact unit (D) 6 is higher than that of the barrier unit 5, the electrons first entering the contact unit (D) 6 from the photoelectric conversion film 9 during the exposure period do not pass through the barrier unit 5 and are not accumulated in the charge accumulation unit 4.

    [0028] As a result, the linearity of the signals is degraded.

    [0029] Embodiments of the present invention seek to improve the linearity of signals when operation enters global shutter mode.

    [0030] Various respective aspects and features of the invention are defined in the appended claims.

    [0031] According to embodiments of the present invention, the linearity of signals when operation enters global shutter mode can be improved.

    [0032] Embodiments of the invention will now be described with reference to the accompanying drawings, throughout which like parts are referred to by like references, and in which:

    Fig. 1 illustrates a solid-state imaging apparatus described in JP 2006-120922;

    Fig. 2 illustrates a solid-state imaging apparatus described in JP 2004-140149;

    Fig. 3 illustrates a configuration example of a solid-state imaging apparatus having a photoelectric conversion film, as described in JP 2006-120922, modified into a MOS type solid-state imaging apparatus;

    Fig. 4 is a block diagram illustrating, in outline, the configuration of a solid-state imaging apparatus;

    Fig. 5 is a circuit diagram illustrating a pixel according to a first example, which is an implementation useful for understanding the claimed invention;

    Fig. 6 is simplified partial sectional view illustrating, in outline, the pixel according to the first example implementation;

    Fig. 7 is a timing chart illustrating the operation of the pixel illustrated in Figs. 5 and 6;

    Fig. 8 is a first potential diagram illustrating operation timings of the pixel illustrated in Figs. 5 and 6;

    Fig. 9 is a second potential diagram illustrating operation timings of the pixel illustrated in Figs. 5 and 6;

    Fig. 10 illustrates the operation concept of the pixel according to the first example implementation;

    Fig. 11 is a circuit diagram illustrating a pixel according to a second example, which illustrates an embodiment of the present invention;

    Fig. 12 is a simplified partial sectional view illustrating, in outline, the pixel according to the second example being embodiment of the present invention;

    Fig. 13 is a timing chart illustrating the operation of the pixel illustrated in Figs. 11 and 12;

    Fig. 14 is a circuit diagram illustrating a pixel according to a third example, which is an implementation useful for understanding the claimed invention;

    Fig. 15 is a simplified partial sectional view illustrating, in outline, the pixel according to the third example implementation of Figure 14;

    Fig. 16 is a timing chart illustrating the operation of the pixel illustrated in Figs. 14 and 15; and

    Fig. 17 illustrates an example configuration of a camera system to which a solid-state imaging apparatus according to an embodiment of the present invention is applied.


    DESCRIPTION OF THE PRESENTLY PREFERRED EMBODIMENTS



    [0033] Embodiments of the present invention will be described below with reference to the drawings.

    [0034] Descriptions will be presented in the following order:
    1. 1. Outline of solid-state imaging apparatus;
    2. 2. First example implementation of a pixel;
    3. 3. Second example of a pixel, which illustrates an embodiment of the present invention;
    4. 4. Third example implementation of a pixel; and
    5. 5. Camera.

    1. Outline of solid-state imaging apparatus



    [0035] Fig. 4 is a block diagram illustrating, in outline, the configuration of a solid-state imaging apparatus 100 according to a first example implementation, useful for understanding embodiments of the present invention.

    [0036] As illustrated in Fig. 4, the solid-state imaging apparatus 100 includes a pixel unit 110, which is a sensing unit, a vertical drive circuit 120, which is a driving unit, a column processing circuit 130, an output circuit 140, and a control circuit 150.

    [0037] As described below, a plurality of pixels 200, which each converts incident light into an electrical signal, is disposed in a matrix in the pixel unit 110.

    [0038] The vertical drive circuit 120 drives the pixels 200 in the pixel unit 110.

    [0039] The column processing circuit 130 receives image signals from the pixels and carries out variation compensation and AD conversion.

    [0040] The output circuit 140 receives image signals from the column processing circuit 130 and outputs the signals to an external device after carrying out gain adjustment and damage correction to the signals.

    [0041] The control circuit 150 sends control signals to the vertical drive circuit 120, the column processing circuit 130, and the output circuit 140 to control operation.

    [0042] Detailed configuration and operation of each individual pixel according to this example implementation will be described below.

    2. First example implementation of pixel



    [0043] Fig. 5 is a circuit diagram illustrating a pixel according to a first example implementation, which is useful for understanding embodiments of the present invention.

    [0044] Fig. 6 is a simplified partial sectional view illustrating, in outline, the pixel according to the first example implementation.

    [0045] Each pixel 200 may include a photoelectric conversion film 201, a contact unit 202, which is an injection unit, a barrier unit 203, an accumulation unit 204, a transfer transistor 205, a reset transistor 206, an amplifier transistor 207, a selecting transistor 208, and a discharge transistor 209.

    [0046] One end of the photoelectric conversion film 201 is connected to an upper electrode 210, and the other end is connected to a lower electrode 211. The lower electrode 211 is connected to a contact unit 202 in a lower layer via a contact 212. pixel is sent to the column processing circuit 130 via the vertical signal line LSGN.

    [0047] Such operation is carried out simultaneously for all pixels in one row since the gates of, for example, the transfer transistors 205, the reset transistors 206, and the selecting transistors 208 are connected in row units.

    [0048] The source of the discharge transistor 209 is the contact unit 202; the drain of the discharge transistor 209 is connected to a discharge drain line LDRN; and the gate of the discharge transistor 209 is connected to a discharge gate line LDGT.

    [0049] The discharge drain line LDRN and the discharge gate line LDGT are driven by the vertical drive circuit 120; the discharge transistor 209 stays ON while maintaining its initial state; and initialization in which the charge is injected from the drain to the contact unit 202 is carried out.

    [0050] In this example implementation, the gate and drain of the discharge transistor 209 are horizontally wired such that pixels in the same row are shared. Instead, however, the discharge transistor 209 may be vertically wired such that the pixels in the same column are shared.

    [0051] The reset control line LRST, the transfer control line LTRF, the selecting control line LSEL, the discharge drain line LDRN, and the discharge gate line LDGT are wired in groups of row units of the pixel arrays to the pixel unit 110.

    [0052] M represents the number of control lines. For example, a set of "M" control lines may include the following five control lines: LRST, LTRF, LSEL, LDRN, and LDGT.

    [0053] The reset control line LRST, the transfer control line LTRF, the selecting control line LSEL, the discharge drain line LDRN, and the discharge gate line LDGT are driven by the vertical drive circuit 120.

    [0054] The vertical drive circuit 120 controls the operation of pixels in a selected row in the pixel unit 110. The vertical drive circuit 120 controls the pixels 200 via the control lines LSEL, LRST, LTRF, LDRN, and LDGT.

    [0055] The vertical drive circuit 120 carries out image driving control by switching the exposure mode to rolling shutter mode in which exposure is carried out on each row or to global shutter mode in which exposure is carried out simultaneously on all pixels.

    [0056] Fig. 6 is a simplified sectional view illustrating one of the pixels 200 according to this example implementation. The pixel 200 includes the photoelectric conversion film 201, the contact unit 202, the barrier unit 203, the accumulation unit 204, the transfer transistor 205, the discharge transistor 209, the upper electrode 210, the lower electrode 211, and the contact 212. injected from the drain to the contact unit 202 is carried out.

    [0057] In this first example implementation, the gate and drain of the discharge transistor 209 are horizontally wired such that pixels in the same row are shared. Instead, however, the discharge transistor 209 may be vertically wired such that the pixels in the same column are shared.

    [0058] The reset control line LRST, the transfer control line LTRF, the selecting control line LSEL, the discharge drain line LDRN, and the discharge gate line LDGT are wired in groups of row units of the pixel arrays to the pixel unit 110.

    [0059] M represents the number of control lines. For example, a set of "M" control lines may include the following five control lines: LRST, LTRF, LSEL, LDRN, and LDGT.

    [0060] The reset control line LRST, the transfer control line LTRF, the selecting control line LSEL, the discharge drain line LDRN, and the discharge gate line LDGT are driven by the vertical drive circuit 120.

    [0061] The vertical drive circuit 120 controls the operation of pixels in a selected row in the pixel unit 110. The vertical drive circuit 120 controls the pixels 200 via the control lines LSEL, LRST, LTRF, LDRN, and LDGT.

    [0062] The vertical drive circuit 120 carries out image driving control by switching the exposure mode to rolling shutter mode in which exposure is carried out on each row or to global shutter mode in which exposure is carried out simultaneously on all pixels.

    [0063] Fig. 6 is a simplified sectional view illustrating one of the pixels 200 according to this first example implementation. The pixel 200 includes the photoelectric conversion film 201, the contact unit 202, the barrier unit 203, the accumulation unit 204, the transfer transistor 205, the discharge transistor 209, the upper electrode 210, the lower electrode 211, and the contact 212.

    [0064] Basically, in the pixel 200, the accumulation unit 204 having a p-layer 2041 and an n-layer 2042 joint through a p-n junction is provided inside a p-well 221 of a Si semiconductor substrate 220 at the surface of the substrate.

    [0065] An n+ diffusion layer 2051 of the transfer transistor 205 is provided on the right side (in the drawing) of the accumulation unit 204. A gate electrode 2054 is provided above a gate insulting film 2053, which is provided above a channel forming region 2052 interposed between the p-layer 2041 and n+ diffusion layer 2051 of the accumulation unit 204.

    [0066] The right edge (in the drawing) of the contact unit 202, which is an n+ layer, is in contact with the p-layer 2041 of the accumulation unit 204.

    [0067] The barrier unit 203 extends from the n-layer 2042 of the accumulation unit 204 along the bottom surface of the contact unit 202.

    [0068] As described above, in the first example implementation of Fig. 6, the contact unit 202 is the source region of the discharge transistor 209.

    [0069] A drain region 2092 of the discharge transistor 209 and the contact unit 202 are provided on opposite ends of a channel forming region 2091. A gate electrode 2094 is provided above a gate insulating film 2093, which is disposed on the channel forming region 2091.

    [0070] The drain region 2092 is connected to the discharge drain line LDRN via a contact 223 provided inside an inter-layer insulating film 222 disposed on the surface of the semiconductor substrate 220.

    [0071] The lower electrode 211, the photoelectric conversion film 201, and the upper electrode 210 are stacked on the inter-layer insulating film 222 in this order from the bottom.

    [0072] The upper electrode 210 is made of a transparent electrode, such as ITO.

    [0073] The photoelectric conversion film 201 is made of amorphous silicon or an organic photoelectric conversion film.

    [0074] The lower electrode 211 is made of a metal, such as Ti. The lower electrode 211 is connected through the contact to

    [0075] The subsequent period is a period for reading out rows one at a time. The target pixel is read out in a normal manner when the corresponding row is read out.

    [0076] Figs. 8 and 9 are potential diagrams corresponding to the operation timings illustrated in Figs. 5 and 6, respectively.
    1. (a) Photons from the photoelectric conversion film 201 are discarded at the drain (A) of the discharge transistor 209 from the contact unit (D) 202.
    2. (b) The discharge drain line LDRN is set to a low level for initialization.
      Electrons are injected from the discharge drain line LDRN to the accumulation unit 204 via the discharge transistor 209 and the barrier unit 203.
    3. (c) After setting the discharge gate line LDGT to a low level, the discharge drain line LDRN is set to a high level.
      At this time, the injected electrons remain in the contact unit (D) 202 and the accumulation unit 204.
    4. (d) Upon turning on the transfer transistor 205 and the reset transistor 206 by driving the transfer line LTRF and a reset line LRST, the electrons in the accumulation unit 204 are removed to empty the accumulation unit 204, and the electric potential of the contact unit (D) 202 equals that of the barrier unit 203.
      The drawings are illustrated up to the transfer gate.
    5. (e) By setting the transfer control line LTRF to a low level, accumulation starts at the accumulation unit 204.
    6. (f) While accumulation is taking place, the photons from the photoelectric conversion film 201 pass through the barrier unit 203 and are accumulated in the accumulation unit 204.
    7. (g) Until the read-out turn of the pixel 200 in interest after the exposure period ends and the discharge transistor 209 is turned on, the signal is stored in the accumulation unit 204 and the photons from the photoelectric conversion film 201 are discharged through the discharge transistor 209.


    [0077] Through the above-described operation, the photons from the photoelectric conversion film flow into the accumulation unit 204 from the beginning of the exposure period, and the linearity of the signal improves.

    [0078] Fig. 10 schematically illustrates the operation.

    [0079] At first, the substantive step of electrons being injected from the drain (A) of the discharge transistor 209 to the contact unit (D) 202 is carried out.

    [0080] This is realized by driving the drain (A) of the discharge transistor 209. The vertical drive circuit 120 has a drive circuit of the discharge drain line LDRN.

    3. Second example presenting an embodiment of pixel



    [0081] Fig. 11 is a circuit diagram illustrating a pixel according to a second example, which is an example embodiment of the present invention.

    [0082] Fig. 12 is a simplified partial sectional view illustrating, in outline, the pixel according to the second example which is an embodiment of the present invention.

    [0083] A pixel 200A according to the second example embodiment differs from the pixel 200 according to the first example implementation referred to above in that the pixel 200A does not include a discharge transistor.

    [0084] The second example embodiment includes a photoelectric conversion unit 201, which is a stack of a plurality of sensor layers. Each sensor layer may correspond to a certain wavelength range (e.g., color). For example, the photoelectric conversion unit 201 may include a red sensor layer, a green sensor layer, and a blue sensor layer. By stacking the photoelectric conversion films to provide a photoelectric conversion unit 201, operation in a global shutter mode is possible without a discharge transistor.

    [0085] In such a case, the reset transistor 206 and the drain line of the selecting transistor 208 (which may instead by an amplifier transistor in some cases) are common lines for all pixels but can be driven without a fixed voltage.

    [0086] An upper electrode 210A can also be driven without fixing the voltage.

    [0087] The vertical drive circuit 120 drives a full-surface line LALL and the upper electrode 210A. As shown in Fig. 11, the full-surface line is a power supply line (e.g., voltage line). The full-surface line LALL crisscrosses interlayer insulating film 222. The full-surface line, as well as other wirings, are not shown in the simplified partial sectional view of Fig. 12.

    [0088] Fig. 13 is a timing chart illustrating the operation of the pixel illustrated in Figs. 11 and 12.

    [0089] High-active pulses are introduced to the transfer line LTRF and the reset control line LRST to set the full-surface line LALL to a low level while the transfer transistor 205 and the reset transistor 206 are turned on.

    [0090] In this way, electrons are injected into the contact unit (D) 202 via the reset transistor 206 and the transfer transistor 205.

    [0091] By returning the full-surface line LALL to a high level, the electric potential of the contact unit (D) 202 equals that of the barrier unit 203, and the accumulation unit 204 is reset.

    [0092] Since the upper electrode 210A is at a low level during the exposure period, the photons of the photoelectric conversion film 201 are sent to the Si side.

    [0093] By setting to the upper electrode 210 to a high level when the exposure ends, the photons of the photoelectric conversion film 201 are prohibited from being sent to the Si side. Then, the rows are read out one at a time.

    [0094] While the upper electrode 210A is at a high level, the electric potential of the contact unit (D) 202 is higher than that of the barrier unit 203, and this condition does not change even when the upper electrode 210A is returned to a low level. Therefore, without solving this problem, degradation in the linearity may occur due to the same mechanism.

    [0095] To solve this problem, electrons are injected from the full-surface line LALL to the contact unit (D) 202, and the electrons in the accumulation unit 204 are subsequently discharged.

    [0096] In principle, this is the same as in the first example implementation explained above.

    [0097] In this example embodiment, by providing a photoelectric conversion film unit 201 as a stack of a plurality of sensor layers, signal mixing is prevented or at least reduced, without providing a discharge transistor, after exposure is ended in a global shutter mode.

    4. Third example implementation of pixel



    [0098] Fig. 14 is a circuit diagram illustrating a pixel according to a third example, which is an implementation useful for understanding the present invention.

    [0099] Fig. 15 is a simplified partial sectional view illustrating, in outline, the pixel according to the third example implementation.

    [0100] A pixel 200B of the third example implementation differs from the pixel 200 of the first example implementation in that the pixel 200B includes a combination of the photoelectric conversion film 201B and a photodiode 213.

    [0101] A transfer transistor 214 is connected to the photodiode 213, the accumulation unit 204, and the floating diffusion FD (hereinafter may also simply be referred to as FD), which is an output node.

    [0102] The transfer transistor 214 receives a transfer signal TRG2, which is a control signal to its gate (transfer gate), via a transfer control line LTRF2.

    [0103] In this way, the transfer transistor 214 transfers the charge (in this case, electrons) accumulated in the photodiode 213 to the floating diffusion FD.

    [0104] The combination of the photoelectric conversion film 201B, which absorbs light of a specific wavelength (e.g., green), and the photodiode 213, which is disposed on the Si semiconductor substrate 220 and absorbs the light transmitted through the photoelectric conversion film 201B, will be described.

    [0105] Fig. 15 is a concept diagram of the pixel 200B. The photoelectric conversion film 201B is an organic photoelectric conversion film.

    [0106] The photodiode 213 is disposed in the Si semiconductor substrate 220 and is constructed in the same manner as any typical photodiode.

    [0107] Since the components are not actually aligned as in the drawing, Fig. 15 is more of a conceptual diagram than a sectional diagram.

    [0108] Fig. 16 is a timing chart illustrating the operation of the pixel illustrated in Figs. 14 and 15.

    [0109] In this case, when a signal is read out, the signal from the photoelectric conversion film 201B is read out first, and the signal from the photodiode 213 is read out subsequently.

    [0110] The other operations are the same as those described above; therefore, descriptions thereof are not repeated here.

    [0111] As described above, as an organic photoelectric conversion film that carries out photoelectric conversion at a wavelength corresponding to green, organic photoelectric conversion materials, such as Rhodamine-based pigments, Merocyanine-based pigments, and quinacridone, can be used.

    [0112] As an organic photoelectric conversion film that carries out photoelectric conversion at a wavelength corresponding to red, organic photoelectric conversion materials, such as phthalocyanine-based pigments, can be used.

    [0113] As an organic photoelectric conversion film that carries out photoelectric conversion at a wavelength corresponding to blue, organic photoelectric conversion materials, such as coumarin-based pigments, tris(8-hydroxyquinolinato)aluminium (Alq3), and Merocyanine-based pigments, can be used.

    [0114] As described above, according to this example implementation, the linearity of a signal when a MOS-type solid-state imaging apparatus having a photoelectric conversion film is operated in a global shutter mode can be improved.

    [0115] A solid-state imaging apparatus having these characteristics can be applied to imaging devices in digital cameras and video cameras.

    [0116] Fig. 17 illustrates an example configuration of a camera system to which a solid-state imaging apparatus according to an embodiment of the present invention is applied.

    5. Camera



    [0117] As illustrated in Fig. 17, a camera system 300 includes an imaging device 310 to which the solid-state imaging apparatus 100 according to an embodiment of the present invention can be applied.

    [0118] The camera system 300 includes an optical system that forms an image of a subject by guiding incident light to a pixel region in the imaging device 310, e.g., a lens 320 forming an image of the incident light (image light) on an imaging surface.

    [0119] The camera system 300 includes a drive circuit (DRV) 330 that drives the imaging device 310 and a signal processing circuit (PRC) 340 that processes output signals from the imaging device 310.

    [0120] The drive circuit 330 includes a timing generator (not shown) that generates various timing signals including start pulses and clock pulses for driving circuits in the imaging device 310.

    [0121] The signal processing circuit 340 carries out signal processing, such as correlated double sampling (CDS), on the output signal from the imaging device 310.

    [0122] The image signals processed at the signal processing circuit 340 are recorded in a recording medium, such as a memory.

    [0123] Image information recorded on the recording medium can be output as a hardcopy by a printer or the like. The image signals processed at the signal processing circuit 340 can be displayed as a moving image on a monitor including, for example, a liquid crystal display.

    [0124] As described above, in an imaging device, such as a digital still camera, by including the above-described solid-state imaging apparatus 100 as the imaging device 310, a camera with high precision is realized.

    [0125] In so far as the embodiments of the invention described above are implemented, at least in part, using software-controlled data processing apparatus, it will be appreciated that a computer program providing such software control and a transmission, storage or other medium by which such a computer program is provided are envisaged as examples being useful to understand the present invention.


    Claims

    1. A solid-state imaging apparatus (100) comprising:

    a pixel unit (110) including a matrix of pixels (200A) for converting light to an electric signal;

    a driving unit (120) for driving the pixel unit (110), and

    a control circuit (150) for sending control signals to the driving unit (120) to control operation;

    wherein each of the pixels (200A) includes

    a photoelectric conversion film (201) for carrying out photoelectric conversion, the photoelectric conversion film being provided on a semiconductor substrate (220);

    an accumulation unit (204) for accumulating, during an exposure period, the charge generated at the photoelectric conversion film (201), the accumulation unit (204) being disposed in the semiconductor substrate (220),

    an injection unit (202) that is connected to the accumulation unit (204) via a barrier unit (203), wherein the injection unit and the barrier unit are disposed in the semiconductor substrate (220), for injecting a charge generated at the photoelectric conversion film (201) to the accumulation unit (204) via the barrier unit (203) for providing an electric potential barrier between the photoelectric conversion film (201) and the accumulation unit (204), and

    a transfer transistor (205) configured to transfer the charge accumulated in the accumulation unit (204) to a floating diffusion (FD), characterised in that the solid-state imaging apparatus further comprises

    a reset transistor (206) being connected to both the accumulation unit (204) via the transfer transistor and an electric potential line (LALL) and for resetting the charge in the accumulation unit (204);

    wherein the control circuit (150) is configured to send control signals to the driving unit (120) to control the pixel unit (110) to selectively inject charge to the injection unit (202) of the pixel before the beginning of the exposure period,

    wherein for said selective injection of charge the driving unit (120) is configured to inject a charge from the electric potential line (LALL) via the reset transistor (206), the floating diffusion, the transfer transistor, the accumulation unit and the barrier unit to the injection unit (202), and

    wherein the driving unit (120) is configured to reset the charge in the accumulation unit (204) after injecting a charge into the injection unit (202).


     
    2. A method of driving a solid-state imaging apparatus (100) including a pixel unit (110) including a matrix of pixels (200; 200A) for converting light to an electric signal, and a driving unit (120) for driving the pixel unit (110), wherein each of the pixels (200; 200A) includes a photoelectric conversion film (201) for carrying out photoelectric conversion, the photoelectric conversion film being provided on a semiconductor substrate (220), an accumulation unit (204) for accumulating, during an exposure period, the charge generated at the photoelectric conversion film (201), the accumulation unit (204) being disposed in the semiconductor substrate (220), an injection unit (202) that is connected to the accumulation unit (204) via a barrier unit (203), wherein the injection unit and the barrier unit are disposed in the semiconductor substrate (220), for injecting a charge generated at the photoelectric conversion film (201) to the accumulation unit (204) via the barrier unit (203) for providing an electric potential barrier between the photoelectric conversion film (201) and the accumulation unit (204), and a transfer transistor (205) configured to transfer the charge accumulated in the accumulation unit (204) to a floating diffusion (FD), the solid-state imaging device further including a reset transistor (206) being connected to both the accumulation unit (204) via the transfer transistor and an electric potential line (LALL) and for resetting the charge in the accumulation unit (204); wherein the pixel unit (110) is configured to selectively inject a charge to the injection unit (202) of the pixel, the method comprising the steps of:

    a first step of selectively injecting a charge to the injection unit (202) of each of the pixels before the beginning of the exposure period, which comprises

    injecting a charge from the electric potential line (LALL) via the reset transistor (206), the floating diffusion, the transfer transistor, the accumulation unit and the barrier unit to the injection unit (202), and

    a second step of resetting the charge in the accumulation unit (204) after injecting a charge into the injection unit (202).


     
    3. A camera (300) comprising:

    a solid-state imaging apparatus (100) according to any one of claims 1 to 2 configured to receive light from a first substrate surface of the semiconductor substrate;

    an optical system (320) configured to guide incident light to the first substrate surface of the solid-state imaging apparatus; and

    a signal processing circuit (340) configured to process an output signal from the solid-state imaging apparatus.


     


    Ansprüche

    1. Festkörper-Bildgebungseinrichtung (100), umfassend:

    eine Pixeleinheit (110), die eine Pixelmatrix (200A) zum Umwandeln von Licht in ein elektrisches Signal aufweist;

    eine Ansteuerungseinheit (120) zum Ansteuern der Pixeleinheit (110), und

    eine Steuerschaltung (150) zum Senden von Steuersignalen an die Ansteuerungseinheit (120), um den Betrieb zu steuern;

    wobei jedes der Pixel (200A) Folgendes aufweist

    eine photoelektrische Umwandlungsschicht (201) zum Durchführen photoelektrischer Umwandlung, wobei die photoelektrische Umwandlungsschicht auf einem Halbleitersubstrat (220) bereitgestellt ist;

    eine Akkumulierungseinheit (204) zum Akkumulieren, während eines Belichtungszeitraumes, der Ladung, die an der photoelektrischen Umwandlungsschicht (201) erzeugt wird, wobei die Akkumulierungseinheit (204) in dem Halbleitersubstrat (220) angeordnet ist,

    eine Injektionseinheit (202), die mit der Akkumulierungseinheit (204) über eine Sperreinheit (203) verbunden ist, wobei die Injektionseinheit und die Sperreinheit in dem Halbleitersubstrat (220) angeordnet sind, zum Injizieren einer Ladung, die an der photoelektrischen Umwandlungsschicht (201) zu der Akkumulierungseinheit (204) über die Sperrschicht (203) zum Bereitstellen einer elektrischen Spannungssperre zwischen der photoelektrischen Umwandlungsschicht (201) und der Akkumulierungseinheit (204) erzeugt wird, und

    einen Übertragungstransistor (205), der dazu ausgestaltet ist, die Ladung, die in der Akkumulierungseinheit (204) akkumuliert wird, an eine schwebende Diffusion (Floating Diffusion, FD) zu übertragen, dadurch gekennzeichnet, dass die Festkörper-Bildgebungseinrichtung des Weiteren Folgendes umfasst

    einen Rücksetzungstransistor (206), der sowohl mit der Akkumulierungseinheit (204) über den Übertragungstransistor als auch mit einer elektrischen Spannungsleitung (LALL) verbunden ist, und zum Zurücksetzen der Ladung in der Akkumulierungseinheit (204);

    wobei die Steuerungsschaltung (150) dazu ausgestaltet ist, Steuersignale an die Ansteuerungseinheit (120) zum Steuern der Pixeleinheit (110) zu senden, um selektiv Ladung in die Injektionseinheit (202) des Pixels vor dem Beginn des Belichtungszeitraumes zu injizieren,

    wobei für die selektive Injektion von Ladung die Ansteuerungseinheit (120) dazu ausgestaltet ist, eine Ladung von der elektrischen Spannungsleitung (LALL) über den Rücksetzungstransistor (206), die schwebende Diffusion, den Übertragungstransistor, die Akkumulierungseinheit und die Sperreinheit in die Injektionseinheit (202) zu injizieren, und

    wobei die Ansteuerungseinheit (120) dazu ausgestaltet ist, die Ladung in der Akkumulierungseinheit (204) nach dem Injizieren einer Ladung in die Injektionseinheit (202) zurückzusetzen.


     
    2. Verfahren zum Ansteuern einer Festkörper-Bildgebungseinrichtung (100), aufweisend eine Pixeleinheit (110), die eine Pixelmatrix (200; 200A) zum Umwandeln von Licht in ein elektrisches Signal aufweist, und eine Ansteuerungseinheit (120) zum Ansteuern der Pixeleinheit (110), wobei jedes der Pixel (200; 200A) eine photoelektrische Umwandlungsschicht (201) zum Durchführen der photoelektrischen Umwandlung aufweist, wobei die photoelektrische Umwandlungsschicht auf einem Halbleitersubstrat (220) bereitgestellt wird, eine Akkumulierungseinheit (204) zum Akkumulieren, während eines Belichtungszeitraumes, der Ladung, die an der photoelektrischen Umwandlungsschicht (201) erzeugt wird, wobei die Akkumulierungseinheit (204) in dem Halbleitersubstrat (210) angeordnet ist, eine Injektionseinheit (202), die mit der Akkumulierungseinheit (204) über eine Sperreinheit (203) verbunden ist, wobei die Injektionseinheit und die Sperreinheit in dem Halbleitersubstrat (220) angeordnet sind, zum Injizieren einer Ladung, die an der photoelektrischen Umwandlungsschicht (201) erzeugt wird, in die Akkumulierungseinheit (204) über die Sperreinheit (203) zum Bereitstellen einer elektrischen Spannungssperre zwischen der photoelektrischen Umwandlungsschicht (201) und der Akkumulierungseinheit (204), und einen Übertragungstransistor (205), der zum Übertragen der Ladung, die in der Akkumulierungseinheit (204) akkumuliert wird, an eine schwebende Diffusion (FD) ausgestaltet ist, wobei die Festkörper-Bildgebungsvorrichtung des Weiteren einen Rücksetzungstransistor (206) aufweist, der sowohl mit der Akkumulierungseinheit (204) über den Übertragungstransistor als auch mit einer elektrischen Spannungsleitung (LALL) und zum Zurücksetzen der Ladung in der Akkumulierungseinheit (204) verbunden ist; wobei die Pixeleinheit (110) dazu ausgestaltet ist, selektiv eine Ladung in die Injektionseinheit (202) des Pixels zu injizieren, wobei das Verfahren die Folgenden Schritte umfasst:

    einen ersten Schritt des selektiven Injizierens einer Ladung in die Injektionseinheit (202) von jedem der Pixel vor dem Beginn des Belichtungszeitraumes, der Folgendes umfasst

    Injizieren einer Ladung von der elektrischen Spannungsleitung (LALL) über den Rücksetzungstransistor (206), die schwebende Diffusion, den Übertragungstransistor, die Akkumulierungseinheit und die Sperreinheit in die Injektionseinheit (202), und

    einen zweiten Schritt des Zurücksetzens der Ladung in der Akkumulierungseinheit (204) nach dem Injizieren einer Ladung in die Injektionseinheit (202).


     
    3. Kamera (300), die Folgendes umfasst:

    eine Festkörper-Bildgebungseinrichtung (300) nach irgendeinem der Ansprüche 1 bis 2, die dazu ausgestaltet ist, Licht von einer ersten Substratoberfläche des Halbleitersubstrats zu empfangen;

    ein optisches System (320), das dazu ausgestaltet ist, einfallendes Licht auf die erste Substratoberfläche der Festkörper-Bildgebungseinrichtung zu leiten; und

    eine Signalverarbeitungsschaltung (340), die dazu ausgestaltet ist, ein Ausgangssignal von der Festkörper-Bildgebungseinrichtung zu verarbeiten.


     


    Revendications

    1. Appareil d'imagerie à semi-conducteur (100), comprenant :

    une unité à pixels (110) incluant une matrice de pixels (200A) pour convertir de la lumière en un signal électrique ;

    une unité d'excitation (120) pour exciter l'unité à pixels (110), et

    un circuit de commande (150) pour envoyer des signaux de commande à l'unité d'excitation (120) pour commander le fonctionnement ;

    dans lequel chacun des pixels (200A) inclut un film de conversion photoélectrique (201) pour effectuer une conversion photoélectrique, le film de conversion photoélectrique étant prévu sur un substrat à semi-conducteur (220) ;

    une unité d'accumulation (204) pour accumuler, durant une période d'exposition, la charge générée au film de conversion photoélectrique (201), l'unité d'accumulation (204) étant disposée dans le substrat à semi-conducteur (220),

    une unité d'injection (202) qui est connectée à l'unité d'accumulation (204) par l'intermédiaire d'une unité barrière (203), dans lequel l'unité d'injection et l'unité barrière sont disposées dans le substrat à semi-conducteur (220), pour injecter une charge générée au film de conversion photoélectrique (201) dans l'unité d'accumulation (204) par l'intermédiaire de l'unité barrière (203) pour fournir une barrière à potentiel électrique entre le film de conversion photoélectrique (201) et l'unité d'accumulation (204), et

    un transistor de transfert (205) configuré pour transférer la charge accumulée dans l'unité d'accumulation (204) à une diffusion flottante (FD), caractérisé en ce que l'appareil d'imagerie à semi-conducteur comprend en outre

    un transistor de remise à l'état initial (206) connecté à la fois à l'unité d'accumulation (204) par l'intermédiaire du transistor de transfert et à une ligne à potentiel électrique (LALL) et destiné à remettre à l'état initial la charge dans l'unité d'accumulation (204) ;

    dans lequel le circuit de commande (150) est configuré pour envoyer des signaux de commande à l'unité d'excitation (120) pour commander l'unité à pixels (110) pour sélectivement injecter une charge dans l'unité d'injection (202) du pixel avant le commencement de la période d'exposition,

    dans lequel, pour ladite injection sélective de charge, l'unité d'excitation (120) est configurée pour injecter une charge à partir de la ligne à potentiel électrique (LALL) par l'intermédiaire du transistor de remise à l'état initial (206), de la diffusion flottante, du transistor de transfert, de l'unité d'accumulation et de l'unité barrière dans l'unité d'injection (202), et

    dans lequel l'unité d'excitation (120) est configurée pour remettre à l'état initial la charge dans l'unité d'accumulation (204) après avoir injecté une charge dans l'unité d'injection (202).


     
    2. Procédé d'excitation d'un appareil d'imagerie à semi-conducteur (100) incluant une unité à pixels (110) incluant une matrice de pixels (200 ; 200A) pour convertir de la lumière en un signal électrique, et une unité d'excitation (120) pour exciter l'unité à pixels (110), dans lequel chacun des pixels (200 ; 200A) inclut un film de conversion photoélectrique (201) pour effectuer une conversion photoélectrique, le film de conversion photoélectrique étant prévu sur un substrat à semi-conducteur (220), une unité d'accumulation (204) pour accumuler, durant une période d'exposition, la charge générée au film de conversion photoélectrique (201), l'unité d'accumulation (204) étant disposée dans le substrat à semi-conducteur (210), une unité d'injection (202) qui est connectée à l'unité d'accumulation (204) par l'intermédiaire d'une unité barrière (203), dans lequel l'unité d'injection et l'unité barrière sont disposées dans le substrat à semi-conducteur (220), pour injecter une charge générée au film de conversion photoélectrique (201) dans l'unité d'accumulation (204) par l'intermédiaire de l'unité barrière (203) pour fournir une barrière à potentiel électrique entre le film de conversion photoélectrique (201) et l'unité d'accumulation (204), et un transistor de transfert (205) configuré pour transférer la charge accumulée dans l'unité d'accumulation (204) à une diffusion flottante (FD), le dispositif d'imagerie à semi-conducteur incluant en outre un transistor de remise à l'état initial (206) connecté à la fois à l'unité d'accumulation (204) par l'intermédiaire du transistor de transfert et à une ligne à potentiel électrique (LALL) et destiné à remettre à l'état initial la charge dans l'unité d'accumulation (204) ; dans lequel l'unité à pixels (110) est configurée pour sélectivement injecter une charge dans l'unité d'injection (202) du pixel, le procédé comprenant les étapes de :

    une première étape de l'injection sélective d'une charge dans l'unité d'injection (202) de chacun des pixels avant le commencement de la période d'exposition, qui comprend

    l'injection d'une charge à partir de la ligne à potentiel électrique (LALL) par l'intermédiaire du transistor de remise à l'état initial (206), de la diffusion flottante, du transistor de transfert, de l'unité d'accumulation et de l'unité barrière dans l'unité d'injection (202), et

    une seconde étape de remise à l'état initial de la charge dans l'unité d'accumulation (204) après l'injection d'une charge dans l'unité d'injection (202).


     
    3. Appareil de capture de vues (300), comprenant :

    un appareil d'imagerie à semi-conducteur (300) selon l'une quelconque des revendications 1 à 2, configuré pour recevoir de la lumière à partir d'une première surface de substrat du substrat à semi-conducteur ;

    un système optique (320) configuré pour guider de la lumière incidente vers la première surface de substrat de l'appareil d'imagerie à semi-conducteur ; et

    un circuit de traitement de signal (340) configuré pour traiter un signal de sortie à partir de l'appareil d'imagerie à semi-conducteur.


     




    Drawing
























































    Cited references

    REFERENCES CITED IN THE DESCRIPTION



    This list of references cited by the applicant is for the reader's convenience only. It does not form part of the European patent document. Even though great care has been taken in compiling the references, errors or omissions cannot be excluded and the EPO disclaims all liability in this regard.

    Patent documents cited in the description