(19)
(11)EP 2 364 833 B1

(12)EUROPEAN PATENT SPECIFICATION

(45)Mention of the grant of the patent:
04.11.2020 Bulletin 2020/45

(21)Application number: 09827584.5

(22)Date of filing:  18.11.2009
(51)International Patent Classification (IPC): 
B29C 43/36(2006.01)
B29C 70/54(2006.01)
B29C 43/34(2006.01)
B29K 105/08(2006.01)
B29C 70/48(2006.01)
B29C 70/46(2006.01)
B29K 101/10(2006.01)
B29K 105/00(2006.01)
(86)International application number:
PCT/JP2009/069586
(87)International publication number:
WO 2010/058803 (27.05.2010 Gazette  2010/21)

(54)

METHOD FOR PRODUCING FIBER-REINFORCED COMPOSITE MATERIAL AND APPARATUS FOR PRODUCING FIBER-REINFORCED COMPOSITE MATERIAL

VERFAHREN ZUR HERSTELLUNG EINES FASERVERSTÄRKTEN VERBUNDMATERIALS UND VORRICHTUNG ZUR HERSTELLUNG EINES FASERVERSTÄRKTEN VERBUNDMATERIALS

PROCÉDÉ DE FABRICATION D'UN MATÉRIAU COMPOSITE RENFORCÉ PAR DES FIBRES ET APPAREIL POUR LA FABRICATION D'UN MATÉRIAU COMPOSITE RENFORCÉ PAR DES FIBRES


(84)Designated Contracting States:
AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO SE SI SK SM TR

(30)Priority: 19.11.2008 JP 2008296127

(43)Date of publication of application:
14.09.2011 Bulletin 2011/37

(73)Proprietor: Mitsubishi Heavy Industries, Ltd.
Tokyo 108-8215 (JP)

(72)Inventors:
  • HORIZONO Hideki
    Nagoya-shi Aichi 455-8515 (JP)
  • NISHIYAMA Shigeru
    Nagoya-shi Aichi 455-8515 (JP)

(74)Representative: Henkel & Partner mbB 
Patentanwaltskanzlei, Rechtsanwaltskanzlei Maximiliansplatz 21
80333 München
80333 München (DE)


(56)References cited: : 
EP-A2- 0 423 676
DE-A1- 10 258 630
JP-A- 2002 036 257
JP-A- 2005 271 551
JP-A- 2007 001 179
JP-T- 2002 538 991
WO-A1-94/23924
JP-A- 6 155 483
JP-A- 2005 271 551
JP-A- 2007 001 179
JP-B- 51 022 030
US-A- 4 961 700
  
      
    Note: Within nine months from the publication of the mention of the grant of the European patent, any person may give notice to the European Patent Office of opposition to the European patent granted. Notice of opposition shall be filed in a written reasoned statement. It shall not be deemed to have been filed until the opposition fee has been paid. (Art. 99(1) European Patent Convention).


    Description

    Technical Field



    [0001] The present invention relates to a manufacturing method of a fiber reinforced composite material and a manufacturing apparatus of a fiber reinforced composite material.

    Background Art



    [0002] A fiber reinforced composite material is known as a kind of composite material of fiber-based material and resin. The fiber reinforced composite material has high strength as well as light weight, and is used as a material for apparatuses such as an automobile and an aircraft.

    [0003] A RTM (Resin Transfer Molding) method is known as a manufacturing method of the fiber reinforced composite material. FIG. 1 is a diagram schematically showing a molding method using the RTM method. In the RTM method, a molding die (a pair of female and male molds in FIG. 1) is prepared. A fiber-based material is placed between the female mold and the male mold. The female and male molds are so arranged as to come in close contact with both surfaces of the fiber-based material. The female and male molds are provided with a resin supply line and a resin ejection line. After the female and male molds are clamped, the resin is supplied to the fiber-based material through the resin supply line. The fiber-based material is impregnated with the supplied resin. An excess portion of the resin is ejected through the resin ejection line. After the fiber-based material is impregnated with the resin, the resin is cured. Thus, the fiber reinforced composite material is manufactured.

    [0004] JP 2004-130598 A and JP S56-135025 A are known as techniques relating to the RTM method.

    [0005] As another manufacturing method of the fiber reinforced composite material, a RFI (Resin Film Infusion) method is known. FIG. 2 is a diagram schematically showing the RFI method. In the RFI method, the fiber-based material is placed on a molding die and a resin film is placed on one surface of the fiber-based material. The fiber-based material provided with the resin film is covered with a bag member. Then, a pressure of a space covered by the bag member is reduced and the resin film is cured by heating and pressurizing. Thus, the fiber reinforced composite material is obtained. At this time, the resin film infiltrates in a thickness direction of the fiber-based material.

    [0006] JP 2005 271551 A discloses an apparatus and method for RTM molding a fiber reinforced composite material element. The fiber-based material is placed in a first mold section and a matrix resin is provided and spread on the surface of the fiber-based material at the same time. The resin is spread into and along the surfaces of the fiber-based material while the mold cavity is closed by moving a second mold section towards the first mold section. The movement of the fiber-based material in the first mold section is not restricted as long as the mold sections are not closed.

    Summary of the Invention



    [0007] According to the RTM method shown in FIG. 1, the fiber reinforced composite material can be manufactured to have a dimension of a space formed between the female and male molds. Therefore, the fiber reinforced composite material can be obtained with good dimensional accuracy. Meanwhile, the fiber-based material has a flow resistance against the resin. The resin is supplied from a portion connected with the resin supply line to a portion connected with the resin ejection line so as to impregnate the fiber-based material. Due to the flow resistance of the fiber-based material, there is a case that a portion which is not fully impregnated with the resin is generated depending on a size of the fiber-based material.

    [0008] In the RTM method, in order that the fiber-based material is entirely impregnated with the resin, it could be considered to provide a plurality of resin supply lines as shown in FIG. 3. However, in such a case, the structure of the molding die becomes complicated. At this time, there are problems such as increase of burden for cleaning the molding die after the molding is completed. Moreover, when the plurality of resin supply lines are provided, a control of a flow amount of the resin becomes complicated and a process management becomes difficult.

    [0009] Meanwhile, in a case of using the RFI method, the resin can be arranged on the whole surface of the fiber-based material. However, it is difficult to obtain high dimensional accuracy with respect to the thickness.

    [0010] Therefore, an object of the present invention is to provide a manufacturing method and a manufacturing apparatus of a fiber reinforced composite material, in which the whole fiber-based material is impregnated with a resin and a molding can be performed with high dimensional accuracy.

    [0011] A manufacturing method of a fiber reinforced composite material according to the present invention comprises the features of claim 1 and the manufacturing apparatus comprises the features of claim 7. The method inter alia includes fixing a fiber-based material having a first surface to a first mold to provide an opening for the first surface; setting a second mold having a second surface such that the first surface faces the second surface through a space; filling resin into the space; and depressing the second mold toward the first mold to bring the second surface closer to the first surface, such that the fiber-based material is impregnated with the resin.

    [0012] According to the present invention, the resin filled in the space is pushed by the second surface of the second mold and thereby infiltrates into the fiber-based material. Since the fiber-based material is face-widely impregnated with the resin, the resin is easily spread over the whole part of the fiber-based material. Moreover, a shape of the fiber reinforced composite material to be molded has a shape corresponding to the first and second molds. The thickness of the fiber reinforced composite material is coincident with a final distance between the first mold and the second mold. In other words, a molding can be performed with good dimensional accuracy.

    [0013] The filling of the resin includes reducing a pressure of the space. It is preferable that the filling of the resin includes supplying the resin into the space after the pressure-reducing. By reducing the pressure of the space, air bubbles can be prevented from being mixed into the fiber-based material.

    [0014] According to the invention the fixing the fiber-based material to the first mold includes setting the first mold such that the end portions of the fiber-based material are sandwiched by surfaces of the first mold. According to the present invention, the fiber-based material is fixed in the end portions by the both surfaces. Since the fiber-based material is securely fixed, the fiber-based material can be prevented from moving at the time of filling the resin. Thus, the dimensional accuracy of the fiber reinforced composite material to be molded can be improved.

    [0015] It is preferable that the manufacturing method of the fiber reinforced composite material mentioned above further includes curing the impregnated resin after the impregnation with the resin.

    [0016] It is preferable that the curing the resin includes curing the impregnated resin by pressurizing.

    [0017] It is preferable that the curing the resin by pressurizing includes pressurizing the impregnated resin by a resin accumulator.

    [0018] It is preferable that the curing the resin mentioned above includes curing the same by warming the impregnated resin.

    [0019] A manufacturing apparatus of a fiber reinforced composite material according to the present invention inter alia includes: a first mold configured to fix a fiber-based material having a first surface to provide an opening for the first surface; a second mold having a second surface and arranged such that the first surface faces the second surface through a space; and a drive mechanism configured to relatively moving the second mold with respect to the first mold such that the second surface approaches the first surface. In this manufacturing apparatus, the second surface is brought into contact with the first surface by the drive mechanism under the condition that a resin is filled into the space, whereby the resin impregnates into the fiber-based material.

    [0020] The manufacturing apparatus of the fiber reinforced composite material according to the invention includes a resin supply line that is connected to the space such that the resin can be filled into the space.

    [0021] It is preferable that the resin supply line constructed to be able to pressurize inside the space.

    [0022] It is preferable that the manufacturing apparatus of the fiber reinforced composite material mentioned above further includes a pressurizing line that is connected to the space such that the space is pressurized.

    [0023] The pressurizing line is preferably connectable with a resin accumulator.

    [0024] It is preferable that the manufacturing apparatus of the fiber reinforced composite material mentioned above further includes a sealing member for sealing the space.

    [0025] The first mold is formed to sandwich the end portions of the fiber-based material by the surfaces of the first mold.

    [0026] The manufacturing apparatus of the fiber reinforced composite material according to the invention further includes a resin ejection line that is connected to the space to be able to eject the resin inside the space.

    [0027] It is preferable that the manufacturing apparatus of the fiber reinforced composite material mentioned above further includes a stopper mechanism for restricting a movement of the second mold in order that the second surface is not further moved to a fiber-based material side than a predetermined first position. According to the present invention, a final relative position of the second mold with respect to the first mold can be accurately controlled by the stopper mechanism. Thus, the dimensional accuracy of the fiber reinforced composite material to be molded can be further improved.

    [0028] According to the present invention, it becomes possible to provide a manufacturing method and a manufacturing apparatus of a fiber reinforced composite material capable of impregnating a whole part of a resin base material with a resin and performing a molding with high dimensional accuracy.

    Brief Description of the Drawings



    [0029] 

    FIG. 1 is a diagram showing a manufacturing method of a fiber reinforced composite material by an RTM method;

    FIG. 2 is a diagram showing the manufacturing method of the fiber reinforced composite material by an RFI method;

    FIG. 3 is a diagram showing the manufacturing method of the fiber reinforced composite material by the RTM method;

    FIG. 4 is a diagram schematically showing a manufacturing apparatus of a fiber reinforced composite material according to an embodiment;

    FIG. 5 is a flow chart showing a manufacturing method of the fiber reinforced composite material according to the embodiment;

    FIG. 6 is a process diagram showing the manufacturing method of the fiber reinforced composite material according to the embodiment;

    FIG. 7 is a process diagram showing a manufacturing method of the fiber reinforced composite material according to the embodiment;

    FIG. 8 is a process diagram showing the manufacturing method of the fiber reinforced composite material according to the embodiment;

    FIG. 9 is a diagram schematically showing the manufacturing apparatus of the fiber reinforced composite material according to a modified example of the embodiment;

    FIG. 10 is a diagram schematically showing the manufacturing apparatus of the fiber reinforced composite material according to another modified example of the embodiment;

    FIG. 11 is a process diagram showing the manufacturing method of the fiber reinforced composite material according to an example serving to explain aspects of the disclosure;

    FIG. 12 is a process diagram showing the manufacturing method of the fiber reinforced composite material according to the example;

    FIG. 13 is a process diagram showing the manufacturing method of the fiber reinforced composite material according to the example;

    FIG. 14 is a process diagram showing the manufacturing method of the fiber reinforced composite material according to the example; and

    FIG. 15 is a process diagram showing the manufacturing method of the fiber reinforced composite material according to the example.


    Description of Embodiments


    [Embodiment]



    [0030] An embodiment of the present invention will be described with reference to the attached drawings. FIG. 4 is a diagram schematically showing a manufacturing apparatus of a fiber reinforced composite material according to the present embodiment. The manufacturing apparatus is an apparatus for impregnating a fiber-based material 2 with resin and curing the impregnated resin. The fiber reinforced composite material is obtained by curing the impregnated resin.

    [0031] A glass fiber-based material and a carbon fiber-based material are exemplified as the fiber-based material 2 used in the present embodiment.

    [0032] As shown in FIG. 4, the fiber reinforced composite material manufacturing apparatus includes a first mold 10, a second mold 20, a drive mechanism 23, a resin supply line 21 and resin ejection lines 3.

    [0033] The first mold 10 and the second mold 20 are made of metals such as iron, aluminum, and invar.

    [0034] The first mold 10 includes a first member 11, a second member 12 and a third member 13.

    [0035] The first member 11 has a surface on which the fiber-based material 2 to be molded is placed.

    [0036] The second member 12 is arranged to contact a side surface of the fiber-based material 2. The second member 12 is arranged to surround the fiber-based material 2. Movement of the fiber-based material 2 in an extending direction of the fiber-based material is restricted by the second member 12.

    [0037] The third member 13 is placed on the second member 12. A part of the third member 13 extends onto the fiber-based material 2. Thus, the fiber-based material 2 is sandwiched and fixed by the first mold 10 at the end portions. The third member 13 is formed to have a frame shape corresponding to a shape of an outer peripheral portion of the fiber-based material 2. Therefore, an upper surface portion of the fiber-based material 2 other than the outer peripheral portion is not covered by the third member 13 and is free. The free upper surface portion of the fiber-based material 2 is defined as a first surface 18 hereinafter.

    [0038] The second mold 20 has a second surface 19. The second mold 20 is arranged in such a manner that the second surface 19 faces to the first surface 18 of the fiber-based material 2. The second mold 20 is relatively movable with respect to the first mold 10. Specifically, the second mold 20 is constructed in such a manner that a distance between the second surface 19 and the first surface 18 is variable. When the second surface 19 is distanced away from the first surface 18, a space 1 is formed between the first mold 10 and the second mold 20. The side portion of the second mold slidably contacts the third member 13 so that the space 1 becomes a sealed space.

    [0039] A seal member 5 is attached to a portion where the first mold 10 and the second mold 20 come into contact with each other. The resin is filled into the space 1 at the time of molding. Leakage of the resin is prevented by the seal member 5 at the time of filling the resin into the space 1.

    [0040] The drive mechanism 23 is a unit for moving the second mold 20. The drive mechanism 23 is an actuator.

    [0041] The resin supply line 21 is a flow path for supplying the resin to the space 1. The resin supply line 21 is provided in the second mold 20 so that the space 1 is communicated to the outside. The resin supply line 21 can be connected to a resin supply unit (not shown). Further, the resin supply line 21 is constructed to be connectable with a resin actuator (not shown in FIG. 4).

    [0042] Each of the resin ejection lines 3 is a flow path for ejecting the supplied resin. The resin ejection lines 3 are provided in the first mold 10. The resin ejection lines 3 are provided in such a manner that the side surface of the fiber-based material 2 is communicated to an external unit or environment. A tube with a valve 4 is connected to each of the resin ejection line 3. By opening and closing the valve 4, a flow of the resin through the resin ejection line 3 can be controlled. Further, each of the resin ejection lines 3 is connected to a pressure reducing unit (not shown) through the tube.

    [0043] Subsequently, a fiber reinforced composite material manufacturing method according to the present embodiment will be described. FIG. 5 is a flow chart showing the fiber reinforced composite material manufacturing method.

    Step S10: Setting of Fiber-Based Material



    [0044] Initially, the fiber-based material 2 is placed on the first member 11. Then, the second member 12 and the third member 13 are set for the peripheral portions of the fiber-based material 2 to be pressed at the both surfaces thereof.

    Step S20: Setting of Second Mold



    [0045] Further, as shown in FIG. 4, the second mold 20 is attached. At this time, the second mold 20 is attached in such a manner that the second surface 19 faces to the first surface 18 through the space 1.

    Step S30: Filling of Resin



    [0046] Subsequently, each of the resin ejection lines 3 is connected to the pressure reducing unit (not shown) and the pressure inside the space 1 is reduced by the pressure reducing unit (Step S31). Next, the resin supply unit (not shown) is attached to the resin supply line 21 and the resin 6 is supplied into the space 1 through the resin supply line 21 as shown in FIG. 6 (Step S32). At this time, the resin 6 may be supplied in the state that the resin 6 is warmed, in order to increase flowability. The supplied resin 6 fills the space 1. Further, an excessive amount of resin is infiltrated in the fiber-based material 2 and is ejected through the resin ejection lines 3 from the side portions of the fiber-based material 2. It should be noted that when air remains inside the space 1 and the fiber-based material 2, the resin mixed with the air is ejected through the resin ejection lines 3. Therefore, by observing whether or not air bubbles are contained in the resin flowing through the resin ejection lines 3, it can be checked whether or not the filling of the resin 6 is completed.

    Step S40: Impregnation of Resin



    [0047] Subsequently, as shown in FIG. 7, a closing member 22 is attached to the resin supply line 21 to close the resin supply line 21. Alternatively, a valve of the resin supply line 21 may be closed. Then, the second mold 20 is depressed or pushed to the first mold 10 by the drive mechanism 23. The second mold 20 is depressed to a position where the second surface 19 is contact with the first surface 18. That is, the second mold 20 is pushed down until the space 1 disappears. Thus, the fiber-based material 2 is impregnated with the resin 6 filled in the space 1.

    [0048] In this step, the resin 6 filled in the space 1 is pushed with a plane (i.e., the second surface 19) and thereby the fiber-based material 2 is impregnated with the resin 6. Also, a portion where the resin 6 infiltrates into the fiber-based material 2 is a plane (i.e., the first surface 18). Therefore, the resin 6 quickly infiltrates into the entire fiber-based material 2.

    Step S50: Curing of Resin



    [0049] Subsequently, each of the valves 4 is closed and the closing member 22 is detached. Then, as shown in FIG. 8, a resin accumulator 7 is attached to the resin supply line 21. The resin 6 impregnated into the fiber-based material 2 is pressurized by the resin accumulator 7 (Step S51). Further, the first mold 10 and the second mold 20 are carried into a heating unit (not shown) such as an oven to be heated (Step S52). Thus, the resin 6 is cured and the fiber reinforced composite material is obtained. The obtained fiber reinforced composite material is formed to have a shape corresponding to a space finally formed between the first mold 10 and the second mold 20.

    [0050] It should be noted that it is not always necessary to use the resin accumulator 7 for the purpose of pressurizing the resin 6, and another pressurizing unit may be used. However, it is preferable to use the resin accumulator 7 from a viewpoint that the resin accumulator 7 can pressurize the resin 6 to a desired pressure even when a pressure supplied from a pressure source is low.

    [0051] Moreover, the resin 6 is merely required to be heated, and it is not always necessary to prepare the heating unit such as the oven. For example, a flow path may be provided for warmed oil to flow through the first mold 10 or the second mold 20. In this case, by the warmed oil, the first mold 10 or the second mold 20 is heated and the resin 6 is heated.

    [0052] As described above, according to the present embodiment, since the resin 6 is pushed with the plane and infiltrates into the fiber-based material 2 from the surface, the resin 6 can speedily infiltrate.

    [0053] Further, when the resin 6 is supplied while being warmed in order to increase the flowability, if it takes time for the resin 6 to infiltrate into the fiber-based material 2, there may be a case that the resin is cured. According to the present embodiment, since the resin 6 can be infiltrated in a short time, the resin 6 can be prevented from being cured before the resin 6 infiltrates. Thus, the resin 6 can be surely infiltrated into the entire fiber-based material 2.

    [0054] In addition, in the present embodiment, the shape of the obtained fiber reinforced composite material is defined by the first mold 10 and the second mold 20. The thickness of the fiber reinforced composite material is defined by a final distance between the first mold 10 and the second mold 20. Since the dimension of the fiber reinforced composite material is defined by the shapes of the first and second molds 10 and 20 and the distance between the first and second molds 10 and 20, the fiber reinforced composite material can be molded at high dimensional accuracy.

    [0055] Moreover, the present embodiment is particularly effective when the fiber-based material having a side longer than 300 mm is used. Such a fiber-based material has a large flow resistance against the resin and it is usually difficult to extend the resin over the entire surface of the fiber-based material. However, according to the present embodiment, even in the fiber-based material having the side longer than 300 mm, the resin can be extended over the entire surface of the fiber-based material.

    [0056] Also, the present embodiment is particularly effective when the fiber-based material having the side of 3 mm in thick or more is used. In such a fiber-based material, it is usually hard for the resin to be infiltrated in a thickness direction. However, according to the present embodiment, even in the fiber-based material having the side of 3 mm in thick or more, the resin can be uniformly infiltrated in the thickness direction.

    [0057] Also, the present embodiment is particularly effective when the fiber-based material having the fiber volume content of 50 to 60 % is used. When the fiber volume content exceeds 50 %, it is usually extremely difficult to impregnate with the resin. However, according to the present embodiment, even in the fiber-based material having the fiber volume content exceeding 50 %, the resin can easily impregnate. In meanwhile, if the fiber volume content exceeds 60 %, the resin tends to be hard to infiltrate.

    [0058] Also, the present embodiment is particularly effective when the resin having the resin viscosity of 100 to 500 mPa·s (100 to 500 cp) is used. If the resin viscosity exceeds 500 cp, the resin tends to be hard to impregnate.

    [0059] Subsequently, a modified example of the embodiment will be described.

    [0060] FIG. 9 is a diagram schematically showing a manufacturing apparatus of the fiber reinforced composite material according to the present modified example. In the manufacturing apparatus of the fiber reinforced composite material according to this modified example, the resin supply line 21 is not provided in the second mold 20 but provided in the first mold 10. Further, a pressurizing line 8 is provided other than the resin supply line 21. In the present modified example, since the resin supply line 21 is similar to that of the embodiment, the detailed explanation thereof is omitted.

    [0061] The pressurizing line 8 is provided in the first member 11. The pressurizing line 8 is constructed to be connectable to the resin accumulator 7. In the present modified example, the pressurizing line 8 is connected to the resin accumulator 7 at the time of pressurizing the resin 6 in Step S51.

    [0062] As shown in the present modified example, it is possible to separately provide a line at the time of supplying the resin and a line at the time of pressurizing. From the viewpoint of simplification of the configuration, however, it is preferable that the resin supply line 21 and the pressurizing line 8 are used in common.

    [0063] Further, as shown in the present modified example, it is not always necessary to provide the resin supply line 21 in the second mold 20. The second mold 20 is a part that is moved by the drive mechanism 23. When the resin supply line 21 is provided in the second mold 20, the resin supply unit is attached to the second mold 20. If such an external unit is attached to the movable second mold, there may be a fear that it becomes difficult to move the second mold 20. By attaching the resin supply line 21 to the first mold 10, such a fear can be dissolved.

    [0064] Subsequently, another modified example of the present embodiment will be described.

    [0065] FIG. 10 is a diagram schematically showing a manufacturing apparatus of a fiber reinforced composite material according to the present modified example. In the manufacturing apparatus of the fiber reinforced composite material according to this modified example, a stopper mechanism 9 is provided for the second mold 20. The stopper mechanism 9 extends from a part of the second mold 20 in a direction in parallel to the fiber-based material 2. The stopper mechanism 9 comes in contact with the first member 13 so that the second mold 20 is restricted from moving toward the first mold 10 beyond a predetermined position (i.e., a first position 24).

    [0066] By providing the stopper mechanism 9, a dimension of a space finally formed between the first mold 10 and the second mold 20 can be accurately controlled. Consequently, the fiber reinforced composite material can be formed at high dimensional accuracy.

    [Example]



    [0067] Subsequently, an example serving to explain certain aspects of the present disclosure will be described.

    [0068] FIGS. 11 to 15 are process diagrams showing a manufacturing method of the fiber reinforced composite material according to the present example. It is noted that the explanation of the same components as in the first embodiment is appropriately omitted.

    [0069] In the present example, the fiber-based material 2 is bent and folded, as shown in FIG. 11. A central portion of the fiber-based material 2 is designated as a central region 2-1 and both end portions of the fiber-based material are designated as end regions 2-2. It is assumed that a first surface 18 is provided on each of the central region 2-1 and the end regions 2-2.

    [0070] The first mold 10 includes a fourth member 14, a fifth member 15 and a sixth member 16.

    [0071] The fourth member 14 is a member for mounting the folded fiber-based material 2 thereon and is formed to have a shape corresponding to the fiber-based material 2.

    [0072] The fifth member 15 is arranged to support the end surface of the fiber-based material 2 by the upper surface.

    [0073] The sixth member 16 is arranged to sandwich the end region 2-2 between the sixth member 16 and the fourth member 14. An opening portion is formed in the sixth member 16 such that the second mold 20 can be arranged. Moreover, pressurizing lines 8 are provided in the sixth member 16.

    [0074] The second mold 20 is separated into a plurality of sections corresponding to the central region 2-1 and the end regions 2-2, respectively. Specifically, a second mold section 20-1 is provided for the central region 2-1 and second mold sections 20-2 are provided for the end regions 2-2. The second mold sections 20-1 and 20-2 are slid along wall surfaces of the opening portions formed in the sixth member 16, respectively. Moreover, a drive mechanism 23 is attached to each of the second mold sections 20-1 and 20-2.

    [0075] Each of the second mold sections (20-1, 20-2) is provided with resin supply lines (21-1, 21-2).

    [0076] Subsequently, a manufacturing method of a fiber reinforced composite material according to the present disclosure will be described.

    [0077] Initially, as shown in FIG. 11, the folded fiber-based material 2 is fixed to the first mold 10 and the second mold sections 20-1 and 20-2 are set. At this time, the second mold sections 20-1 and 20-2 are set in such a manner that spaces 1-1 and 1-2 are respectively formed, similarly to the embodiments already discussed.

    [0078] Subsequently, as shown in FIG. 12, resin 6 is supplied to the spaces 1 (1-1, 1-2) through the resin supply lines 21 (21-1, 21-2).

    [0079] After the resin is filled in the spaces 1 (1-1, 1-2), the second mold sections (20-1, 20-2) are pressed toward the fiber-based material 2 such that the fiber-based material 2 is impregnated with the resin 6. At this time, the second mold section 20-1 corresponding to the central region 2-1 is first pressed toward the fiber-based material 2, as shown in FIG. 13. Thus, the central region 2-1 is impregnated with the resin 6. Thereafter, the second mold sections 20-2 corresponding to the end regions 2-2 are pressed toward the fiber-based material 2 as shown in FIG. 14. Thus, the end regions 2-2 are impregnated with the resin 6.

    [0080] After that, similarly to the first embodiment, the impregnated resin 6 is pressurized and cured by the resin accumulators 7 so that the fiber reinforced composite material is obtained (shown in FIG. 15).

    [0081] If the resin 6 is infiltrated into the central region 2-1 and the end regions 2-2 at the same time, there are possibly caused portions which are not impregnated with the resin 6, between the central region and the end regions 2-2. Particularly, when the fiber-based material 2 is folded, it is difficult to impregnate the folded portion with the resin 6. Whereas, in the present embodiment, the resin 6 is first infiltrated into the central region 2-1 of the fiber-based material 2 and thereafter infiltrated into the end regions 2-2 thereof. Thus, it is suppressed to form regions which are not impregnated with the resin 6, between the central region 2-1 and the end regions 2-2, and therefore the entire portion of the fiber-based material 2 can be easily impregnated with the resin 6.


    Claims

    1. A manufacturing method of a fiber reinforced composite material comprising:

    fixing a fiber-based material (2) on a first mold (10) such that peripheral portions of the fiber-based material (2) are sandwiched by surfaces of the first mold (10) to restrict the movement of the fiber-based material (2) in an extending direction thereof and such that an opening for a first surface (18) of the fiber-based material (2) is provided, wherein the first mold (10) includes a first member (11) which has a surface on which the fiber-based material (2) to be molded is placed, a second member (12) which is arranged to surround the fiber-based material (2) to restrict the movement of the fiber-based material (2) in the extending direction, and a third member (13) which is placed on the second member (12) and a part of the third member (13) extends onto the fiber-based material (2) such that the fiber-based material (2) is sandwiched and fixed by the first mold (10) at the end portions and a surface portion of the fiber-based material (2) not covered by the third member (13) is defined as the first surface (18);

    setting a second mold (20) having a second surface (19) on the first mold (10) such that a side portion slidably contacts the third member (13) and such that the second surface (19) faces the first surface (18) through a sealed space (1) defined by the third member (13) and by the first and second surfaces (18,19);

    filling resin (6) into the sealed space (1); and

    relatively moving said second mold (20) toward said first mold (10) to bring the second surface (19) closer to the first surface (18), such that the fiber-based material (2) is impregnated with the resin through the first surface (18),

    wherein said filling comprises reducing a pressure inside the space (1) through a resin ejection line (3) connected to said space (1) and ejecting an excessive amount of resin through the resin ejection line (3) from a side portion of the fiber-based material (2).


     
    2. The manufacturing method according to claim 1, wherein said filling comprises:
    supplying the resin (6) into the space (1) after said reducing.
     
    3. The manufacturing method according to claim 1 or 2, further comprising:
    curing the impregnated resin after the impregnation with the resin.
     
    4. The manufacturing method according to claim 3, wherein said curing comprises:
    curing the impregnated resin by pressurizing.
     
    5. The manufacturing method according to claim 4, wherein said curing comprises:
    pressurizing the impregnated resin by a resin accumulator (7).
     
    6. The manufacturing method according to any of claims 4 to 5, wherein said curing comprises:
    curing the impregnated resin by heating the impregnated resin.
     
    7. A manufacturing apparatus of a fiber reinforced composite material, comprising:

    a first mold (10) configured to fix a fiber-based material (2) such that peripheral portions of the fiber-based material (2) are sandwiched by surfaces of the first mold (10) to restrict the movement of the fiber-based material (2) in an extending direction thereof and such that an opening for a first surface of the fiber-based material (2) is provided, wherein the first mold (10) includes a first member (11) which has a surface on which the fiber-based material (2) to be molded is placed, a second member (12) which is arranged to surround the fiber-based material (2) to restrict the movement of the fiber-based material (2) in the extending direction, and a third member (13) which is placed on the second member (12) and a part of the third member (13) extends onto the fiber-based material (2) such that the fiber-based material (2) is sandwiched and fixed by the first mold (10) at the end portions and a surface portion of the fiber-based material (2) not covered by the third member (13) is defined as the first surface (18);

    a second mold (20) having a second surface (19) and arranged on the first mold (10) such that a side portion slidably contacts the third member (13) and such that the second surface (19) faces the first surface (18) through a sealed space (1) defined by the third member (13) and by the first and second surfaces (18,19);

    a drive mechanism (23) configured to relatively move said second mold (20) with respect to said first mold (10) such that the second surface (19) approaches the first surface (18);

    a resin supply line (21) connected to said space (1) such that the resin can be filled into said space (1); and

    a resin ejection line (3) connected to said space (1) such that the resin can be ejected from the space (1) from a side portion of the fiber-based material (2).


     
    8. The manufacturing apparatus according to claim 7, wherein the resin supply line (21) is provided in the second mold (20).
     
    9. The manufacturing apparatus according to claim 7 or 8, wherein said resin supply line (21) is configured to be able to pressurize the space (1).
     
    10. The manufacturing apparatus according to claim 7, further comprising:
    a pressurizing line (8) connected to said space (1) such that said space (1) can be pressurized.
     
    11. The manufacturing apparatus according to claim 10, wherein said pressurizing line (8) is connectable with a resin accumulator (7).
     
    12. The manufacturing apparatus according to any of claims 7 to 11, wherein the resin ejection line (3) is provided in the first mold (10).
     
    13. The manufacturing apparatus according to any of claims 7 to 12, further comprising:
    a stopper mechanism (9) configured to restrict movement of said second mold (20) such that the second surface (19) is not further moved toward the fiber-based material (2) from a predetermined position.
     


    Ansprüche

    1. Ein Verfahren zur Herstellung eines faserverstärkten Verbundmaterials, umfassend:

    Fixieren eines faserbasierten Materials (2) an einer ersten Form (10) so, dass Umfangsabschnitte des faserbasierten Materials (2) sandwichartig zwischen Oberflächen der ersten Form (10) angeordnet sind, um die Bewegung des faserbasierten Materials (2) in einer Erstreckungsrichtung desselben einzuschränken, und so, dass eine Öffnung für eine erste Oberfläche (18) des faserbasierten Materials (2) bereitgestellt wird, wobei die erste Form (10) ein erstes Element (11) umfasst, das eine Oberfläche aufweist, an der das zu formende faserbasierte Material (2) angeordnet wird, ein zweites Element (12) umfasst, das so angeordnet ist, dass es das faserbasierte Material (2) umgibt, um die Bewegung des faserbasierten Materials (2) in der Erstreckungsrichtung zu begrenzen, und ein drittes Element (13) umfasst, das an dem zweiten Element (12) angeordnet ist und ein Teil des dritten Elements (13) sich auf das faserbasierte Material (2) erstreckt, so dass das faserbasierte Material (2) sandwichartig angeordnet und durch die erste Form (10) an den Endabschnitten fixiert ist und ein Oberflächenabschnitt des faserbasierten Materials (2), der nicht durch das dritte Element (13) bedeckt ist, als die erste Oberfläche (18) definiert ist,

    Aufsetzen einer zweiten Form (20) mit einer zweiten Oberfläche (19) auf die erste Form (10) so, dass ein Seitenabschnitt das dritte Element (13) gleitend berührt und so, dass die zweite Oberfläche (19) der ersten Oberfläche (18) über einen abgedichteten Raum (1), der durch das dritte Element (13) und durch die erste und zweite Oberfläche (18, 19) definiert ist, zugewandt ist,

    Einfüllen von Harz (6) in den abgedichteten Raum (1), und

    relatives Bewegen der zweiten Form (20) zu der ersten Form (10), um die zweite Oberfläche (19) näher zu der ersten Oberfläche (18) zu bringen, so dass das faserbasierte Material (2) durch die erste Oberfläche (18) mit dem Harz imprägniert wird,

    wobei das Einfüllung ein Reduzieren eines Drucks innerhalb des Raums (1) durch eine Harzausstoßleitung (3), die mit dem Raum (1) verbunden ist, und das Ausstoßen einer überschüssigen Harzmenge durch die Harzausstoßleitung (3) von einem Seitenabschnitt des faserbasierten Materials (2) umfasst.


     
    2. Das Herstellungsverfahren nach Anspruch 1, wobei das Einfüllen umfasst:
    Zuführen des Harzes (6) in den Raum (1) nach dem Reduzieren.
     
    3. Das Herstellungsverfahren nach Anspruch 1 oder 2, ferner umfassend:
    Aushärten des imprägnierten Harzes nach dem Imprägnieren mit dem Harz.
     
    4. Das Herstellungsverfahren nach Anspruch 3, wobei das Aushärten umfasst:
    Aushärten des imprägnierten Harzes durch Druckbeaufschlagung.
     
    5. Das Herstellungsverfahren nach Anspruch 4, wobei das Aushärten umfasst:
    Druckbeaufschlagen des imprägnierten Harzes durch einen Harzspeicher (7).
     
    6. Das Herstellungsverfahren nach einem der Ansprüche 4 bis 5, wobei das Aushärten umfasst:
    Aushärten des imprägnierten Harzes durch Erhitzen des imprägnierten Harzes.
     
    7. Eine Herstellungsvorrichtung für ein faserverstärktes Verbundmaterial, umfassend:

    eine erste Form (10), die konfiguriert ist, um ein faserbasiertes Material (2) so zu fixieren, dass Umfangsabschnitte des faserbasierten Materials (2) sandwichartig zwischen Oberflächen der ersten Form (10) angeordnet sind, um die Bewegung des faserbasierten Materials (2) in einer Erstreckungsrichtung desselben einzuschränken, und so, dass eine Öffnung für eine erste Oberfläche des faserbasierten Materials (2) bereitgestellt wird, wobei die erste Form (10) ein erstes Element (11) umfasst, das eine Oberfläche aufweist, an der das zu formende faserbasierte Material (2) angeordnet wird, ein zweites Element (12) umfasst, das so angeordnet ist, dass es das faserbasierte Material (2) umgibt, um die Bewegung des faserbasierten Materials (2) in der Erstreckungsrichtung zu begrenzen, und ein drittes Element (13) umfasst, das an dem zweiten Element (12) angeordnet ist und ein Teil des dritten Elements (13) sich auf das faserbasierte Material (2) erstreckt, so dass das faserbasierte Material (2) sandwichartig angeordnet und durch die erste Form (10) an den Endabschnitten fixiert ist und ein Oberflächenabschnitt des faserbasierten Materials (2), der nicht durch das dritte Element (13) bedeckt ist, als die erste Oberfläche (18) definiert ist,

    eine zweite Form (20), die eine zweite Oberfläche (19) aufweist und an bzw. auf der ersten Form (10) so angeordnet ist, dass ein Seitenabschnitt das dritte Element (13) gleitend berührt und dass die zweite Oberfläche (19) der ersten Oberfläche (18) durch einen abgedichteten Raum (1), der durch das dritte Element (13) und durch die erste und zweite Oberfläche (18,19) definiert ist, zugewandt ist,

    einen Antriebsmechanismus (23), der konfiguriert ist, um die zweite Form (20) in Bezug auf die erste Form (10) relativ zu bewegen, so dass sich die zweite Oberfläche (19) der ersten Oberfläche (18) nähert,

    eine Harzzufuhrleitung (21), die mit dem Raum (1) so verbunden ist, dass das Harz in den Raum (1) eingefüllt werden kann, und

    eine Harzausstoßleitung (3), die mit dem Raum (1) so verbunden ist, dass das Harz aus dem Raum (1) von einem Seitenabschnitt des faserbasierten Materials (2) ausgestoßen werden kann.


     
    8. Die Herstellungsvorrichtung nach Anspruch 7, wobei die Harzzufuhrleitung (21) in der zweiten Form (20) vorgesehen ist.
     
    9. Die Herstellungsvorrichtung nach Anspruch 7 oder 8, wobei die Harzzufuhrleitung (21) konfiguriert ist, um den Raum (1) mit Druck beaufschlagen zu können.
     
    10. Die Herstellungsvorrichtung nach Anspruch 7, weiterhin umfassend:
    eine Druckbeaufschlagungsleitung (8), die mit dem Raum (1) so verbunden ist, dass der Raum (1) mit Druck beaufschlagt werden kann.
     
    11. Die Herstellungsvorrichtung nach Anspruch 10, wobei die Druckbeaufschlagungsleitung (8) mit einem Harzspeicher (7) verbindbar ist.
     
    12. Die Herstellungsvorrichtung nach einem der Ansprüche 7 bis 11, wobei die Harzausstoßleitung (3) in der ersten Form (10) vorgesehen ist.
     
    13. Die Herstellungsvorrichtung nach einem der Ansprüche 7 bis 12, ferner umfassend:
    einen Stoppermechanismus (9), der so konfiguriert ist, dass er die Bewegung der zweiten Form (20) so begrenzt, dass die zweite Fläche (19) von einer vorbestimmten Position aus nicht weiter in Richtung auf das Material (2) auf Faserbasis bewegt wird.
     


    Revendications

    1. Procédé de fabrication d'un matériau composite renforcé par des fibres, comprenant :

    fixer un matériau (2) à base de fibres sur un premier moule (10), de manière à ce que des parties périphériques du matériau (2) à base de fibres soient prises en sandwiche par des surfaces du premier moule (10) pour restreindre le déplacement du matériau (2) à base de fibres dans une direction, dans laquelle il s'étend, et de manière à donner une ouverture pour une première surface (18) du matériau (2) à base de fibres, dans lequel le premier moule (10) a un premier élément (11), qui a une surface, sur laquelle le matériau (2) à base de fibres à mouler est placé, un deuxième élément (12), qui est disposé de manière à entourer le matériau (2) à base de fibres pour restreindre le déplacement du matériau (2) à base de fibre dans la direction, dans laquelle il se s'étend, et un troisième élément (13), qui est placé sur le deuxième élément (12) et une partie du troisième élément (13) s'étend sur le matériau (2) à base de fibres, de manière à ce que le matériau (2) à base de fibres soit pris en sandwich et fixé par le premier moule (10) aux parties d'extrémité, et une partie de surface du matériau (2) à base de fibres, non recouverte par le troisième élément (13), est définie comme étant la première surface (18) ;

    mettre un deuxième moule (20), ayant une deuxième surface (19), sur le premier moule (10), de manière à ce qu'une partie latérale vienne en contact glissant avec le troisième élément (13) et de manière à ce que la deuxième surface (19) fasse face à la première surface (18) par un espace (1) scellé défini par le troisième élément (13) et par les première et deuxième surfaces (18, 19) ;

    remplir l'espace (1) scellé de résine (6) ; et

    déplacer relativement le deuxième moule (20) vers le premier moule (10) pour rapprocher la deuxième surface (19) de la première surface (18), de manière à imprégner le matériau (2) à base de fibres de la résine par la première surface (18),

    dans lequel le remplissage comprend réduire une pression à l'intérieur de l'espace (1) par une ligne (3) d'éjection de résine communiquant avec l'espace (1) et éjecter une quantité excessive de résine par la ligne (3) d'éjection de résine d'une partie latérale du matériau (2) à base de fibres.


     
    2. Procédé de fabrication suivant la revendication 1, dans lequel le remplissage comprend :
    envoyer la résine (6) dans l'espace (1) après la réduction.
     
    3. Procédé de fabrication suivant la revendication 1 ou 2, comprenant, en outre :
    durcir la résine imprégnée après l'imprégnation par la résine.
     
    4. Procédé de fabrication suivant la revendication 3, dans lequel le durcissement comprend :
    durcir la résine imprégnée par mise en pression.
     
    5. Procédé de fabrication suivant la revendication 4, dans lequel le durcissement comprend :
    la mise en pression de la résine imprégnée par un accumulateur (7) de résine.
     
    6. Procédé de fabrication suivant l'une quelconque des revendications 4 à 5, dans lequel le durcissement comprend :
    durcir la résine imprégnée en chauffant la résine imprégnée.
     
    7. Installation de fabrication d'un matériau composite renforcé par des fibres, comprenant :

    un premier moule (10), configuré pour fixer un matériau (2) à base de fibres, de manière à ce que des parties périphériques du matériau (2) à base de fibres soient prises en sandwich par des surfaces du premier moule (10) pour restreindre le déplacement du matériau (2) à base de fibre dans une direction, dans laquelle il s'étend, et de manière à donner une ouverture pour une première surface du matériau (2) à base de fibres, le premier moule (10) ayant un premier élément (11), qui a une surface, sur laquelle le matériau (2) à base de fibres à mouler est placé, un deuxième élément (12), qui est disposé de manière à entourer le matériau (2) à base de fibres pour restreindre le déplacement du matériau (2) à base de fibre dans la direction, dans laquelle il se s'étend, et un troisième élément (13), qui est placé sur le deuxième élément (12) et une partie du troisième élément (13) s'étend sur le matériau (2) à base de fibres, de manière à ce que le matériau (2) à base de fibres soit pris en sandwich et fixé par le premier moule (10) aux parties d'extrémité, et une partie de surface du matériau (2) à base de fibres, non recouverte par le troisième élément (13), est définie comme étant la première surface (18) ;

    un deuxième moule (20), ayant une deuxième surface (19) et disposé sur le premier moule (10), de manière à ce qu'une partie latérale vienne en contact glissant avec le troisième élément (13) et de manière à ce que la deuxième surface (19) fasse face à la première surface (18) par un espace (1) scellé défini par le troisième élément (13) et par les première et deuxième surfaces (18, 19) ;

    un mécanisme (23) d'entraînement, configuré pour déplacer relativement le deuxième moule (20) par rapport au premier moule (10), de manière à rapprocher la deuxième surface (19) de la première surface (18) ;

    une ligne (21) d'alimentation en résine, communiquant avec l'espace (1), de manière à pouvoir remplir l'espace (1) de la résine ; et

    une ligne (3) d'éjection de résine, communiquant avec l'espace (1), de manière à pouvoir éjecter la résine de l'espace (1) à partir d'une partie latérale du matériau (2) à base de fibres.


     
    8. Installation de fabrication suivant la revendication 7, dans laquelle la ligne (21) d'alimentation en résine est prévue dans le deuxième moule (20).
     
    9. Installation de fabrication suivant la revendication 7 ou 8, dans laquelle la ligne (21) d'alimentation en résine est configurée pour être à même de mettre l'espace (1) sous pression.
     
    10. Installation de fabrication suivant la revendication 7, comprenant, en outre :
    une ligne (8) de mise sous pression, communiquant avec l'espace (1), de manière à pouvoir mettre l'espace (1) sous pression.
     
    11. Installation de fabrication suivant la revendication 10, dans laquelle la ligne (8) de mise sous pression peut être mise en communication avec un accumulateur (7) de résine.
     
    12. Installation de fabrication suivant l'une quelconque des revendications 7 à 11, dans laquelle la ligne (3) d'éjection de résine est prévue dans le premier moule (20).
     
    13. Installation de fabrication suivant l'une quelconque des revendications 7 à 12, comprenant, en outre :
    un mécanisme (9) d'arrêt, configuré pour restreindre le déplacement du deuxième moule (20), de manière à ce que la deuxième surface (19) ne soit pas déplacée davantage vers le matériau (2) à base de fibres à partir d'une position déterminée à l'avance.
     




    Drawing
































    Cited references

    REFERENCES CITED IN THE DESCRIPTION



    This list of references cited by the applicant is for the reader's convenience only. It does not form part of the European patent document. Even though great care has been taken in compiling the references, errors or omissions cannot be excluded and the EPO disclaims all liability in this regard.

    Patent documents cited in the description