(19)
(11)EP 2 346 789 B1

(12)EUROPEAN PATENT SPECIFICATION

(45)Mention of the grant of the patent:
10.01.2018 Bulletin 2018/02

(21)Application number: 09822474.4

(22)Date of filing:  16.10.2009
(51)Int. Cl.: 
C03C 8/24  (2006.01)
C03C 8/06  (2006.01)
C03C 27/06  (2006.01)
C03C 3/21  (2006.01)
C03C 8/16  (2006.01)
C03C 8/04  (2006.01)
C03C 8/08  (2006.01)
H01L 51/52  (2006.01)
C03C 8/20  (2006.01)
(86)International application number:
PCT/US2009/060962
(87)International publication number:
WO 2010/048044 (29.04.2010 Gazette  2010/17)

(54)

ANTIMONY-FREE GLASS, ANTIMONY-FREE FRIT AND A GLASS PACKAGE THAT IS HERMETICALLY SEALED WITH THE FRIT

ANTIMONFREIES GLAS, ANTIMONFREIE GLASMASSE UND MIT DER GLASMASSE LUFTDICHT VERSIEGELTES GLASGEHÄUSE

VERRE SANS ANTIMOINE, FRITTE SANS ANTIMOINE ET EMBALLAGE EN VERRE SCELLÉ HERMÉTIQUEMENT À L AIDE DE LA FRITTE


(84)Designated Contracting States:
AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO SE SI SK SM TR

(30)Priority: 20.10.2008 US 106730 P

(43)Date of publication of application:
27.07.2011 Bulletin 2011/30

(73)Proprietor: Corning Incorporated
Corning, NY 14831 (US)

(72)Inventors:
  • LAMBERSON, Lisa A
    Painted Post New York 14870 (US)
  • MORENA, Robert M
    Lindley New York 14858 (US)

(74)Representative: Kingsbury, Oliver William et al
Elkington and Fife LLP Prospect House 8 Pembroke Road
Sevenoaks, Kent TN13 1XR
Sevenoaks, Kent TN13 1XR (GB)


(56)References cited: : 
EP-A1- 1 925 601
JP-A- 2006 342 044
KR-A- 20090 041 867
US-A1- 2007 171 637
WO-A2-2007/067402
KR-A- 20070 088 699
US-A1- 2003 158 030
  
      
    Note: Within nine months from the publication of the mention of the grant of the European patent, any person may give notice to the European Patent Office of opposition to the European patent granted. Notice of opposition shall be filed in a written reasoned statement. It shall not be deemed to have been filed until the opposition fee has been paid. (Art. 99(1) European Patent Convention).


    Description

    TECHNICAL FIELD



    [0001] The present invention relates to an antimony-free glass, a frit made therefrom, and a hermetically sealed glass packages sealed with the frit that is suitable to protect thin film devices that are sensitive to the ambient environment. Some examples of such devices are organic emitting light diode (OLED) displays, sensors, photovoltaic and other optical devices. The present invention is demonstrated using OLED displays as an example.

    BACKGROUND



    [0002] OLEDs have been the subject of a considerable amount of research in recent years because of their use and potential use in a wide variety of electroluminescent devices, and are now reaching commercialization. For instance, a single OLED can be used in a discrete light emitting device or an array of OLEDs can be used in lighting applications or flat-panel display applications (e.g., OLED displays). OLED displays are known as being very bright and having a good color contrast and wide viewing angle. However, OLED displays, and in particular the electrodes and organic layers located therein, are susceptible to degradation resulting from interaction with oxygen and moisture leaking into the OLED display from the ambient environment. It is well known that the life of the OLED display can be significantly increased if the electrodes and organic layers within the OLED display are hermetically sealed from the ambient environment. Unfortunately, in the past it was very difficult to develop a sealing process to hermetically seal the OLED display. Some of the factors that made it difficult to properly seal the OLED display are briefly mentioned below:
    • The hermetic seal should provide a barrier for oxygen (10-3 cc/m2/day) and water (10-6 g/m2/day).
    • The size of the hermetic seal should be minimal (e.g., <2 mm) so it does not have an adverse effect on size of the OLED display.
    • The temperature generated during the sealing process should not damage the materials (e.g., electrodes and organic layers) within the OLED display. For instance, the first pixels of OLEDs which are located about 1-2 mm from the seal in the OLED display should not be heated to more than 100°C during the sealing process.
    • The gases released during the sealing process should not contaminate the materials within the OLED display.
    • The hermetic seal should enable electrical connections (e.g., thin-film chromium) to enter the OLED display.


    [0003] Today, one method for sealing the OLED display is to use different types of epoxies, inorganic materials and/or organic materials that form the seal after they are cured by ultraviolet light. For example, some seals use a composite-based approach where alternate layers of inorganic materials and organic materials can be used to seal the OLED display. Although these types of seals usually provide good mechanical strength, they can be very expensive and there are many instances in which they have failed to prevent the diffusion of oxygen and moisture into the OLED display. Another common way for sealing the OLED display is to utilize metal welding or soldering. However, the resulting seal is not durable in a wide range of temperatures because of the substantial differences between the coefficients of thermal expansions (CTEs) of the glass plates and metal in the OLED display.

    [0004] More recently, glass-based frits have been used to seal glass substrate plates in a glass package that provides excellent hermeticity to the enclosed device. But many of these frits contain toxic elements, such as antimony, which pose environmental hazards. There is a need for a glass-based frit suitable for hermetically sealing glass packages, such as electronic devices (e.g. for display-type applications), having a low coefficient of thermal expansion (CTE) that does not contain antimony.

    [0005] JP2006 342044A describes a glass capable of being used for sealing of display devices comprising 10-60% V2O5, 5-40% P2O5, 1-30% Bi2O3, 0-40% ZnO, 0-40% TeO2, 0-20% R2O (R is Li, Na, K or Cs) and 0-30% R'O (R' is Mg, Ca, Sr or Ba).

    SUMMARY



    [0006] The present invention includes a hermetically sealed OLED display and method for manufacturing the hermetically sealed OLED display. Basically, the hermetically sealed OLED display is manufactured by providing a first glass substrate plate and a second glass substrate plate and depositing a frit onto the second glass substrate plate. An organic material, such as those used in the manufacture of an OLED may be deposited on the first substrate plate. An irradiation source (e.g., laser, infrared light) is then used to heat the frit which melts and forms a hermetic seal that connects the first glass substrate plate to the second glass substrate plate and also protects the OLEDs. The frit is and antimony-free glass that contains vanadium, and possibly a CTE lowering filler, such that when the irradiation source heats the frit, it softens and forms a bond. This enables the frit to melt and form the hermetic seal while avoiding thermal damage to the OLEDs. Vanadium phosphate frits, for example, have proven especially suitable for sealing glass packages of the type just described, and in particular antimony-containing vanadium phosphate frits. Such frits are very stable, exhibit high optical absorbance and have excellent mechanical and aqueous durability. Unfortunately, antimony is a toxic element, and efforts have been directed toward finding a replacement for antimony that does not detrimentally affect the other beneficial attributes of the frit.

    [0007] To that end, the excellent aqueous durability performance of Sb-vanadium phosphate frits was maintained without Sb2O3 by replacement of the antimony oxide by a combination of Fe2O3 + TiO2, along with a small addition of ZnO to maintain flow and glass transition temperature (Tg). The presence of Fe2O3 was found to have the greatest effect in improving durability. However, it raised Tg, thus degrading frit flow during sealing. In addition, frits with high Fe2O3 levels (equal to or greater than about 25 mole %) tended to be oxidatively unstable, with repeat samples fired to the same schedule (425° in N2) exhibiting different colors (brown or black), with marked differences in the degree of flow. Although TiO2 alone actually degraded aqueous durability to some extent, the combination of (Fe2O3 + TiO2) proved to be an ideal combination from the standpoint of obtaining laser-sealable frits with both high aqueous durability and low Tg (≤ 400°C).

    [0008] Both lab bench tests exposing the glass to 90°C distilled water as well as 85°C/85% relative humidity (RH) environmental chamber testing of laser-sealed samples indicate that frits based on the Fe2O3-TiO2-ZnO-V2O5-P2O5 system are capable of forming a hermetic seal after laser-sealing that will withstand high humidity conditions for extended times (≥ 1000 hrs). An unexpected result of the (Fe2O3 + TiO2) replacement of Sb2O3 was that the CTE of the base frit glass decreased by approximately half (from 70-80x10-7/°C to 35-45x10-7/°C), with only a minor increase in Tg (355°C to 370°C). Typically, low Tg glasses and frits have CTE values in the range 100-150x10-7/°C. Frits with CTE values near 40x10-7/°C have the potential, with the addition of fillers such as β-eucryptite, of being able to seal fused silica and other low CTE substrates such as Kovar™.

    [0009] In one embodiment an antimony-free glass is disclosed comprising:

    V2O5 (40-50 mole %)

    P2O5 (≥ 20 mole % and < 25 mole %)

    ZnO (0 - 10 mole %)

    Fe2O3 (> 0 mole% and < 25 mole %)

    TiO2 (> 0% and < 25 mole %); and

    wherein TiO2 + Fe2O3 is in the range from 20 mole % to 35 mole %.

    [0010] In another embodiment an antimony-free glass according to claim 1, comprising:

    V2O5 (40-50 mole %)

    P2O5 (≥ 20 mole % and < 25 mole %)

    ZnO (5 - 10 mole %)

    Fe2O3 (> 0 mole % and < 25 mole %)

    TiO2 (> 0% and < 25 mole %); and

    wherein TiO2 + Fe2O3 is in the range from 20 mole % to 35 mole %.

    [0011] In still another embodiment, an antimony-free glass is described having the following composition:

    V2O5 (40 mole %)

    P2O5 (20 mole %)

    ZnO (5 mole %)

    Fe2O3 (> 0 mole% and < 25 mole %)

    TiO2 (> 0 mole% and < 25 mole %); and

    wherein TiO2 + Fe2O3 is 35 mole %.

    [0012] In another embodiment an antimony-free glass is disclosed comprising:

    V2O5 (50 mole %)

    P2O5 (20 mole %)

    ZnO (10 mole %)

    Fe2O3 (> 10 mole % and ≤ 15 mole %)

    TiO2 (> 5 mole % and ≤ 10 mole %); and

    wherein TiO2 + Fe2O3 is 20 mole %.

    [0013] The antimony-free glass preferably has a Tg ≤ 400°C and a CTE in the range from 35x10-7/°C to 45x10-7/°C. The antimony-free glass may, for example, comprise a glass frit and optionally a CTE lowering filler such as beta eucryptite.

    [0014] In still another embodiment, an antimony-free glass is described consisting of

    V2O5 (40-50 mole %)

    P2O5 (≥ 20 mole % and < 25 mole %)

    ZnO (0 - 10 mole%)

    Fe2O3 (> 0 mole% and ≤ 20 mole %)

    TiO2 (> 0% and ≤ 20 mole %); and

    wherein TiO2 + Fe2O3 is in the range from 20 mole% to 35 mole%.

    [0015] In another embodiment, an antimony-free glass is disclosed comprising:

    V2O5 (40-50 mole %)

    P2O5 (≥ 20 mole % and < 25 mole %)

    ZnO (5 - 10 mole %)

    Fe2O3 (> 0 mole % and ≤ 20 mole %)

    TiO2 (> 0 % and ≤ 20 mole %); and

    wherein TiO2 + Fe2O3 is in the range from 20 mole % to 35 mole %.

    [0016] In yet another embodiment, a glass package is described comprising:

    a first glass plate;

    a second glass plate; and

    a frit that connects the first glass plate to the second glass plate and forms an hermetic seal therebetween, the frit including an antimony-free glass comprising:

    V2O5 (40-50 mole %)

    P2O5 (≥ 20 mole % and < 25 mole %)

    ZnO (0 - 10 mole %)

    Fe2O3 (> 0 mole % and < 25 mole %)

    TiO2 (> 0 mole % and < 25 mole %); and

    wherein TiO2 + Fe2O3 is in the range from 20 mole % to 35 mole %.



    [0017] The antimony-free glass of the frit may instead comprise:

    V2O5 (40 mole %)

    P2O5 (20 mole %)

    ZnO (5 mole %)

    Fe2O3 (> 0 mole % and < 25 mole %)

    TiO2 (> 0 mole % and < 25 mole %); and

    wherein TiO2 + Fe2O3 is 35 mole %.

    [0018] In other embodiments, the antimony-free glass of the frit may comprise:

    V2O5 (50 mole %)

    P2O5 (20 mole %)

    ZnO (10 mole %)

    Fe2O3 (> 10 mole % and ≤ 15 mole %)

    TiO2 (> 5 mole % and ≤ 10 mole %); and

    wherein TiO2 + Fe2O3 is 20 mole %.

    [0019] In some embodiments, the antimony-free glass of the frit comprises:

    V2O5 (40-50 mole %)

    P2O5 (≥ 20 mole % and < 25 mole %)

    ZnO (5 - 10 mole %)

    Fe2O3 (> 0 mole % and < 25 mole %)

    TiO2 (> 0 mole % and < 25 mole %); and

    wherein TiO2 + Fe2O3 is in the range from 20 mole% to 35 mole%.

    [0020] Preferably, the antimony-free glass comprising the frit has a Tg ≤ 400°C. Preferably, the antimony-free glass of the frit has a CTE in the range from 35x10-7/°C to 45x10-7/°C. The frit may optionally comprise a CTE-lowering filler.

    [0021] In some embodiments the glass package may further comprise an organic material, such as an organic material comprising an organic light emitting diode, disposed between the first and second glass plates.

    [0022] The invention will be understood more easily and other objects, characteristics, details and advantages thereof will become more clearly apparent in the course of the following explanatory description, which is given, without in any way implying a limitation, with reference to the attached Figures. It is intended that all such additional systems, methods, features and advantages be included within this description, be within the scope of the present invention, and be protected by the accompanying claims.

    BRIEF DESCRIPTION OF THE DRAWINGS



    [0023] 

    FIG. 1 is a cross sectional illustration of the sealing of an exemplary OLED device using a frit according to embodiments of the present invention.

    FIG. 2 is a plot of coefficient of thermal expansion (CTE) as a function of the substitution of Fe2O3 for TiO2 in an Sb-free frit according to embodiments of the present invention in mole % where Fe2O3 + TiO2 is between 20 mole % and 35 mole %.

    FIG. 3 is a plot comparing CTE as a function of temperature for an Sb-free frit according to embodiments of the present invention and an Sb-containing frit under both heating and cooling conditions.


    DETAILED DESCRIPTION



    [0024] In the following detailed description, for purposes of explanation and not limitation, example embodiments disclosing specific details are set forth to provide a thorough understanding of the present invention. However, it will be apparent to one having ordinary skill in the art, having had the benefit of the present disclosure, that the present invention may be practiced in other embodiments that depart from the specific details disclosed herein. Moreover, descriptions of well-known devices, methods and materials may be omitted so as not to obscure the description of the present invention. Finally, wherever applicable, like reference numerals refer to like elements.

    [0025] FIG. 1 depicts a cross-sectional side view illustrating the sealing of the basic components of a hermetically sealed OLED display 10. OLED display 10 includes a multilayer sandwich of a first glass substrate plate 12, one or more OLEDs 14, frit 16 and a second glass substrate plate 18. OLED display 10 comprises hermetic seal 18 formed from frit 16 that protects OLEDs 14 located between the first glass substrate plate 12 and the second glass substrate plate 18. Hermetic seal 20 is typically located around the perimeter of OLED display 10. OLEDs 14 are located within a perimeter of hermetic seal 20. The composition of frit 16, and more particularly the composition of the glass of frit 16, as well as how the hermetic seal 20 is formed from frit 16 is described in greater detail below.

    [0026] In one embodiment, first and second substrate plates 12 and 18 are transparent glass plates. Frit 16 is deposited along the edges of second glass substrate plate 18. For instance, frit 16 can be placed approximately 1 mm away from the free edges of the second glass substrate plate 18. In the preferred embodiment, frit 16 is a low temperature antimony-free glass frit containing vanadium to enhace the optical absorbance of the frit. Frit 16 may also include a filler, such a beta eucryptite, that lowers the coefficient of thermal expansion (CTE) of the frit so that it matches or substantially matches the CTEs of the two glass substrate plates 12 and 18.

    [0027] OLEDs 14 and other circuitry are deposited onto second glass substrate plate 18. The typical OLED 14 includes an anode electrode, one or more organic layers and a cathode electrode. However, it should be readily appreciated that other environmentally sensitive components can be deposited onto second glass substrate plate 18.

    [0028] Optionally, frit 16 can be pre-sintered to first glass substrate plate 12 prior to sealing glass substrates 12 and 18 together. To accomplish this, first substrate plate 12 comprising frit 16 deposited thereon is heated in a furnace or oven so that it becomes attached to the first glass substrate plate 12.

    [0029] Next, first and second glass substrate plates 12 and 18 are brought together with frit 16 and one or more OLEDs positioned between them, and frit 16 is irradiated by irradiation source 22 (e.g. a laser or an infrared lamp) so that the frit 16 forms hermetic seal 20 that connects and bonds the first substrate plate 12 to second substrate plate 18. Hermetic seal 18 also protects OLEDs 14 by preventing oxygen and moisture in the ambient environment from entering into the OLED display 10.

    [0030] It should be readily appreciated that the irradiating wavelength should be within the band of high absorption in the particular frit 16. For instance, Ytterbium (900 nm < λ < 1200 nm), Nd:YAG (λ = 1064 nm), Nd:YALO (λ = 1.08 µm), and erbium (λ ≈ 1.5 µm) CW lasers can be used depending on the optical properties of the particular frit 16 and glass substrate plates 12 and 18.

    [0031] It should be noted that most traditional low temperature sealing frits are PbO-based, because PbO frits have good flow, and adhesion properties. However, the antimony-free frits disclosed herein not only have a lower CTE than PbO-based frits, but also possess better aqueous durability, as well as being comparable to the traditional Pb-based frits with respect to adhesion.

    [0032] In addition, although the role played by P2O5 in a successful sealing frit is important, since it permits stable glasses to be formed, from a laser-sealing and post-seal performance standpoint the effect of Sb2O3 and V2O5 should not be ignored. In previous testing, seals made with Sb-free, Zn-based vanadium-phosphate frits could only survive the relatively benign environment of 60°C/40% RH, while seals made from mixed Sb-Zn vanadium phosphate frits survived 60°C/85% RH before failing. Conversely, only seals made with Sb-vanadium-phosphate frits survived 85°C/85% RH exposure. However, despite the role that Sb2O3 plays in improving aqueous durability, feedback from potential customers consistently raise concerns about its presence. Thus, recent emphasis has been placed on development of a glass suitable for a sealing frit that is environmentally friendly, noting that antimony is a toxic element.

    [0033] Work on Sb2O3-free compositions began by first expressing a basic OLED device sealing frit composition as a three component system (20 mole % Sb2O3 - 50 mole % V2O5 - 30 mole % P2O5), simplifying the composition to a two component Sb2O3-free system (either 50 mole % V2O5 - 30 P2O5, 45 mole% V2O5 - 30 mole% P2O5, or 40 mole % V2O5 - 20 mole % P2O5), and then identifying the remaining components from the standpoint of their effect on aqueous durability, flow, glass transition temperature (Tg), and laser-sealability. Both aqueous durability, laser-sealability, and flow of any candidate frit compositions needed to be comparable to the Sb2O3-containing control sample, while the Tg requirements were relaxed with the criterion that Tg had to be equal to or less than 400°C. (Frits with Tg > 400° are unlikely to flow sufficiently during the presintering step for OLED frits to be handleable in subsequent processing.) The following oxides were investigated as potential substitutes for antimony (Sb2O3): WO3, MoO3, TeO2, Bi2O3, Fe2O3, and TiO2. ZnO was also investigated, although in view of the poor durability results obtained for a ZnO-V2O5-P2O5 frit, it was considered only as a minor component (5-10%) to lower Tg and maintain flow. The various oxides selected were chosen on the basis that they formed stable binary glasses with V2O5.

    [0034] All of the compositions investigated were melted, poured as glass patties, then ball-milled to form fine-particle frits (typically with a d50 = 3 - 5 µm). A key bench test to screen the different compositions was to prepare and fire flow buttons of the various frits, and then to assess their aqueous durability. The flow buttons were fired in N2 to 400 - 450°C (depending upon Tg and crystallization tendency). After firing, the flow buttons were immersed in 90°C de-ionized water for 48 hours to assess their aqueous durability. Control samples of the OLED frit (either as the D1 base glass, or as a 70:30 blend of the base glass with a β-eucryptite filler) were also included in each evaluation. Of the potential replacements for Sb2O3 that were investigated (see above), only TiO2 and Fe2O3 appeared promising.

    [0035] Listed in Tables 1 and 2 are results for a 50 mole % V2O5 - 30 mole % P2O5 composition series with WO3, MoO3, WO3 + ZnO, Bi2O3, and TeO2 as the third component. Also shown are data on the standard OLED base glass, D1, as a comparison standard. All compositions (given in mole %) were evaluated for quality of glass formed from the pour, glass transition temperature (Tg) by DSC, flow and sinterability as a 3 µm powder hand-pressed into a pellet ("flow button") and fired at 400°C for 1 hour in N2, and aqueous durability (as gauged by the color of the supernatant for a fired flow button sample - the darker the color, the less durable the sample) in the bench aqueous durability test described above. Note that none of the potential Sb2O3 replacements listed in Tables 1 and 2 produced the acceptable level of glass quality, Tg, flow, and aqueous durability exhibited by the Sb2O3-containing control (as judged by the appearance of the supernatant after 48hrs, 90°C de-ionized H2O).
    Table 1
     D1 (control)D2D3
    Composition Sb2O3, 22.9 V2O5, 50 V2O5, 50
    (molar basis) V2O5, 46.4 P2O5, 30 P2O5, 30
      P2O5, 26.3 WO3, 20 MoO3, 20
      Fe2O3, 2.4    
      Al2O3, 1.0    
      TiO2, 1.0    
    Glass quality at pour Excellent Fluid, good quality Very fluid, good quality
    Tg 355°C 349°C 315°C
    Flow (400°-1hr, N2) Very good flow and sinterability Semi-glossy, well-sintered, no flow Glossy and black with some slump
    Aqueous durability, appearance of supernatant (48hrs, 90°C D.I. H2O) V. slightly tinted Black Black
    Table 2
     D4D5D6
    Composition (molar basis) V2O5, 50 V2O5, 50 V2O5, 50
    P2O5, 30 P2O5, 30 P2O5, 30
    WO3, 10 Bi2O3, 20 TeO2, 20
    ZnO, 10    
    Glass quality at pour Good glass, fluid, poured well Crystallized after pouring More viscous pour, glass looked good
    Tg 323°C Not eval. 329°C
    Flow (400°C-1hr, N2) Poor flow Not eval. Semi-glossy black, no slump
    Aqueous durability Black Not eval. Black


    [0036] More positive results for Sb2O3-free vanadium phosphate frits were obtained by Fe2O3 and/or TiO2 replacement of Sb2O3 (see Tables 3 and 4). All compositions are expressed in mole %. Several combinations of Fe2O3 + TiO2 produced good glasses at pouring. High TiO2 glasses (i.e., ≥ 25 %) such as D8 had acceptable Tg and flow properties, but also exhibited poor aqueous durabilities. Higher Fe2O3 glasses (i.e., ≥ 25 or 30%) such as D7 and D11 tended to produce poor glasses at pour, as evidenced by substantial surface devitrification. The relatively poor stability of these glasses (as indicated by the high amount of surface devitrification formed in the patty at pouring) resulted in poor flow as frits. They also tended to be unstable with respect to oxidation state, with a fired flow button from the same lot of powder alternately appearing either black (reduced) or red (oxidized) after the same firing conditions. Also included in Table 4 is D14, a glass with relatively high Fe2O3 and TiO2 levels, but with 10 mole % ZnO to lower the expected increase in Tg from the Fe2O3. Note that a second approach to accommodating high Fe2O3 levels is increasing the V2O5 content. But as may be seen for D9 and D10, aqueous durability was compromised at higher V2O5 content.
    Table 3
     D7D8D9D10
    Composition V2O5, 45 V2O5, 45 V2O5, 50 V2O5, 50
    (molar basis) P2O5, 30 P2O5, 30 P2O5, 30 P2O5, 30
      Fe2O3, 25 TiO2, 25 TiO2, 15 TiO2, 10
          Fe2O3, 5 Fe2O3, 10
    Glass quality at pour Substantial surface devit Poured nicely Poured nicely Poured nicely
    Tg 353° 345° 323° 322°
    Flow (400°C, 1hr, N2) Poorly sintered Semi-glossy black, no slump Sintered, some flow Sintered, slight flow
    Aqueous durability , appearance of supernatant (48hrs, 90°C D.I. H2O) Not tested Black Med. green Med. green
    Table 4
     D11D12D13D14
    Composition V2O5, 42 V2O5, 40 V2O5, 45 V2O5, 40
    (molar basis) P2O5, 28 P2O5, 25 P2O5, 25 P2O5, 20
      TiO2, 0 TiO2, 17.5 TiO2, 0 TiO2, 15
      Fe2O3, 30 Fe2O3, 17.5 Fe2O3, 30 Fe2O3, 15 ZnO, 10
    Glass quality at pour Viscous, surface devit Good glass, no devit Viscous, surface devit Good glass, no devit
    Tg 371° 364° 376° 360°
    Flow (400°C, 1hr, N2) Poor - powdery and unconsolidated Poor - powdery Poor Semi-glossy black, sintered, no slump
    Aqueous durability Not eval. Not eval. Not eval. Lt. brown


    [0037] It should also be noted that although the test samples of Tables 3 and 4 having P2O5 levels equal to or greater than 25 mole percent performed poorly, it is anticipated that P2O5 levels less than 25 mole % can be successfully employed. Table 5 summarizes the results of a second set of Fe2O3 and TiO2 melts at 10% ZnO. All compositions are expressed in mole %. As for the initial series, some combination of Fe2O3 and TiO2 is preferred, since Fe2O3 contributes excellent aqueous durability (but at the cost of high Tg and reduced frit sintering at 400°), and TiO2 results in lower Tg and improved flow (but at the cost of aqueous durability).
    Table 5
     D15D16D17D18D19
    Composition (molar basis) V2O5, 50 V2O5, 50 V2O5, 50 V2O5, 50 V2O5, 50
    P2O5, 20 P2O5, 20 P2O5, 20 P2O5, 20 P2O5, 20
    ZnO, 10 ZnO, 10 ZnO, 10 ZnO, 10 ZnO, 10
    Fe2O3, 0 Fe2O3, 5 Fe2O3, 10 Fe2O3, 15 Fe2O3, 20
    TiO2, 20 TiO2, 15 TiO2, 10 TiO2, 5 TiO2, 0
    Glass quality at pour Poured nicely Poured nicely Poured nicely Poured nicely Poured nicely
    Tg 297° 310° 322° 333° 348°
    Flow (400°-1hr, N2) Well-sintered, good flow Well-sintered, good flow Sintered, slight flow Sintered, some flow Sintered, little flow
    Aqueous durability Dark black Dark black Dark black Clear Clear


    [0038] An additional series of melts were made at higher levels of [Fe2O3 + TiO2] with ZnO maintained at 5 mole% (see Tables 6 and 7 below). All compositions are expressed in mole %. Note that to accommodate the higher Tg of the high Fe2O3 glasses, flow was evaluated at 425°C, rather than the 400°C previously used.
    Table 6
     D20D21D22D23
    Composition (molar basis) V2O5, 40 V2O5, 40 V2O5, 40 V2O5, 40
    P2O5, 20 P2O5, 20 P2O5, 20 P2O5, 20
    ZnO, 5 ZnO, 5 ZnO, 5 ZnO, 5
    Fe2O3, 35 Fe2O3, 30 Fe2O3, 25 Fe2O3, 20
    TiO2, 0 TiO2, 5 TiO2, 10 TiO2, 15
    Glass quality at pour Substantial surface + bulk devit Surface devit Surface devit Good glass, no devit
    Tg 416° 407° 400° 389°
    Flow (425°-1hr,N2) Not sinterable at 425° Not sinterable at 425° Not sinterable at 425° Sintered, no flow
    Aq. durability Not tested Not tested Not tested Clear
    Table 7
     D24D25D26D27D28
    Composition (molar basis) V2O5, 40 V2O5, 40 V2O5, 40 V2O5, 40 V2O5, 40
    P2O5, 20 P2O5, 20 P2O5, 20 P2O5, 20 P2O5, 20
    ZnO, 5 ZnO, 5 ZnO, 5 ZnO, 5 ZnO, 5
    Fe2O3, 17.5 Fe2O3, 15 Fe2O3, 10 Fe2O3, 5 Fe2O3, 0
    TiO2, 17.5 TiO2, 20 TiO2, 25 TiO2, 30 TiO2, 35
    Glass quality at pour Good glass, no devit Good glass, no devit Good glass, no devit Good glass, no devit Good glass, no devit
    Tg 379° 367° 351° 333° 324°
    Flow (425°-1hr, N2) Sintered, slight flow Sintered slight flow Sintered, mod. flow Sintered, mod. flow Sintered, good flow
    Aq. durability Clear with v. slight tint Clear Med. green Med. green (residue) Med. green (residue)


    [0039] As seen in previous results from Tables 1, 2 and 3, 4, Fe2O3 levels not much higher than 20 mole % (e.g. about 25 mole %) resulted in frits with high Tg, poor stability, and unacceptable flow during 400-425° sintering. Similarly, TiO2 not much higher than 20 mole% (e.g. about 25%), resulted in frits with acceptable Tg, flow, and stability, but with unacceptable aqueous durability. Frits with Fe2O3 levels ranging between from about 10 to less than 25 mole %, and with TiO2 levels from about 15 to less than 25 mole % (at 5 - 10 mole% ZnO) combine excellent aqueous durability with acceptable flow, Tg, and glass stability.

    [0040] The aqueous durability of the (Fe2O3 + TiO2 + ZnO) Sb2O3-free V2O5-P2O5 frits were found to be comparable to or slightly superior to the Sb2O3-containing standard composition. An unexpected result of the Sb2O3-free work is that the coefficient of thermal expansion (CTE) becomes dramatically lower for the (Fe2O3 + TiO2 + ZnO) frits at higher Fe2O3 levels. Shown below in FIG. 2 are CTE data for sintered frits whose composition is listed in Tables 3, 4 and 5. Data are presented for all sinterable frits in the 20 mole % (Fe2O3 + TiO2) series of Table 3, 4, (curve 120) and for the 35 mole % (Fe2O3 + TiO2) series of Table 5 (curve 122). CTE data for sintered frit bars are plotted as a function of Fe2O3 level in each series up to 20 mole% Fe2O3, the apparent upper limit to achieving frits with good sinterability and oxidative stability. Note that CTE values are highest at 0 mole% Fe2O3/maximum TiO2 (20 and 35 mole %, respectively), become essentially constant with increasing Fe2O3 level at 60-65x10-7/°C, and then decrease substantially at Fe2O3 > 15 mole % (5 mole% and 20 mole % TiO2, respectively), reaching a value of approximately 40 x10 7/°C at 17.5-20 mole % Fe2O3. By comparison, the CTE of the Sb2O3-containing base frit is approximately 70 - 80 x10-7/°C.

    [0041] A more direct comparison of CTE between the Sb2O3-containing and Sb2O3-free frits is shown in FIG. 3 where CTE curves are plotted for D1 under both heating and cooling conditions (curves 124 and 126, respectively) and D29 (remelt of D24, Table 7) also under both heating and cooling conditions (curves 128 and 130, respectively). With a CTE value of approximately 40 x10-7/°C for an unfilled frit, it is possible, with the addition of fillers such as β-eucryptite, to lower the CTE value of this frit close to that of fused silica.

    [0042] The lab scale aqueous durability results for Sb-free frits were corroborated in a large scale sealing trial involving 85°C/85% RH exposure of laser-sealed samples. Shown in Table 8 are results of the trial and comparison between the standard OLED frit (D1, Table 1; used as a 70:30 blend with low CTE filler β-eucryptite), and an Sb-free frit (D29, remelt of D24, Table 7; used as an 80:20 wt. blend with low CTE filler β-quartz). Each frit blend was made into a paste, dispensed on several sheets of EAGLEXG display glass, presintered (Sb-containing standard, 325°-2hr, air + 400°-1hr N2; Sb-free, 325°-2hr, air + 425°-1hr N2), sealed to sheets of EAGLEXG, placed in an 85°C/85% relative humidity environmental chamber, and then examined periodically for evidence of seal leakage and Ca metal breakdown. In total, there were 3 sheets of the Sb-containing control composition and 7 sheets of the antimony-free composition included in the study, with 9 sealed arrays of Ca metal tabs per sheet. As may be seen in Table 8, several arrays failed either immediately after sealing or within 100 hrs of placing them in 85°C/85% RH chamber for both the Sb-control and the Sb-free frits; these failures were related, most likely, to gross defects such as contamination present at random for each frit. However, after 96 hrs, no additional failures were observed for either the Sb-control or the Sb-free frit seals.
    Table 8
     No. of good cells
    Laser-sealedAt start of 85/85After 96 hrs of 85/85After 1056 hrs of 85/85
    Standard Sb-frit blend (70:30, D1: β-eucryptite) 27(3 sheets) 25 24 24
    Sb-free frit blend (80:20, D29: β-quartz) 63(7 sheets) 61 57 57


    [0043] In summary, the excellent aqueous durability performance of Sb-vanadium phosphate frits was maintained without Sb2O3 by replacing the antimony oxide with a combination of Fe2O3 + TiO2, along with a small addition of ZnO to maintain flow and glass transition temperature (Tg). The presence of Fe2O3 was found to have the greatest effect in improving durability. However, in large amounts it raised Tg, thus degrading frit flow during sealing. In addition, frits with high Fe2O3 levels (equal to or greater than about 25 mole %) tended to be oxidatively unstable, with repeat samples fired to the same schedule (425° in N2) exhibiting different colors (brown or black), with marked differences in the degree of flow. Although TiO2 actually degraded aqueous durability to some extent when added by itself, the combination of (Fe2O3 + TiO2) appeared to be an ideal combination from the standpoint of obtaining laser-sealable frits with both high aqueous durability and low Tg (≤ 400°).

    [0044] Both lab bench tests in 90°C distilled water as well as 85°C/85% relative humidity (RH) environmental chamber testing of laser-sealed samples indicate that frits based on the Fe2O3-TiO2-ZnO-V2O5-P2O5 system are capable of forming a hermetic seal after laser-sealing that will withstand high humidity conditions for extended times (≥ 1000hrs). An unexpected result of the (Fe2O3 + TiO2) replacement of Sb2O3 was that the CTE of the Sb-free frit without fillers decreased by approximately half (from 70-80x10-7/°C to 35-45x10-7/°C), with only a minor increase in Tg (from 355°C to 370°C). Frits with CTE values near 40x10-7/°C have the potential, with the addition of fillers such as β-eucryptite, of being able to seal fused silica and other low CTE substrates such as Kovar™.

    [0045] Although several embodiments of the present invention has been illustrated in the accompanying Drawings and described in the foregoing Detailed Description, it should be understood that the invention is not limited to the embodiments disclosed, but is capable of numerous rearrangements, modifications and substitutions without departing from the scope of the invention as set forth and defined by the following claims.


    Claims

    1. An antimony-free glass comprising: V2O5 in a range from 40 to 50 mole %, P2O5 in a range from ≥ 20 mole % to < 25 mole %, ZnO in a range from 0 to 10 mole %, Fe2O3 in a range from > 0 mole % to < 25 mole % and TiO2 in a range from > 0 mole % to < 25 mole %; and wherein TiO2 + Fe2O3 is in the range from 20 mole % to 35 mole %.
     
    2. The antimony-free glass according to claim 1, comprising: V2O5 in a range from 40 to 50 mole %, P2O5 in a range from ≥ 20 mole % to < 25 mole %, ZnO in a range from 5 to 10 mole %, Fe2O3 in a range from > 0 mole % to < 25 mole % and TiO2 in a range from > 0 mole % to < 25 mole %; and wherein TiO2 + Fe2O3 is in the range from 20 mole % to 35 mole %.
     
    3. The antimony-free glass according to claim 1, wherein the antimony-free glass has the following composition: 40 mole % V2O5, 20 mole % P2O5, 5 mole % ZnO, Fe2O3 in a range from > 0 mole % and < 25 mole % and TiO2 in a range from > 0 mole % to < 25 mole %; and wherein TiO2 + Fe2O3 is 35 mole %.
     
    4. The antimony-free glass according to claim 1, wherein the glass has the following composition: 50 mole % V2O5, 20 mole % P2O5, 10 mole % ZnO, Fe2O3 in a range from > 10 mole % to ≤ 15 mole % and TiO2 in a range from > 5 mole % to ≤ 10 mole %; and wherein TiO2 + Fe2O3 is 20 mole%.
     
    5. The antimony-free glass according to any of claims 1 - 4, wherein the antimony-free glass has a Tg ≤ 400°C.
     
    6. The antimony-free glass according to any of claims 1 - 5, wherein the antimony-free glass has a CTE in the range from 35x10-7/°C to 45x10-7/°C.
     
    7. A glass frit comprising the antimony-free glass according to any of claims 1- 6.
     
    8. A glass package (10) comprising:

    a first glass plate (12);

    a second glass plate (18); and

    a seal (20) formed from a frit (16) that connects the first glass plate to the second glass plate and forms an hermetic seal (20) therebetween, the frit including an antimony-free glass comprising: V2O5 in a range from 40 to 50 mole %, P2O5 in a range from ≥ 20 mole % to < 25 mole %, ZnO in a range from 0 to 10 mole %, Fe2O3 in a range from > 0 mole % to < 25 mole % and TiO2 in a range from > 0 mole % to < 25 mole %; and wherein TiO2 + Fe2O3 is in the range from 20 mole % to 35 mole %.


     
    9. The glass package according to claim 8, wherein the antimony-free glass comprises: 40 mole % V2O5, 20 mole % P2O5, 5 mole % ZnO, Fe2O3 in a range from > 0 mole % to < 25 mole % and TiO2 in a range from > 0 mole % to < 25 mole %; and wherein TiO2 + Fe2O3 is 35 mole %.
     
    10. The glass package according to claim 8, wherein the antimony-free glass comprises: 50 mole % V2O5, 20 mole % P2O5, 10 mole % ZnO, Fe2O3 in a range from > 10 mole % to ≤ 15 mole % and TiO2 in a range from > 5 mole % to ≤ 10 mole %; and wherein TiO2 + Fe2O3 is 20 mole %.
     
    11. The glass package according to claim 8, wherein the antimony-free glass comprises: V2O5 in a range from 40 to 50 mole %, P2O5 in a range from ≥ 20 mole % to < 25 mole %, ZnO in a range from 5 to 10 mole %, Fe2O3 in a range from > 0 mole % to < 25 mole % and TiO2 in a range from > 0 mole % to < 25 mole %; and wherein TiO2 + Fe2O3 is in the range from 20 mole % to 35 mole %.
     
    12. The glass package according to any of claims 8 - 11, wherein the antimony-free glass has a Tg ≤ 400°C.
     
    13. The glass package according to any of claims 8 - 12, wherein the antimony-free glass has a CTE in the range from 35x10-7/°C to 45x10-7/°C.
     
    14. The glass package according to any of claims 8 - 13, wherein the frit comprises a CTE-lowering filler.
     
    15. The glass package according to any of claims 8 - 14, further comprising an organic light emitting diode (14) disposed between the first (12) and second (18) glass plates.
     


    Ansprüche

    1. Antimonfreies Glas, umfassend: V2O5 in einem Bereich von 40 bis 50 Mol-%, P2O5 in einem Bereich von ≥ 20 Mol-% bis < 25 Mol-%, ZnO in einem Bereich von 0 bis 10 Mol-%, Fe2O3 in einem Bereich von > 0 Mol-% bis < 25 Mol-% und TiO2 in einem Bereich von > 0 Mol-% bis < 25 Mol-%; und wobei TiO2 + Fe2O3 sich in einem Bereich zwischen 20 Mol-% und 35 Mol-% befindet.
     
    2. Antimonfreies Glas nach Anspruch 1, umfassend: V2O5 in einem Bereich von 40 bis 50 Mol-%, P2O5 in einem Bereich von ≥ 20 Mol-% bis < 25 Mol-%, ZnO in einem Bereich von 5 bis 10 Mol- %, Fe2O3 in einem Bereich von > 0 Mol-% bis < 25 Mol-% und TiO2 in einem Bereich von > 0 Mol-% bis < 25 Mol-%; und wobei TiO2 + Fe2O3 sich in einem Bereich zwischen 20 Mol-% und 35 Mol-% befindet.
     
    3. Antimonfreies Glas nach Anspruch 1, wobei das antimonfreie Glas die folgende Zusammensetzung aufweist: 40 Mol-% V2O5, 20 Mol-% P2O5, 5 Mol-% ZnO, Fe2O3 in einem Bereich von > 0 Mol-% und < 25 Mol-% und TiO2 in einem Bereich von > 0 Mol-% bis < 25 Mol-%; und wobei TiO2 + Fe2O3 35 Mol-% beträgt.
     
    4. Antimonfreies Glas nach Anspruch 1, wobei das Glas die folgende Zusammensetzung aufweist: 50 Mol-% V2O5, 20 Mol-% P2O5, 10 Mol-% ZnO, Fe2O3 in einem Bereich von > 10 Mol-% bis ≤ 15 Mol-% und TiO2 in einem Bereich von > 5 Mol-% bis ≤ 10 Mol-%; und wobei TiO2 + Fe2O3 20 Mol-% beträgt.
     
    5. Antimonfreies Glas nach einem der Ansprüche 1-4, wobei das antimonfreie Glas eine Tg ≤ 400°C aufweist.
     
    6. Antimonfreies Glas nach einem der Ansprüche 1-5, wobei das antimonfreie Glas einen Wärmeausdehnungskoeffizienten im Bereich von 35x10-7/°C bis 45x10-7/°C aufweist.
     
    7. Glasmasse, umfassend das antimonfreie Glas nach einem der Ansprüche 1 - 6.
     
    8. Glasgehäuse (10), umfassend:

    eine erste Glasplatte (12);

    eine zweite Glasplatte (18); und

    eine aus einer Fritte (16) gebildete Versiegelung (20), die die erste Glasplatte mit der zweiten Glasplatte verbindet und dazwischen eine hermetische Versiegelung (20) bildet, wobei die Fritte ein antimonfreies Glas beinhaltet, das Folgendes umfasst: V2O5 in einem Bereich von 40 bis 50 Mol-%, P2O5 in einem Bereich von ≥ 20 Mol-% bis < 25 Mol-%, ZnO in einem Bereich von 0 bis 10 Mol-%, Fe2O3 in einem Bereich von > 0 Mol-% bis < 25 Mol-% und TiO2 in einem Bereich von > 0 Mol-% bis < 25 Mol-%; und

    wobei TiO2 + Fe2O3 sich in einem Bereich zwischen 20 Mol-% und 35 Mol-% befindet.


     
    9. Glasgehäuse nach Anspruch 8, wobei das antimonfreie Glas Folgendes umfasst: 40 Mol-% V2O5, 20 Mol-% P2O5, 5 Mol-% ZnO, Fe2O3 in einem Bereich von > 0 Mol-% bis < 25 Mol-% und TiO2 in einem Bereich von > 0 Mol-% bis < 25 Mol-%; und wobei TiO2 + Fe2O3 35 Mol-% beträgt.
     
    10. Glasgehäuse nach Anspruch 8, wobei das antimonfreie Glas Folgendes umfasst: 50 Mol-% V2O5, 20 Mol-% P2O5, 10 Mol-% ZnO, Fe2O3 in einem Bereich von > 10 Mol-% bis ≤ 15 Mol-% und TiO2 in einem Bereich von > 5 Mol-% bis ≤ 10 Mol-%; und wobei TiO2 + Fe2O3 20 Mol-% beträgt.
     
    11. Glasgehäuse nach Anspruch 8, wobei das antimonfreie Glas Folgendes umfasst: V2O5 in einem Bereich von 40 bis 50 Mol-%, P2O5 in einem Bereich von ≥ 20 Mol-% bis < 25 Mol-%, ZnO in einem Bereich von 5 bis 10 Mol-%, Fe2O3 in einem Bereich von > 0 Mol-% bis < 25 Mol-% und TiO2 in einem Bereich von > 0 Mol-% bis < 25 Mol-%; und wobei TiO2 + Fe2O3 sich in einem Bereich zwischen 20 Mol-% und 35 Mol-% befindet.
     
    12. Glasgehäuse nach einem der Ansprüche 8 - 11, wobei das antimonfreie Glas eine Tg ≤ 400°C aufweist.
     
    13. Glasgehäuse nach einem der Ansprüche 8-12, wobei das antimonfreie Glas einen Wärmeausdehnungskoeffizienten im Bereich von 35x10-7/°C bis 45x10-7/°C aufweist.
     
    14. Glasgehäuse nach einem der Ansprüche 8-13, wobei die Fritte einen Füllstoff umfasst, der den Wärmeausdehnungskoeffizienten absenkt.
     
    15. Glasgehäuse nach einem der Ansprüche 8-14, ferner umfassend eine organische Leuchtdiode (14), die zwischen der ersten (12) und der zweiten (18) Glasplatte angeordnet ist.
     


    Revendications

    1. Verre exempt d'antimoine comprenant : V2O5 dans une gamme de 40 à 50 pour cent molaire, P2O5 dans une gamme de ≥ 20 pour cent molaire à < 25 pour cent molaire, ZnO dans une gamme de 0 à 10 pour cent molaire, Fe2O3 dans une gamme de > 0 pour cent molaire à < 25 pour cent molaire et TiO2 dans une gamme de > 0 pour cent molaire à < 25 pour cent molaire ; et dans lequel TiO2 + Fe2O3 est dans la gamme de 20 pour cent molaire à 35 pour cent molaire.
     
    2. Verre exempt d'antimoine selon la revendication 1, comprenant : V2O5 dans une gamme de 40 à 50 pour cent molaire, P2O5 dans une gamme de ≥ 20 pour cent molaire à < 25 pour cent molaire, ZnO dans une gamme de 5 à 10 pour cent molaire, Fe2O3 dans une gamme de > 0 pour cent molaire à < 25 pour cent molaire et TiO2 dans une gamme de > 0 pour cent molaire à < 25 pour cent molaire ; et dans lequel TiO2 + Fe2O3 est dans la gamme de 20 pour cent molaire à 35 pour cent molaire.
     
    3. Verre exempt d'antimoine selon la revendication 1, le verre exempt d'antimoine ayant la composition suivante : 40 pour cent molaire de V2O5, 20 pour cent molaire de P2O5, 5 pour cent molaire de ZnO, Fe2O3 dans une gamme de > 0 pourcent molaire à < 25 pour cent molaire et TiO2 dans une gamme de > 0 pour cent molaire à < 25 pour cent molaire ; et dans lequel TiO2 + Fe2O3 est 35 pour cent molaire.
     
    4. Verre exempt d'antimoine selon la revendication 1, le verre ayant la composition suivante : 50 pour cent molaire de V2O5, 20 pour cent molaire de P2O5, 10 pour cent molaire de ZnO, Fe2O3 dans une gamme de > 10 pour cent molaire à ≤ 15 pour cent molaire et TiO2 dans une gamme de > 5 pour cent molaire à ≤ 10 pour cent molaire, et dans lequel TiO2 + Fe2O3 est 20 pour cent molaire.
     
    5. Verre exempt d'antimoine selon l'une quelconque des revendications 1 - 4, le verre exempt d'antimoine ayant une Tg ≤ 400°C.
     
    6. Verre exempt d'antimoine selon l'une quelconque des revendications 1-5, le verre exempt d'antimoine ayant un coefficient de dilatation thermique dans la gamme de 35x10-7/°C à 45x10-7/°C.
     
    7. Fritte de verre comprenant le verre exempt d'antimoine selon l'une quelconque des revendications 1-6.
     
    8. Assemblage de verre (10) comprenant :

    une première plaque de verre (12) ;

    une deuxième plaque de verre (18) ; et

    un joint (20) formé d'une fritte (16) qui relie la première plaque de verre à la deuxième plaque de verre et forme entre elles un joint hermétique (20), la fritte comprenant un verre exempt d'antimoine comprenant : V2O5 dans une gamme de 40 à 50 pour cent molaire, P2O5 dans une gamme de ≥ 20 pour cent molaire à < 25 pour cent molaire, ZnO dans une gamme de 0 à 10 pour cent molaire, Fe2O3 dans une gamme de > 0 pour cent molaire % à < 25 pour cent molaire et TiO2 dans une gamme de > 0 pour cent molaire à < 25 pour cent molaire ; et dans lequel TiO2 + Fe2O3 est dans la gamme de 20 pour cent molaire à 35 pour cent molaire.


     
    9. Assemblage de verre selon la revendication 8, dans lequel le verre exempt d'antimoine comprend : 40 pour cent molaire de V2O5, 20 pour cent molaire de P2O5, 5 pour cent molaire de ZnO, Fe2O3 dans une gamme de > 0 pour cent molaire à < 25 pour cent molaire et TiO2 dans une gamme de > 0 pour cent molaire à < 25 pour cent molaire ; et dans lequel TiO2 + Fe2O3 est 35 pour cent molaire.
     
    10. Assemblage de verre selon la revendication 8, dans lequel le verre exempt d'antimoine comprend : 50 pour cent molaire de V2O5, 20 pour cent molaire de P2O5, 10 pour cent molaire de ZnO, Fe2O3 dans une gamme de > 10 pour cent molaire à ≤ 15 pour cent molaire et TiO2 dans une gamme de > 5 pour cent molaire à ≤ 10 pour cent molaire ; et dans lequel TiO2 + Fe2O3 est 20 pour cent molaire.
     
    11. Assemblage de verre selon la revendication 8, dans lequel le verre exempt d'antimoine comprend : V2O5 dans une gamme de 40 à 50 pour cent molaire, P2O5 dans une gamme de ≥ 20 pour cent molaire à < 25 pour cent molaire, ZnO dans une gamme de 5 à 10 pour cent molaire, Fe2O3 dans une gamme de > 0 pour cent molaire à < 25 pour cent molaire et TiO2 dans une gamme de > 0 pour cent molaire à < 25 pour cent molaire ; et dans lequel TiO2 + Fe2O3 est dans la gamme de 20 pour cent molaire à 35 pour cent molaire.
     
    12. Assemblage de verre selon l'une quelconque des revendications 8 - 11, dans lequel le verre exempt d'antimoine a une Tg ≤ 400°C.
     
    13. Assemblage de verre selon l'une quelconque des revendications 8 - 12, dans lequel le verre exempt d'antimoine a un coefficient de dilatation thermique dans la gamme de 35x10-7/°C à 45x10-7/°C.
     
    14. Assemblage de verre selon l'une quelconque des revendications 8 - 13, dans lequel la fritte comprend une charge abaissant le coefficient de dilatation thermique.
     
    15. Assemblage de verre selon l'une quelconque des revendications 8 - 14, comprenant en outre une diode électroluminescente organique (14) disposée entre les première (12) et deuxième (18) plaques de verre.
     




    Drawing






    REFERENCES CITED IN THE DESCRIPTION



    This list of references cited by the applicant is for the reader's convenience only. It does not form part of the European patent document. Even though great care has been taken in compiling the references, errors or omissions cannot be excluded and the EPO disclaims all liability in this regard.

    Patent documents cited in the description