(19)
(11)EP 2 375 567 B1

(12)EUROPEAN PATENT SPECIFICATION

(45)Mention of the grant of the patent:
29.07.2020 Bulletin 2020/31

(21)Application number: 09834608.3

(22)Date of filing:  19.10.2009
(51)International Patent Classification (IPC): 
H03F 1/32(2006.01)
H03F 3/24(2006.01)
H04B 1/04(2006.01)
(86)International application number:
PCT/JP2009/067974
(87)International publication number:
WO 2010/073803 (01.07.2010 Gazette  2010/26)

(54)

DISTORTION COMPENSATING CIRCUIT AND RADIO BASE STATION

VERZERRUNGSKOMPENSATIONSSCHALTUNG UND FUNKBASISSTATION

CIRCUIT DE COMPENSATION DE DISTORSION ET STATION DE BASE RADIO


(84)Designated Contracting States:
AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO SE SI SK SM TR

(30)Priority: 27.12.2008 JP 2008335561
27.12.2008 JP 2008335562

(43)Date of publication of application:
12.10.2011 Bulletin 2011/41

(73)Proprietor: Sumitomo Electric Industries, Ltd.
Chuo-ku Osaka-shi Osaka 541-0041 (JP)

(72)Inventor:
  • ONISHI, Masahiko
    Osaka-shi Osaka 554-0024 (JP)

(74)Representative: Boult Wade Tennant LLP 
Salisbury Square House 8 Salisbury Square
London EC4Y 8AP
London EC4Y 8AP (GB)


(56)References cited: : 
EP-A1- 1 791 310
JP-A- 2001 284 980
US-A- 5 923 712
US-A1- 2002 044 014
US-B2- 7 288 988
US-B2- 7 366 252
JP-A- 2001 268 150
JP-A- 2006 261 952
US-A- 6 054 894
US-A1- 2004 252 783
US-B2- 7 289 773
  
      
    Note: Within nine months from the publication of the mention of the grant of the European patent, any person may give notice to the European Patent Office of opposition to the European patent granted. Notice of opposition shall be filed in a written reasoned statement. It shall not be deemed to have been filed until the opposition fee has been paid. (Art. 99(1) European Patent Convention).


    Description

    TECHNICAL FIELD



    [0001] The present invention relates to a distortion compensation circuit and a wireless base station including the same.

    BACKGROUND ART



    [0002] In a wireless base station of a communication system using cellular phones or the like, a high power amplifier (HPA), which amplifies and outputs a transmission signal, is arranged in a transmission processor. Generally, an HPA gives priority to amplification efficiency and thus has a low input-output characteristic linearity. That is, in an HPA, the input-output characteristics between an input signal and an output signal are non-linear distortion characteristics. Accordingly, when amplifying an input signal with an HPA having such input-output characteristics, the desired output signal may not be obtained due to distortion. As one distortion compensation method that compensates for such distortion, the following non-patent document 1 proposes a method (so-called digital pre-distortion: DPD) that compensates for distortion in the input-output characteristics of the amplifier by estimating a model expressing the input-output characteristics of an amplifier, generating an inverse model having characteristics inversed from the model through digital signal processing, and then adding the inverse model to an input signal (digital signal prior to conversion to an analog signal) for the amplifier. Non-patent documents 2 and 3 also propose high-efficiency amplification techniques.

    [0003] US-7,288,988 concerns an adaptive predistortion linearised amplifier system employing selective sampling.

    PRIOR ART TECHNICAL DOCUMENTS



    [0004] 

    Non-Patent Document 1: Lei Ding, "Digital predistortion of Power Amplifiers for Wireless Applications", Georgia Institute of Technology, March 2004.

    Non-Patent Document 2: Donald F. Kimball, et al., "High-Efficiency Envelope-Tracking W-CDMA Base-Station Amplifier Using GaN HFETs", IEEE Transactions on Microwave Theory and Techniques, Vol.54, NO.11, November 2006.

    Non-Patent Document 3: Feipeng Wang, et al., "Design of Wide-Bandwidth Envelope-Tracking Power Amplifiers for OFDM Applications", IEEE Transactions on Microwave Theory and Techniques, Vol.53, NO.4, April 2005.


    DISCLOSURE OF THE INVENTION


    PROBLEMS TO BE SOLVED BY THE INVENTION



    [0005] The input-output characteristics of an HPA vary when the temperature or the like changes. Thus, to realize highly accurate distortion compensation, an inverse model must always be updated to the latest one. To correctly generate an inverse model that covers the entire range of input signals, an input signal, which includes the maximum value (peak value), and the corresponding output signal are necessary. However, an input signal with the maximum value is not always contained in a communication signal and may appear less frequently under a situation in which the amount of communication data is small (during late night hours or the like). Accordingly, when the inverse model is always updated after arrival of an input signal with the maximum value, it becomes difficult to perform distortion compensation with high accuracy because the inverse model is updated less frequently under a situation in which the communication data amount is small. Further, when the model is updated under a situation in which the communication data amount is small, the updated model may not be above to cover the entire range of the input signals. Accordingly, when an input signal is in a range not covered by the updated model and is subsequently input, distortion compensation may not be performed with high accuracy.

    [0006] Accordingly, it is an object of the present invention to provide a distortion compensation circuit, which is capable of realizing distortion compensation with high accuracy using an inverse model that is adequate even under a situation in which the frequency in which an input signal of the maximum value appears is low, and a wireless base station including the same.

    MEANS FOR SOLVING THE PROBLEM



    [0007] A distortion compensation circuit is provided in accordance with claim 1. According to a first aspect, a distortion compensation circuit includes an estimation unit that estimates an inverse model for a model that expresses input-output characteristics of an amplifier based on an input signal, which is input to the amplifier, and an output signal, which is output from the amplifier. A distortion compensation unit compensates for distortion of the input-output characteristics using the inverse model. A sampling unit samples the input signal and the output signal in a predetermined time immediately before the sampling and outputs the input signal and the output signal to the estimation unit. The estimation unit updates the inverse model based on the input signal and the output signal, which are output from the sampling unit, regardless of whether or not a peak value that the input signal can take is included in a range sampled by the sampling unit.

    [0008] In the distortion compensation circuit of the first aspect, the estimation unit updates the inverse model based on the input signal and the output signal output from the sampling unit regardless of whether or not a peak value that the input signal can take is included in a range sampled by the sampling unit. Accordingly, the estimation unit can update the inverse model even under a situation in which the input signal having the peak value has a low appearance frequency. This allows for the distortion compensation unit to realize highly accurate distortion compensation.

    [0009] A distortion compensation circuit according to a second aspect is characterized in particular by the distortion compensation circuit of the first aspect in that the estimation unit updates the inverse model under the condition that a maximum value of the input signal in the range sampled by the sampling unit is greater than or equal to a predetermined threshold value.

    [0010] In the distortion compensation circuit of the second aspect, the estimation unit updates the inverse model under the condition that a maximum value of the input signal in the range sampled by the sampling unit is greater than or equal to a predetermined threshold value. Accordingly, when the signal level of the input signal included in the sampled range is less than the predetermined threshold value, the inverse model is not updated. This prevents the range of the input signals covered by the inverse model from becoming too small.

    [0011] A distortion compensation circuit according to a third aspect is characterized in particular by the distortion compensation circuit of the first aspect in that a plurality of threshold values are set in accordance with a maximum value of the input signal in the present inverse model, and the estimation unit updates the inverse model when the maximum value of the input signal in the range sampled by the sampling unit is a value in a present update region determined by the plurality of threshold values.

    [0012] In the distortion compensation circuit of the third aspect, a plurality of threshold values is set beforehand in accordance with a maximum value of the input signal in the present inverse model. This prevents a range of the input signals covered by the inverse model from becoming suddenly small.

    [0013] A distortion compensation circuit according to a fourth aspect is characterized in particular by the distortion compensation circuit of the first aspect further including a determination unit that determines whether or not to use the inverse model updated by the estimation unit based on a maximum value of the input signal in the range sampled by the sampling unit.

    [0014] In the distortion compensation circuit according to the fourth aspect, the determination unit determines whether or not to use the inverse model updated by the estimation unit based on a maximum value of the input signal in the sampled range. This allows for selection and use of the proper inverse model at any given time.

    [0015] A distortion compensation circuit according to a fifth aspect is characterized in particular by the distortion compensation circuit of any one of the first to fourth aspects further including a setting unit that sets a predicted maximum value of the input signal based on an average value of the input signal in a given period immediately before start of sampling. When the input signal having at least the predicted maximum value is detected after the sampling unit starts sampling, the sampling unit ends sampling without waiting for the predetermined time to elapse.

    [0016] In the distortion compensation circuit of the fifth aspect, the setting unit sets a predicted maximum value of the input signal. When the input signal having at least the predicted maximum value is detected after the sampling unit starts sampling, the sampling unit ends sampling. This allows for the sampling period to be shortened and ensures that the input signal having the predicted maximum value is obtained. Thus, the generation of an inverse model that covers the range of the predicted maximum value and less is ensured.

    [0017] A distortion compensation circuit according to a sixth aspect includes an estimation unit that estimates an inverse model for a model that expresses input-output characteristics of an amplifier based on an input signal, which is input to the amplifier, and an output signal, which is output from the amplifier. A distortion compensation unit compensates for distortion of the input-output characteristics using the inverse model. A storage unit stores a plurality of inverse models having different upper limit values of a covered range. When a signal level of the input signal received by the distortion compensation unit is uncovered by one of the inverse models but covered by another one of the inverse models, the distortion compensation unit corrects the input signal received by the distortion compensation unit based on this other one of the inverse models.

    [0018] In the distortion compensation circuit of the sixth aspect, even when a signal level of an input signal is uncovered by the latest inverse model under a situation in which the input signal having the maximum value has a low appearance frequency, the distortion compensation unit corrects the input signal based on another one of the inverse models stored in the storage unit that covers its signal. Accordingly, even when the inverse model is updated under a situation in which the input signal having the maximum value has the low appearance frequency, distortion compensation having the highest possible accuracy is realized.

    [0019] A distortion compensation circuit according to a seventh aspect is characterized in particular by the distortion compensation circuit of the sixth aspect further including a determination unit that selects one of the inverse models stored in the storage unit. When the signal level of the input signal received by the distortion compensation unit is covered by two or more of the inverse models, the determination unit selects the latest one of the two or more inverse models, and the distortion compensation unit corrects the input signal received by the distortion compensation unit using the latest one of the inverse models.

    [0020] In the distortion compensation circuit of the seventh aspect, when two or more inverse models are present in the storage unit as inverse models that covers the signal level of an input signal, the distortion compensation unit corrects the input signal based on the latest one of the two inverse models. This realizes highly accurate distortion compensation.

    [0021] A distortion compensation circuit according to an eighth aspect is characterized in particular by the distortion compensation circuit of the seventh aspect in that the estimation unit provides the determination unit with information related to the upper limit values of the covered range for each inverse model. The determination unit selects the latest one of the inverse models based on the information.

    [0022] In the distortion compensation circuit of the eighth aspect, the latest inverse model may be used up to an upper limit value in its covered range. Thus, highly accurate distortion compensation is realized.

    [0023] A distortion compensation circuit according to a ninth aspect is characterized in particular by the distortion compensation circuit of the seventh aspect in that a plurality of threshold values are set to divide an entire region of a signal level that the input signal received by the distortion compensation unit can take into a plurality of partial regions. The determination unit selects the latest one of the inverse model in units of the partial region based on information related to a maximum one of the threshold values that each of the inverse models covers.

    [0024] In the distortion compensation circuit of the ninth aspect, there is no need to provide the estimation unit with information related to the upper limit value of the covered range of each model. This allows for reduction in the amount of data transmitted to the estimation unit.

    [0025] A distortion compensation circuit according to a tenth aspect is characterized in particular by the distortion compensation circuit of any one of the sixth to ninth aspects in that when a new inverse model is stored in the storage unit, among the plurality of inverse models stored in the storage unit, an inverse model of which the upper limit value of the covered range is smaller than that of the new inverse model is deleted from the storage unit.

    [0026] In the distortion compensation circuit of the tenth aspect, obsolete inverse models that have become out-of-date due to the generation of new inverse models are deleted from the storage unit. This prevents a vast amount of data from being stored in the storage unit.

    [0027] A wireless base station is provided in line with claim 6. According to an eleventh aspect, a wireless base station includes an amplifier and a distortion compensation circuit electrically connected to the amplifier. The distortion compensation circuit includes an estimation unit that estimates an inverse model for a model that expresses input-output characteristics of the amplifier based on an input signal, which is input to the amplifier, and an output signal, which is output from the amplifier. A distortion compensation unit compensates for distortion of the input-output characteristics using the inverse model. A sampling unit samples the input signal and the output signal in a predetermined time immediately before the sampling and outputs the input signal and the output signal to the estimation unit. The estimation unit updates the inverse model based on the input signal and the output signal output from the sampling unit regardless of whether or not a peak value that the input signal can take is included in a range sampled by the sampling unit.

    [0028] In the wireless base station of the eleventh aspect, the distortion compensation circuit properly compensates for distortion of input-output characteristics of the amplifier. Thus, the desired transmission signal can be transmitted from the wireless base station.

    [0029] A wireless base station according to a twelfth aspect includes an amplifier and a distortion compensation circuit electrically connected to the amplifier. The distortion compensation circuit includes an estimation unit that estimates an inverse model for a model that expresses input-output characteristics of the amplifier based on an input signal, which is input to the amplifier, and an output signal, which is output from the amplifier. A distortion compensation unit compensates for distortion of the input-output characteristics using the inverse model. A storage unit stores a plurality of inverse models having different upper limit values of a covered range. When a signal level of the input signal received by the distortion compensation unit is uncovered by one of the inverse models but covered by another one of the inverse models, the distortion compensation unit corrects the input signal received by the distortion compensation unit based on this other one of the inverse models.

    [0030] In the wireless base station of the twelfth aspect, the distortion compensation circuit properly compensates for distortion of input-output characteristics of the amplifier. Thus, the desired transmission signal can be transmitted from the wireless base station.

    EFFECT OF THE INVENTION



    [0031] The present invention realizes highly accurate distortion compensation even under a situation in which an input signal with a maximum value has a low appearance frequency.

    BRIEF DESCRIPTION OF THE DRAWINGS



    [0032] 

    Fig. 1 is a block diagram showing part of a wireless base station according to one embodiment of the present invention;

    Fig. 2 is a block diagram showing a first example of a DPD processor;

    Fig. 3 is a graph showing one example of a plurality of models updated in sequence;

    Fig. 4 is a graph for the selection of an inverse model by a distortion compensation unit;

    Fig. 5 is a block diagram showing a second example of the DPD processor;

    Fig. 6 is a graph showing one example of a plurality of models in correspondence with Fig. 3;

    Fig. 7 is a graph showing another example of a plurality of models in correspondence with Fig. 3;

    Fig. 8 is a graph for the selection of an inverse model by the distortion compensation unit in correspondence with Fig. 7; and

    Fig. 9 is a block diagram showing a third example of the DPD processor.


    EMBODIMENTS OF THE INVENTION



    [0033] One embodiment of the present invention will now be described in detail with reference to the drawings. Like or same reference numerals are given to those components that are the same as the corresponding components throughout the drawings.

    [0034] Fig. 1 is a block diagram showing part of a wireless base station 1 according to one embodiment of the present invention. As shown by the connection relation in Fig. 1, the wireless base station 1 includes a digital pre-distortion (DPD) processor 2, a digital-to-analog converter (DAC) 3, a low pass filter (LPF) 4, a frequency conversion unit 5, a high power amplifier (HPA) 6, a coupler 7, an antenna 8, a frequency conversion unit 9, an LPF 10, and an analog-to-digital converter (ADC) 11.

    [0035] The DPD processor 2 corrects an input signal S1, which is a digital signal, to output a signal S2. The contents of the correction performed by the DPD processor 2 will be described later. The DAC 3 converts the signal S2, which is a digital signal, into an analog signal S3 and outputs the analog signal S3. The LPF 4 performs low pass filter processing on the signal S3 to output a signal S4. The frequency conversion unit 5 converts the frequency of the baseband signal S4 into a radio-frequency signal S5 and outputs the signal S5. The HPA 6 amplifies the signal S5 to output a signal S6. The signal S6 is transmitted from the antenna 8.

    [0036] Part of the signal S6 from the HPA 6 to the antenna 8 is retrieved by the coupler 7 as a signal S7. The frequency conversion unit 9 converts the frequency of the radio-frequency signal S7 into a baseband signal S8 and outputs the baseband signal S8. The LPF 10 performs low pass filter processing on the signal S3 to output a signal S9. The ADC 11 converts the analog signal S9 into a digital signal S10 and outputs the signal S10. The signal S10 is input to the DPD processor 2.

    [0037] Fig. 2 is a block diagram showing a first example of the DPD processor 2. As shown by the connection relation in Fig. 2, the DPD processor 2 includes a sampling circuit 20, a detection unit 21, an inverse model estimation unit 22, an upper limit value storage unit 23, a coefficient storage unit 24, a determination unit 25, and a distortion compensation unit 26.

    [0038] The sampling circuit 20 receives the signal S2 from the distortion compensation unit 26 and the signal S10 from the ADC 11. The sampling circuit 20 samples the signals S2 and S10 in a predetermined time immediately before the sampling (hereinafter referred to as "sampling time") and inputs the signals S2 and S10 to the inverse model estimation unit 22. The inverse model estimation unit 22 estimates a model expressing input-output characteristics of the HPA 6 based on the signals S2 and S10 and computes coefficients of each order (i.e., coefficient set of an inverse model) to express an inverse model of the estimated model in the form of a polynomial of an nth-order power (in which n is a natural number). To compensate for non-linear distortion in a model, the distortion characteristics of the model are inverted in an inverse model.

    [0039] Further, the detection unit 21 detects a maximum level (maximum power value, for example) of the input signal S1 in the sampling time and sends data S21, which is related to the maximum power value, to the sampling circuit 20. The data S21 is input from the sampling circuit 20 to the inverse model estimation unit 22 and associated with the inverse model coefficient, which is obtained as described above. The maximum power value provided by the data S21 indicates an upper limit value for range covered by the associated inverse model.

    [0040] Data S22 related to the coefficient set of the inverse model is input from the inverse model estimation unit 22 to the coefficient storage unit 24 and stored in the coefficient storage unit 24. In other words, the inverse model is stored in the coefficient storage unit 24. Further, the data S21 related to the maximum power value associated with the inverse model is input from the inverse model estimation unit 22 to the upper limit value storage unit 23 and stored in the upper limit value storage unit 23.

    [0041] The distortion compensation unit 26 receives the input signal S1 and data S24 related to the coefficient set from the coefficient storage unit 24. The distortion compensation unit 26 corrects the input signal S1 based on the coefficient set (inverse model) provided by the data S24. This outputs the signal S2, which is obtained by performing proper distortion compensation on the input signal S1, from the distortion compensation unit 26.

    [0042] The input-output characteristics of the HPA 6 vary as the temperature or the like changes. Thus, in order to realize highly accurate distortion compensation, the inverse model estimation unit 22 must always update the model and inverse model to the latest ones.

    [0043] Fig. 3 is a graph showing one example of a plurality of models K0 to K2 updated in sequence. The horizontal axis indicates a signal level (for example, power value) of the input signal S1 and the vertical axis indicates the signal level (for example, power value) of the output signal (signal S10). The model K0 is estimated by the inverse model estimation unit 22 under a situation in which the amount of communication data is large, and an upper limit value Pm0 of the covered range conforms to a maximum value (peak value) that the signal level of the input signal S1 can take. Accordingly, by using the model K0, the inverse model estimation unit 22 can generates an inverse model that covers the entire range of the input signal S1. The data S21 indicating the upper limit value Pm0 is associated with the inverse model of the model K0 and stored in the upper limit value storage unit 23.

    [0044] A model K1 obtained by updating the model K0 is estimated by the inverse model estimation unit 22 under a situation in which the amount of communication data is relatively small, and an upper limit value Pm1 of the covered range of the model K1 is smaller than the maximum value Pm0 of the model K0. Accordingly, when an inverse model generated from the model K1 is used, the distortion compensation unit 26 may not perform distortion compensation on the input signal S1 that has a signal level in excess of the upper limit value Pm1. However, in a range that is less than or equal to the upper limit value Pm1, the input-output characteristics that are newer than the model K0 can be expressed by the model K1. Thus, highly accurate distortion compensation can be realized. The data S21 indicating the upper limit value Pm1 is associated with the inverse model of the model K1 and stored in the upper limit value storage unit 23.

    [0045] The model K2 obtained by updating the model K1 is estimated by the inverse model estimation unit 22 under a situation in which the amount of communication data is further smaller, and an upper limit value Pm2 of the covered range of the model K2 is smaller than the maximum value Pm1 of the model K1. Accordingly, when an inverse model generated from the model K2 is used, the distortion compensation unit 26 may not perform distortion compensation on the input signal S1 having a signal level in excess of the upper limit value Pm2. However, in a range that is less than or equal to the upper limit value Pm2, the model K2 expresses the input-output characteristics that are newer than the models K0 and K1. Thus, highly accurate distortion compensation is realized. The data S21 indicating the upper limit value Pm2 is associated with the inverse model of the model K2 and stored in the upper limit value storage unit 23.

    [0046] In the DPD processor 2 of the present embodiment, the coefficient sets of each of the inverse models corresponding to the models K0 to K2 are stored in the coefficient storage unit 24. The distortion compensation unit 26 performs distortion compensation on the input signal S1 by selecting the optimal one of the three inverse models corresponding to the respective models K0 to K2. This will now be described in detail.

    [0047] Fig. 4 is a graph for the selection of the inverse model by the distortion compensation unit 26. The input signal S1 is input to the distortion compensation unit 26 and the determination unit 25. Further, the determination unit 25 receives the data S21 related to the upper limit value of the covered range of each inverse model from the upper limit value storage unit 23. When the signal level of the input signal S1 is less than or equal to the upper limit value Pm2, the determination unit 25 selects the inverse model corresponding to the model K2. That is, when the signal level of the input signal S1 is less than or equal to the upper limit value Pm2, the three inverse models corresponding to the respective models K0 K2 are present as the inverse model that covers the signal level. In this case, the determination unit 25 selects the latest one (the inverse model corresponding to the model K2) of the three inverse models. Data S23 related to the selection of the inverse model is input to the coefficient storage unit 24 from the determination unit 25. Then, the data S24 related to the coefficient set of the selected inverse model is input from the coefficient storage unit 24 to the distortion compensation unit 26. The distortion compensation unit 26 corrects the input signal S1 based on the inverse model having the coefficient set obtained by the data S24.

    [0048] In the same manner, when the signal level of the input signal S1 is greater than the upper limit value Pm2 and less than or equal to the upper limit value Pm1, the determination unit 25 selects the inverse model corresponding to the model K1. That is, when the signal level of the input signal S1 is greater than the upper limit value Pm2 and les than or equal to the upper limit value Pm1, the two inverse models corresponding to the respective models K0 and K1 are present as the inverse model that covers that signal level. In this case, the determination unit 25 selects the latest one (the inverse model corresponding to the model K1) of the two inverse models so that the distortion compensation unit 26 corrects the input signal S1 based on the selected inverse model.

    [0049] Further, when the signal level of the input signal S1 is greater than the upper limit value Pm1, only the inverse model corresponding to the model K0 is present as the inverse model that covers the signal level. In this case, the determination unit 25 selects the inverse model corresponding to the model K0, and the distortion compensation unit 26 corrects the input signal S1 based on the selected inverse model.

    [0050] In the foregoing description illustrates an example in which models are updated in a descending order in which the upper limit value becomes smaller (models K0 → K1 → K2). In contrast, if the models are updated in the order of K1 → K0 → K2), when the inverse model corresponding to the model K0 is stored in the coefficient storage unit 24, the inverse model corresponding to the model K1 may be deleted from the coefficient storage unit 24. In this case, the determination unit 25 selects the inverse model corresponding to the model K2 when the signal level of the input signal S1 is less than or equal to the upper limit value Pm2, and the determination unit 25 selects the inverse model corresponding to the model K0 when the signal level of the input signal S1 is greater than the upper limit value Pm2.

    [0051] Fig. 5 is a block diagram showing a second example of the DPD processor 2. This configuration is the same as that shown in Fig. 2 except in that a comparison unit 30 is added.

    [0052] Fig. 6 is a graph showing one example of the plurality of models K0-K3 corresponding to Fig. 3. A predetermined threshold value H is set for the signal level of the input signal S1. The threshold value H is set, for example, to a value that is one half of the maximum value (peak value) that the input signal S1 can take. However, the threshold value H may be set to any other value. The set value of the threshold value H is taught beforehand to the comparison unit 30.

    [0053] When the inverse model estimation unit 22 estimates an inverse model, the comparison unit 30 compares the maximum value of the input signal S1 (i.e., an upper limit value obtained from the data S21) in a range in which the sampling circuit 20 performs sampling with the threshold value H. Then, results of the comparison are input as data S30 to the inverse model estimation unit 22. The inverse model estimation unit 22 updates the inverse model when determined that the maximum value of the input signal S1 in the sampling range is greater than or equal to the threshold value H based on the data S30. In contrast, when the maximum value of the input signal S1 in the sampling range is less than the threshold value H, the inverse model is not updated. In the example shown in Fig. 6, the inverse models corresponding to the models K0, K1, and K2 are updated. However, the inverse model corresponding to the model K2 is not updated to the inverse model corresponding to the model K3 because the upper limit value (i.e., the maximum value of the input signal S1 in the sampling range when estimating the model K3) of the covered range of the model K3 is less than the threshold value H.

    [0054] Fig. 7 is a graph showing another example of the plurality of models K0-K2 corresponding to Fig. 3. A plurality of predetermined threshold values H0 and H1 are set for the signal level of the input signal S1. The threshold value H1 is set to, for example, one half of the maximum value (peak value) that the input signal S1 can take. The threshold value H0 is set to, for example, an intermediate value between the peak value and the threshold value H1. However, the threshold values H0 and H1 may be set to other values. Further, the number of the threshold values is not limited to two but may be three or more (for example, four). The set values of the threshold values H0 and H1 are taught beforehand to the comparison unit 30.

    [0055] When the inverse model estimation unit 22 estimates an inverse model, the comparison unit 30 compares the maximum value of the input signal S1 in the sampling range with the threshold values H0 and H1. Then, the results of the comparison are input as the data S30 to the inverse model estimation unit 22.

    [0056] When updating the inverse model corresponding to the model K0 including the peak value to an inverse model having an upper limit value of a smaller covered range, the inverse model estimation unit 22 performs updating under the condition that the upper limit value of the updated inverse model is a value in the presently set update range, in this case, the threshold value H0. That is, when the upper limit value of the updated inverse model is the threshold value H0 or larger, updating is performed based on the data S30. When the upper limit value is less than the threshold value H0, updating is not performed. In the example shown in Fig. 7, the upper limit value Pm1 of the model K1 is greater than or equal to the threshold value H0. Thus, the inverse model corresponding to the model K0 is updated to the inverse model corresponding to the model K1. However, the upper limit value Pm2 of the model K2 is less than the threshold value H0. Thus, the inverse model corresponding to the model K0 is not directly updated to the inverse model corresponding to the model K2. In the example shown in Fig. 7, instead of the data S21 indicating the upper limit value Pm0, flag information indicating that the signals S2 and S10 cover the peak value is input from the sampling circuit 20 to the inverse model estimation unit 22 in association with the signals S2 and S10. In the same manner, in the example shown in Fig. 7, instead of the data S21 indicating the upper limit value Pm1, flag information indicating that the signals S2 and S10 cover the threshold value H0 is input from the sampling circuit 20 to the inverse model estimation unit 22 in association with the signals S2 and S10.

    [0057] When the inverse model estimation unit 22 updates the inverse model corresponding to the model K1, of which upper limit value is greater than or equal to the threshold value H0, to an inverse model having a covered range with a smaller upper limit value, the inverse model estimation unit 22 performs updating under the condition that the upper limit value of the updated inverse model is greater than or equal to a value in the presently set update range, in this case, the threshold value H1. That is, when the upper limit value of the updated inverse model is greater than or equal to the threshold value H1, the inverse model estimation unit 22 performs updating based on the data S30. When the upper limit value is less than the threshold value H1, the inverse model estimation unit 22 does not perform updating. In the example shown in Fig. 7, the upper limit value Pm2 of the model K2 is greater than or equal to the threshold value H1. Thus, the inverse model corresponding to the model K1 is updated to the inverse model corresponding to the model K2. In the same manner as described above, in the example shown in Fig. 7, instead of the data S21 indicating the upper limit value Pm2, flag information indicating that the signals S2 and S10 cover the threshold value H1 is associated with the signals S2 and S10 and input from the sampling circuit 20 to the inverse model estimation unit 22.

    [0058] Fig. 8 is a graph corresponding to Fig. 7 and used by the coefficient storage unit 24 to select an inverse model. The threshold values H0 and H1, which are set in the comparison unit 30, are stored also in the upper limit value storage unit 23. When the signal level of the input signal S1 is less than or equal to the threshold value H1, the determination unit 25 generates the data S23 related to the selection of an inverse model that corresponds to the portion of the latest model K2 in this range that is less than or equal to the threshold value H1. The distortion compensation unit 26 corrects the input signal S1 based on the coefficient set of an inverse model selected in the coefficient storage unit 24 in accordance with the data S23. Further, when the signal level of the input signal S1 is greater than the threshold value H1 and less than or equal to the threshold value H0, the distortion compensation unit 26 corrects the input signal S1 based on an inverse model that corresponds to the portion of the latest model K1 in this range that is greater than the threshold value H1 and less than or equal to the threshold value H0. Further, when the signal level of the input signal S1 is greater than the threshold value H0, the distortion compensation unit 26 corrects the input signal S1 based on an inverse model that corresponds to the portion of the latest model K0 in this range that is greater than the threshold value H0. In this manner, the entire signal level region over which the input signal S1 can take is divided into a plurality of regions by at least two threshold values. For example, when the present inverse model is K0 as shown in Fig. 8, a power value range of 0 (zero) to Pm0 for the input signal S1 is divided into three regions (0 to H1, H1 to H0, and H0 to Pm0) by the two threshold values H0 and H1. Then, the determination unit 25 selects one of the inverse models (the latest one when there are two or more inverse models) in each of the partial regions.

    [0059] Fig. 9 is a block diagram showing a third example of the DPD processor 2. This configuration is the same as that shown in Fig. 2 except in that a setting unit 40 is added.

    [0060] The setting unit 40 obtains an average value of the signal level (for example, power value) of the input signal S1 in a given period immediately before start of sampling circuit 20 starts sampling. Further, the setting unit 40 sets a value that is higher than the average value by a predetermined level (10-11 dBm, for example) as a predicted maximum value of the input signal S1. The upper limit of the predicted maximum value is assumed to be a maximum value (peak value) that the input signal S1 can take. Data S40 related to the predicted maximum value is input from the setting unit 40 to the detection unit 21.

    [0061] When the sampling circuit 20 starts sampling, the detection unit 21 consecutively monitors the signal level of the sampled input signal S1. Then, when detecting the input signal S1 having at least the predicted maximum value obtained from the data S40, the detection unit 21 provides the sampling circuit 20 with data S41 indicating such state. When received the data S41, the sampling circuit 20 immediately ends sampling. When the input signal S1 having at least the predicted maximum value obtained from the data S40 is not detected by the detection unit 21, the sampling circuit 20 ends sampling after the predetermined time elapses from when the sampling starts.

    [0062] In this manner, in the DPD processor 2 (distortion compensation circuit) of the present embodiment, the inverse model estimation unit 22 updates an inverse model based on the signals S2 and S10 received from the sampling circuit 20 regardless of whether or not the maximum value (peak value) that the input signal S1 can take is included in the range sampled by the sampling circuit 20. Thus, the inverse model estimation unit 22 can update the model even under a situation in which the appearance frequency of the input signal S1 having the maximum value (peak value) is low. Further, the inverse model is updated accordingly. This allows for highly accurate distortion compensation to be realized in the distortion compensation unit 26.

    [0063] In the DPD processor 2 shown in Figs. 5 and 6, the inverse model estimation unit 22 updates an inverse model under the condition that the maximum value of the input signal S1 in the range sampled by the sampling circuit 20 is greater than or equal to the predetermined value H. Accordingly, when the signal level of the input signal S1 in the sampled range is less than the threshold value H, the inverse model is not updated. This prevents the range of the input signal S1 covered by the inverse model from becoming too small. The threshold value may be fixed or variable.

    [0064] In the DPD processor 2 shown in Fig. 7, the plurality of threshold values H0 and H1 are set in accordance with an upper limit value of the input signal S1 in the present inverse model. In other words, the threshold values H0 and H1 are always varied in accordance with the maximum value (peak value) of the input signal S1. For example, in Fig. 7, when the present inverse model is model K1, the threshold value H1 is set to one half of the maximum value Pm1, and the threshold value H0 is set to an intermediate value between the maximum value Pm1 and the threshold value H1 (one half of the maximum value Pm1). In this state, when the inverse model is updated from model K1 to model K0, the threshold value H1 is changed to one half of the maximum value Pm0, and the threshold value H0 is changed to the intermediate value between the maximum value Pm0 and the threshold value H1 (one half of the maximum value Pm0). Accordingly, the use of the threshold values H0 and H1 prevents the range of the input signal S1 covered by the inverse model from suddenly becoming small. For example, the inverse model corresponding to the model K0 can be avoided from being directly updated to the inverse model corresponding to the model K2.

    [0065] In the DPD processor 2 shown in Fig. 9, the setting unit 40 sets a predicted maximum value for the input signal S1. After the sampling circuit 20 starts sampling, when the input signal S1 of the predicted maximum value or greater is detected, the sampling circuit 20 ends sampling. This shortens the sampling period and ensures that the input signal S1 having the predicted maximum value is obtained. Thus, the generation of an inverse model that covers a range of the predicted maximum value or less is ensured.

    [0066] Further, in the wireless base station 1 of the present embodiment, distortion of the input-output characteristics of the HPA 6 is properly compensated by the DPD processor 2. This allows for the desired transmission signal to be transmitted from the wireless base station 1.

    [0067] The disclosed embodiments are exemplary in all respects and not restrictive.


    Claims

    1. A distortion compensation circuit (2) configured to generate a plurality of inverse models (K0, K1, K2, K3) having different upper limit values (Pm0, Pm1, Pm2, Pm3) of a covered range in sequence, the distortion compensation circuit (2) comprising:

    an estimation unit (22) that is configured to estimate the plurality of inverse models, including a first inverse model (K0) of the plurality of inverse models, for a model that expresses input-output characteristics of an amplifier (6) based on an amplifier input signal (S2), which is input to the amplifier (6), and an amplifier output signal (S10), which is output from the amplifier (6);

    a distortion compensation unit (26) that is configured to compensate for distortion of the input-output characteristics using one of the plurality of inverse models; and

    a sampling unit (20) that is configured to sample the amplifier input signal (S2), which is output from the distortion compensation unit and input to the amplifier, and the amplifier output signal (S10) in a sampling time and output a sampled amplifier input signal (S2) and a sampled amplifier output signal (S10) to the estimation unit (22), such that a range is sampled by the sampling unit for the amplifier input signal (S2) and the amplifier output signal (S10);

    wherein:

    the estimation unit (22) is further configured to update the plurality of inverse models in sequence and thereby generate a newer one of the plurality of inverse models (K0, K1, K2, K3), based on the sampled amplifier input signal (S2) and the sampled amplifier output signal (S10), which are output from the sampling unit (20), regardless of whether or not a peak value (Pm0) that the amplifier input signal (S2) can take is included in the range sampled by the sampling unit (20), wherein the newer one of the plurality of inverse models (K0, K1, K2, K3) expresses a newer input-output characteristic and has a smaller one of the different upper limit values (Pm0, Pm1, Pm2, Pm3);

    the distortion compensation circuit (2) further comprising:

    a storage unit (24) that is configured to store the plurality of inverse models (K0, K1, K2, K3) having different upper limit values (Pm0, Pm1, Pm2, Pm3) of a covered range; and

    a determination unit (25) that is configured to select one of the inverse models (K0, K1, K2, K3) stored in the storage unit (24), wherein

    the determination unit (25) is further configured to select one of the inverse models (K0, K1, K2, K3), which are updated in sequence by the estimation unit (22) and stored in the storage unit (24), based on a maximum value (Pm0; Pm1; Pm2; Pm3) of the input signal (S2) in the range sampled by the sampling unit (20) and the respective upper limit values (Pm0, Pm1, Pm2, Pm3) of the plurality of inverse models (K0, K1, K2, K3), and

    the distortion compensation unit (26) is configured to compensate for distortion of the input-output characteristics using the one of the plurality of inverse models (K0, K1, K2, K3) selected by the determination unit (25).


     
    2. The distortion compensation circuit (2) according to claim 1, wherein the estimation unit (22) is further configured to update the plurality of inverse models under the condition that the maximum value (Pm0; Pm1; Pm2; Pm3) of the amplifier input signal (S2) in the range sampled by the sampling unit (20) is greater than or equal to a predetermined threshold value (H).
     
    3. The distortion compensation circuit (2) according to claim 1, wherein a plurality of threshold values (H0, H1) are set in accordance with the maximum value (Pm0; Pm1; Pm2) of the input signal (S2) in a present inverse model, and the estimation unit (22) is further configured to update the inverse model when the maximum value (Pm0; Pm1; Pm2) of the amplifier input signal (S2) in the range sampled by the sampling unit (20) is a value in a present update region determined by the plurality of threshold values (H0, H1).
     
    4. The distortion compensation circuit (2) according to any one of claims 1 to 3, further comprising a setting unit (40) that is configured to set a predicted maximum value for the amplifier input signal (S2) based on an average value of the amplifier input signal (S2) in a given period immediately before start of sampling,
    wherein when the amplifier input signal (S2) having at least the predicted maximum value is detected after the sampling unit (20) starts sampling, the sampling unit (20) being further configured to end sampling without waiting for the sampling time to elapse.
     
    5. A wireless base station (1) comprising:

    an amplifier (6); and

    a distortion compensation circuit (2), electrically connected to the amplifier (6), according to any one of claims 1 to 4.


     


    Ansprüche

    1. Eine Verzerrungskompensationsschaltung (2), die konfiguriert ist, eine Vielzahl von inversen Modellen (K0, K1, K2, K3) mit verschiedenen oberen Grenzwerten (Pm0, Pm1, Pm2, Pm3) eines abgedeckten Bereichs in Folge zu erzeugen, wobei die Verzerrungskompensationsschaltung (2) umfasst:

    eine Schätzeinheit (22), die konfiguriert ist, die Vielzahl von inversen Modellen, einschließlich eines ersten inversen Modells (K1) der Vielzahl von inversen Modellen, für ein Modell zu schätzen, das Eingangs-Ausgangs-Charakteristiken eines Verstärkers (6) auf der Grundlage eines Verstärkereingangssignals (S2) ausdrückt, das in den Verstärker (6) eingegeben wird, und eines Verstärkerausgangssignals (S10), das von dem Verstärker (6) ausgegeben wird;

    eine Verzerrungskompensationseinheit (26), die konfiguriert ist, eine Verzerrung der Eingangs-Ausgangs-Charakteristik unter Verwendung eines der Vielzahl von inversen Modellen zu kompensieren; und

    eine Abtasteinheit (20), die konfiguriert ist, das Verstärkereingangssignal (S2), das von der Verzerrungskompensationseinheit ausgegeben und in den Verstärker eingegeben wird, und das Verstärkerausgangssignal (S10) in einer Abtastzeit abzutasten und ein abgetastetes Verstärkereingangssignal (S2) und ein abgetastetes Verstärkerausgangssignal (S10) an die Schätzeinheit (22) auszugeben, so dass ein Bereich durch die Abtasteinheit für das Verstärkereingangssignal (S2) und das Verstärkerausgangssignal (S10) abgetastet wird;

    wobei:

    die Schätzeinheit (22) ferner konfiguriert ist, die Vielzahl von inversen Modellen in Folge zu aktualisieren und dadurch ein neueres der Vielzahl von inversen Modellen (K0, K1, K2, K3) zu erzeugen, basierend auf dem abgetasteten Verstärkereingangssignal (S2) und dem abgetasteten Verstärkerausgangssignal (S10), die von der Abtasteinheit (20) ausgegeben werden, unabhängig davon, ob ein Spitzenwert (Pm0), den das Verstärkereingangssignal (S2) aufnehmen kann, in dem von der Abtasteinheit (20) abgetasteten Bereich enthalten ist oder nicht, wobei das neuere der Vielzahl von inversen Modellen (K0, K1, K2, K3) eine neuere Eingangs-Ausgangs-Charakteristik ausdrückt und einen kleineren der verschiedenen oberen Grenzwerte (Pm0, Pm1, Pm2, Pm3) aufweist;

    wobei die Verzerrungskompensationsschaltung (2) ferner umfasst:

    eine Speichereinheit (24), die konfiguriert ist, die Vielzahl von inversen Modellen (K0, K1, K2, K3) mit unterschiedlichen oberen Grenzwerten (Pm0, Pm1, Pm2, Pm3) eines abgedeckten Bereichs zu speichern; und

    eine Bestimmungseinheit (25), die konfiguriert ist, eines der in der Speichereinheit (24) gespeicherten inversen Modelle (K0, K1, K2, K3) auszuwählen, wobei

    die Bestimmungseinheit (25) ferner konfiguriert ist, eines der inversen Modelle (K0, K1, K2, K3) auszuwählen, die der Reihe nach durch die Schätzeinheit (22) aktualisiert und in der Speichereinheit (24) gespeichert werden, basierend auf einem Maximalwert (Pm0; Pm1; Pm2; Pm3) des Eingangssignals (S2) in dem von der Abtasteinheit (20) abgetasteten Bereich und den jeweiligen oberen Grenzwerten (Pm0, Pm1, Pm2, Pm3) der Vielzahl von inversen Modellen (K0, K1, K2, K3) aktualisiert werden, und

    die Verzerrungskompensationseinheit (26) konfiguriert ist, eine Verzerrung der Eingangs-Ausgangs-Charakteristiken unter Verwendung des einen der Vielzahl von inversen Modellen (K0, K1, K2, K3), das von der Bestimmungseinheit (25) ausgewählt wurde, zu kompensieren.


     
    2. Die Verzerrungskompensationsschaltung (2) nach Anspruch 1, wobei die Schätzeinheit (22) ferner konfiguriert ist, die Vielzahl von inversen Modellen unter der Bedingung zu aktualisieren, dass der Maximalwert (Pm0; Pm1; Pm2; Pm3) des Verstärkereingangssignals (S2) in dem von der Abtasteinheit (20) abgetasteten Bereich größer oder gleich einem vorbestimmten Schwellenwert (H) ist.
     
    3. Die Verzerrungskompensationsschaltung (2) nach Anspruch 1, wobei eine Vielzahl von Schwellwerten (H0, H1) in Übereinstimmung mit dem Maximalwert (Pm0; Pm1; Pm2) des Eingangssignals (S2) in einem vorliegenden inversen Modell eingestellt ist, und die Schätzeinheit (22) ferner konfiguriert ist, um das inverse Modell zu aktualisieren, wenn der Maximalwert (Pm0; Pm1; Pm2) des Verstärkereingangssignals (S2) in dem durch die Abtasteinheit (20) abgetasteten Bereich ein Wert in einem gegenwärtigen Aktualisierungsbereich ist, der durch die Vielzahl von Schwellenwerten (H0, H1) bestimmt wird.
     
    4. Die Verzerrungskompensationsschaltung (2) nach einem der Ansprüche 1 bis 3, weiterhin umfassend eine Einstelleinheit (40), die konfiguriert ist, einen vorhergesagten Maximalwert für das Verstärkereingangssignal (S2) auf der Grundlage eines Mittelwertes des Verstärkereingangssignals (S2) in einer gegebenen Periode unmittelbar vor Beginn der Abtastung einzustellen,
    wobei, wenn das Verstärkereingangssignal (S2), das mindestens den vorhergesagten Maximalwert hat, detektiert wird, nachdem die Abtasteinheit (20) mit der Abtastung beginnt, die Abtasteinheit (20) weiterhin konfiguriert ist, die Abtastung zu beenden, ohne den Ablauf der Abtastzeit abzuwarten.
     
    5. Eine drahtlose Basisstation (1), umfassend:

    einen Verstärker (6); und

    eine Verzerrungskompensationsschaltung (2), die elektrisch mit dem Verstärker (6) verbunden ist, gemäß einem der Ansprüche 1 bis 4.


     


    Revendications

    1. Circuit de compensation de distorsion (2) configuré de manière à générer une pluralité de modèles inverses (K0, K1, K2, K3) présentant différentes valeurs limites supérieures (Pm0, Pm1, Pm2, Pm3) d'une plage couverte, en séquence, le circuit de compensation de distorsion (2) comprenant :

    une unité d'estimation (22) qui est configurée de manière à estimer la pluralité de modèles inverses, y compris un premier modèle inverse (K0) de la pluralité de modèles inverses, pour un modèle qui exprime des caractéristiques d'entrée-sortie d'un amplificateur (6) sur la base d'un signal d'entrée d'amplificateur (S2), qui est appliqué en entrée à l'amplificateur (6), et d'un signal de sortie d'amplificateur (S10), qui est fourni en sortie à partir de l'amplificateur (6) ;

    une unité de compensation de distorsion (26) qui est configurée de manière à compenser une distorsion des caractéristiques d'entrée-sortie en utilisant un modèle de la pluralité de modèles inverses ; et

    une unité d'échantillonnage (20) qui est configurée de manière à échantillonner le signal d'entrée d'amplificateur (S2), qui est fourni en sortie à partir de l'unité de compensation de distorsion et est appliqué en entrée à l'amplificateur, et le signal de sortie d'amplificateur (S10), au cours d'un temps d'échantillonnage, et à fournir en sortie un signal d'entrée d'amplificateur échantillonné (S2) et un signal de sortie d'amplificateur échantillonné (S10) à l'unité d'estimation (22), de sorte qu'une plage est échantillonnée par l'unité d'échantillonnage pour le signal d'entrée d'amplificateur (S2) et le signal de sortie d'amplificateur (S10) ;

    dans lequel :

    l'unité d'estimation (22) est en outre configurée de manière à mettre à jour la pluralité de modèles inverses, en séquence, et à générer par conséquent un modèle plus récent parmi la pluralité de modèles inverses (K0, K1, K2, K3), sur la base du signal d'entrée d'amplificateur échantillonné (S2) et du signal de sortie d'amplificateur échantillonné (S10), qui sont fournis en sortie à partir de l'unité d'échantillonnage (20), indépendamment du fait qu'une valeur de crête (Pm0), que le signal d'entrée d'amplificateur (S2) peut prendre, est incluse ou non dans la plage échantillonnée par l'unité d'échantillonnage (20), dans lequel le modèle plus récent parmi la pluralité de modèles inverses (K0, K1, K2, K3) exprime une caractéristique d'entrée-sortie plus récente et présente une valeur plus faible parmi les différentes valeurs limites supérieures (Pm0, Pm1, Pm2, Pm3) ;

    le circuit de compensation de distorsion (2) comprenant en outre :

    une unité de stockage (24) qui est configurée de manière à stocker la pluralité de modèles inverses (K0, K1, K2, K3) présentant différentes valeurs limites supérieures (Pm0, Pm1, Pm2, Pm3) d'une plage couverte ; et

    une unité de détermination (25) qui est configurée de manière à sélectionner l'un des modèles inverses (K0, K1, K2, K3) stockés dans l'unité de stockage (24), dans lequel :

    l'unité de détermination (25) est en outre configurée de manière à sélectionner l'un des modèles inverses (K0, K1, K2, K3), qui sont mis à jour en séquence par l'unité d'estimation (22) et stockés dans l'unité de stockage (24), sur la base d'une valeur maximale (Pm0 ; Pm1 ; Pm2 ; Pm3) du signal d'entrée (S2) dans la plage échantillonnée par l'unité d'échantillonnage (20) et des valeurs limites supérieures respectives (Pm0, Pm1, Pm2, Pm3) de la pluralité de modèles inverses (K0, K1, K2, K3) ; et

    l'unité de compensation de distorsion (26) est configurée de manière à compenser une distorsion des caractéristiques d'entrée-sortie en utilisant un modèle de la pluralité de modèles inverses (K0, K1, K2, K3), sélectionné par l'unité de détermination (25).


     
    2. Circuit de compensation de distorsion (2) selon la revendication 1, dans lequel l'unité d'estimation (22) est en outre configurée de manière à mettre à jour la pluralité de modèles inverses, à condition que la valeur maximale (Pm0 ; Pm1 ; Pm2 ; Pm3) du signal d'entrée d'amplificateur (S2) dans la plage échantillonnée par l'unité d'échantillonnage (20) soit supérieure ou égale à une valeur de seuil prédéterminée (H).
     
    3. Circuit de compensation de distorsion (2) selon la revendication 1, dans lequel une pluralité de valeurs de seuil (H0, H1) est définie conformément à la valeur maximale (Pm0 ; Pm1 ; Pm2) du signal d'entrée (S2) dans un modèle inverse actuel, et dans lequel l'unité d'estimation (22) est en outre configurée de manière à mettre à jour le modèle inverse lorsque la valeur maximale (Pm0 ; Pm1 ; Pm2) du signal d'entrée d'amplificateur (S2) dans la plage échantillonnée par l'unité d'échantillonnage (20) est une valeur située dans une région de mise à jour actuelle déterminée par la pluralité de valeurs de seuil (H0, H1).
     
    4. Circuit de compensation de distorsion (2) selon l'une quelconque des revendications 1 à 3, comprenant en outre une unité de définition (40) qui est configurée de manière à définir une valeur maximale prédite pour le signal d'entrée d'amplificateur (S2) sur la base d'une valeur moyenne du signal d'entrée d'amplificateur (S2) dans une période donnée qui précède immédiatement le début de l'échantillonnage ;
    dans lequel, lorsque le signal d'entrée d'amplificateur (S2) présentant au moins la valeur maximale prédite est détecté après que l'unité d'échantillonnage (20) commence l'échantillonnage, l'unité d'échantillonnage (20) est en outre configurée de manière à mettre fin à l'échantillonnage sans attendre que le temps d'échantillonnage s'écoule.
     
    5. Station de base sans fil (1) comprenant :

    un amplificateur (6) ; et

    un circuit de compensation de distorsion (2), connecté électriquement à l'amplificateur (6), selon l'une quelconque des revendications 1 à 4.


     




    Drawing




















    Cited references

    REFERENCES CITED IN THE DESCRIPTION



    This list of references cited by the applicant is for the reader's convenience only. It does not form part of the European patent document. Even though great care has been taken in compiling the references, errors or omissions cannot be excluded and the EPO disclaims all liability in this regard.

    Patent documents cited in the description




    Non-patent literature cited in the description