(19)
(11)EP 2 381 214 B1

(12)EUROPEAN PATENT SPECIFICATION

(45)Mention of the grant of the patent:
10.06.2020 Bulletin 2020/24

(21)Application number: 10004264.7

(22)Date of filing:  22.04.2010
(51)International Patent Classification (IPC): 
G01B 11/00(2006.01)
G01B 5/20(2006.01)
G01B 5/004(2006.01)
G06T 7/70(2017.01)

(54)

Optical measurement system

Optisches Messsystem

Système de mesure optique


(84)Designated Contracting States:
AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO SE SI SK SM TR

(43)Date of publication of application:
26.10.2011 Bulletin 2011/43

(73)Proprietor: METRONOR A/S
1360 Nesbru (NO)

(72)Inventors:
  • Rotvold, Oyvind
    Asker (NO)
  • Amdal, Knut
    Baerums verk (NO)
  • Suphellen, Harald
    Lierskogen (NO)

(74)Representative: Lang, Johannes et al
Bardehle Pagenberg Partnerschaft mbB Patentanwälte, Rechtsanwälte Prinzregentenplatz 7
81675 München
81675 München (DE)


(56)References cited: : 
EP-A1- 2 112 470
FR-A1- 2 870 594
US-A1- 2010 017 178
DE-A1- 19 536 294
US-A- 5 973 788
US-B1- 6 310 644
  
      
    Note: Within nine months from the publication of the mention of the grant of the European patent, any person may give notice to the European Patent Office of opposition to the European patent granted. Notice of opposition shall be filed in a written reasoned statement. It shall not be deemed to have been filed until the opposition fee has been paid. (Art. 99(1) European Patent Convention).


    Description


    [0001] The present invention relates to an optical measurement system for measuring spatial coordinates and/or orientation of a touch probe.

    [0002] Compared to optical measurement systems of the prior art, the present invention provides unlimited field of view in combination with compatibility with a wide variety of touch probes. The present invention therefore provides a new level of flexibility in terms of measurement tasks that can be handled with a single system compared to the prior art. This provides significant operational and investment advantages in industries such as aerospace, automotive and other industries manufacturing complex assembled products.

    [0003] From EP 0 607 303 B1, an opto-electronic system for point-by-point measurement of spatial coordinates is known. The system described provides a probe comprising a minimum of three light sources at known coordinates relative to a local probe fixed coordinate system and with a touch point at a known location relative to said local coordinate system is brought into contact with the point for which the spatial coordinates are to be determined. An opto-electronic spatial direction sensor determines the angles in two dimensions (spatial direction) towards the light sources. Based on the known positions of the minimum three light sources and the touch point in the local probe fixed coordinate system with respect to each other and based on the determined spatial directions of the individual light sources and the spatial direction sensor, the system can deduce by photogrammetric calculation methods the position and orientation of the probe and therefore the spatial coordinates of the touch point.

    [0004] There are two main weaknesses with the system described by this prior art.

    [0005] Firstly, the accuracy of the measurement is influenced by the ratio of the distance between the opto-electronic spatial direction sensor and the touch probe as well as the distance of the light sources on the touch probe with respect to each other. If the distance between the opto-electronic spatial direction sensor and the touch probe becomes too large, the angles measured by the opto-electronic spatial direction sensor in order to determine the spatial directions decrease to such a degree that accurate measurement is no longer possible.

    [0006] In order to overcome this problem, the distance of the light sources on the touch probe with respect to each other may be increased, such that the angles become measurable again. However, if the touch probe is inclined with respect to the opto-electronic spatial direction sensor, even increasing the distances would not necessarily increase the measured angles sufficiently.

    [0007] Also, in many applications, increasing the distance of the light sources on the touch probe with respect to each other is not practical, since the overall size of the touch probe is in practice limited due to the environment in which the system is to be used.

    [0008] Thus, the measurement accuracy for the system described in EP 0 607 303 B1 deteriorates for longer distances, as the angles measured by the opto-electronic spatial direction sensor in order to determine the spatial directions of the light-sources decrease.

    [0009] The addition of a second spatial direction sensor placed so that the lines from the two spatial direction sensors intersect at approximately right angles at the light sources can be used to overcome this problem. The accuracy is then improved by triangulation between the spatial direction sensors. Nevertheless, in such systems, the object to be measured must be inside the field of view of both cameras, as must the light sources of the touch probe.

    [0010] Secondly, the opto-electronic spatial direction sensor has a finite field of view. For an object of a given size, this dictates the minimum distance between the object and the opto-electronic spatial direction sensor of the system. For large objects, this distance may become too large to achieve the required accuracy.

    [0011] For other objects, a finite field of view may not be acceptable. As an example, measuring the exact shape of an enclosed space, such as a room to be fitted with a custom parquet floor, or a boiler to be fitted with new pipes, requires a measurement system that can operate through 360 degrees field of view, i.e. a system with unlimited field of view.

    [0012] A typical example from industry is the so-called 'framing station' or 'framer' in an automotive production line. Figure 1 schematically illustrates an automotive framer or framing station with roof 201, side 202 and floor tooling 203. This is the tool where two side panels 208, 209 and a roof panel 210, each held in the corresponding tooling, is aligned and welded to a floor assembly 211.

    [0013] Of critical importance to the overall geometry of the finished vehicle, the framer must be measured in the closed position that is with the tools for each of the sides roof and floor assemblies interlocked while the panels 208, 209 and 210 as well as the floor assembly 211 are not in place. Due to the complexity of the tooling, the closed framer appears as a closed box with all the details to be measured on the inside.

    [0014] Sheet-metal locating points 206 - typically pins and clamps for holding the panels and the floor assembly whose spatial coordinates have to be determined, are measured with a touch point 204 of a touch probe 205. The spatial coordinates of the touch point 204 shall be determined by the above mentioned prior art system.

    [0015] However, the distance between the spatial direction sensor 207 and the touch probe 205 is too long for the spatial coordinates to be measured accurately.

    [0016] In addition to that, parts of the framer or related equipment may cover a second touch probe 205', such that this touch probe 205' is not in the field of view of the spatial direction sensor 207 and therefore, its spatial coordinates cannot be determined.

    [0017] As typically no position for the spatial direction sensor described in EP 0 607 303 B1 can be found that simultaneously provides both a view of all parts of the framer to be measured and sufficiently short distances to all parts of the framer to provide the required accuracy, this prior art is not adapted for measuring framers. Since framers are a critical part of automotive production lines, this significantly reduces the usefulness and flexibility of systems such as that presented in EP 0 607 303 B1 in the automotive industry and other industries with similar enclosed objects to measure.

    [0018] In this type of application the two camera approach provides no improvement, rather the need to find two suitable locations for spatial direction sensors while maintaining proper intersection angles makes the problem much more severe.

    [0019] FR 2 870 594 A1 discloses a system to put an optical detector of a chain of detectors in a geometric relation with respect to a reference. The chain comprises at least an optical detector intermediate the reference and the final detector such that at least an initial intermediate detector of the chain observes the reference and each other detector of the chain observes the preceding detector in the chain.

    [0020] DE 105 36 294 A1 discloses a system of the type as defined in claim 1 without fea-tures ea) and eb) of claim 1. Furthermore, the system known from D1 is using mandatorily reference boards with a plurality of marks.

    [0021] EP 2 112 470 A1 discloses a folding optical path transfer videometrics method for measuring the three-dimensional position and attitude of non-intervisible objects including the steps of constructing a folding optic path between an invisible target and a reference flat board, disposing transfer station comprising a camera, a cooperating mark and a laser range finder on each break point in the folding optic pass, processing image shot by each camera, accounting with distance measured by the laser range finder, obtaining a position and posture information corresponding with each adjacent transfer station, adding up the information from the reference flat board to the invisible targets and achieving three-dimensional position and posture of the invisible target relating to the reference flat board.

    [0022] It is the object of the present invention to overcome the above shortcomings of the prior art and to present a system which provides a highly accurate measurement of spatial coordinates and/or orientation of a touch probe, which can be used in enclosed setups and where space is limited and which is simple, easy and quick to use.

    [0023] The present invention encompasses a system for measurement of spatial coordinates according to claim 1, a method for measurement of spatial coordinates according to claim 10 and a computer program for measurement of spatial coordinates according to claim 11. Advantageous embodiments are claimed in the dependent claims.

    [0024] The inventive system has the advantage that the first spatial direction sensor with its associated targets can be moved and turned around in every spatial direction as long as it stays within the field of view of the second spatial direction sensor. Therefore, the system is highly flexible and provides a 360 degree filed of view. The first spatial direction sensor with its associated targets can be freely moved around - either manually or motorized - inside the filed of view of the second spatial direction sensor without intermediate alignment to the coordinate system of the object to be measured.

    [0025] In addition, the system increases accuracy compared to prior art as the large field of view enables the distance from the spatial direction sensors to the targets and the touch probe to be minimized. In addition, the positioning flexibility of the spatial direction sensors enables selection of an optimal setup dependent of the shape and size of the object to be measured.

    [0026] Furthermore, due to the use of two independent spatial direction sensors, the system is able to look corners and into areas which are not accessible with a single spatial direction sensor.

    [0027] In addition, the system is highly accurate since neither a mechanical nor a contact measurement of the touch probe or of the target has to be accomplished which could inflict measurement errors due to mechanical imprecision.

    [0028] Whenever a probe is mentioned in the following, it is to be understood as a touch probe.

    [0029] According to the invention, the probe has targets with known positions relative to each other, the processing means is further configured to compute the spatial coordinates and/or orientation of the probe based on the known orientation and/or spatial coordinates of the target, the known positions of the targets of the probe relative to each other and a determination of the spatial directions of the targets of the probe with respect to the first spatial direction sensor and at least three targets of the probe are in the field of view of the first spatial direction sensor.

    [0030] By having at least three targets of the probe in the field of view of the first spatial direction sensor, the spatial coordinates and/or orientation of the probe can be determined very accurately.

    [0031] In a further advantageous embodiment, the system comprises at least one further probe and/or at least one further first spatial direction sensor and/or at least one further second spatial direction sensor.

    [0032] Due to this, the accuracy of determining the position and orientation of the first spatial direction sensor is increased by using more than one second spatial directions sensor in positions known relative to each other.

    [0033] In a further advantageous embodiment, the target can be rotated.

    [0034] With this function, the first spatial direction sensor associated with the target is able to view in different directions, such that the spatial coordinates and/or orientation of probes located around the first spatial direction sensor can be determined.

    [0035] In a further advantageous embodiment, the first spatial direction sensor and the second spatial direction sensor are mechanically connected.

    [0036] Due to the fact that the second spatial direction sensor and the target with the first spatial direction sensor are mechanically connected, the distance from the second spatial direction sensor to the first spatial direction sensor is known. Therefore, only the orientation of the target of the first spatial direction sensor has to be determined. This largely reduces the requirements with respect to calculation capacities of the processing means.

    [0037] Furthermore, the distance from the second spatial direction sensor to the target of the first spatial direction sensor can be kept short, while still having the possibility of accomplishing all spatial measurements of a system without mechanical or contact measuring. For example, the inventive system can be designed as compact and self-contained unit, which can be placed in a location whose surrounding has to be measured. The alignment in a global coordinate system may then be performed by reference points in the surrounding to be measured (for example reference points on a welding robot on the assembly line).

    [0038] In a further advantageous embodiment, the mechanical connection is a frame structure consisting mainly of carbon fiber reinforced polymer.

    [0039] Due to this, the mechanical connection is highly rigid. As the distance of the spatial direction sensors is firmly fixed to this rigid structure, all measurements become even more accurate.

    [0040] In a further advantageous embodiment, at least one reference point is in the fields of view of the second spatial direction sensor and a further second spatial direction sensor and the processing means is further adapted to calibrate the spatial coordinate systems of the second spatial direction sensors based on the respective spatial coordinates of the at least one reference point.

    [0041] This embodiment of the invention allows that the target moves, leaving the field of view of the second spatial direction sensor and entering in the field of view of a further second spatial direction sensor. As both second spatial direction sensors view the same reference point, their spatial coordinate system can be calibrated and thus melted into one spatial coordinate system, in which the target can move freely. This is especially important in assembly line applications where the target can be put on the product transported by the assembly line.

    [0042] In a further advantageous embodiment, the target moves from the field of view of the second spatial direction sensor in a field of view of a further second spatial direction sensor, wherein at least one reference point is in the field of view of the first spatial direction sensor before and after the movement and the processing means is further adapted to calibrate the spatial coordinate systems of the second spatial direction sensors based on the respective spatial coordinates of the at least one reference point.

    [0043] While this embodiment is similar to the preceding embodiment in that the target can be moved around freely, the reference point in this embodiment does not have to be in the fields of view of the second spatial direction sensors. This is advantageous as it is not always easy to find a reference point that is viewed by two second spatial direction sensors at the same time.

    [0044] Exemplary embodiments of the invention are described in the following with respect to the figures.
    Fig. 1
    illustrates a system according to the prior art in an automotive production line framing station.
    Fig. 2
    illustrates a first embodiment of a system according to the present invention.
    Fig. 3
    illustrates the first embodiment of the present invention in an automotive production line framing station application.
    Fig. 4
    illustrates the first embodiment of the present invention.
    Fig. 5
    illustrates a second embodiment of the present invention.
    Fig. 6
    illustrates the second embodiment of the present invention in a production line application.
    Fig. 7
    illustrates a third embodiment of the present invention.
    Fig. 8
    illustrates a fourth embodiment of the present invention.


    [0045] In Fig. 2, the principle elements of a system 100 according to the invention are illustrated. The system 100 comprises a probe 101 to be measured, a first spatial direction sensor 102, a second spatial direction sensor 103 and a processing means 106.

    [0046] The probe 101 is situated in the field of view FOV1 of the first spatial direction sensor 102. The first spatial direction sensor 102 is again situated in the field of view FOV2 of the second spatial direction sensor 103. While the second spatial direction sensor 103 determines the position and orientation of the first spatial direction sensor 102, the first spatial direction sensor again determines the position and/or orientation of the probe 101.

    [0047] In order to determine the position and/or orientation of the probe 101, the second spatial direction sensor 103 determines the spatial directions, i.e. spatial angles or solid angles, relative to targets 105 associated with the first spatial direction sensor 102 arranged in a pattern 104. Hence, the position and/or orientation of the pattern 104 and thus of the first spatial direction sensor 102 can be determined. The first spatial direction sensor 102 again determines the spatial coordinates and/or orientation of the probe 101.

    [0048] The first spatial direction sensor 102 is free to move and rotate according to all six degrees of freedom in order to observe the probe 101 as long as the second spatial direction sensor 103 remains stationary and at least three targets 105 associated with the first spatial direction sensor 102 remain inside the field of view of the second spatial direction sensor 103. This provides a virtually unlimited field of view for the system 100. Therefore, the system is able to look behind corners or through 360 degrees inside an enclosed measurement volume.

    [0049] For measuring, the first spatial direction sensor 102 is moved and rotated until its field of view FOV1 is pointing in the direction of a probe 101 whose position and/or orientation needs to be determined. The system 100 is able to transform the local coordinate system of the first spatial direction sensor 102 in the coordinate system of the system 100 by determining the spatial directions of at least three targets 105 associated with the first spatial direction sensor with respect to the second spatial direction sensor 103. Hence, the position and/or orientation of the probe 101, being in the field of view FOV1 of the first spatial direction sensor 102 only, is firstly determined in the local coordinate system of the first spatial direction sensor 102 and then transformed into the position and/or orientation in the coordinate system of the system 100.

    [0050] The first and second spatial direction sensors 102, 103 are connected to the processing means 106. This connection may be a wired or wireless connection. Therefore, the processing means as well as the first and second spatial direction sensors 102, 103 may be equipped with a transceiver. Also the probe 101 could have a connection to the processing means 106 in the same manner, e.g., to control the targets.

    [0051] The spatial direction sensors 102, 103 are any type of electro-optical camera such as e.g. a CMOS camera or a CCD camera.

    [0052] The probe 101 is any type of instrument suitable for measurement of the location of a geometrical entity such as a surface point or a hole - such as e.g. a touch probe with a stylus for point-by-point measurement or a stand-off scanning camera measuring multiple surface points in a so-called patch - and/or a physical characteristic associated with such an entity e.g. a combined sensor for measuring a physical characteristic combined with a location, such as a color temperature probe or ultrasonic thickness probe.

    [0053] The targets 105 are any type of mark or target suitable for observation by the spatial direction sensors, such as light emitting diodes, fiducial marks, retro-reflective targets or shapes. The targets 105 may be active or passive. As active targets, LEDs (Light Emitting Diodes) are particularly well suited, but any light source with a well-defined spectro-emission may be employed. The passive targets may reflect light from an external active light source.

    [0054] Figure 3 represents an application of the invention according to the first embodiment in an automotive framing station as already illustrated in Fig. 1. In this industrial application, not all of the probes 101 are in the field of view FOV2 of the second spatial direction sensor 103. However, the first spatial direction sensor 102 is arranged in such a manner that it is always in the field of view FOV2 of the second spatial direction sensor 103. The first spatial direction sensor 102 then again detects the position and/or orientation of the probes 101. Therefore, the first spatial direction sensor 102 is mounted in such a way that it can rotate its field of view FOV1 in all directions. The acquired data is transmitted to the processing means 106 that in turn executes a computer program to perform the following steps.

    [0055] In a first step, the spatial coordinates and/or orientation of the probe 101 is determined in the local coordinate system of the first spatial direction sensor 102. Then, in a second step, the position and/or orientation of the first spatial direction sensor 102 is determined in the coordinate system of the system 100 by the second spatial direction sensor 103. This is done by measuring the spatial directions of at least three targets 105 associated to the first spatial direction sensor 102 arranged in a pattern 104. The local coordinate system of the first spatial direction sensor 102 is then transferred into the spatial coordinate system of the system 100. Hence, also the spatial coordinates and/or orientation of the probe 101 are transformed in the coordinate system of the system 100.

    [0056] Due to the fact that the first direction sensor 102 is able to rotate or even to move, it is able to image the whole space surrounding it, rendering it possible to determine the position and/or orientation of the probes being located around it. Since the first spatial direction sensor 102 is situated in a location which is much closer to the probes 101 to be measured, it is less likely that a welding robot or an element prevents a spatial coordinates and/or orientation measurement. Also, due to the smaller measurement distance for the determination of the position and/or orientation of the probes 101, the measurements become more exact than if the second spatial direction sensor 103 measures the position and/or orientation of the probes 101 directly.

    [0057] As shown in Fig. 4, the probe 101 also comprises targets 107. The spatial coordinates and/or orientation of the probe 101 are then determined based on a measurement of the spatial directions of these targets 107 relative to the first spatial direction sensor 102. In fact, the position of the targets 107 is known in a local coordinate system of the probe 101. Based on this information and the determined spatial directions, the system is able to determine the position and/or orientation of the probe 101 in the local coordinate system of the first spatial direction sensor 102. This position and/or orientation can then be transformed in the position and/or orientation in the coordinate system of the system 100 as explained for the first embodiment.

    [0058] In a second embodiment according to the present invention, illustrated in Fig. 5, the first spatial direction sensor 102 and the second spatial direction sensor 103 are mechanically connected. For example, the spatial direction sensors can be mounted in a frame structure 110. The first spatial direction sensor 102 is mounted in the frame structure 110 in such a way that it can rotate freely. Furthermore, the spatial direction sensors 102, 103 are arranged in such a manner that at least three targets 105 associated to the first spatial direction sensor 102 are always in the field of view FOV2 of the second spatial direction sensor 103, independent of the rotational orientation of the first direction sensor 102.

    [0059] The frame structure 110 may consist of carbon fiber reinforced polymer or a metal tubing or any other solid and rigid material. Preferably, the material has minimum temperature expansion properties. The entity of first and second spatial direction sensors 102, 103 and the frame structure 110 may form a self-contained, compact and stable unit, which is easy to transport and which resists high external stresses. The spatial direction sensors 102, 103 may also be protected by the frame structure 110. Alternatively, the frame structure 110 is partly covered or the frame structure may even be replaced by a closed construction and form a closed unit.

    [0060] Figure 6 illustrates the second embodiment of the present invention in an exemplary industrial setup in a movig production line. As can be seen, the entity with spatial direction sensors 102, 103 and frame structure 110 can be placed on a tooling pallet or processed product as a self-contained system.

    [0061] Figure 7 illustrates a third embodiment of the present invention. In this embodiment, the system 100 comprises two second spatial direction sensors 103, 103' having a different field of view FOV2, FOV2'. These two fields of view FOV2 and FOV2', however, have common sectors in which reference points 111 are situated. By means of these reference points 111, which also may have targets, the local coordinate systems of each second spatial direction sensor 103 can be calibrated to the coordinate system of the system 100.

    [0062] In this embodiment, the first spatial direction sensor 102 can move from a first position A within the field of view FOV2 of a second spatial direction sensor to a position B in the field of view FOV2' of another second spatial direction sensor 103'. Due to the fact that the second spatial direction sensors 103, 103' are calibrated, the local coordinate system of the first spatial direction sensor 102 can be calibrated to the coordinate system of the system 100 in the positions A and B.

    [0063] The reference points 111 may also be replaced by a probe 101 which is static and which remains in the fields of view FOV2, FOV2' of both second spatial direction sensors 103, 103'.

    [0064] Figure 8 refers to a fourth embodiment of the present invention. Again, the first spatial direction sensor 102 can be moved from a position A to a position B. Nevertheless, as in the fourth embodiment, the local coordinate system of the first direction sensor 102 stays calibrated with the coordinate system of the system 100. In contrast to the fourth embodiment, the system is not calibrated by common reference points 111 or probes 101 in the fields of view FOV2 and FOV2' of the two second spatial direction sensors 103, 103'. Instead, the first spatial direction sensor 102 determines the relative positions of the reference points 111 and/or a fixed probe 101 in its positions A and B. The reference points 111 and/or the fixed probes 101 are then in the fields of view of the first spatial direction sensor 102 before the movement FOV1 and after movement FOV1'. From this measurement, the local coordinate systems of the two second spatial direction sensors 103, 103' are calibrated and the first spatial direction sensor 102 can perform measurements in the coordinate system of the system 100.

    Reference numeral list:



    [0065] 
    System 100
    Probe 101
    First spatial direction sensor 102
    Second spatial direction sensor 103
    Pattern of targets 104
    Target 105
    Processing means 106
    Target of the probe 107
    Object 108
    Touch point 109
    Frame structure 110
    Reference point 111
    Roof tooling of framing station 201
    Side tooling of framing station 202
    Floor tooling of framing station 203
    Touch point 204
    Touch probe 205
    Sheet-metal locating device 206
    Spatial direction sensor 207
    Side panel 208, 209
    Roof panel 210
    Floor assembly 211
    Field of view of a first spatial direction sensor FOV1
    Field of view of a second spatial direction sensor FOV2
    Position before movement A
    Position after movement B



    Claims

    1. A system (100) for measurement of spatial coordinates and/or orientation of a probe (101), comprising:

    a) a first spatial direction sensor (102) associated with a pattern (104) of targets (105) with known positions relative to each other and to the first spatial direction sensor (102);

    b) a second spatial direction sensor (103);

    c) a probe (101) with targets (107) in known positions relative to each other, wherein at least three targets (107) of the probe (101) are in the field of view (FOVI) of the first spatial direction sensor (102), wherein the probe (101) is a touch probe;

    d) the first spatial direction sensor (102) being free to move and rotate according to all six degrees of freedom in order to observe the probe (101) as long as the second spatial direction sensor (103) remains stationary and at least three targets (105) associated with the first spatial direction sensor (102) remain inside the field of view (FOV2) of the second spatial direction sensor (103) thus providing a virtually unlimited field of view for the system (100);

    e) processing means (106)

    ea) for the computation of orientation and/or spatial coordinates of the pattern (104) of targets (105) of the first spatial direction sensor (102) relative to the second spatial direction sensor (103) based on

    - the observation of at least three targets (105) on the first spatial direction sensor (102) by the second spatial direction sensor (103);

    - the known positions of the targets (105) of the first spatial direction sensor (102) relative to each other and to the first spatial direction sensor (102); and

    - a determination of the spatial directions of the targets (105) observed on the first spatial direction sensor (102) with respect to the second spatial direction sensor (103);

    eb) for the computation of the orientation and/or spatial coordinates of the pattern of targets (107) of the probe (101) relative to the first spatial direction sensor (102) based on

    - the observation of at least three targets (107) of the probe (101) by the first spatial direction sensor (102);

    - the known positions of the targets (107) of the probe (101) relative to each other and to the probe (101); and

    - a determination of the spatial directions of the targets (107) observed on the probe (101) with respect to the first spatial direction sensor (102);

    ec) for the computation of the orientation and/or spatial coordinates of the probe (101) relative to the second spatial direction sensor (103) based on

    - the orientation and/or spatial coordinates of the pattern (104) of targets (105) of the first spatial direction sensor (102) relative to the second spatial direction sensor (103) as computed in feature ea); and

    - the orientation and/or spatial coordinates of the pattern of targets (107) of the probe (101) relative to the first spatial direction sensor (102) as computed in feature eb).


     
    2. A system (100) according to claim 1, comprising at least one further probe (101) and/or at least one further first spatial direction sensor and/or at least one further second spatial direction sensor.
     
    3. A system (100) according to claim 1 or 2, wherein the probe (101) is assigned to an object (108) whose spatial coordinates and/or orientation is/are to be determined.
     
    4. A system (100) according to one of claims 1 to 3, wherein the touch probe has a touch point (109) and wherein the processing means (106) is further configured to compute the spatial coordinates of the touch point (109) from known positions of the at least three targets (107) of the probe (101) and the touch point (109) relative to each other.
     
    5. A system (100) according to one of claims 1 to 4, wherein the first spatial direction sensor (102) and the second spatial direction sensor (103) are mechanically connected.
     
    6. A system (100)) according to claim 5, wherein the mechanical connection is a frame structure (110) consisting mainly of carbon fiber reinforced polymer.
     
    7. A system (100) according to one of claims 2 to 4, wherein at least one reference point (111) is in the fields of view (FOV1, FOV1') of the second spatial direction sensor (103) and a further second spatial direction sensor (103'); and wherein the processing means is further adapted to calibrate the spatial coordinate systems of the second spatial direction sensors (103, 103') based on the respective spatial coordinates of the at least one reference point (111).
     
    8. A system (100) according to one of claims 2 to 4, wherein the target (104) moves from the field of view (FOV2) of the second spatial direction sensor (103) in a field of view (FOV2') of a further second spatial direction sensor (103'); wherein at least one reference point (111) is in the fields of view (FOV1, FOV1') of the first spatial direction sensor (102) before and after the movement; and
    wherein the processing means is further adapted to calibrate the spatial coordinate systems of the second spatial direction sensors (103, 103') based on the respective spatial coordinates of the at least one reference point (111).
     
    9. A system (100) according to one of claims 1 to 8, wherein the spatial direction sensors (102, 103) are designed to measure the spatial direction to the targets (105, 107).
     
    10. A method for measurement of the spatial coordinates and/or orientation of a touch probe (101) comprising the following steps:

    a) setting up a first spatial direction sensor (102) associated with a pattern (104) of targets (105) with known positions relative to each other and to the first spatial direction sensor (102);

    b) setting up a second spatial direction sensor (103);

    c) setting up a touch probe (101) with targets (107) in known positions relative to each other, wherein at least three targets (107) of the touch probe (101) are in the field of view (FOVI) of the first spatial direction sensor (102);

    d) the first spatial direction sensor (102) being free to move and rotate according to all six degrees of freedom in order to observe the touch probe (101) as long as the second spatial direction sensor (103) remains stationary and at least three targets (105) associated with the first spatial direction sensor (102) remain inside the field of view (FOV2) of the second spatial direction sensor (103) thus providing a virtually unlimited view for the system (100);

    e) computing

    ea) the orientation and/or spatial coordinates of the pattern (104) of targets (105) of the first spatial direction sensor (102) relative to the second spatial direction sensor (103) based on

    - the observation of at least three targets (105) on the first spatial direction sensor (102) by the second spatial direction sensor (103);

    - the known positions of the targets (105) of the first spatial direction sensor (102) relative to each other and to the first spatial direction sensor (102); and

    - a determination of the spatial directions of the targets (105) observed on the first spatial direction sensor (102) with respect to the second spatial direction sensor (103);

    eb) the orientation and/or spatial coordinates of the pattern of targets (107) of the touch probe (101) relative to the first spatial direction sensor (102) based on

    - the observation of at least three targets (107) of the touch probe (101) by the first spatial direction sensor (102);

    - the known positions of the targets (107) of the touch probe (101) relative to each other and to the touch probe (101); and

    - a determination of the spatial directions of the targets (107) observed on the touch probe (101) with respect to the first spatial direction sensor (102);

    ec) the orientation and/or spatial coordinates of the touch probe (101) relative to the second spatial direction sensor (103) based on

    - the orientation and/or spatial coordinates of the pattern (104) of targets (105) of the first spatial direction sensor (102) relative to the second spatial direction sensor (103) as computed in feature ea); and

    - the orientation and/or spatial coordinates of the pattern of targets (107) of the touch probe (101) relative to the first spatial direction sensor (102) as computed in feature eb).


     
    11. A computer program comprising instructions to cause the device of claim 1 to execute the following steps, when executed by a computer

    a) determining the orientation and/or spatial coordinates of a pattern (104) of targets (105) of a first spatial direction sensor (102) relative to a second spatial direction sensor (103), the first spatial direction sensor (102) being free to move and rotate according to all six degrees of freedom in order to observe the touch probe (101) as long as the second spatial direction sensor (103) remains stationary and at least three targets (105) associated with the first spatial direction sensor (102) remain inside the field of view (FOV2) of the second spatial direction sensor (103) thus providing a virtually unlimited field of view for the system (100) based on

    - the observation of at least three targets (105) on the first spatial direction sensor (102) by the second spatial direction sensor (103);

    - the known positions of the targets (105) of the first spatial direction sensor (102) relative to each other and to the first spatial direction sensor (102); and

    - a determination of the spatial directions of the targets (105) observed on the first spatial direction sensor (102) with respect to the second spatial direction sensor (103);

    b) determining the orientation and/or spatial coordinates of a pattern of targets (107) of a touch probe (101), with the targets (107) in known positions relative to each other, wherein at least three targets (107) of the touch probe (101) are in the field of view (FOVI) of the first spatial direction sensor (102), relative to the first spatial direction sensor (102), based on

    - the observation of at least three targets (107) of the touch probe (101) by the first spatial direction sensor (102);

    - the known positions of the targets (107) of the touch probe (101) relative to each other and to the touch probe (101); and

    - a determination of the spatial directions of the targets (107) observed on the touch probe (101) with respect to the first spatial direction sensor (102);

    c) determining the orientation and/or spatial coordinates of the touch probe (101) relative to the second spatial direction sensor (103) based on

    - the orientation and/or spatial coordinates of the pattern (104) of targets (105) of the first spatial direction sensor (102) relative to the second spatial direction sensor (103) as computed in feature a); and

    - the orientation and/or spatial coordinates of the pattern of targets (107) of the touch probe (101) relative to the first spatial direction sensor (102) as computed in feature b).


     


    Ansprüche

    1. Ein System (100) zur Messung von Raumkoordinaten und/oder der Orientierung einer Sonde (101), umfassend:

    a) einen ersten Raumrichtungssensor (102), der einem Muster (104) von Zielen (105) mit bekannten Positionen relativ zueinander und zu dem ersten Raumrichtungssensor (102) zugeordnet ist;

    b) einen zweiten Raumrichtungssensor (103);

    c) eine Sonde (101) mit Zielen (107), die in zueinander bekannten Positionen stehen, wobei sich mindestens drei Ziele (107) der Sonde (101) im Sichtfeld (FOVI) des ersten Raumrichtungssensors (102) befinden, wobei die Sonde (101) eine Berührungssonde ist;

    d) wobei der erste Raumrichtungssensor (102) frei ist, sich gemäß allen sechs Freiheitsgraden zu bewegen und zu drehen, um die Sonde (101) zu beobachten, solange der zweite Raumrichtungssensor (103) stationär bleibt und mindestens drei dem ersten Raumrichtungssensor (102) zugeordnete Ziele (105) innerhalb des Sichtfeldes (FOV2) des zweiten Raumrichtungssensors (103) bleiben, wodurch ein virtuell unbegrenztes Sichtfeld für das System (100) bereitgestellt wird;

    e) Verarbeitungsmittel (106)

    ea) für die Berechnung der Orientierung und/oder der räumlichen Koordinaten des Musters (104) von Zielen (105) des ersten Raumrichtungssensors (102) relativ zum zweiten Raumrichtungssensor (103) auf der Grundlage von

    - der Beobachtung von mindestens drei Zielen (105) auf dem ersten Raumrichtungssensor (102) durch den zweiten Raumrichtungssensor (103);

    - der bekannten Positionen der Ziele (105) des ersten Raumrichtungssensors (102) relativ zueinander und zu dem ersten Raumrichtungssensor (102); und

    - einer Bestimmung der räumlichen Richtungen der auf dem ersten Raumrichtungssensor (102) beobachteten Ziele (105) in Bezug auf den zweiten Raumrichtungssensor (103);

    eb) für die Berechnung der Orientierung und/oder der Raumkoordinaten des Musters von Zielen (107) der Sonde (101) relativ zum ersten Raumrichtungssensor (102) auf der Grundlage von

    - der Beobachtung von mindestens drei Zielen (107) der Sonde (101) durch den ersten Raumrichtungssensor (102);

    - der bekannten Positionen der Ziele (107) der Sonde (101) relativ zueinander und zu der Sonde (101); und

    - einer Bestimmung der Raumrichtungen der auf der Sonde (101) beobachteten Ziele (107) in Bezug auf den ersten Raumrichtungssensor (102);

    ec) für die Berechnung der Orientierung und/oder der Raumkoordinaten der Sonde (101) relativ zum zweiten Raumrichtungssensor (103) auf der Grundlage von

    - der Orientierung und/oder der räumlichen Koordinaten des Musters (104) von Zielen (105) des ersten Raumrichtungssensors (102) relativ zum zweiten Raumrichtungssensor (103), wie sie im Merkmal ea) berechnet werden; und

    - der Orientierung und/oder der räumlichen Koordinaten des Musters von Zielen (107) der Sonde (101) relativ zum ersten Raumrichtungssensor (102), wie in Merkmal eb) berechnet.


     
    2. System (100) nach Anspruch 1, umfassend mindestens eine weitere Sonde (101) und/oder mindestens einen weiteren ersten Raumrichtungssensor und/oder mindestens einen weiteren zweiten Raumrichtungssensor.
     
    3. System (100) nach Anspruch 1 oder 2, wobei die Sonde (101) einem Objekt (108) zugeordnet ist, dessen Raumkoordinaten und/oder Orientierung zu bestimmen ist/sind.
     
    4. System (100) nach einem der Ansprüche 1 bis 3, wobei die Berührungssonde einen Berührungspunkt (109) aufweist und wobei die Verarbeitungsmittel (106) ferner so konfiguriert sind, dass sie die räumlichen Koordinaten des Berührungspunktes (109) aus bekannten Positionen der mindestens drei Ziele (107) der Sonde (101) und des Berührungspunktes (109) relativ zueinander berechnet.
     
    5. System (100) nach einem der Ansprüche 1 bis 4, wobei der erste Raumrichtungssensor (102) und der zweite Raumrichtungssensor (103) mechanisch verbunden sind.
     
    6. System (100) nach Anspruch 5, wobei die mechanische Verbindung eine Rahmenstruktur (110) ist, die hauptsächlich aus kohlefaserverstärktem Polymer besteht.
     
    7. System (100) nach einem der Ansprüche 2 bis 4, wobei sich mindestens ein Referenzpunkt (111) in den Sichtfeldern (FOV1, FOV1') des zweiten Raumrichtungssensors (103) und eines weiteren zweiten Raumrichtungssensors (103') befindet; und wobei die Verarbeitungsmittel ferner dazu geeignet sind, die Raumkoordinatensysteme der zweiten Raumrichtungssensoren (103, 103') auf der Grundlage der jeweiligen Raumkoordinaten des mindestens einen Referenzpunktes (111) zu kalibrieren.
     
    8. System (100) nach einem der Ansprüche 2 bis 4, wobei sich das Ziel (104) aus dem Sichtfeld (FOV2) des zweiten Raumrichtungssensors (103) in ein Sichtfeld (FOV2') eines weiteren zweiten Raumrichtungssensors (103') bewegt; wobei sich mindestens ein Referenzpunkt (111) vor und nach der Bewegung in den Sichtfeldern (FOV1, FOV1') des ersten Raumrichtungssensors (102) ist; und
    wobei die Verarbeitungsmittel ferner dazu eingerichtet sind, die Raumkoordinatensysteme der zweiten Raumrichtungssensoren (103, 103') auf der Grundlage der jeweiligen Raumkoordinaten des mindestens einen Referenzpunktes (111) zu kalibrieren.
     
    9. System (100) nach einem der Ansprüche 1 bis 8, wobei die Raumrichtungssensoren (102, 103) so ausgelegt sind, dass sie die Raumrichtung zu den Zielen (105, 107) messen.
     
    10. Ein Verfahren zur Messung der Raumkoordinaten und/oder der Orientierung einer Berührungssonde (101), das die folgenden Schritte umfasst:

    a) Einrichten eines ersten Raumrichtungssensors (102), der einem Muster (104) von Zielen (105) mit bekannten Positionen relativ zueinander und zum ersten Raumrichtungssensor (102) zugeordnet ist;

    b) Einrichten eines zweiten Raumrichtungssensors (103);

    c) Einrichten einer Berührungssonde (101) mit Zielen (107) in bekannten Positionen relativ zueinander, wobei sich mindestens drei Ziele (107) der Berührungssonde (101) im Sichtfeld (FOV1) des ersten Raumrichtungssensors (102) befinden;

    d) wobei der erste Raumrichtungssensor (102) frei ist, sich gemäß allen sechs Freiheitsgraden zu bewegen und zu drehen, um die Berührungssonde (101) zu beobachten, solange der zweite Raumrichtungssensor (103) stationär bleibt und mindestens drei dem ersten Raumrichtungssensor (102) zugeordnete Ziele (105) innerhalb des Sichtfeldes (FOV2) des zweiten Raumrichtungssensors (103) bleiben, wodurch eine virtuell unbegrenzte Sicht für das System (100) bereitgestellt wird;

    e) Berechnung

    ea) der Orientierung und/oder der räumlichen Koordinaten des Musters (104) von Zielen (105) des ersten Raumrichtungssensors (102) relativ zum zweiten Raumrichtungssensor (103) auf der Grundlage

    - der Beobachtung von mindestens drei Zielen (105) auf dem ersten Raumrichtungssensor (102) durch den zweiten Raumrichtungssensor (103);

    - der bekannten Positionen der Ziele (105) des ersten Raumrichtungssensors (102) relativ zueinander und zu dem ersten Raumrichtungssensor (102); und

    - einer Bestimmung der räumlichen Richtungen der auf dem ersten Raumrichtungssensor (102) beobachteten Ziele (105) in Bezug auf den zweiten Raumrichtungssensor (103);

    eb) der Orientierung und/oder der räumlichen Koordinaten des Musters von Zielen (107) der Berührungssonde (101) relativ zum ersten Raumrichtungssensor (102) auf der Grundlage

    - der Beobachtung von mindestens drei Zielen (107) der Berührungssonde (101) durch den ersten Raumrichtungssensor (102);

    - der bekannten Positionen der Ziele (107) der Berührungssonde (101) relativ zueinander und zu der Berührungssonde (101); und

    - einer Bestimmung der Raumrichtungen der auf der Berührungssonde (101) beobachteten Ziele (107) in Bezug auf den ersten Raumrichtungssensor (102);

    ec) der Orientierung und/oder der räumlichen Koordinaten der Berührungssonde (101) relativ zu dem zweiten Raumrichtungssensor (103) auf der Grundlage

    - der Orientierung und/oder der räumlichen Koordinaten des Musters (104) von Zielen (105) des ersten Raumrichtungssensors (102) relativ zum zweiten Raumrichtungssensor (103), wie sie im Merkmal ea) berechnet werden; und

    - der Orientierung und/oder der räumlichen Koordinaten des Musters der Ziele (107) der Berührungssonde (101) relativ zum ersten Raumrichtungssensor (102), wie in Merkmal eb) berechnet.


     
    11. Ein Computerprogramm, das Anweisungen umfasst, die das Gerät nach Anspruch 1 dazu veranlassen, bei der Ausführung durch einen Computer die folgenden Schritte auszuführen:

    a) Bestimmen der Orientierung und/oder der Raumkoordinaten eines Musters (104) von Zielen (105) eines ersten Raumrichtungssensors (102) relativ zu einem zweiten Raumrichtungssensor (103), wobei der erste Raumrichtungssensor (102) frei beweglich und drehbar gemäß allen sechs Freiheitsgraden ist, um die Berührungssonde (101) zu beobachten, solange der zweite Raumrichtungssensor (103) stationär bleibt und mindestens drei dem ersten Raumrichtungssensor (102) zugeordnete Ziele (105) innerhalb des Sichtfeldes (FOV2) des zweiten Raumrichtungssensors (103) bleiben, wodurch ein virtuell unbegrenztes Sichtfeld für das System (100) bereitgestellt wird, basierend auf:

    - der Beobachtung von mindestens drei Zielen (105) auf dem ersten Raumrichtungssensor (102) durch den zweiten Raumrichtungssensor (103);

    - der bekannten Positionen der Ziele (105) des ersten Raumrichtungssensors (102) relativ zueinander und zu dem ersten Raumrichtungssensor (102); und

    - einer Bestimmung der räumlichen Richtungen der auf dem ersten Raumrichtungssensor (102) beobachteten Ziele (105) in Bezug auf den zweiten Raumrichtungssensor (103);

    b) Bestimmen der Orientierung und/oder der räumlichen Koordinaten eines Musters von Zielen (107) einer Berührungssonde (101), wobei die Ziele (107) in bekannten Positionen relativ zueinander angeordnet sind, wobei sich mindestens drei Ziele (107) der Berührungssonde (101) im Sichtfeld (FOV1) des ersten Raumrichtungssensors (102) relativ zum ersten Raumrichtungssensor (102) befinden, basierend auf

    - der Beobachtung von mindestens drei Zielen (107) der Berührungssonde (101) durch den ersten Raumrichtungssensor (102);

    - der bekannten Positionen der Ziele (107) der Berührungssonde (101) relativ zueinander und zu der Berührungssonde (101); und

    - einer Bestimmung der Raumrichtungen der auf der Berührungssonde (101) beobachteten Ziele (107) in Bezug auf den ersten Raumrichtungssensor (102);

    c) Bestimmen der Orientierung und/oder der räumlichen Koordinaten der Berührungssonde (101) relativ zu dem zweiten Raumrichtungssensor (103) auf der Grundlage

    - der Orientierung und/oder der räumlichen Koordinaten des Musters (104) von Zielen (105) des ersten Raumrichtungssensors (102) relativ zum zweiten Raumrichtungssensor (103), wie sie in Merkmal a) berechnet werden; und

    - der Orientierung und/oder der räumlichen Koordinaten des Musters der Ziele (107) der Berührungssonde (101) relativ zum ersten Raumrichtungssensor (102), wie in Merkmal b) berechnet.


     


    Revendications

    1. Un système (100) pour la mesure des coordonnées spatiales et/ou de l'orientation d'une sonde (101), comprenant :

    a) un premier capteur de direction spatiale (102) associé à un motif (104) de cibles (105) ayant des positions connues les unes par rapport aux autres et par rapport au premier capteur de direction spatiale (102) ;

    b) un second capteur de direction spatiale (103) ;

    c) une sonde (101) avec des cibles (107) ayant des positions connues les unes par rapport aux autres, au moins trois cibles (107) de la sonde (101) étant dans le champ de vision (FOVI) du premier capteur de direction spatiale (102), la sonde (101) étant une sonde tactile ;

    d) le premier capteur de direction spatiale (102) étant libre de se déplacer et de tourner selon la totalité de six degrés de liberté afin d'observer la sonde (101) dès lors que le second capteur de direction spatiale (103) reste fixe et qu'au moins trois cibles (105) associées au premier capteur de direction spatiale (102) restent à l'intérieur du champ de vision (FOV2) du second capteur de direction spatiale (103) , procurant ainsi au système (100) un champ de vision virtuellement illimité ;

    e) un moyen de traitement (106)

    ea) pour le calcul de l'orientation et/ou des coordonnées spatiales du motif (104) de cibles (105) du premier capteur de direction spatiale (102) par rapport au second capteur de direction spatiale (103) sur la base

    - de l'observation par le second capteur de direction spatiale (103) d'au moins trois cibles (105) sur le premier capteur de direction spatiale (102) ;

    - des positions connues des cibles (105) du premier capteur de direction spatiale (102) les unes par rapport aux autres et par rapport au premier capteur de direction spatiale (102) ; et

    - d'une détermination des directions spatiales des cibles (105) observées sur le premier capteur de direction spatiale (102) par rapport au second capteur de direction spatiale (103) ;

    eb) pour le calcul de l'orientation et/ou des coordonnées spatiales du motif de cibles (107) de la sonde (101) par rapport au premier capteur de direction spatiale (102) sur la base

    - de l'observation par le premier capteur de direction spatiale (102) d'au moins trois cibles (107) de la sonde (101) ;

    - des positions connues des cibles (107) de la sonde (101) les unes par rapport aux autres et par rapport à la sonde (101) ; et

    - d'une détermination des directions spatiales des cibles (107) observées sur la sonde (101) par rapport au premier capteur de direction spatiale (102) ;

    ec) pour le calcul de l'orientation et/ou des coordonnées spatiales de la sonde (101) par rapport au second capteur de direction spatiale (103) sur la base

    - de l'orientation et/ou des coordonnées spatiales du motif (104) de cibles (105) du premier capteur de direction spatiale (102) par rapport au second capteur de direction spatiale (103), telles que calculées à la caractéristique ea) ; et

    - de l'orientation et/ou des coordonnées spatiales du motif de cibles (107) de la sonde (101) par rapport au premier capteur de direction spatiale (102), telles que calculées à la caractéristique eb).


     
    2. Un système (100) selon la revendication 1, comprenant au moins une autre sonde (101) et/ou au moins un autre premier capteur de direction spatiale et/ou au moins un autre second capteur de direction spatiale.
     
    3. Un système (100) selon la revendication 1 ou 2, dans lequel la sonde (101) est attribuée à un objet (108) dont les coordonnées spatiales et/ou l'orientation sont à déterminer.
     
    4. Un système (100) selon l'une des revendications 1 à 3, dans lequel la sonde tactile possède un point de contact (109) et dans lequel le moyen de traitement (106) est en outre configuré pour calculer les coordonnées spatiales du point de contact (109) à partir de positions connues des au moins trois cibles (107) de la sonde (101) et du point de contact (109) les unes par rapport aux autres.
     
    5. Un système (100) selon l'une des revendications 1 à 4, dans lequel le premier capteur de direction spatiale (102) et le second capteur de direction spatiale (103) sont mécaniquement liés.
     
    6. Un système (100) selon la revendication 5, dans lequel la liaison mécanique est une structure de monture (110) principalement constituée d'un polymère renforcé de fibres de carbone.
     
    7. Un système (100) selon l'une des revendications 2 à 4, dans lequel au moins un point de référence (111) se trouve dans les champs de vision (FOV1, FOV1') du second capteur de direction spatiale (103) et d'un autre second capteur de direction spatiale (103') ; et dans lequel le moyen de traitement est en outre apte à calibrer les systèmes de coordonnées spatiales des seconds capteurs de direction spatiale (103, 103') sur la base des coordonnées spatiales respectives de l'au moins un point de référence (111).
     
    8. Un système (100) selon l'une des revendications 2 à 4, dans lequel la cible (104) se déplace du champ de vision (FOV2) du second capteur de direction spatiale (103) dans un champ de vision (FOV2') d'un autre second capteur de direction spatiale (103') ; dans lequel au moins un point de référence (111) se trouve dans les champs de vision (FOV1, FOV1') du premier capteur de direction spatiale (102) avant et après le déplacement ; et
    dans lequel le moyen de traitement est en outre apte à calibrer les systèmes de coordonnées spatiales des seconds capteurs de direction spatiale (103, 103') sur la base des coordonnées spatiales respectives de l'au moins un point de référence (111).
     
    9. Un système (100) selon l'une des revendications 1 à 8, dans lequel les capteurs de direction spatiale (102, 103) sont conçus pour mesurer la direction spatiale vers les cibles (105, 107).
     
    10. Un procédé de mesure des coordonnées spatiales et/ou de l'orientation d'une sonde tactile (101), comprenant les étapes suivantes :

    a) installation d'un premier capteur de direction spatiale (102) associé à un motif (104) de cibles (105) ayant des positions connues les unes par rapport aux autres et par rapport au premier capteur de direction spatiale (102) ;

    b) installation d'un second capteur de direction spatiale (103) ;

    c) installation d'une sonde tactile (101) avec des cibles (107) ayant des positions connues les unes par rapport aux autres, au moins trois cibles (107) de la sonde tactile (101) étant dans le champ de vision (FOVI) du premier capteur de direction spatiale (102) ;

    d) le premier capteur de direction spatiale (102) étant libre de se déplacer et de tourner selon la totalité de six degrés de liberté afin d'observer la sonde tactile (101) dès lors que le second capteur de direction spatiale (103) reste fixe et qu'au moins trois cibles (105) associées au premier capteur de direction spatiale (102) restent à l'intérieur du champ de vision (FOV2) du second capteur de direction spatiale (103) , procurant ainsi au système (100) un champ de vision virtuellement illimité ;

    e) calcul

    ea) de l'orientation et/ou des coordonnées spatiales du motif (104) de cibles (105) du premier capteur de direction spatiale (102) par rapport au second capteur de direction spatiale (103) sur la base

    - de l'observation par le second capteur de direction spatiale (103) d'au moins trois cibles (105) sur le premier capteur de direction spatiale (102) ;

    - des positions connues des cibles (105) du premier capteur de direction spatiale (102) les unes par rapport aux autres et par rapport au premier capteur de direction spatiale (102) ; et

    - d'une détermination des directions spatiales des cibles (105) observées sur le premier capteur de direction spatiale (102) par rapport au second capteur de direction spatiale (103) ;

    eb) de l'orientation et/ou des coordonnées spatiales du motif de cibles (107) de la sonde tactile (101) par rapport au premier capteur de direction spatiale (102) sur la base

    - de l'observation par le premier capteur de direction spatiale (102) d'au moins trois cibles (107) de la sonde tactile (101) ;

    - des positions connues des cibles (107) de la sonde tactile (101) les unes par rapport aux autres et par rapport à la sonde tactile (101) ; et

    - d'une détermination des directions spatiales des cibles (107) observées sur la sonde tactile (101) par rapport au premier capteur de direction spatiale (102) ;

    ec) de l'orientation et/ou des coordonnées spatiales de la sonde tactile (101) par rapport au second capteur de direction spatiale (103) sur la base

    - de l'orientation et/ou des coordonnées spatiales du motif (104) de cibles (105) du premier capteur de direction spatiale (102) par rapport au second capteur de direction spatiale (103), telles que calculées à la caractéristique ea) ; et

    - de l'orientation et/ou des coordonnées spatiales du motif de cibles (107) de la sonde tactile (101) par rapport au premier capteur de direction spatiale (102), telles que calculées à la caractéristique eb).


     
    11. Un programme informatique comprenant des instructions pour faire en sorte que, lorsqu'elles sont exécutées par un calculateur, le dispositif de la revendication 1 exécute les étapes suivantes :

    a) détermination de l'orientation et/ou des coordonnées spatiales d'un motif (104) de cibles (105) d'un premier capteur de direction spatiale (102) par rapport à un second capteur de direction spatiale (103), le premier capteur de direction spatiale (102) étant libre de se déplacer et de tourner selon la totalité de six degrés de liberté afin d'observer la sonde tactile (101) dès lors que le second capteur de direction spatiale (103) reste fixe et qu'au moins trois cibles (105) associées au premier capteur de direction spatiale (102) restent à l'intérieur du champ de vision (FOV2) du second capteur de direction spatiale (103) , procurant ainsi au système (100) un champ de vision virtuellement illimité, sur la base

    - de l'observation par le second capteur de direction spatiale (103) d'au moins trois cibles (105) sur le premier capteur de direction spatiale (102) ;

    - des positions connues des cibles (105) du premier capteur de direction spatiale (102) les unes par rapport aux autres et par rapport au premier capteur de direction spatiale (102) ; et

    - d'une détermination des directions spatiales des cibles (105) observées sur le premier capteur de direction spatiale (102) par rapport au second capteur de direction spatiale (103) ;

    b) détermination de l'orientation et/ou des coordonnées spatiales d'un motif de cibles (107) d'une sonde tactile (101) avec les cibles (107) ayant des positions connues les unes par rapport aux autres, au moins trois cibles (107) de la sonde tactile (101) étant dans le champ de vision (FOVI) du premier capteur de direction spatiale (102), par rapport au premier capteur de direction spatiale (102), sur la base

    - de l'observation par le premier capteur de direction spatiale (102) d'au moins trois cibles (107) de la sonde tactile (101) ;

    - des positions connues des cibles (107) de la sonde tactile (101) les unes par rapport aux autres et par rapport à la sonde tactile (101) ; et

    - d'une détermination des directions spatiales des cibles (107) observées sur la sonde tactile (101) par rapport au premier capteur de direction spatiale (102) ;

    c) détermination de l'orientation et/ou des coordonnées spatiales de la sonde tactile (101) par rapport au second capteur de direction spatiale (103) sur la base

    - de l'orientation et/ou des coordonnées spatiales du motif (104) de cibles (105) du premier capteur de direction spatiale (102) par rapport au second capteur de direction spatiale (103), telles que calculées à la caractéristique a) ; et

    - de l'orientation et/ou des coordonnées spatiales du motif de cibles (107) de la sonde tactile (101) par rapport au premier capteur de direction spatiale (102), telles que calculées à la caractéristique b).


     




    Drawing


























    Cited references

    REFERENCES CITED IN THE DESCRIPTION



    This list of references cited by the applicant is for the reader's convenience only. It does not form part of the European patent document. Even though great care has been taken in compiling the references, errors or omissions cannot be excluded and the EPO disclaims all liability in this regard.

    Patent documents cited in the description