(19)
(11)EP 2 347 181 B1

(12)EUROPEAN PATENT SPECIFICATION

(45)Mention of the grant of the patent:
11.07.2018 Bulletin 2018/28

(21)Application number: 09736539.9

(22)Date of filing:  13.10.2009
(51)International Patent Classification (IPC): 
F23D 14/22(2006.01)
F23C 5/08(2006.01)
F23C 3/00(2006.01)
(86)International application number:
PCT/US2009/060454
(87)International publication number:
WO 2010/045196 (22.04.2010 Gazette  2010/16)

(54)

SUBMERGIBLE COMBUSTION BURNER

TAUCHVERBRENNUNGSBRENNER

BRÛLEUR À COMBUSTION SUBMERSIBLE


(84)Designated Contracting States:
AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO SE SI SK SM TR

(30)Priority: 13.10.2008 US 250151

(43)Date of publication of application:
27.07.2011 Bulletin 2011/30

(73)Proprietor: Corning Incorporated
Corning, NY 14831 (US)

(72)Inventor:
  • COWLES, Curtis, R.
    Corning, New York 14830 (US)

(74)Representative: Anderson, James Edward George 
Elkington and Fife LLP Prospect House 8 Pembroke Road
Sevenoaks, Kent TN13 1XR
Sevenoaks, Kent TN13 1XR (GB)


(56)References cited: : 
EP-A1- 0 117 029
GB-A- 2 066 445
US-A1- 2005 236 747
EP-A1- 1 422 473
US-A- 5 186 620
  
      
    Note: Within nine months from the publication of the mention of the grant of the European patent, any person may give notice to the European Patent Office of opposition to the European patent granted. Notice of opposition shall be filed in a written reasoned statement. It shall not be deemed to have been filed until the opposition fee has been paid. (Art. 99(1) European Patent Convention).


    Description

    FIELD



    [0001] The invention relates generally to the field of submerged combustion melting. More specifically, the invention relates to a burner for use in submerged combustion melting.

    BACKGROUND



    [0002] In submerged combustion melting, a burner is used to inject a flame into a pool of molten material. The flame diffuses upwardly through the molten pool, carrying with it thermal energy for intimate heating of the molten pool. In some cases, the molten pool can begin to freeze at the point where the flame is injected into the molten pool. The freeze can extend upwardly toward the top surface of the molten pool, forming what is known as a "cold finger." Once a cold finger forms in the molten pool, it is normally not reversible and often requires that the melting process be restarted.

    [0003] US 6,951,454 B2 discloses a burner according to the preamble of claim 1.

    SUMMARY



    [0004] In one aspect, the invention relates to a burner apparatus according to claim 1.

    [0005] In another aspect, the invention relates to a submerged combustion melting apparatus according to claim 10.

    [0006] Other features and advantages of the invention will be apparent from the following description and the appended claims.

    BRIEF DESCRIPTION OF DRAWINGS



    [0007] The accompanying drawings, described below, illustrate typical embodiments of the invention and are not to be considered limiting of the scope of the invention, for the invention may admit to other equally effective embodiments. The figures are not necessarily to scale, and certain features and certain views of the figures may be shown exaggerated in scale or in schematic in the interest of clarity and conciseness.

    FIG. 1 depicts a vertical cross-section of a burner apparatus.

    FIG. 2 depicts a vertical cross-section of a second example of a burner apparatus.

    FIG. 3 depicts an enlarged, vertical cross-section of a nozzle included in the burner apparatus of FIGS. 1 and 2.

    FIG. 4A depicts a vertical cross-section of a second example of a nozzle.

    FIG. 4B depicts a vertical cross-section of a third example of a nozzle.

    FIG. 5 depicts a top view of the burner apparatus of FIGS. 1 and 2.

    FIG. 6 depicts the inner tube of the burner apparatus of FIGS. 1 and 2 with centralizers.

    FIG. 7 depicts a submerged combustion melting system including the burner apparatus of FIG. 1 or 2.


    DETAILED DESCRIPTION



    [0008] The invention will now be described in detail with reference to a few embodiments, as illustrated in the accompanying drawings. In describing the embodiments, numerous specific details are set forth in order to provide a thorough understanding of the invention. However, it will be apparent to one skilled in the art that the invention may be practiced without some or all of these specific details. In other instances, well-known features and/or process steps have not been described in detail so as not to unnecessarily obscure the invention. In addition, like or identical reference numerals are used to identify common or similar elements.

    [0009] FIGS. 1 and 2 depict a burner apparatus 100 including an inner tube 102 and an outer tube 104. The inner tube 102 and outer tube 104 may be made of a heat-resistant material, such as a stainless steel, e.g. 304, 312, or other high temperature stainless steel, austenitic nickel-chromium-iron alloys, e.g. Inconel®. The outer tube 104 has a longitudinal bore 106 inside which the inner tube 102 is disposed. The inner tube 102 also has a longitudinal bore 108. Typically, the longitudinal axis of the bore 106 is coincident with the longitudinal axis of the bore 108, i.e., the outer tube 104 and inner tube 102 are coaxial or concentric. The outer diameter of the inner tube 102 is smaller than the inner diameter of the bore 106, resulting in an annular space 110 between the outer tube 104 and the inner tube 102. Gases, e.g., fuel and oxidant, can be supplied to the annular space 110 and the bore 108 during operation of the burner apparatus 100. Typically, the gas in the bore 108 will be different from the gas in the annular space 110. For example, natural gas could be flowed in the bore 108 while oxygen is flowed in the annular space 110, or vice versa. The tip 113 of the inner tube 102 includes a nozzle 126. In the example shown in FIG. 1, the nozzle 126 is recessed relative to the top surface 115 of the burner apparatus 100. The space 112 above the nozzle 126 defines a combustion chamber 112 in which the gases from the bore 108 and annular space 110 combine and undergo combustion. In the example shown in FIG. 2, the nozzle 126 is flush or substantially flush with the top surface 115 of the burner apparatus 100. Thus, convergence and combustion of the gases in the bore 108 and annular space 110 take place outside of the burner apparatus 100. Returning to FIG. 1, the corners of the wall 127 defining the combustion chamber 112 could be hard corners as illustrated, but more often would be filleted or radiused.

    [0010] Referring to FIGS. 1 and 2, the inner tube 102 has a closed bottom end 114, which seals the bottom of the bore 108 in these embodiments. Near the bottom end 114, the inner tube 102 includes a port 116, which is in communication with the bore 108. An external source of gas (not shown), e.g., a source of fuel, can be connected to the port 116 in order to supply gas to the bore 108. In other embodiments, the closed bottom end 114 could include a port for introduction of gas into the bore 108. The outer tube 104 has a partially closed bottom end 118 with an opening 120 for receiving the inner tube 102. The bottom end 118 seals the bottom of the annular space 110 by extending between the outer tube 104 and the inner tube 102. In the examples shown in FIGS. 1 and 2, a bottom portion 122 of the inner tube 102 including the port 116 extends below the bottom end 118 of the outer tube 104. The inner tube 102 may be capable of sliding relative to the opening 120 so that adjustment of the position of the inner tube 102 relative to that of the outer tube 104 is possible, e.g., in order to control the size of the combustion chamber 112. Near the bottom end 118, the outer tube 104 includes a port 124, which is in communication with the annular space 110. An external source of gas (not shown), e.g., a source of oxidant, can be connected to the port 124 in order to supply gas to the annular space 110. Alternatively, the bottom end 118 may include a port for introduction of gas into the bore 108.

    [0011] Referring to FIG. 3, the nozzle 126 (formed at the tip of the inner tube 102 in FIGS. 1 and 2) includes a nozzle body 128 having a central hole 130 and side holes 132. The holes 132 are called "side" holes because they are offset from the center of the nozzle body 128. The side holes 132 are provided in the nozzle body 128 for gas flow. In one embodiment, the central hole 130 is also provided in the nozzle body 128 for gas flow. In other embodiments, the central hole 130 may be absent or plugged (as illustrated in FIG. 4B), leaving only the side holes 132 open for gas flow. When the central hole 130 is present in the nozzle body 128, it may serve as an opening for gas flow or as a receptacle or passage for instruments such as a UV safety sensor. Referring to FIG. 5, the side holes 132 are distributed around the center 129 of the nozzle body 128. In the illustrated embodiment, the side holes 132 are generally equidistant from the center 129 of the nozzle body 128. In other embodiments, the side holes 132 may not be equidistant from the center 129 of the nozzle body 128 (see, for example, FIG. 4B, where the line Z indicates the center of the nozzle body 128). In FIGS. 3, 4A, and 4B, the side holes 132 are slanted relative to the vertical (or longitudinal axis of the nozzle 126), Z. The longitudinal axis of the nozzle 126 is in a direction running from the inlet face 134 of the nozzle body 128 to the outlet face 136 of the nozzle body 128 and is located generally in the center of the nozzle 126. In one embodiment, the angle α between the each of the side holes 132 and the vertical, Z, may be in a range from about 25° to 65°. In another embodiment, the angle α between the each of the side holes 132 and the vertical, Z, may be in a range from about 30° to 60°. In yet another embodiment, the angle α between the each of the side holes 132 and the vertical, Z, may be in a range from about 45° to 50°. In the embodiment illustrated in FIG. 4A, the angle α between each of the side holes 132 and the vertical, Z, is 45° or approximately 45°. The side holes 132 may be slanted at the same or different angles relative to the vertical, Z.

    [0012] The inlet face 134 of the nozzle body 128 faces the bore 108, while the outlet face 136 of the nozzle body 128 faces the exterior of the inner tube 102. In FIGS. 3 and 4A, the central hole 130 extends from the inlet face 134 to the outlet face 136 of the nozzle body 128 and communicates with the bore 108. In FIGS. 3, 4A, and 4B, the side holes 132 extend from the inlet face 134 to the outlet face 136 and also communicate with the bore 108 at the inlet face 134. At the outlet face 136 of the nozzle body 128, the side holes 132 and central hole 130 may have any desired shape, such as circular, square, rectangular, or oval. In one embodiment, as illustrated more clearly in FIG. 5, the side holes 132 terminate at the outlet face 136 with an elongated shape, e.g., oval, in order to reduce or eliminate overheating of the outlet face 136. Referring to FIGS. 3, 4A, and 4B, where the side holes 132 are circular in cross-section (or have any other non-elongated cross-section, e.g., square), the elongated shape at the outlet face 136 may be achieved by making the portion 135 of the outlet face 136 including the side holes 132 oblique (i.e., not parallel or perpendicular) to the longitudinal axis, L, of the side holes 132. In one example, the portion 135 can be made horizontal or substantially horizontal relative to the vertical (or longitudinal axis of the nozzle 126), Z, to achieve the elongated shape of the side holes 132 at the outlet face 136.

    [0013] Returning to FIGS. 1 and 2, the cross-sectional flow area of the annular space 110 and the cross-sectional flow area of the nozzle 126 should be selected such that the pressure in the annular space 110 and the pressure in the bore 108 are equalized or substantially equalized. For example, when the inner tube 102 carries natural gas and the annular space 110 carries oxygen, the cross-sectional flow area of the annular space 110 can be approximately twice the cross-sectional area of the nozzle 126 to allow the aforementioned equalization of pressure. The cross-sectional flow area of the nozzle 126 is determined by the combined cross-sectional flow areas of the side holes 132 and the cross-sectional flow area of the central hole 130, if present and used as an opening for gas flow.

    [0014] The side holes 132 serve the purpose of laterally broadening the flow coming out of the nozzle 126. At the outlet face 136 of the nozzle 126, the broadened flow combines with the flow from the annular space 110, resulting in a broadened flame. The flame produced by the burner apparatus 100 can be made even broader by providing protuberances 138 on the exterior of the nozzle 126. The protuberances 138 spread the flow at the exterior of the nozzle 126. The protuberances 138 may be formed on or otherwise attached to the nozzle 126. In one example, as shown more clearly in FIG. 5, the corners of a polygonal flange 140 mounted on the nozzle 126 function as the protuberances 138. The corners 138 may be sharp or rounded. Returning to FIGS. 1 and 2, the protuberances 138 may be flush or substantially flush with the outer edge of the outlet face 136 of the nozzle 126 so that the flow spreading provided by the protuberances is near enough to the outlet face 136 of the nozzle 126 to have an effect on the quality of the flame produced by the burner apparatus 100. The nozzle 126, as described above, allows a short, broad flame to be produced by the burner apparatus 100. This short, broad flame can help eliminate or reduce the occurrence of a cold finger when the burner apparatus 100 is used in submerged combustion melting. It is important not to spread the flame of the burner too much so that a low pressure area does not form at the center of the flame. The spreading of the flame is determined at least in part by the size and angle of the side holes 132, the size of the central hole 130 if present, and the size and positioning of the protuberances if present.

    [0015] Returning to FIGS. 1 and 2, to provide and maintain a symmetric flame, the inner tube 102 is preferably centered within the longitudinal bore 106 of the outer tube 104. This may be achieved through the use of one or more centralizers 142 which may be coupled to the exterior of the inner tube 102. Preferably, the centralizers 142 are relatively rigid to ensure that the inner tube 102 remains fixed in position relative to the outer tube 104 during operation of the burner apparatus. In one example, as illustrated in FIG. 6, each centralizer 142 may include a tapered slot 144 formed on the inner tube 102 and an adjustable wedge 146 arranged in the tapered slot 144. As more clearly shown in FIG. 5, the centralizers 142 are distributed around the circumference of the inner tube 102 to provide the desired centralizing function. Returning to FIGS. 1 and 2, the adjustable wedges 146 extend laterally and outwardly from the inner tube 102 to the inner diameter of the outer tube 104. In addition to centralizing the inner tube 102 within the bore 106, the adjustable wedges 146 may be used to establish and adjust the longitudinal position of the inner tube 102 relative to the outer tube 104. Such adjustments may be used to control the size of the combustion chamber 112. Other types of centralizers known in the art for centralizing a tubular member within another tubular member may be used.

    [0016] A cooling jacket 150 surrounds the outer tube 104, which in turn surrounds the inner tube 102. The cooling jacket 150 may be mounted on the outer tube 104. The cooling jacket 150 includes a pocket 152 so that when it is mounted on, or otherwise positioned adjacent to, the outer tube 104, an annular space 154 is defined between the cooling jacket 150 and the outer tube 104. The annular space 154 serves as a conduit through which cooling gas can be circulated around the outer tube 104 and during operation of the burner apparatus 100. The cooling jacket 150 includes an inlet port 156 and an outer port 158, both of which are in communication with the annular space 154. The cooling jacket 150 may include an annular partition 155 disposed in the annular space 154 to create an inlet flow path 160 and an outlet flow path 162 within the annular space 154. The inlet flow path 160 is in communication with the inlet port 156, while the outlet flow path 162 is in communication with the outlet port 158. The partition 155 may be disposed in the annular space 154 such that gas in the inlet flow path 160 can flow into the outlet flow path 162. In this arrangement, cooling gas enters the cooling jacket 150 through the inlet port 156, flows through the inlet flow path 160 into the outlet flow path 162, flows through the outlet flow path 162 to the outlet port 158, and then out of the cooling jacket 150. In one example, both the inlet flow path 160 and outlet flow path 162 surround the outer tube 104, with the inlet flow path 160 being closer to the outer tube 104.

    [0017] Referring to FIGS. 1 and 2, oxidant 164 is supplied to the annular space 110 through the port 124, and fuel 166 is supplied to the bore 108 through the port 116. The fuel exits the inner tube 102 through the nozzle 126 and mixes with the oxidant in the annular space 110 to form a flame (not shown). As the burner apparatus 100 operates, cooling gas 168 is supplied to the cooling jacket 150 through the port 156, and warmer cooling gas 170 is removed from the cooling jacket 150 through the port 158. In submerged combustion melting, the flame of the burner apparatus 100 is injected into a molten pool. If the burner apparatus 100 shown in FIG. 1 is used, the flame is formed within the burner and then injected into the molten pool. If the burner apparatus 100 shown in FIG. 2 is used, the flame is formed outside of the burner. In this case, the burner apparatus may be positioned such that the flame is formed within the molten pool. As noted above, the short broad flame produced by the burner apparatus can help reduce or eliminate freezing at the point where the flame is injected into the molten pool. This can ultimately help avoid formation of cold finger in the molten pool.

    [0018] FIG. 7 shows a submerged combustion melting apparatus 171 including a melting chamber 172 containing a molten pool 174. The melting chamber 172 includes a port 176 for feeding batch material from a hopper 175 into the melting chamber 172. The batch material may be provided in liquefied form. The melting chamber 172 also includes a port 168 through which exhaust gases can escape the melting chamber 172. The melting apparatus 171 also includes a conditioning chamber 180 connected to the melting chamber 172 by a flow passage 182. Molten material from the molten pool 164 flows from the melting chamber 172 to the conditioning chamber 180 through the flow passage 182 and then exits the melting apparatus 171. Orifices 186 are formed in the wall of the melting chamber 162. The orifices 176 are shown in the bottom wall 188 of the melting chamber 172. In alternate arrangements, the orifices 176 may be provided in the side wall 190 of the melting chamber 172. The orifices 186 may be perpendicular or slanted relative to the wall of the melting chamber 172. Burner apparatus 100 are arranged in the orifices 186 to inject flames into the molten pool 174.

    [0019] The burner apparatus 100 may help prevent freezing at the point where the flames are injected into the molten pool 174 and ultimately avoid formation of cold finger in the molten pool 174. Cold finger is caused by a combination of the depth of the molten pool above the burner head and the velocity of the gases at the burner head. If the flame from the burner head cannot travel fast enough to burn in this area (i.e., above the burner head), there will be no heat in this area. As a result, this area is being cooled by the gases flowing through it and freezes into a tube shape. When the frozen melt is cracked open, the tube often looks like a finger, hence the term "cold finger." With the burner apparatus 100, the side holes (132 in FIG. 1) divert some of the gas from the inner tube (102 in FIG. 1) from the laminar flow regime. This helps push the combustion chamber (i.e., where the flame is formed) open. The protuberances (138 in FIG. 1) outside the inner tube deflects some of the gas from the outer tube. This also helps push the combustion chamber open and slows down the gas velocity in the combustion chamber. Both features promote mixing of the gases, creating more combustion sooner.


    Claims

    1. A burner apparatus (100), comprising: an outer tube (104) having a first longitudinal bore (106); an inner tube (102) having a second longitudinal bore (108), said inner tube (102) being disposed within said first longitudinal bore (106) such that an annular space is defined between the inner tube and the outer tube; a nozzle (126) formed at a tip of the inner tube, said nozzle having an inlet face facing the second longitudinal bore (108) and an outlet face in opposing relation to the inlet face, said nozzle (126) comprising a plurality of side holes (132) formed therein, said side holes (132) extending from the inlet face (234) to the outlet face (136), said side holes(132) being slanted outwardly relative to a longitudinal axis (Z) of the nozzle (126) and being in communication with the second longitudinal bore (108) characterized in that; it comprises a plurality of protuberances(138) protruding laterally from an exterior of the nozzle (126), each of the protuberances (138) corresponding laterally in position to one of the side holes (132), wherein the plurality of protuberances (138) is provided by corners of a polygonal flange (140) attached to the exterior of the nozzle (126), wherein the corners of the polygonal flange (140) are radially oriented relative to a center (129) of the polygonal flange (140).
     
    2. The burner apparatus (100) of claim 1, wherein each of the side holes (132) is slanted outwardly at an angle in a range from 25° to 65° relative to a longitudinal axis of the nozzle.
     
    3. The burner apparatus (100) of claim 1, wherein the nozzle further comprises a central hole (130) formed therein, said central hole being in communication with the second longitudinal bore (108).
     
    4. The burner (100) of claim 1, wherein the side holes are distributed around the center of the nozzle.
     
    5. The burner apparatus of claim 1, wherein the nozzle (126) is substantially flush with an end surface of the burner apparatus.
     
    6. The burner apparatus (100) of claim 1, wherein the nozzle is recessed relative to an end surface of the burner apparatus.
     
    7. The burner apparatus (100) of claim 1, wherein the side holes (132) terminate at an outlet face of the nozzle with an elongated shape.
     
    8. The burner apparatus (100) of claim 1, wherein a cross-sectional flow area of the annular space and a cross-sectional flow area of the nozzle are 5 selected such that pressure in the annular space is substantially equal to pressure in the second longitudinal bore (108).
     
    9. The burner apparatus (100)
    of claim 1, further comprising protuberances formed on the nozzle, wherein said protuberances correspond laterally in position to the first holes.
     
    10. A submerged combustion melting apparatus (171), comprising:

    a melting chamber (172) for containing a molten pool (174), said melting chamber having an orifice (186) formed in a wall thereof; and

    a burner (100) according to claim 1 positioned at the orifice to inject a flame into the melting chamber (172).


     


    Ansprüche

    1. Brennervorrichtung (100), die umfasst:

    ein Außenrohr (104) mit einer ersten Längsbohrung (106);

    ein Innenrohr (102) mit einer zweiten Längsbohrung (108), wobei das Innenrohr (102) in der ersten Längsbohrung (106) angeordnet ist, sodass ein ringförmiger Raum zwischen dem Innenrohr und dem Außenrohr definiert wird;

    eine an einer Spitze des Innenrohrs ausgebildete Düse (126), wobei die Düse eine Einlassseite aufweist, die der zweiten Längsbohrung (108) zugewandt ist, und eine Austrittsseite in gegenüberliegender Beziehung zur Einlassseite, wobei die Düse (126) eine Vielzahl von darin ausgebildeten Seitenbohrungen (132) umfasst, wobei sich die Seitenbohrungen (132) von der Einlassseite (234) zur Austrittsseite (136) erstrecken, wobei die Seitenbohrungen (132) in Bezug auf eine Längsachse (Z) der Düse (126) nach außen geneigt sind und in Verbindung mit der zweiten Längsbohrung (108) stehen, dadurch gekennzeichnet, dass;

    sie eine Vielzahl von Vorsprüngen (138) umfasst, die seitlich von einer Außenseite der Düse (126) hervorstehen, wobei jeder der Vorsprünge (138) seitlich in seiner Position einer der Seitenbohrungen (132) entspricht, wobei die Vielzahl von Vorsprüngen (138) durch Ecken eines mehreckigen Flanschs (140) bereitgestellt sind, der an der Außenseite der Düse (126) befestigt ist, wobei die Ecken des mehreckigen Flanschs (140) in Bezug auf eine Mitte (129) des mehreckigen Flanschs (140) radial ausgerichtet sind.


     
    2. Brennervorrichtung (100) nach Anspruch 1, wobei jede der Seitenbohrungen (132) mit einem Winkel in einem Bereich von 25° bis 65° in Bezug auf eine Längsachse der Düse nach außen geneigt ist.
     
    3. Brennervorrichtung (100) nach Anspruch 1, wobei die Düse ferner eine darin ausgebildete mittlere Bohrung (130) umfasst, wobei die mittlere Bohrung in Verbindung mit der zweiten Längsbohrung (108) steht.
     
    4. Brennervorrichtung (100) nach Anspruch 1, wobei die Seitenbohrungen um die Mitte der Düse verteilt sind.
     
    5. Brennervorrichtung (100) nach Anspruch 1, wobei die Düse (126) im Wesentlichen mit einer Endfläche der Brennervorrichtung bündig abschließt.
     
    6. Brennervorrichtung (100) nach Anspruch 1, wobei die Düse in Bezug auf eine Endfläche der Brennervorrichtung versenkt ist.
     
    7. Brennervorrichtung (100) nach Anspruch 1, wobei die Seitenbohrungen (132) an einer Austrittsseite der Düse mit einer länglichen Form enden.
     
    8. Brennervorrichtung (100) nach Anspruch 1, wobei eine Strömungsquerschnittsfläche des ringförmigen Raums und eine Strömungsquerschnittsfläche der Düse so ausgewählt sind, dass ein Druck im ringförmigen Raum im Wesentlichen gleich einem Druck in der zweiten Längsbohrung (108) ist.
     
    9. Brennervorrichtung (100) nach Anspruch 1, die ferner auf der Düse ausgebildete Vorsprünge umfasst, wobei die Vorsprünge seitlich in ihrer Position den ersten Bohrungen entsprechen.
     
    10. Tauchbrennschmelzvorrichtung (171), die umfasst:

    eine Schmelzkammer (172) zum Aufnehmen eines Schmelzbads (174), wobei die Schmelzkammer eine in einer Wand davon ausgebildete Öffnung (186) aufweist;

    und einen Brenner (100) nach Anspruch 1, der an der Öffnung positioniert ist, um eine Flamme in die Schmelzkammer (172) einzuspeisen.


     


    Revendications

    1. Appareil brûleur (100) comprenant :

    un tube externe (104) possédant un premier alésage longitudinal (106) ;

    une tube interne (102) possédant un second alésage longitudinal (108), ledit tube interne (102) étant disposé dans ledit premier alésage longitudinal (106) de sorte qu'un espace annulaire soit défini entre le tube interne et le tube externe ;

    une buse (126) formée au niveau d'une extrémité du tube interne, ladite buse possédant une face d'entrée faisant face au second alésage longitudinal (108) et une face de sortie selon une relation d'opposition avec la face interne, ladite buse (126) comprenant une pluralité de trous latéraux (132) formés dans celle-ci, lesdits trous latéraux (132) s'étendant depuis la face d'entrée (234) jusqu'à la face de sortie (136), lesdits trous latéraux (132) inclinés vers l'extérieur par rapport à un axe longitudinal (Z) de la buse (126) et étant en communication avec le second alésage longitudinal (108) caractérisé en ce que ;

    il comprend une pluralité de saillies (138) qui dépassent latéralement depuis un extérieur de la buse (126), chacune des saillies (138) correspondant latéralement en position à l'un des trous latéraux (132), ladite pluralité de saillies (138) étant fournies par des coins d'une bride polygonale (140) fixée à l'extérieur de la buse (126), lesdits coins de la bride polygonale (140) étant orientés radialement par rapport à un centre (129) de la bride polygonale (140).


     
    2. Appareil brûleur (100) selon la revendication 1, chacun desdits trous latéraux (132) étant incliné vers l'extérieur selon un angle compris dans une plage allant de 25° à 65° par rapport à un axe longitudinal de la buse.
     
    3. Appareil brûleur (100) selon la revendication 1, ladite buse comprenant en outre un trou central (130) formé dans celle-ci, ledit trou central étant en communication avec le second alésage longitudinal (108).
     
    4. Brûleur (100) selon la revendication 1, lesdits trous latéraux étant distribués autour du centre de la buse.
     
    5. Appareil brûleur selon la revendication 1, ladite buse (126) affleurant sensiblement une surface d'extrémité de l'appareil brûleur.
     
    6. Appareil brûleur (100) selon la revendication 1, ladite buse étant en retrait par rapport à une surface d'extrémité de l'appareil brûleur.
     
    7. Appareil brûleur (100) selon la revendication 1, lesdits trous latéraux (132) se terminant au niveau d'une face de sortie de la buse avec une forme allongée.
     
    8. Appareil brûleur (100) selon la revendication 1, une zone d'écoulement transversale de l'espace annulaire et une zone d'écoulement transversale de la buse étant sélectionnées de sorte que la pression dans l'espace annulaire soit sensiblement égale à la pression dans le second alésage longitudinal (108).
     
    9. Appareil brûleur (100) selon la revendication 1, comprenant en outre des saillies formées sur la buse, lesdites saillies correspondant latéralement en position aux premiers trous.
     
    10. Appareil de fusion à combustion submergé (171), comprenant :

    une chambre de fusion (172) destinée à contenir un bain de fusion (174), ladite chambre de fusion possédant un orifice (186) formée dans une paroi de celle-ci ;

    et un brûleur (100) selon la revendication 1 positionné au niveau de l'orifice pour injecter une flamme dans la chambre de fusion (172).


     




    Drawing























    Cited references

    REFERENCES CITED IN THE DESCRIPTION



    This list of references cited by the applicant is for the reader's convenience only. It does not form part of the European patent document. Even though great care has been taken in compiling the references, errors or omissions cannot be excluded and the EPO disclaims all liability in this regard.

    Patent documents cited in the description