(19)
(11)EP 2 343 253 B1

(12)EUROPEAN PATENT SPECIFICATION

(45)Mention of the grant of the patent:
11.07.2018 Bulletin 2018/28

(21)Application number: 11161823.7

(22)Date of filing:  29.11.2006
(51)International Patent Classification (IPC): 
B65G 17/06(2006.01)
B65G 17/32(2006.01)
B65G 17/42(2006.01)
B65G 17/08(2006.01)
B65G 17/40(2006.01)

(54)

Conveyor plate with integrated roller

Förderplatte mit integrierter Rolle

Plaque de convoyeur dotée d'un rouleau intégré


(84)Designated Contracting States:
AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LI LT LU LV MC NL PL PT RO SE SI SK TR

(30)Priority: 30.11.2005 US 290104

(43)Date of publication of application:
13.07.2011 Bulletin 2011/28

(62)Application number of the earlier application in accordance with Art. 76 EPC:
06838518.6 / 1960295

(73)Proprietor: Rexnord Industries, LLC
Milwaukee, WI 53214-1498 (US)

(72)Inventors:
  • Stebnicki, James C.
    Glendale, WI 53217 (US)
  • Mitchell, Robert E.
    Milwaukee, WI 53217 (US)

(74)Representative: V.O. 
P.O. Box 87930
2508 DH Den Haag
2508 DH Den Haag (NL)


(56)References cited: : 
US-A- 4 645 070
US-A1- 2001 045 346
US-A1- 2005 150 748
US-B1- 6 401 914
US-A- 5 775 480
US-A1- 2003 075 419
US-B1- 6 401 900
US-B1- 6 568 522
  
      
    Note: Within nine months from the publication of the mention of the grant of the European patent, any person may give notice to the European Patent Office of opposition to the European patent granted. Notice of opposition shall be filed in a written reasoned statement. It shall not be deemed to have been filed until the opposition fee has been paid. (Art. 99(1) European Patent Convention).


    Description

    BACKGROUND OF THE INVENTION



    [0001] The present invention is directed to a conveyor, and more particularly, to a support plate for a conveyor having integrated rollers to promote travel along a desired path by reducing torsional, load bearing, and resistive forces on the conveyor.

    [0002] Conveyors are subjected to many forces when transporting products along a path. Helical conveyor systems, for example, are common in a wide variety of industries as they provide an efficient means through which to move products, parts, and the like over vertical distances. However, when traversing a spiraled path between vertical distances, these helical conveyer systems are subjected to a variety of forces. For example, during operation, these systems are subjected to torsional forces caused by following the spiraled path, vertical loading forces caused by following a vertically ascending or descending path, and horizontal loading forces caused by following the horizontal component of the path. These forces can be further compounded when carrying significant loads and especially when encountering a build-up of debris along the spiraled path. Over time, these forces can cause significant wear on the helical conveyor system and/or interfere with the operation of the conveyor system.

    [0003] In an effort to reduce the stresses associated with these forces, various bearing designs have been utilized. For example, some helical conveyor systems employ a base chain arranged on the spiraled path that includes bearings mounted thereon to create an interface between the base chain and the spiraled path. In some cases, these bearings may be roller bearings mounted on the base chain to engage the spiraled path and reduce frictional forces between the base chain and the spiraled path. While these bearing systems mounted to the base chain can reduce some torsional, vertical, and horizontal forces, the base chain forms but a small portion of the overall helical conveyor system and, thus, significant forces are still applied to the overall helical conveyor system. Accordingly, significant power is required to overcome these forces and move the helical conveyor along the spiraled path and significant wear is incurred over time.

    [0004] US 2005/0150748 A1 discloses a conveyor support plate according to the preamble of claim 1, in which belt rollers are recessed inward of the outer side of the belt loop and extend past the interior side of the belt loop.

    [0005] Therefore, it would be desirable to have a system to further reduce torsional, frictional, and loading forces on a conveyor system travelling along a path.

    BRIEF SUMMARY OF THE INVENTION



    [0006] The present invention overcomes the aforementioned drawbacks by providing a conveyor support plate according to claim 1 and a conveyor system according to claim 5.

    [0007] The foregoing and other features and advantages of the invention will be made apparent from the following description. In the description, reference is made to the accompanying drawings which form a part hereof, and in which there is shown by way of illustration an embodiment of the invention.

    BRIEF DESCRIPTION OF THE DRAWINGS



    [0008] 

    Fig. 1 is a side view of a spiral path forming guide surfaces for a helical conveyor system;

    Fig. 2 is a bottom perspective view of a helical conveyor system;

    Fig. 3 is a top perspective view of the helical conveyor system of Fig. 2;

    Fig. 4 is a bottom perspective view of a single support plate and linking of base chain of the helical conveyor system of Figs. 2 and 3;

    Fig. 5 is a partial bottom exploded perspective view of the single support plate of Fig. 4 showing a fastening system for the roller bearings;

    Fig. 6 is a partial bottom perspective view of a support plate in accordance with the present invention;

    Fig. 7 is a partial bottom perspective view of the support plate of Fig. 6 showing engaged and disengaged roller bearings;

    Fig. 8 is a cross-sectional view of the assembled support plate of Fig. 4 along lines 8--8, shown engaged with guide surfaces of the spiral path of Fig. 1;

    Fig. 9 is a plan view of a modular link conveyor system; and

    Fig. 10 is a side elevational view of the modular link conveyor system of Fig. 9.


    DETAILED DESCRIPTION OF THE INVENTION



    [0009] Referring to Fig. 1, a spiral path 10 is shown that presents guide surfaces for a helical conveyor system. That is, as will be described, the helical conveyor system is configured to traverse the spiral path 10 in either an ascending or descending direction.

    [0010] Referring now to Fig. 2, a helical conveyor system 12 includes a base chain 14 having paired sidebars 16 pivotally connected through a plurality of pins 18. Extending transversely from one of the pair of sidebars 16 is a pair of arms 20. Extending between the pair of arms 20 and fixed therein by a pin 22 is a bearing in the form of a roller 24. In this regard, the roller bearing 24 is configured to be supported by the pair of arms 20 and rotate about an axis extending along the pin 22.

    [0011] Engaged with the base chain 14 through an interface 26 is a plurality of support plates 28. Each support plate 28 extends transversely in either direction away from the interface 26 and include a lower surface 34 and an upper transport surface 36 joined by a leading edge 35, a trailing edge 37, and a pair of side walls 39. A plurality of downwardly opening passages or cavities 30 are formed within the lower surface 34 of each support plate 28. Disposed within each of the cavities 30 is a support bearing in the form of a roller 32.

    [0012] As shown in Fig. 2, the cavities 30 extend through the lower surface 34 of each support plate such that the rollers 32 extend below the lower surface 34 of each support plate 28. However, as shown in Fig. 3, the cavities 30 do not extend above an upper transport surface 36 of the support plates 28. Therefore, referring to Figs. 2 and 3, the cavities 30 are formed in the plurality of support plates 28 such that they extend through the lower surface 34 of the support plates 28 but terminate prior to extending to the upper transport surface 36 of the support plates 28. As will be described, this configuration enables the helical conveyer system 12 to move with reduced friction when traversing a spiral path such as shown in Fig. 1, but will not interfere with objects being transported on the upper transport surface 36 of the plurality of support plates 28.

    [0013] Additionally, as shown in Fig. 3, it is contemplated that the upper transport surface 36 may include a variety of features that advantageously facilitate both transport of objects disposed on the upper transport surface 36 and movement of the helical conveyor 12 along a spiral path. For example, substances that increase the coefficient friction of the upper transport surface 36, such as rubber 38, may be disposed in a variety of patterns to aid in fixing objects positioned on the upper transport surface 36 in a given position. Furthermore, a plurality of interlocking ribs 40 may be positioned on the upper transport surface 36 or, more specifically, form an upper surface of the upper transport surface 36 to provide a more uniform and substantial upper transport surface 36 while simultaneously allowing the flexing of adjacent support plates 28 necessary to traverse a spiral path, such as shown in Fig. 1. That is, the reciprocally contoured design of the ribs 40 as disposed on the support plates 28 forms a more substantial upper transport surface 36 as well as permits the support plates 28 to flex as the base chain 14 is curved around a spiral path.

    [0014] Referring now to Fig. 4, a single support plate 28 is shown engaged with a portion of the base chain 14. As shown, the interface 26 between the support plate 28 and base chain 14 is formed as a snap-on connection configured to engage the pins 18 joining the sidebars 16 of the base chain 14. In this regard, an individual support plate 28 may be quickly and easily removed from engagement with the base chain 14 for maintenance or replacement.

    [0015] Additionally, in the embodiment shown in Fig. 4, the plurality of rollers 32 are retained within the respective cavities 30 by way of a pin or axle 42 extending through a transverse passage 44 formed within the support plate between the upper transport surface 36 and the lower surface 34. More particularly, the pin 42 is disposed in the transversely extending passage 44, which extends between the pair of side walls 39 joining the upper transport surface 36 and the lower surface 34. Therefore, the pin 42 extends parallel to the transversely extending leading edge 35 and trailing edge 37 that also join the upper transport surface 36 and the lower surface 34.

    [0016] In particular, referring to Fig. 5, as the pin 42 is passed through the transversely formed passage 44, it extends through each of the cavities 30 formed in the support plates 28. Accordingly, each of the rollers 32 includes an opening 46 formed therein that, when disposed within a cavity 30, aligns coaxially with the transversely extending passage 44 such that the pin 42 can be extended through the transversely extending passage 44 and pass through each of the openings 46 formed within the rollers 32. Therefore, the rollers 32 are rotatably secured within the cavities 30.

    [0017] Furthermore, a locking mechanism 48 may be utilized that includes a plug or tab 50 configured to engage a recess 52 formed in the support plate 28. That is, once the pin 42 is extended through the transversely extending passages 44 and each respective opening 46 of the plurality of rollers 32, the locking mechanism 48 may be positioned within the end of the transversely extending passage 44 such that the tab 50 engages the recess 52 of the support plate 28 to lock the pin 42 within the transversely extending passage 44. Alternatively, it is contemplated that the locking mechanism 48 may be integrally formed on an end 54 of the pin 42.

    [0018] Referring now to an embodiment according to the present invention shown in Figs. 6 and 7, the support plate 28 includes an alternative system for securing the rollers 32 within the cavities 30. As best shown in Fig. 7, the support plate 28 of the present invention includes a pair of locking clips 56 integrally formed within each cavity 30. Accordingly, these clips or snap fittings 56 are configured to engage a set of pins 58 integrally formed with the roller 32 and extending therefrom on either side. In this regard, the roller 32 can be aligned with the cavity 30 and depressed into the passage whereby the pins 58 slide into the snap fitting 56 and to be engaged therewith. Once the roller is positioned within the cavity 30, the snap fittings 56 permit the roller to rotate about an axis 60 extending along the pins 58 while retaining the rollers 32 within the cavity 30.

    [0019] Referring now to Fig. 8, a cross-sectional view taken along lines 8--8 of Fig. 4 is shown with the support plate 28 and base chain 14 engaged with the spiral path 10 of Fig. 1. As shown, the spiral path 10 includes a recess 62 within which the base chain 14 and associated components are disposed. Accordingly, the spiral path 10 includes a first guide surface 64 that is engaged by the rollers 32 and a second guide surface 66 engaged by the roller bearing 24 supported by the pair of arms 20 extending from the sidebar 16 of the base chain 14. As the helical conveyor system 12 traverses over the spiral path 10, the support plate 28 is supported on the rollers 32 against the first, horizontally-oriented, guide surface 64. In this regard, the majority of the weight of objects positioned on the helical conveyor system 12 is supported by the rollers 32 through the support plates 28. Accordingly, loading forces associated with the objects positioned on the upper transport surface 36 and frictional forces associated with traversing the spiral path 10 are significantly reduced by the rollers 32 rolling over the first guide surface 64 of the spiral path 10.

    [0020] To further reduce torsional and frictional forces associated with traversing the spiral path 10, the bearing roller 24 is configured to roll along the second, vertically-oriented, guide surface 66 of the spiral path 10. Additionally, in an effort to resist vertical and horizontal forces that would promote disengaging the helical conveyor system 12 from the spiral path 10, the bearing roller 24 may have a contoured surface such as a lip 68 formed thereon and configured to be received by a reciprocally contoured surface 70 formed in the second bearing surface 66. Though a rotational axis 72 of the bearing roller 24 is shown as being substantially vertical, it is contemplated that the rotational axis 72 may be angled to further facilitate engagement with the reciprocally contoured second guide surface 66. For example, if the bearing roller 24 includes a less dramatic contour than the lip 68 shown in Fig. 8, such as an acutely angled depression, it may be desirable to adjust the axis of rotation from the vertical position shown in Fig. 8 to more securely engage the bearing roller 24 with the second guide surface 66.

    [0021] Accordingly, through the rollers 32 formed in the support plates 28 as well as the contoured roller bearing 24 extending from the base chain 14, torsional, loading, and frictional forces are significantly reduced, thereby, reducing the amount of power required to traverse the helical conveyor system 12 over the spiral path 10. Likewise, wear and susceptibility to debris positioned on the spiral path 10 is significantly reduced. Accordingly, maintenance and upkeep costs associated with operating the helical conveyor system 12 are also reduced.

    [0022] It is also contemplated that the cavities 30 and roller 32 configurations may be utilized with a modular belt. For example, referring now to Figs. 9 and 10, a modular link belt 74 designed to follow a straight path is shown that incorporates the roller system which is not part of the present invention. Of course, the modular belt can be designed to follow a curved path. In particular, the modular belt 74 also includes a plurality of support plates 28, or belt modules. However, rather than being joined through a base chain, the support plates 28 include link ends 76 along the leading edge 35 configured to engage reciprocally arranged link ends 76 disposed along the trailing edge 37 of an adjacent support plate 28. A pin 78 is then passed through coaxially aligned passages formed through the link ends 76 to secure together adjacent support plates 28.

    [0023] Again, as described above, the support plates 28 include the lower surface 34 and the upper transport surface 36 joined by the leading edge 35, trailing edge 37, and pair of side walls 39. In this regard, the plurality of downwardly opening passages or cavities 30 are again formed within the lower surface 34 of each support plate 28 to house a roller 32. As shown in Figs. 9 and 10, the pin 42 may be used to secure the rollers 32 within each cavity 30. However, as described with respect to Figs. 6 and 7, clips or other similar retaining systems may be utilized instead of the pin 42.

    [0024] As shown in Fig. 10, it is contemplated that additional rollers 80, 82 may be disposed within the links 76 arranged along the leading edge 35 and the trailing edge 37, respectively. Accordingly, three separate sets of rollers 32, 80, 82 can be formed on each support plate 28. However, as shown, none of the rollers 32, 80, 82 extend through the upper transport surface 36.

    [0025] Therefore, a conveyor system is created that significantly reduces torsional, loading, and frictional forces experienced as the conveyor belt traverses a given path. As such, the amount of power required to operate the conveyor system is reduced. Similarly, wear and susceptibility to debris positioned encountered during operation of the conveyor system is significantly reduced. Accordingly, maintenance and upkeep costs associated with operat4ing the conveyor system are also reduced.

    [0026] While there have been shown and described what is at present considered the preferred embodiments of the invention, it will be obvious to those skilled in the art that various changes and modifications can be made therein without departing from the scope of the invention defined by the appended claims.


    Claims

    1. A conveyor support plate (28) comprising:

    an upper transport surface (36) configured to receive objects arranged for travel on a conveyor system;

    a lower surface (34) arranged opposite the upper transport surface (36);

    a pair of transversely extending walls (35, 37) and a pair of side walls (39) connecting the upper transport surface (36) and the lower surface (34); and

    at least one roller (32) extending through the lower surface (34) to support the conveyor support plate (28) during travel of the conveyor support plate (28), characterized by

    at least one cavity (30) formed in the lower surface (34) and terminating prior to the upper transport surface (36), wherein the at least one roller (32) is received within the at least one cavity (30),

    and by further comprising a snap fitting (56) disposed within the at least one cavity (30) to rotatably secure the at least one roller (32) therein,

    the snap fitting including a pair of locking clips (56) integrally formed within the cavity (30), configured to engage a set of pins (58) integrally formed with the rollers (32) and extending therefrom from either side.


     
    2. The conveyor support plate of claim 1 further comprising an interface (26) arranged on the lower surface (34) configured to engage a base chain (14) joining adjacent conveyor support plates (28) a helical conveyor system.
     
    3. The conveyor support plate of claim 1 further comprising a plurality of links (76) extending from the each of the pair of transversely extending walls (35, 37) to engage a reciprocally arranged plurality of links (76) extending from an adjacent conveyor support plate (28).
     
    4. The conveyor support plate of claim 3 further comprising a pin (78) configured to extend through passages formed in each of the plurality of links (76) to secure together adjacent conveyor support plates (28) to form a modular belt conveyor (74).
     
    5. A conveyor system comprising:

    a travel path (10) having a guide surface (64);

    a plurality of conveyor support plates (28) according to claim 1 having at least two cavities (30) formed in the lower surface (34) and terminating prior to the upper transport surface (36);

    at least one roller (32) received within each of the at least two cavities (30) to rotatably engage the guide surface (64); and

    wherein the at least one roller (30) supports the conveyor support plates (28) above the guide surface (64) as the plurality of conveyor support plates (28) traverse the travel path (10).


     
    6. The conveyor system of claim 5 wherein the plurality of conveyor support plates (28) form an endless conveyor belt (74).
     
    7. The conveyor system of claim 5 further comprising:

    a base chain (14) extending along the travel path (10) and engaged with the plurality of conveyor support plates (28) near a center of the bottom surface (34);

    wherein the at least two cavities (30) are arranged on opposing sides of the base chain (14).


     
    8. The conveyor system of claim 7 further comprising:

    at least one pair of arms (20) extending from the base chain (14);

    at least one bearing roller (24) supported by each pair of arms (20) to engage a vertically oriented and contoured guide surface (66) of the travel path (10); and

    wherein the at least one bearing roller (24) is configured to restrain the conveyer system from disengaging the travel path (10) through an interface of the at least one bearing roller (24) with the contoured guide surface (66).


     


    Ansprüche

    1. Förderauflageplatte (28), umfassend:

    eine obere Transportoberfläche (36), konfiguriert zum Aufnehmen von Objekten, angeordnet zur Bewegung auf einem Fördersystem;

    eine untere Oberfläche (34), angeordnet gegenüber der oberen Transportoberfläche (36);

    ein Paar quer verlaufende Wände (35, 37) und ein Paar Seitenwände (39), die die obere Transportoberfläche (36) und die untere Oberfläche (34) verbinden; und

    mindestens eine Rolle (32), verlaufend durch die untere Oberfläche (34) zum Stützen der Förderauflageplatte (28) während der Bewegung der Förderauflageplatte (28), gekennzeichnet durch

    mindestens einen Hohlraum (30), gebildet in der unteren Oberfläche (34) und endend vor der oberen Transportoberfläche (36), wobei die mindestens eine Rolle (32) in dem mindestens einen Hohlraum (30) aufgenommen ist,

    und durch ferner umfassend einen Schnappverschluss (56), angeordnet in dem mindestens einen Hohlraum (30), um drehbar die mindestens eine Rolle (32) darin zu befestigen,

    der Schnappverschluss umfassend ein Paar Verriegelungsclips (56), integral geformt in dem Hohlraum (30), konfiguriert zum Ergreifen eines Satzes von Stiften (58), integral geformt in den Rollen (32) und verlaufend von dort von jeder Seite.


     
    2. Förderauflageplatte nach Anspruch 1, ferner umfassend eine Schnittstelle (26), angeordnet auf der unteren Oberfläche (34), konfiguriert zum Ergreifen einer Basiskette (14), die benachbarte Förderauflageplatten (28) eines Schneckenfördersystems verbindet.
     
    3. Förderauflageplatte nach Anspruch 1, ferner umfassend eine Vielzahl von Gliedern (76), verlaufend von jeder des Paares quer verlaufender Wände (35, 37), um in eine umgekehrt angeordnete Vielzahl von Gliedern (76), verlaufend von einer angrenzenden Förderauflageplatte (28), zu greifen.
     
    4. Förderauflageplatte nach Anspruch 3, ferner umfassend einen Stift (78), konfiguriert um sich durch Durchgänge, gebildet in jedem der Vielzahl von Gliedern (76), zu erstrecken, um angrenzende Förderauflageplatten (28) aneinander zu befestigen, um ein modulares Förderband (74) zu bilden.
     
    5. Fördersystem, umfassend:

    einen Laufweg (10) mit einer Führungsoberfläche (64);

    eine Vielzahl von Förderauflageplatten (28) nach Anspruch 1 mit mindestens zwei Hohlräumen (30), gebildet in der unteren Oberfläche (34) und endend in der oberen Transportoberfläche (36);

    mindestens eine Rolle (32), aufgenommen in jedem der mindestens zwei Hohlräume (30), um drehbar die Führungsoberfläche (64) zu ergreifen; und

    wobei die mindestens eine Rolle (30) die Förderauflageplatten (28) über der Führungsoberfläche (64) stützt, während die Vielzahl von Förderauflageplatten (28) den Laufweg (10) durchquert.


     
    6. Fördersystem nach Anspruch 5, wobei die Vielzahl von Förderauflageplatten (28) ein Endlosförderband (74) bilden.
     
    7. Fördersystem nach Anspruch 5, ferner umfassend:

    eine Basiskette (14), verlaufend entlang des Laufwegs (10) und eingeklinkt mit der Vielzahl von Förderauflageplatten (28) nahe einer Mitte der unteren Oberfläche (34);

    wobei die mindestens zwei Hohlräume (30) an gegenüberliegenden Seiten der Basiskette (14) angeordnet sind.


     
    8. Fördersystem nach Anspruch 7, ferner umfassend:

    mindestens ein Paar Arme (20), verlaufend von der Basiskette (14),

    mindestens eine Lagerrolle (24), gestützt von jedem Paar von Armen (20), um eine vertikal ausgerichtete und profilierte Führungsoberfläche (66) des Laufweges (10) zu ergreifen; und

    wobei die mindestens eine Lagerrolle (24) konfiguriert ist zu verhindern, dass das Fördersystem durch eine Schnittstelle der mindestens einen Lagerrolle (24) mit der profilierten Führungsoberfläche (66) aus dem Laufweg (10) ausklinkt.


     


    Revendications

    1. Plaque de support de convoyeur (28) comprenant :

    une surface de transport supérieure (36) configurée pour recevoir des objets agencés pour le déplacement sur un système de convoyeur ;

    une surface inférieure (34) agencée à l'opposé de la surface de transport supérieure (36) ;

    une paire de parois s'étendant de manière transversale (35, 37) et une paire de parois latérales (39) raccordant la surface de transport supérieure (36) et la surface inférieure (34) ; et

    au moins un rouleau (32) s'étendant à travers la surface inférieure (34) pour supporter la plaque de support de convoyeur (28) pendant le déplacement de la plaque de support de convoyeur (28), caractérisée par :

    au moins une cavité (30) formée dans la surface inférieure (34) et se terminant avant la surface de transport supérieure (36), dans laquelle le au moins un rouleau (32) est reçu à l'intérieur de la au moins une cavité (30),

    et en ce qu'il comprend en outre un raccord par encliquetage (56) disposé à l'intérieur de la au moins une cavité (30) pour fixer, de manière rotative, le au moins un rouleau (32) à l'intérieur de ce dernier,

    le raccord par encliquetage comprenant une paire d'attaches de verrouillage (56) formées de manière solidaire à l'intérieur de la cavité (30), configurées pour mettre en prise un ensemble de broches (58) formées de manière solidaire avec les rouleaux (32) et s'étendant à partir de ce dernier de chaque côté.


     
    2. Plaque de support de convoyeur selon la revendication 1, comprenant en outre une interface (26) agencée sur la surface inférieure (34) configurée pour mettre en prise une chaîne de base (14) assemblant les plaques de support de convoyeur (28) adjacentes d'un système de convoyeur hélicoïdal.
     
    3. Plaque de support de convoyeur selon la revendication 1, comprenant en outre une pluralité de liaisons (76) s'étendant à partir de chacune de la paire de parois s'étendant de manière transversale (35, 37) pour mettre en prise une pluralité de liaisons (76) agencées de manière réciproque, s'étendant à partir d'une plaque de support de convoyeur (28) adjacente.
     
    4. Plaque de support de convoyeur selon la revendication 3, comprenant en outre une broche (78) configurée pour s'étendre à travers des passages formés dans chacune de la pluralité de liaisons (76) afin de fixer les plaques de support de convoyeur (28) adjacentes ensemble afin de former une courroie transporteuse modulaire (74).
     
    5. Système convoyeur comprenant :

    une trajectoire de déplacement (10) ayant une surface de guidage (64) ;

    une pluralité de plaques de support de convoyeur (28) selon la revendication 1, ayant au moins deux cavités (30) formées dans la surface inférieure (34) et se terminant avant la surface de transport supérieure (36) ;

    au moins un rouleau (32) reçu à l'intérieur de chacune des au moins deux cavités (30) pour mettre en prise, de manière rotative, la surface de guidage (64) ; et

    dans lequel le au moins un rouleau (30) supporte les plaques de support de convoyeur (28) au-dessus de la surface de guidage (64) au fur et à mesure que la pluralité de plaques de support de convoyeur (28) traverse la trajectoire de déplacement (10).


     
    6. Système de convoyeur selon la revendication 5, dans lequel la pluralité de plaques de support de convoyeur (28) forme une courroie transporteuse sans fin (74).
     
    7. Système de convoyeur selon la revendication 5, comprenant en outre :

    une chaîne de base (14) s'étendant le long de la trajectoire de déplacement (10) et mise en prise avec la pluralité de plaques de support de convoyeur (28) à proximité d'un centre de la surface inférieure (34) ;

    dans lequel les au moins deux cavités (30) sont agencés sur les côtés opposés de la chaîne de base (14).


     
    8. Système de convoyeur selon la revendication 7, comprenant en outre :

    au moins une paire de bras (20) s'étendant à partir de la chaîne de base (14) ;

    au moins un galet de roulement (24) supporté par chaque paire de bras (20) pour mettre en prise une surface de guidage (66) orientée verticalement et profilée de la trajectoire de déplacement (10) ; et

    dans lequel le au moins un galet de roulement (24) est configuré pour empêcher le système de convoyeur de se dégager de la trajectoire de déplacement (10) par une interface du au moins un galet de roulement (24) avec la surface de guidage profilée (66).


     




    Drawing





























    Cited references

    REFERENCES CITED IN THE DESCRIPTION



    This list of references cited by the applicant is for the reader's convenience only. It does not form part of the European patent document. Even though great care has been taken in compiling the references, errors or omissions cannot be excluded and the EPO disclaims all liability in this regard.

    Patent documents cited in the description