(19)
(11)EP 2 361 136 B1

(12)EUROPEAN PATENT SPECIFICATION

(45)Mention of the grant of the patent:
29.07.2020 Bulletin 2020/31

(21)Application number: 09814897.6

(22)Date of filing:  18.09.2009
(51)International Patent Classification (IPC): 
B01D 53/02(2006.01)
B01D 50/00(2006.01)
B29L 31/08(2006.01)
B01D 45/08(2006.01)
B29C 70/52(2006.01)
(86)International application number:
PCT/US2009/005194
(87)International publication number:
WO 2010/033209 (25.03.2010 Gazette  2010/12)

(54)

COMPOSITE VANE AND METHOD OF MANUFACTURE THEREOF

VERBUNDLEITSCHAUFEL UND DESSEN HERSTELLUNGSVERFAHREN

AUBE EN MATÉRIAU COMPOSITE ET PROCÉDÉ DE FABRICATION


(84)Designated Contracting States:
AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO SE SI SK SM TR

(30)Priority: 22.09.2008 US 232670

(43)Date of publication of application:
31.08.2011 Bulletin 2011/35

(73)Proprietor: Ceco Environmental IP Inc.
Dallas TX 75254 (US)

(72)Inventors:
  • DANIEL, Mark
    Coppell TX 75019 (US)
  • FADDA, Dani
    Dallas TX 75238 (US)

(74)Representative: Wilson, Peter David George et al
Novagraaf UK 3rd Floor 77 Gracechurch Street
London EC3V 0AS
London EC3V 0AS (GB)


(56)References cited: : 
EP-A1- 0 023 777
US-A- 4 175 938
US-A- 4 300 918
US-A1- 2007 048 457
GB-A- 1 471 214
US-A- 4 251 242
US-A- 4 784 674
US-A1- 2008 193 739
  
      
    Note: Within nine months from the publication of the mention of the grant of the European patent, any person may give notice to the European Patent Office of opposition to the European patent granted. Notice of opposition shall be filed in a written reasoned statement. It shall not be deemed to have been filed until the opposition fee has been paid. (Art. 99(1) European Patent Convention).


    Description

    BACKGROUND



    [0001] Virtually all air intake systems require an air filtering mechanism to maintain inlet air free of contaminants. This requirement is particularly true of shipboard engines and ventilation systems that operate in a salt spray environment, where moisture and salt particles impinging, for example, on fast spinning turbine blades can cause severe damage to the ship's propulsion system. In this environment, the filtering mechanism must be able to separate moisture from the inlet air, providing dry and clean air to the ship's propulsion system or ventilation system. This requirement is equally important in trains, offshore platforms, and other wet environments, among other applications.

    [0002] In a specific example of a shipboard application, most naval vessels rely on fossil fuel for propulsion, and many of these vessels are powered by gas turbines. Gas turbine engines require significant quantities of air for combustion. This air is drawn into the combustion chamber through an air intake. The air intake, ideally, would be as high as possible above the waterline to minimize the possibility of water entrainment (i.e., entrainment of ocean spray) in the intake air stream. Because the air intakes are located high on the ship, their weight should be minimized to avoid making the ship less stable and more susceptible to rolling, and in a worst case scenario, capsizing.

    [0003] US 4175938 A discloses a gas/liquid separator comprising an assembly of corrugated plates defining vertical, phase-separating chambers opening into the gas stream flowing between the plates.

    [0004] GB 1471214 A discloses a gas/liquid separator assembly comprising two sets of impingement vanes arranged in close proximity on either side of a coalescing pad.

    [0005] EP 0023777 A1 discloses a gas/liquid separator comprising an assembly of arcuate blades which may be made, inter alia from fibreglass reinforced plastics.

    SUMMARY



    [0006] In its various aspects the present invention provides a composite vane for removing liquids entrained in a gas stream, a system including a plurality of such vanes, and a method for manufacturing a composite vane for use in removing liquid droplets from a gas stream, as defined in the claims.

    [0007] The composite vane has a profile capable of formation by pultrusion, for removing liquids entrained in a gas stream. The composite vane has a main curved section oriented generally parallel to the gas stream and curved to reorient the gas stream. The main curved section causes a first and a second change of direction of the gas stream. The composite vane also includes a first air pocket formed on a first side of the main curved section, the first air pocket sized and oriented into the gas stream where the gas stream first changes direction, and a second air pocket formed on a second side of the main curved section. The second air pocket is smaller than the first air pocket and sized and oriented into the gas stream where the gas stream makes the second direction change.

    DESCRIPTION OF THE DRAWINGS



    [0008] The Detailed Description will refer to the following drawings in which like reference numbers refer to like items, and in which;

    Figure 1 illustrates, in horizontal cross section, exemplary composite vanes for use in a moisture removal application;

    Figure 2 illustrates a typical application of the composite vanes of Figure 1; and

    Figures 3A and 3B are graphs showing measured pressure drop and droplet removal efficiency for the composite vanes of Figure 1.


    DETAILED DESCRIPTION



    [0009] A composite vane as shown in the above figures, and as described below can be used in air intake systems such as naval applications related to propulsion system air intakes to maximize liquid droplet removal efficiency while addressing design tradeoffs related to ship stability and system maintenance.

    [0010] While the discussion that follows will focus on the shipboard and naval application of this technology, those skilled in the art will understand that the claimed invention can be applied in many other fields of endeavor, including non-shipboard moisture separation applications. In particular, the composite nature of the air intake vane makes it ideal where corrosion resistance is important, where reduced weight is important, and where rigidity and strength are important. In addition, the herein described composite vane is inexpensive to form, compared to prior art moisture separators, is not subject to stress cracking as in prior art systems, and requires no maintenance.

    [0011] Ship stability (resistance to roll) can be defined in terms of the ship's center of buoyancy B, center of gravity G, and metacenter M. When a ship is exactly upright, these three "centers" are aligned vertically. When a ship tilts (rolls to port or starboard) the center of buoyancy B of the ship moves laterally. The point at which a vertical line through the tilted center of buoyancy crosses the line through the original, non-tilted center of buoyancy B is the metacenter M.

    [0012] The distance between the center of gravity and the metacenter is called the metacentric height, and is usually between one and two meters. This distance is also abbreviated as GM. As the ship heels over (rolls by angle ϕ), the center of gravity G generally remains fixed with respect to the ship because the center of gravity G just depends upon position of the ship's mass and cargo, but the M, moves up and sideways in the opposite direction in which the ship has rolled and is no longer directly over the center of gravity G.

    [0013] The righting force on the ship is then caused by gravity pulling down on the hull, effectively acting on its center of gravity G, and the buoyancy pushing the hull upwards; effectively acting along the vertical line passing through the center of buoyancy B and the metacenter M above it. This creates a torque that rotates the hull upright again and is proportional to the horizontal distance between the center of gravity G and the metacenter M (i.e., the metacentric height). The metacentric height is important because the righting force is proportional to the metacentric height times the sine of the angle of heel. Moreover, if the metacentric height approaches a small value, any rolling of the ship can cause the metacenter M to be displace below the center of gravity. In this condition, the ship will capsize. Accordingly, ship designers always are concerned about adding weight to a ship above its waterline because such added weight decreases the metacentric height and leads to a less stable ship.

    [0014] Any air intake system intended for shipboard applications should be designed to facilitate preventive maintenance, and in particular to address possible corrosion concerns. By using a composite vane as opposed to more traditional stainless steel or aluminum vanes, many preventive maintenance problems can be avoided.

    [0015] The disclosed composite vane falls into the class of inertial impaction separators. Inertial impact separation occurs when a gas passes through a tortuous path around vane pockets while the solid or liquid droplets tend to go in straighter paths, impacting these pockets. Once this occurs, the droplet coalesces within the vane pockets and drains away from the air. The composite vane weighs much less than comparable stainless steel vanes, and thus leads to a more stable ship design.

    [0016] To form such a composite vane, a manufacturing technique know as pultrusion may be used. Pultrusion (pull + extrusion) is particularly well-suited for the formation of products from composite materials. The pultrusion process begins when racks or creels holding rolls of fiber matt or doffs of fiber roving are de-spooled and guided through a resin bath or resin impregnation system. The fiber may be reinforced with fiber glass, carbon, aromatic polyamide (aramid), or a mixture of these substances. In some pultrusion processes, the resin may be injected directly into a die containing the fiber.

    [0017] The resin used in pultrusion processes is usually a thermosetting resin, and can be combined with fillers, catalysts, and pigments. The fiber reinforcement becomes fully impregnated with the resin such that all the fiber filaments are thoroughly saturated with the resin mixture. The thermosetting resin may be selected from the group consisting of vinyl ester resins, epoxy resins, and combinations thereof.

    [0018] As the resin-saturated fiber exits the resin impregnation system, the un-cured composite material is guided through a series of tooling that helps arrange and organize the fiber into the desired shape while excess resin is squeezed out (debulked). Continuous strand mat and surface veils may be added in this step to increase structure and surface finish.

    [0019] Once the resin impregnated fibers are organized and debulked, the un-cured composite passes through a heated die. The die is typically made of steel, may be chromed (to reduce friction), and is kept at a constant temperature to cure the thermosetting resin. The material that exits the die is a cured, pultruded fiber reinforced polymer (FRP) composite.

    [0020] A surface veil may be applied to the FRP composite. Such a veil may, for example, be used to adjust (increase or decrease) surface wettability.

    [0021] The composite material is then cut to the desired length by a cut off saw, and is ready for installation.

    [0022] One goal that must be achieved in designing a composite vane, and incorporating these composite vanes into a coalescer, is to maximize liquid droplet removal efficiency while preventing liquid re-entrainment. Re-entrainment occurs when liquid droplets accumulated on the vanes are carried off by the exiting gas. This occurs when the force exerted on the liquid droplets clinging to the vanes due to the velocity of the exiting gas, or annular velocity, exceeds the gravitational forces of the draining droplets (see Figure 2). Thus, in designing a composite vane (and its corresponding coalescer), the following parameters may be taken into account: gas velocity through the coalescer stages, annular velocity of gas exiting the stages, solid and liquid aerosol concentration in the inlet gas, and drainability of the coalescer. Each of these factors with the exception of the inlet aerosol concentration can be controlled. At a constant gas flow rate, gas velocity can be controlled by either changing the profile and spacing of the vanes or by increasing or decreasing the number of vanes used.

    [0023] At a constant gas flow rate, the exit velocity of the gas can be controlled by changing the spacing between the vanes. Drainage can be improved by either selecting low surface energy vane materials or by treating the vanes with a chemical or applying a material that lowers the surface energy of the vane material to a value lower than the surface tension of the liquid to be coalesced. Having a low surface energy material prevents liquid from wetting the vane material and accelerates drainage of liquids down along the vanes. The liquid coalesced on the vanes falls rapidly through the network of vanes without accumulating on the vanes where it could be re-entrained.

    [0024] Figure 1 shows a profile of exemplary composite vanes 100 for use in an air intake application to remove moisture from combustion or ventilation air. Use of a FRP composite reduces weight, increases corrosion resistance, and reduces maintenance compared to the same vane profile formed using aluminum or stainless steel. The vanes have a width of about 5 inches, a height of about 1.75 inches, and as installed, a separation of about 1 5/16 inches at the inlet 104 and outlet 106, which are formed by arranging two of the composite vanes 100 in parallel as shown. However, vane separation may be varied, for example to as much as approximately 1.875 inches or more. The separation between the vanes 100 narrows in the regions containing pockets 120 and 130. In these regions, the separation may be about 0.75 inches. Vane thickness varies from about 3/16 inch to 1/8 inch, as shown. The thickness of the composite vanes 100 is determined based on considerations of rigidity in use, ease of formation by pultrusion, and minimal weight. The combination of these considerations results in the thicknesses shown in Figure 1. The vanes 100 may be any length, and typically are about 5 inches to about 144 inches long. Air passage past the vanes 100 is indicated by the arrow 101.

    [0025] Each vane 100 comprises a main curved section 110 and the two air pockets 120 and 130. The volumes of the air pockets 120 and 130 are chosen to maximize removal of liquids from the liquid-gas mixture. The air pockets 120 and 130 extend over the entire length of the vane 100. Although the main curved section 110 is shown as a series of flats, the main curved section 110 may, alternatively, comprise a smooth curve having approximately the same general shape as that of the series of flats illustrated. Because the air is made to change directions rapidly when moving past the curved sections 110 of the vanes 100, moisture entrained in the air can be removed easily. More specifically, at each change in direction caused by the shape of the composite vanes 100, a centrifugal force is exerted on the liquid-gas mixture, which throws the relatively heavy liquid droplets against the wetted vane walls. The liquid droplets coalesce into larger particles, absorb other particles, coalesce into sheet flow, and drain to a liquid sump at the bottom of the composite vanes 100 (see Figure 2). In addition, liquid-gas mixtures traversing the composite vanes 100 in the direction of the arrow 101 travel toward the pockets 120 and 130, where coarse droplets are captured by the first pocket 120 and smaller droplets are captured by the second pocket 130 after acceleration through the venturi throat created by the first pocket 120. The air pockets 120 and 130 also further convolute and agitate the air stream, causing additional moisture separation. Once the liquid enters the pockets 120, 130, the liquid is isolated from the gas stream and drains by gravity into the liquid sump. Similar to moisture separation, solid particles may be removed from the liquid-gas stream due to the abrupt changes in direction of the gas as it passes through the composite vanes 100.

    [0026] The relationship of the composite vanes 100 shown in Figure 1 allows an increase in the speed of the gas flowing through the vanes 100 without re-entrainment of separated fluids. Furthermore, the narrowing of the separation between composite vanes 100 that occurs in the regions containing the pockets 120 and 130 creates throats 108. These throats 108 cause the liquid-gas mixture to accelerate, which makes removal of liquid droplets more efficient. Subsequent to flow through the throats 108, the liquid-gas mixture is expanded, and slows, so that the velocity of the mixture at the outlet 106 is the same as that at the inlet 104. With such construction, the vanes 100 can provide up to 90 percent removal efficiency for liquid droplets as small as 20 microns in diameter and 100 percent removal efficiency for 30 micron-diameter droplets.

    [0027] Figure 2 illustrates a typical application of the composite vanes of Figure 1. As shown in Figure 2, a shipboard air inlet plenum 200 is populated with a series of the composite vanes 100. Each vane 100 may be formed separately by the pultrusion process. Moisture entrained in the inlet air is removed at an efficiency of as much as 100 percent by passage past the vanes 100. The collected moisture drops by gravity to the bottom of the plenum 200, and may be removed. In a shipboard application, by using lightweight vanes made of a FRP composite, the ship's metacentric height is maximized.

    [0028] Figures 3A and 3B are graphs showing measured pressure drop (DP) and droplet removal efficiency (percentage removed), respectively, for a composite vane and different airflows. The curves illustrated are for a vane similar in profile to that shown in Figure 1, with multiple vanes spaced about 1-5/16 inches apart. The measured results show that the composite vanes 100 perform at least as well as comparably-shaped vanes made, for example, of extruded aluminum. The results shown in Figures 3A and 3B correspond closely to experimental results obtained using computational fluid dynamics (CFD) to model the airflow. With this CFD model, a two-dimensional grid of triangular cells is used for the vane model. The CFD program is FLUENT™ Version 6.2, which uses the Navier-Stokes equations with K-ε model of turbulence.

    [0029] Although disclosed applications of the vane 100 include shipboard installation into a gas turbine air inlet system and a ventilation system, the vane 100 has many other applications, including for other types of marine propulsion systems. In addition, the vane 100 may be used to remove condensate from vapors and absorptive liquid from treated gases. In an embodiment of the composite vane 100, a surface veil and an intermediate veil can be applied. Such a surface veil may reduce radar reflectivity. Other surface veils may, as noted above, be used to adjust surface wettability.


    Claims

    1. A vane (100) for removing liquids entrained in a gas stream, the vane (100) having a profile capable of formation by pultrusion, comprising:

    a main curved section (110) oriented generally parallel to the gas stream and curved to reorient the gas stream, the main curved section (110) causing a first and a second change of direction of the gas stream;

    a first air pocket (120) formed on a first side of the main curved section (110), the first air pocket sized (120) and oriented into the gas stream where the gas stream first changes direction; and

    a second air pocket (130) formed on a second side of the main curved section (110), the second air pocket (130) smaller than the first air pocket (120) and sized and oriented into the gas stream where the gas stream makes the second direction change, wherein the vane (100) is a composite vane formed by pultrusion, characterized in that the surface energy of the composite vane is lower than surface tensions of the liquids.


     
    2. The vane (100) of claim 1, wherein the vane (100) is formed from materials including a fiber reinforced with one or more of fiberglass, carbon, and aromatic polyamide and a thermosetting resin.
     
    3. The vane (100) of claim 1, wherein a plurality of the vanes (100) are placed at a predetermined separation to remove the liquids from the gas stream.
     
    4. The vane (100) of claim 3, wherein the separation is between about 2.54 cm and about 4.7625 cm and preferably is approximately 4.1275 cm.
     
    5. The vane (100) of claim 1, further comprising a surface veil applied to the vane (100) to adjust surface wettability.
     
    6. The vane (100) of claim 1, further comprising additional layers applied to the v an e (100), wherein the layers operate to reduce visibility to radar.
     
    7. The vane (100) of claim 1, wherein the main curved section (110) comprises a smooth curve.
     
    8. The vane (100) of claim 1, wherein the main curved section (110) comprises a series of flats approximating a smooth curve.
     
    9. The vane (100) of claim 1, wherein the first air pocket (120), of a first composite vane (100) in parallel construction with a second composite vane (100) forms a first throat (108), wherein the gas stream is accelerated to enhance moisture entrainment by the second air pocket (130).
     
    10. The vane (100) of claim 1, wherein the main curved section (110) has a thickness of about 0.4763 cm and the first and the second pockets (120, 130) are defined by pocket walls having thicknesses of about 0.3175 cm.
     
    11. The vane (100) of claim 1, wherein the vane (100) has a width of about 12.7 cm and a length of between about 12.7 cm and about 365.76 cm.
     
    12. The vane (100) of claim 1, wherein the liquid droplet removal efficiency for 30 micron droplets is 100 percent.
     
    13. A method for manufacturing a composite vane (100) for use in removing liquid droplets from a gas stream, comprising:

    reinforcing a fiber material with one or more of fiberglass and aromatic polyamide;

    impregnating the reinforced fiber material with a thermosetting resin;

    pulling the impregnated reinforced fiber material through a die; and

    simultaneous with the pulling step, applying heat at a constant temperature to the material, whereby the composite vane (100) having a desired profile is formed, and whereby the desired profile comprises:

    a main curved section (110) oriented generally parallel to the gas stream and curved to reorient the gas stream, the main curved section (110) capable of causing a first and a second change of direction of the gas stream;

    a first air pocket (120) formed on a first side of the main curved section (110), the first air pocket (120) located on the composite vane (100) where the gas stream first changes direction; and

    a second air pocket (130) formed on a second side of the main curved section (110), the second air pocket (130) smaller than the first air pocket (120) and located on the composite vane (100) where the gas stream makes the second direction change,

    characterized in that the surface energy of the composite vane is lower than surface tensions of the liquid droplets.


     
    14. A system including a plurality of composite vanes (100) according to any of the preceding claims 1-12 for removing liquid droplets from a gas stream, comprising
    a plenum housing the plurality of composite vanes, the vanes separated by a predetermined distance.
     
    15. The system of claim 14, wherein the composite vanes (100) comprise a series of flats having an overall generally curved shape.
     
    16. The system of claim 14, comprising a coalescer coupled to an exit from the plenum, wherein the coalescer is combined with other coalescers or other filters and vanes.
     
    17. A system including composite vanes (100) according to any of claims 1-12 for removal of liquids and solid particles from a gas stream, comprising:

    means for changing directions of the gas stream, wherein the means for changing directions comprises two or more composite vanes (100);

    means for coalescing liquid droplets from the gas stream;

    means for accelerating and decelerating the gas stream; and

    means for collecting the coalesced liquid droplets.


     
    18. The system of claim 17, wherein the means for changing directions of the gas stream comprises means for making a first and a second change of direction.
     
    19. The system of claim 17, wherein the composite vanes (100) are arranged in a generally parallel configuration, the composite vanes (100) formed by pultrusion from composite materials including a fiber reinforced with one or more of fiberglass, carbon, and aromatic polyamide, and a thermosetting resin.
     


    Ansprüche

    1. Schaufel (100) zum Entfernen von Flüssigkeiten, die in einem Gasstrom mitgerissen werden, wobei die Schaufel (100) ein Profil aufweist, das zur Formung durch Pultrusion fähig ist, umfassend:

    einen gewölbten Hauptabschnitt (110), der im Allgemeinen parallel zu dem Gasstrom ausgerichtet ist und gewölbt ist, um den Gasstrom neu auszurichten, wobei der gewölbte Hauptabschnitt (110) eine erste und eine zweite Änderung der Richtung des Gasstroms bewirkt;

    ein erstes Luftnest (120), das auf einer ersten Seite des gewölbten Hauptabschnitts (110) geformt ist, wobei das erste Luftnest (120) bemessen und in den Gasstrom ausgerichtet ist, wo der Gasstrom zuerst die Richtung ändert; und

    ein zweites Luftnest (130), das auf einer zweiten Seite des gewölbten Hauptabschnitts (110) geformt ist, wobei das zweite Luftnest (130) kleiner als das erste Luftnest (120) ist und bemessen und in den Gasstrom ausgerichtet ist, wo der Gasstrom die zweite Richtungsänderung vornimmt, wobei die Schaufel (100) eine Verbundschaufel ist, die durch Pultrusion geformt wird, dadurch gekennzeichnet, dass die Oberflächenenergie der Verbundschaufel geringer als Oberflächenspannungen der Flüssigkeiten ist.


     
    2. Schaufel (100) nach Anspruch 1, wobei die Schaufel (100) aus Materialien geformt wird, die eine Faser, die mit einem oder mehreren von Glasfasern, Kohlenstoff und aromatischem Polyamid verstärkt ist, und ein Duroplast beinhalten.
     
    3. Schaufel (100) nach Anspruch 1, wobei eine Vielzahl der Schaufeln (100) in einer vorher bestimmten Trennung positioniert wird, um die Flüssigkeiten aus dem Gasstrom zu entfernen.
     
    4. Schaufel (100) nach Anspruch 3, wobei die Trennung zwischen etwa 2,54 cm und etwa 4,7625 cm liegt und vorzugsweise ungefähr 4,1275 cm beträgt.
     
    5. Schaufel (100) nach Anspruch 1, weiterhin umfassend einen Oberflächenschleier, der auf die Schaufel (100) aufgebracht wird, um die Oberflächenbenetzbarkeit zu justieren.
     
    6. Schaufel (100) nach Anspruch 1, weiterhin umfassend zusätzliche Schichten, die auf die Schaufel (100) aufgebracht werden, wobei die Schichten dahingehend arbeiten, die Radarsichtbarkeit zu verringern.
     
    7. Schaufel (100) nach Anspruch 1, wobei der gewölbte Hauptabschnitt (110) eine glatte Wölbung umfasst.
     
    8. Schaufel (100) nach Anspruch 1, wobei der gewölbte Hauptabschnitt (110) eine Reihe von ebenen Flächen umfasst, die sich einer glatten Wölbung annähern.
     
    9. Schaufel (100) nach Anspruch 1, wobei das erste Luftnest (120) einer ersten Verbundschaufel (100) in paralleler Konstruktion mit einer zweiten Verbundschaufel (100) eine erste Kehle (108) formt, wobei der Gasstrom beschleunigt wird, um ein Mitreißen von Flüssigkeit durch das zweite Luftnest (130) zu fördern.
     
    10. Schaufel (100) nach Anspruch 1, wobei der gewölbte Hauptabschnitt (110) eine Dicke von etwa 0,4763 cm aufweist und das erste und das zweite Nest (120, 130) durch Nestwände definiert sind, die Dicken von etwa 0,3175 cm aufweisen.
     
    11. Schaufel (100) nach Anspruch 1, wobei die Schaufel (100) eine Breite von etwa 12,7 cm und eine Länge zwischen etwa 12,7 cm und etwa 365,76 cm aufweist.
     
    12. Schaufel (100) nach Anspruch 1, wobei die Flüssigkeitstropfenentfernungseffizienz für 30-Mikron-Tropfen 100 Prozent ist.
     
    13. Verfahren zur Herstellung einer Verbundschaufel (100) zur Verwendung beim Entfernen von Flüssigkeitstropfen aus einem Gasstrom, umfassend:

    Verstärken eines Fasermaterials mit einem oder mehreren von Glasfasern und aromatischem Polyamid;

    Imprägnieren des verstärkten Fasermaterials mit einem Duroplast;

    Ziehen des imprägnierten verstärkten Fasermaterials durch eine Düse und

    gleichzeitig mit dem Zugschritt Anwenden von Wärme mit einer konstanten Temperatur auf das Material, wobei die Verbundschaufel (100) mit einem gewünschten Profil geformt wird und wobei das gewünschte Profil umfasst:

    einen gewölbten Hauptabschnitt (110), der im Allgemeinen parallel zu dem Gasstrom ausgerichtet ist und gewölbt ist, um den Gasstrom neu auszurichten, wobei der gewölbte Hauptabschnitt (110) dazu fähig ist, eine erste und eine zweite Änderung der Richtung des Gasstroms zu bewirken;

    ein erstes Luftnest (120), das auf einer ersten Seite des gewölbten Hauptabschnitts (110) geformt ist, wobei das erste Luftnest (120) sich an der Verbundschaufel (100) befindet, wo der Gasstrom zuerst die Richtung ändert; und

    ein zweites Luftnest (130), das auf einer zweiten Seite des gewölbten Hauptabschnitts (110) geformt ist, wobei das zweite Luftnest (130) kleiner als das erste Luftnest (120) ist und sich an der Verbundschaufel (100) befindet, wo der Gasstrom die zweite Richtungsänderung vornimmt, dadurch gekennzeichnet, dass die Oberflächenenergie der Verbundschaufel geringer als Oberflächenspannungen der Flüssigkeitstropfen ist.


     
    14. System, beinhaltend eine Vielzahl von Verbundschaufeln (100) nach einem der vorhergehenden Ansprüche 1-12 zum Entfernen von Flüssigkeitstropfen aus einem Gasstrom, umfassend:
    eine Kammer, die die Vielzahl von Verbundschaufeln beherbergt, wobei die Schaufeln durch einen vorher bestimmten Abstand getrennt sind.
     
    15. System nach Anspruch 14, wobei die Verbundschaufeln (100) eine Reihe von ebenen Flächen umfassen, die eine insgesamt im Allgemeinen gewölbte Form aufweisen.
     
    16. System nach Anspruch 14, umfassend einen Koaleszer, der an einen Austritt von der Kammer gekoppelt ist, wobei der Koaleszer mit anderen Koaleszern oder anderen Filtern und Schaufeln kombiniert ist.
     
    17. System, beinhaltend Verbundschaufeln (100) nach einem der Ansprüche 1-12 zum Entfernen von Flüssigkeiten und festen Partikeln aus einem Gasstrom, umfassend:

    ein Mittel zum Ändern der Richtungen des Gasstroms, wobei das Mittel zum Ändern der Richtungen zwei oder mehr Verbundschaufeln (100) umfasst;

    ein Mittel zum Koaleszieren von Flüssigkeitstropfen aus dem Gasstrom;

    ein Mittel zum Beschleunigen und Verlangsamen des Gasstroms und

    ein Mittel zum Sammeln der koaleszierten Flüssigkeitstropfen.


     
    18. System nach Anspruch 17, wobei das Mittel zum Ändern der Richtungen des Gasstroms ein Mittel zum Vornehmen einer ersten und einer zweiten Richtungsänderung umfasst.
     
    19. System nach Anspruch 17, wobei die Verbundschaufeln (100) in einer im Allgemeinen parallelen Konfiguration angeordnet sind, wobei die Verbundschaufeln (100) durch Pultrusion aus Verbundmaterialien geformt werden, die eine Faser, die mit einem oder mehreren von Glasfasern, Kohlenstoff und aromatischem Polyamid verstärkt ist, und ein Duroplast beinhalten.
     


    Revendications

    1. Aube (100) servant à retirer les liquides entraînés dans un flux de gaz, l'aube (100) ayant un profil capable de formation par pultrusion, comportant :

    une section principale incurvée (110) orientée de manière généralement parallèle par rapport au flux de gaz et incurvée pour réorienter le flux de gaz, la section principale incurvée (110) donnant lieu à un premier changement de direction et à un deuxième changement de direction du flux de gaz ;

    une première poche d'air (120) formée sur un premier côté de la section principale incurvée (110), la première poche d'air étant dimensionnée (120) et orientée jusque dans le flux de gaz là où le flux de gaz change en premier de direction ; et

    une deuxième poche d'air (130) formée sur un deuxième côté de la section principale incurvée (110), la deuxième poche d'air (130) étant plus petite que la première poche d'air (120) et étant dimensionnée et orientée jusque dans le flux de gaz là où le flux de gaz effectue le deuxième changement de direction, dans laquelle l'aube (100) est une aube composite formée par pultrusion, caractérisée en ce que l'énergie de surface de l'aube composite est inférieure par rapport aux tensions de surface des liquides.


     
    2. Aube (100) selon la revendication 1, dans laquelle l'aube (100) est formée à partir de matériaux comprenant une fibre renforcée par un ou plusieurs parmi de la fibre de verre, du carbone, et du polyamide aromatique et une résine thermodurcissable.
     
    3. Aube (100) selon la revendication 1, dans laquelle des aubes d'une pluralité d'aubes (100) sont placées au niveau d'une séparation prédéterminée pour retirer les liquides en provenance du flux de gaz.
     
    4. Aube (100) selon la revendication 3, dans laquelle la séparation est entre environ 2,54 cm et environ 4,7625 cm et de préférence mesure 4,1275 cm.
     
    5. Aube (100) selon la revendication 1, comportant par ailleurs un voile de surface appliqué sur l'aube (100) pour ajuster la mouillabilité en surface.
     
    6. Aube (100) selon la revendication 1, comportant par ailleurs des couches supplémentaires appliquées sur l'aube (100), dans laquelle les couches servent à réduire la visibilité par rapport à tout radar.
     
    7. Aube (100) selon la revendication 1, dans laquelle la section principale incurvée (110) comporte une courbe lisse.
     
    8. Aube (100) selon la revendication 1, dans laquelle la section principale incurvée (110) comporte une série de parties plates se rapprochant d'une courbe lisse.
     
    9. Aube (100) selon la revendication 1, dans laquelle la première poche d'air (120), d'une première aube composite (100) en construction parallèle par rapport à une deuxième aube composite (100) forme une première gorge (108), dans laquelle le flux de gaz est accéléré pour accroître l'entraînement d'humidité par la deuxième poche d'air (130).
     
    10. Aube (100) selon la revendication 1, dans laquelle la section principale incurvée (110) a une épaisseur d'environ 0,4763 cm et les première et deuxième poches (120, 130) sont définies par des parois de poche ayant une épaisseur d'environ 0,3175 cm.
     
    11. Aube (100) selon la revendication 1, dans laquelle l'aube (100) a une largeur d'environ 12,7 cm et une longueur entre environ 12,7 cm et environ 365,76 cm.
     
    12. Aube (100) selon la revendication 1, dans laquelle l'efficacité de retrait des gouttelettes de liquide pour des gouttelettes de 30 microns est de 100 pour cent.
     
    13. Procédé de fabrication d'une aube composite (100) servant à des fins d'utilisation pour retirer les gouttelettes de liquide en provenance d'un flux de gaz, comportant les étapes consistant à :

    renforcer un matériau fibreux par un ou plusieurs parmi de la fibre de verre et du polyamide aromatique ;

    imprégner le matériau fibreux renforcé au moyen d'une résine thermodurcissable ;

    tirer le matériau fibreux renforcé imprégné au travers d'une filière ; et

    simultanément avec l'étape consistant à tirer, appliquer de la chaleur à une température constante sur le matériau, ce par quoi l'aube composite (100) ayant un profil souhaité est formée, et ce par quoi le profil souhaité comporte :

    une section principale incurvée (110) orientée de manière généralement parallèle par rapport au flux de gaz et incurvée pour réorienter le flux de gaz, la section principale incurvée (110) étant capable de donner lieu à un premier changement de direction et à un deuxième changement de direction du flux de gaz ;

    une première poche d'air (120) formée sur un premier côté de la section principale incurvée (110), la première poche d'air (120) étant située sur l'aube composite (100) là où le flux de gaz change en premier de direction ; et

    une deuxième poche d'air (130) formée sur un deuxième côté de la section principale incurvée (110), la deuxième poche d'air (130) étant plus petite que la première poche d'air (120) et étant située sur l'aube composite (100) là où le flux de gaz effectue le deuxième changement de direction, caractérisé en ce que l'énergie de surface de l'aube composite est inférieure par rapport aux tensions de surface des gouttelettes de liquide.


     
    14. Système comprenant une pluralité d'aubes composites (100) selon l'une quelconque des revendications 1 à 12 servant à retirer des gouttelettes de liquide en provenance d'un flux de gaz, comportant
    un plénum recevant la pluralité d'aubes composites, les aubes étant séparées d'une distance prédéterminée.
     
    15. Système selon la revendication 14, dans lequel les aubes composites (100) comportent une série de parties plates ayant une forme d'ensemble généralement incurvée.
     
    16. Système selon la revendication 14, comportant un coalesceur couplé à une sortie en provenance de plénum, dans lequel le coalesceur est combiné avec d'autres coalesceurs ou d'autres filtres et aubes.
     
    17. Système comprenant des aubes composites (100) selon l'une quelconque des revendications 1 à 12 servant au retrait de liquides et de particules solides en provenance d'un flux de gaz, comportant :

    un moyen servant à changer les directions du flux de gaz, dans lequel le moyen servant à changer les directions comporte deux aubes composites (100) ou plus ;

    un moyen servant à coalescer des gouttelettes de liquide en provenance du flux de gaz ;

    un moyen servant à faire accélérer et décélérer le flux de gaz ; et

    un moyen servant à collecter les gouttelettes de liquide coalescées.


     
    18. Système selon la revendication 17, dans lequel le moyen servant à changer les directions du flux de gaz comporte un moyen servant à effectuer un premier changement de direction et un deuxième changement de direction.
     
    19. Système selon la revendication 17, dans lequel les aubes composites (100) sont agencées selon une configuration généralement parallèle, les aubes composites (100) étant formées par pultrusion à partir de matériaux composites comprenant une fibre renforcée par un ou plusieurs parmi de la fibre de verre, du carbone, et du polyamide aromatique, et une résine thermodurcissable.
     




    Drawing














    Cited references

    REFERENCES CITED IN THE DESCRIPTION



    This list of references cited by the applicant is for the reader's convenience only. It does not form part of the European patent document. Even though great care has been taken in compiling the references, errors or omissions cannot be excluded and the EPO disclaims all liability in this regard.

    Patent documents cited in the description