(19)
(11)EP 2 381 557 B1

(12)EUROPEAN PATENT SPECIFICATION

(45)Mention of the grant of the patent:
06.06.2018 Bulletin 2018/23

(21)Application number: 10733235.5

(22)Date of filing:  20.01.2010
(51)International Patent Classification (IPC): 
H02J 7/00(2006.01)
H01M 10/44(2006.01)
(86)International application number:
PCT/CN2010/070288
(87)International publication number:
WO 2010/083762 (29.07.2010 Gazette  2010/30)

(54)

BATTERY CHARGING METHOD AND DEVICE

BATTERIEAUFLADEVERFAHREN UND -VORRICHTUNG

PROCÉDÉ DE CHARGE DE BATTERIE ET DISPOSITIF ASSOCIÉ


(84)Designated Contracting States:
AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO SE SI SK SM TR

(30)Priority: 21.01.2009 CN 200910077300

(43)Date of publication of application:
26.10.2011 Bulletin 2011/43

(73)Proprietor: Actions (Zhuhai) Technology Co., Limited
Zhuhai 519085 (CN)

(72)Inventor:
  • XIAO, Lirong
    Zhuhai Guangdong 519085 (CN)

(74)Representative: Lees, Gregory Alexander et al
Dehns St Bride's House 10 Salisbury Square
London EC4Y 8JD
London EC4Y 8JD (GB)


(56)References cited: : 
CN-A- 101 246 976
CN-A- 101 546 919
CN-Y- 201 063 452
FR-A1- 2 733 093
US-A- 5 617 007
US-A1- 2007 075 685
US-A1- 2008 203 969
CN-A- 101 246 976
CN-Y- 201 063 452
DE-A1-102006 039 417
FR-A1- 2 870 391
US-A- 5 710 506
US-A1- 2008 203 969
  
      
    Note: Within nine months from the publication of the mention of the grant of the European patent, any person may give notice to the European Patent Office of opposition to the European patent granted. Notice of opposition shall be filed in a written reasoned statement. It shall not be deemed to have been filed until the opposition fee has been paid. (Art. 99(1) European Patent Convention).


    Description

    FIELD OF THE INVENTION



    [0001] The present invention relates to battery charging fields, and more particularly, to a method and an apparatus for charging a battery.

    BACKGROUND OF THE INVENTION



    [0002] Batteries mentioned hereinafter are all chargeable batteries.

    [0003] During a first conventional process for charging a battery, curves showing changes of capacity, voltage and current of the battery with time are shown in FIG.1. First, constant current charging is performed until the voltage of the battery reaches a predetermined value, generally 4.20V. Then, after the voltage of the battery reaches the predetermined value 4.20V, the constant current charging is switched to constant voltage charging in which the predetermined voltage 4.20V is applied, so as to avoid battery performance reducing caused by overcharge of the battery. After the constant voltage charging starts, detection of charging current also starts. When the charging current decreases to 0.001 CA (C is the value of the capacity of the battery and A is a measurement unit of current intensity), the charging is terminated. 4.20V is referred to as a charging limited voltage.

    [0004] The first conventional process has the following disadvantages:
    After the constant voltage charging starts, it takes a long time for the charging current to decrease to 0.001CA from the constant current. Moreover, the closer to 0.001 CA the charging current becomes, the smaller the percentage of the capacity charged into the battery to the whole capacity of the battery becomes. Therefore, the process of the constant voltage charging has a quite low efficiency. In addition, the time when the charging is terminated depends on the capacity of the battery and different batteries may have different capacities. As a result, the current when the charging is terminated is different with respect to different batteries. If a battery whose capacity is unknown is used, the battery may not be fully-charged or it will take a longer time for terminating the charging.

    [0005] During a second conventional process for charging a battery, curves showing changes of battery voltage and charging current with time are shown in FIG.2. As shown in FIG.2, the charging process is described as follows. First, constant current charging is performed until the voltage of the battery reaches a predetermined value VRC. Then, after the voltage of the battery reaches the predetermined value VRC, pulse current is applied to continue the charging. The value of the pulse current is equal to the value of the constant current. During an off period of the pulse current, the voltage of the battery is detected. If the voltage of the battery decreases to a predetermined voltage VRP (VRC>VRP), the pulse current is applied to continue the charging, and a time interval (P) between this pulse current and the previous pulse current is recorded. If the time interval (P) is smaller than predetermined time (Pc), the pulse current is applied to continue the charging. If the time interval (P) is larger than or equal to the predetermined time (Pc), it is determined that the battery has been fully-charged and the charging process is terminated.

    [0006] The second conventional process has the following disadvantages. If VRC≥ charging limited voltage 4.20V, the voltage of the battery after the pulse current charging starts will be higher than 4.2V. As a result, the battery is overcharged and the performance of the battery is reduced. If VRC< 4.20V, the pulse current charging starts too early, and thus the charging time becomes longer.

    [0007] During a third conventional process for charging a battery, curves showing changes of battery voltage and charging current with time are shown in FIG.3. As shown in FIG.3, the charging process includes: Step S1: perform constant current charging until the voltage of the battery reaches a predetermined value V1. Because the charging time T0 is long, it is indicated in a clipped manner in FIG.3. Step S2: after the voltage of the battery reaches the predetermined value V1, switch to apply the pulse current to continue charging the battery. Step S3: stop charging after the battery is charged for a first period of time T1. Step S4: measure passing time An after the charging stops and the voltage of the battery Bn during the passing time An for multiple times, and compare Bn with a second predetermined voltage V2. Step S5: among all values Bn which are higher than V2 when An reaches a second predetermined time T2, deduce, based on data array (An, Bn) of the passing time An and the voltage of the battery Bn, whether the voltage of the battery at a third predetermined time T3 (T3 is larger than T2) will decrease and become smaller than V2 due to stopping charging. Step S6: if it is deduced that the voltage of the battery will decrease to be smaller than or equal to V2, continue the pulse current charging; if it is deduced that the voltage of the battery will not decrease to be smaller than or equal to V2, stop charging. Vertical coordinates in FIG. 3 are just used for describing relative values of V1 and V2, and therefore the values of the voltage are also represented in the clipped manner.

    [0008] The third conventional process has the following disadvantages. If V1≥ charging limited voltage 4.20V, the voltage of the battery after the pulse current charging starts will be higher than 4.2V. As a result, the battery will be overcharged and the performance of the batter will be reduced. If V1< 4.20V, the pulse current charging will start too early, and thus the charging time becomes longer.

    [0009] US 5 617 007 A1 provides a battery charging method for charging a battery using current control with a switching power supply charging circuit coupled to the battery.

    [0010] FR 2 733 093 A1 provides a simplified battery charger for charging batteries with lithium icons.

    SUMMARY OF THE INVENTION



    [0011] In view of the above, embodiments of the present invention provide an apparatus for charging a battery, which can effectively avoid overcharge of the battery and can shorten charging time and thus can increase a charging speed.

    [0012] According to an embodiment of the present invention, an apparatus for charging a battery includes: a constant current circuit, a constant voltage circuit and a control circuit; wherein the control circuit is adapted to
    control the constant current circuit to perform constant current charging to the battery;
    after a battery voltage during the constant current charging reaches a preset charging limited voltage, control the constant voltage circuit to perform constant voltage charging to the battery;
    after a charging current during the constant voltage charging becomes smaller than or equal to a predetermined threshold, control the battery to be charged by pulse charging until an open circuit voltage of the battery is larger than or equal to a preset voltage threshold;
    the apparatus further comprises a clock circuit;
    wherein the control circuit further comprises:

    a first unit, adapted to stop the charging to the battery and trigger the clock circuit to start timing;

    a second unit, adapted to, when a timing period reaches a preset off time, clear the timing of the clock circuit and determine whether an open circuit voltage of the battery is larger than or equal to the preset voltage; if the open circuit voltage is larger than or equal to the preset voltage, terminate the charging; otherwise, control the constant voltage circuit to perform the constant voltage charging to the battery and meanwhile trigger the clock circuit to start timing, and when a charging time reaches a predetermined pulse-charging-on time, clear the timing of the clock circuit, and trigger the first unit to stop charging the battery and to trigger the clock circuit to start timing.



    [0013] Embodiments of the present invention provide a method for charging a battery, which can effectively avoid overcharge of the battery and can shorten charging time and thus can increase a charging speed.

    [0014] According to an embodiment of the present invention, a method for charging a battery includes:

    A, performing constant current charging to the battery;

    B, performing constant voltage charging after a battery voltage during the constant current charging reaches a charging limited voltage of the battery;

    C, after a charging current during the constant voltage charging becomes smaller than or equal to a predetermined threshold, performing pulse charging to the battery until an open circuit voltage of the battery is larger than or equal to a preset voltage threshold;

    wherein the performing the pulse charging to the battery until the open circuit voltage of the battery is larger than or equal to the preset voltage threshold comprises:

    C1, stopping charging the battery;

    C2, when an off time that the charging is stopped reaches a preset off time, determining whether the open circuit voltage of the battery is larger than or equal to the preset voltage threshold; if the open circuit voltage of the battery is larger than or equal to the preset voltage threshold, terminating the charging; otherwise, performing the constant voltage charging to the battery, and returning to step C1 when a charging time reaches a pulse-charging-on time.



    [0015] As can be seen from the above technical solution, the pulse charging does not start until the constant voltage charging continues for a period of time, and thus the charging time can be shortened. The technical solution in the present invention need not terminate the charging according to the charging current, but can terminate the charging completely through determining the open circuit battery voltage. Therefore, the technical solution in the present invention is applicable to batteries with different capacities. During the charging process in the present invention, the charging voltage is always smaller than or equal to the charging limited voltage, and thus overcharge of the battery can be avoided.

    BRIEF DESCRIPTION OF THE DRAWINGS



    [0016] 

    FIG. 1 illustrates curves showing changes of capacity, voltage and current of a battery with time in a first conventional process for charging a battery.

    FIG. 2 illustrates curves showing changes of battery voltage and charging current of a battery with time in a second conventional process for charging a battery.

    FIG. 3 illustrates curves showing changes of battery voltage and charging current of a battery with time in a third conventional process of charging a battery.

    FIG. 4 is a block diagram illustrating a structure of an apparatus for charging a battery according to an embodiment of the present invention.

    FIG.5 is a flowchart of a method for charging a battery according to an embodiment of the present invention.

    FIG.6 is a block diagram illustrating function modules of an apparatus for charging a battery according to an embodiment of the present invention.

    FIG.7 is a flowchart of a method for charging a battery according to an embodiment of the present invention.

    FIG.8 illustrates characteristic curves of voltage and charging current of a battery during charging according to an embodiment of the present invention.

    FIG.9 illustrates characteristic curves of voltage and charging current of a battery during charging according to another embodiment of the present invention.


    DETAILED DESCRIPTION OF THE INVENTION



    [0017] To make the technical scheme and merits of the present invention clearer, the present invention will be described hereinafter in detail with reference to accompanying drawings and embodiments.

    [0018] FIG.4 is a block diagram illustrating a structure of an apparatus for charging a battery according to an embodiment of the present invention. The apparatus is adapted to charge a battery 402 and includes: a constant current circuit 403, a constant voltage circuit 404 and a control circuit 405. The control circuit 405 is adapted to: control the constant current circuit 403 to perform constant current charging to the battery 402; after the battery voltage during the constant current charging reaches a preset charging limited voltage, control the constant voltage circuit 404 to perform constant voltage charging to the battery 402; and after the charging current during the constant voltage charging becomes smaller than or equal to a predetermined threshold, control the battery 402 to be charged in a pulse charging manner and terminate the charging when an open circuit voltage of the battery 402 is larger than or equal to a preset voltage threshold. Herein, the control circuit 405 may utilize a switch circuit to control the constant current circuit 403 to perform the constant current charging to the battery 402, control the constant voltage circuit 404 to perform the constant voltage charging to the battery 402 and terminate the charging of the battery 402.

    [0019] An embodiment of the present invention further provides a method for charging a battery. As shown in FIG.5, the method includes:

    Step 501: A battery is charged with a constant current.

    Step 502: The battery is charged with a constant voltage after the battery voltage during the constant current charging reaches a charging limited voltage of the battery.

    Step 503: After a charging current during the constant voltage charging becomes smaller than or equal to a predetermined threshold, the battery is charged in a pulse charging manner until an open circuit voltage of the battery is larger than or equal to a preset voltage threshold.



    [0020] The technical solution of the present invention will be further described in detail with reference to embodiments. FIG.6 is a block diagram illustrating function modules of an apparatus for charging a battery according to an embodiment of the present invention. The apparatus is adapted to charge a battery 602, and includes a charging source 601, a constant current circuit 603, a constant voltage circuit 604, a current detecting circuit 605, a voltage detecting circuit 606, a control circuit 607, a clock circuit 608 and a switch circuit 609. The apparatus may further include a slot for placing a battery. The slot includes contacts contacted with positive and negative electrodes of the battery respectively. When the battery 602 is placed in the slot, a circuit illustrated in FIG.6 is formed. The battery 602 is a lithium battery in this embodiment.

    [0021] The charging source 601 may be a source with a source adapter or a Universal Serial Bus (USB) interface, and is adapted to provide charging current for the lithium battery 602. It can be understood that the charging source 601 may also be a physical entity outside the apparatus.

    [0022] The switch circuit 609 is adapted to select a charging circuit. The switch circuit 609 includes three states: connected with the constant current circuit 603, connected with the constant voltage circuit 604, and disconnected. If the switch circuit 609 is in the state of being connected with the constant current circuit 603, the charging source 601, the lithium battery 602, the switch circuit 609 and the constant current circuit 603 form a charging circuit. If the switch circuit 609 is in the state of being connected with the constant voltage circuit 604, the charging source 601, the lithium battery 602, the switch circuit 609 and the constant voltage circuit 604 form a charging circuit. If the switch circuit 609 is in the state of being disconnected, the charging circuit is disconnected.

    [0023] The constant current circuit 603 is adapted to provide a constant charging current for charging the lithium battery 602.

    [0024] The constant voltage circuit 604 is adapted to stabilize the voltage of the lithium battery 602 at the charging limited voltage of the lithium battery 602, generally constant 4.2V.

    [0025] The current detecting circuit 605 is adapted to detect the intensity of the charging current. Preferably, as shown in FIG.6, a resistance 610 may be further added to the charging circuit. Thus, the current detecting circuit 605 may detect the intensity of the charging current through detecting the intensity of current passing through the resistance 610.

    [0026] The voltage detecting circuit 606 is adapted to detect the intensity of voltage of the lithium battery 602. If the lithium battery 602 is connected to the charging circuit, what is detected by the voltage detecting circuit 606 is the battery voltage of the lithium battery 602 being charged. If the charging circuit is disconnected, what is detected by the voltage detecting circuit 606 is the open circuit voltage of the lithium battery 602.

    [0027] The control circuit 607 is adapted to control the switch circuit 609 to select a charging circuit. Specifically, the control includes:

    [0028] The control circuit 607 enables the switch circuit 609 to be connected with the constant current circuit 603 in an initial charging stage, enables the switch circuit 609 to be connected with the constant voltage circuit 604 when the battery voltage detected by the voltage detecting circuit 606 during the charging reaches the charging limited voltage. Further, when the intensity of the charging current detected by the current detecting circuit 605 becomes smaller than or equal to a predetermined threshold, the control circuit 607 makes the switch circuit 609 to be disconnected, and enables the clock circuit 608 to start timing. When a timing period reaches a preset off time Toff, the control circuit 607 enables the clock circuit 608 to clear timing and determines whether the open circuit voltage of the lithium battery 5602 detected by the voltage detecting circuit 606 is larger than or equal to a predetermined voltage Vr; if the open circuit voltage is larger than or equal to the predetermined voltage Vr, the control circuit 607 terminates the charging; otherwise, the control circuit 607 controls the switch circuit 609 to perform pulse charging to the lithium battery 602. Specifically, the pulse charging includes: the control circuit 607 enables the switch circuit 609 to be connected with the constant voltage circuit 604 and controls the clock circuit 608 to start timing. When the connected time reaches a preset pulse-charging-on time Ton, the control circuit 607 enables the switch circuit 609 to be disconnected and controls the clock circuit 608 to start timing again. When the disconnected time reaches the preset off time Toff, the control circuit 607 determines whether the open circuit voltage detected by the voltage detecting circuit 606 is larger than or equal to the predetermined voltage Vr; if the open circuit voltage is larger than or equal to the predetermined voltage Vr, the control circuit 607 terminates the charging; otherwise, repeat the pulse charging to the lithium battery 602.

    [0029] The clock circuit 608 is adapted to provide a timing function.

    [0030] FIG.7 is a flowchart of a method for charging a battery according to an embodiment of the present invention. The method includes:

    Step S1: Control the switch circuit 609 to be connected with the constant current circuit 603. The charging source 501 is connected to the constant current circuit 603 to charge the lithium battery 602 with a constant current Imax.

    Step S2: The voltage detecting circuit 606 detects the battery voltage of the lithium battery 602 being charged, and determines whether the battery voltage reaches a charging limited voltage of the lithium battery 602. In this embodiment, the charging limited voltage is 4.2V. If the battery voltage does not reach the charging limited voltage of the lithium battery 602, continue the constant current charging and repeat step S2; otherwise, proceed to step S3.

    Step S3: Control the switch circuit 609 to be connected with the constant voltage circuit 604 so as to charge the lithium battery 602 with a constant voltage. In this embodiment, the constant voltage is 4.2V.

    Step S4: The current detecting circuit 605 detects the intensity of the charging current, and determines whether the charging current is smaller than or equal to a predetermined threshold. The predetermined threshold may be n% of the constant current Imax. If the current charging current is larger than Imax×n%, continue the constant voltage charging; if the current charging current is smaller than or equal to Imax×n%, proceed to step S5.

    Step S5: Disconnect the charging circuit through controlling the switch circuit 609, and meanwhile the clock circuit 608 starts timing.
    After the charging circuit is disconnected, the battery voltage will decrease gradually and will become stable after a period of time. The period of time may be pretested through experiments and is referred to as Toff.

    Steps S6-S7: The control circuit 607 determines whether a timing period of the clock circuit 608 reaches the predetermined period of time Toff, stops and clears timing of the clock circuit 608 if the timing period of the clock circuit 608 reaches Toff.

    Step S8: The voltage detecting circuit 606 detects whether an open circuit voltage of the battery 602 being charged is larger than or equal to a predetermined voltage Vr; if the open circuit voltage is larger than or equal to Vr, it indicates that the battery is fully-charged, and proceed to step S12; if the open circuit voltage is smaller than Vr, proceed to step S9.

    Step S9: Continue the constant voltage charging, and meanwhile the clock circuit 608 starts timing.

    Step S10: The control circuit 607 determines whether the timing period of the clock circuit 608 reaches a preset pulse-charging-on time Ton; if the timing period of the clock circuit 608 reaches Ton, proceed to step S11; otherwise, repeat step S10.

    Step S11: Clear timing of the clock circuit 608, and return to step S5.

    Step S12: Terminate the charging and provide a charging end flag.



    [0031] FIG8 illustrates characteristic curves of the voltage and charging current of a battery during charging according to an embodiment of the present invention. In FIG.8, the constant current charging time is long and is thus represented in a clipped manner. In FIG.8, the preset time Toff is a fixed value and equals to an open circuit stabilizing time of the battery voltage, generally between 1ms and 10s but is not limited to this range. In this embodiment, Toff is 10ms. In FIG.8, the pulse-charging-on time Ton is also a fixed value and equals to a periodic pulse charging time. Ton has a wider value range, which may be several hundreds of milliseconds or several seconds, or even several minutes. The value range of Ton may be represented as 100ms≤Ton≤10min.

    [0032] FIG.9 illustrates characteristic curves of the voltage and charging current of a battery during charging according to another embodiment of the present invention. In FIG.9, the constant current charging time is long and is thus represented in a clipped manner. In FIG.9, the preset time Toff is a fixed value and equals to an open circuit stabilizing time of the battery voltage, generally 1ms to 10s but is not limited to this range. In this embodiment, Toff is 10ms. In FIG.9, the pulse-charging-on time Ton is decreasing with time. In this embodiment, Ton is set to be 10 min at a first time and is set to be 8 min at a second time. When Ton decreases to a predetermined minimum value, Ton keeps the minimum value and does not change any more. In this embodiment, the minimum value is 1s.

    [0033] In view of the foregoing, the technical solution in the present invention need not terminate the charging according to the charging current, but can terminate the charging completely through determining the open circuit battery voltage. Therefore, the technical solution in the present invention is applicable to batteries with different capacities. In the present invention, the pulse charging will not start until the constant voltage charging has continued for a predetermined period of time, and thus the charging time can be shortened. During the charging process in the present invention, the charging voltage is always smaller than or equal to the charging limited voltage, and thus overcharge of the battery can be avoided.

    [0034] The foregoing is only embodiments of the present invention. The protection scope of the present invention, however, is not limited to the above description. Any change or substitution, easily occurring to those skilled in the art, should be covered by the protection scope of the present invention.


    Claims

    1. An apparatus for charging a battery, characterizied by comprising:

    a constant current circuit (403, 603),

    a constant voltage circuit (404, 604) and

    a control circuit (405, 607); wherein the control circuit (405, 607) is adapted to

    control the constant current circuit (403, 603) to perform constant current charging to the battery (402, 602);

    after a battery voltage during the constant current charging reaches a preset charging limited voltage, control the constant voltage circuit (404, 604) to perform constant voltage charging to the battery (402, 602);

    after a charging current during the constant voltage charging becomes smaller than or equal to a predetermined threshold, control the battery (402, 602) to be charged by pulse charging until an open circuit voltage of the battery (402, 602) is larger than or equal to a preset voltage threshold;

    the apparatus further comprising a clock circuit (608);

    wherein the control circuit (405, 607) further comprises:

    a first unit, adapted to stop the charging to the battery (402, 602) and trigger the clock circuit (608) to start timing;

    a second unit, adapted to, when a timing period reaches a preset off time, clear the timing of the clock circuit (608) and determine whether an open circuit voltage of the battery (402, 602) is larger than or equal to the preset voltage; if the open circuit voltage is larger than or equal to the preset voltage, terminate the charging; otherwise, control the constant voltage circuit (404, 604) to perform the constant voltage charging to the battery (402, 602) and meanwhile trigger the clock circuit (608) to start timing, and when a charging time reaches a predetermined pulse-charging-on time, clear the timing of the clock circuit (608), and trigger the first unit to stop charging the battery (402, 602) and to trigger the clock circuit (608) to start timing.


     
    2. The apparatus of claim 1, further comprising
    a switch circuit (609); wherein
    an input port of the switch circuit (609) is connected with a source port,
    a control port of the switch circuit (609) is connected with the control circuit (607),
    a first output port of the switch circuit (609) is connected with the constant current circuit (603) and
    a second output port of the switch circuit (609) is connected with the constant voltage circuit (604);
    the control circuit (607) is adapted to control the input port of the switch circuit(609) to be uniquely connected with the first output port to control the constant current circuit (603) to perform the constant current charging to the battery (602); control the input port of the switch circuit (609) to be uniquely connected with the second output port to control the constant voltage circuit (604) to perform the constant voltage charging to the battery (602).
     
    3. The apparatus of claim 2, further comprising a charging source (609) (601) connected with the source port.
     
    4. The apparatus of claim 1, wherein a voltage used when the constant voltage circuit (403, 603) performs the constant voltage charging to the battery (402, 602) is the charging limited voltage.
     
    5. The apparatus of claim 1, wherein the charging limited voltage is 4.2V.
     
    6. The apparatus of claim 1, wherein the pulse-charging-on time decreases with increase of the number of times that the charging is stopped during the pulse charging.
     
    7. A method for charging a battery, characterized by comprising:

    A, performing constant current charging to the battery (501, S1);

    B, performing constant voltage charging after a battery voltage during the constant current charging reaches a charging limited voltage of the battery (502, S3);

    C, after a charging current during the constant voltage charging becomes smaller than or equal to a predetermined threshold, performing pulse charging to the battery until an open circuit voltage of the battery is larger than or equal to a preset voltage threshold (503);

    wherein the performing the pulse charging to the battery until the open circuit voltage of the battery is larger than or equal to the preset voltage threshold (503) comprises:

    C1, stopping charging the battery (S5);

    C2, when an off time that the charging is stopped reaches a preset off time (S6), determining whether the open circuit voltage of the battery is larger than or equal to the preset voltage threshold (S8); if the open circuit voltage of the battery is larger than or equal to the preset voltage threshold, terminating the charging (S12); otherwise, performing the constant voltage charging to the battery (S9), and returning to step C1 when a charging time reaches a pulse-charging-on time (S10).


     
    8. The method of claim 7, wherein the performing the constant voltage charging to the battery comprises:
    performing the constant voltage charging to the battery with the charging limited voltage.
     
    9. The method of claim 7, wherein the preset off time is 1ms to 10s.
     
    10. The method of claim 7, wherein the pulse-charging-on time decreases with increase of the number of times that the charging is stopped during the pulse charging.
     
    11. The method of claim 7, wherein the charging limited voltage is 4.2V.
     
    12. The method of claim 11, wherein the pulse-charging-on time is not less than 1 second.
     


    Ansprüche

    1. Vorrichtung zum Laden einer Batterie, dadurch gekennzeichnet, dass sie folgendes umfasst:

    einen Konstantstromkreis (403, 603),

    einen Konstantspannungskreis (404, 604) und

    einen Regelkreis (405, 607); wobei der Regelkreis (405, 607) angepasst ist, zum

    Regeln des Konstantstromkreises (403, 603), um ein Konstantstromladen zu der Batterie (402, 602) auszuführen;

    nachdem eine Batteriespannung während des Konstantstromladens eine voreingestellte begrenzte Ladespannung erreicht, Regeln des Konstantspannungskreises (404, 604), um ein Konstantspannungsladen zu der Batterie (402, 602) auszuführen;

    nachdem ein Ladestrom während des Konstantspannungsladens kleiner als oder gleich wie ein vordefinierter Schwellenwert wird, Regeln der Batterie (402, 602) die durch Impulsladen geladen werden soll, bis eine Leerlaufspannung der Batterie (402, 602) größer als oder gleich wie ein voreingestellter Spannungsschwellenwert ist;

    wobei die Vorrichtung weiter einen Zeitgeberkreis (608) umfasst;

    wobei der Regelkreis (405, 607) weiter umfasst:

    eine erste Einheit, die angepasst ist, um das Laden zu der Batterie (402, 602) zu stoppen und den Zeitgeberkreis (608) auszulösen, um die Zeitzählung zu starten;

    eine zweite Einheit, die angepasst ist, um, wenn eine Zeitperiode eine voreingestellte Ausschaltzeit erreicht, die Zeitzählung des Zeitgeberkreises (608) zu löschen und zu bestimmen, ob eine Leerlaufspannung der Batterie (402, 602) größer als oder gleich wie die voreingestellte Spannung ist; wenn die Leerlaufspannung größer als oder gleich wie die voreingestellte Spannung ist, das Laden beenden; sonst, Regeln des Konstantspannungskreises (404, 604), um das Konstantspannungsladen zu der Batterie (402, 602) auszuführen und unterdessen den Zeitgeberkreis (608) auszulösen, um die Zeitzählung zu starten, und wenn eine Ladezeit eine vorbestimmte Impulsladen-Einschaltzeit erreicht, Löschen der Zeitzählung des Zeitgeberkreises (608) und Auslösen der ersten Einheit, um das Laden der Batterie (402, 602) zu stoppen und um den Zeitgeberkreis (608) auszulösen, um die Zeitzählung zu starten.


     
    2. Vorrichtung nach Anspruch 1, weiter umfassend einen Schaltkreis (609); wobei
    ein Eingangsanschluss des Schaltkreises (609) mit einem Quellanschluss verbunden ist,
    ein Regelanschluss des Schaltkreises (609) mit dem Regelkreis (607) verbunden ist,
    ein erster Ausgangsanschluss des Schaltkreises (609) mit dem Konstantstromkreis (603) verbunden ist, und
    ein zweiter Ausgangsanschluss des Schaltkreises (609) mit dem Konstantspannungskreis (604) verbunden ist;
    der Regelkreis (607) angepasst ist, um den Eingangsanschluss des Schaltkreises (609), der einzig mit dem ersten Ausgangsanschluss verbunden werden soll, zu regeln, um den Konstantstromkreis (603) zu regeln, um das Konstantstromladen zu der Batterie (602) auszuführen; den Eingangsanschluss des Schaltkreises (609), der einzig mit dem zweiten Ausgangsanschluss verbunden werden soll, zu regeln, um den Konstantspannungskreis (604) zu regeln, um das Konstantspannungsladen zu der Batterie (602) auszuführen.
     
    3. Vorrichtung nach Anspruch 2, weiter umfassend eine Ladequelle (609) (601), die mit dem Quellanschluss verbunden ist.
     
    4. Vorrichtung nach Anspruch 1, wobei eine Spannung, die verwendet wird, wenn der Konstantspannungskreis (403, 603) das Konstantspannungsladen zu der Batterie (402, 602) ausführt, die begrenzte Ladespannung ist.
     
    5. Vorrichtung nach Anspruch 1, wobei die begrenzte Ladespannung 4,2 V ist.
     
    6. Vorrichtung nach Anspruch 1, wobei die Impulsladen-Einschaltzeit mit Zunahme der Anzahl von Malen, die das Laden während des Impulsladens gestoppt wird, abnimmt.
     
    7. Verfahren zum Laden einer Batterie, dadurch gekennzeichnet, dass es folgendes umfasst:

    A, Ausführen eines Konstantstromladens zu der Batterie (501, S1);

    B, Ausführen von Konstantspannungsladen, nachdem eine Batteriespannung während des Konstantstromladens eine begrenzte Ladespannung der Batterie (502, S3) erreicht;

    C, nachdem ein Ladestrom während des Konstantspannungsladens kleiner als oder gleich wie ein vordefinierter Schwellenwert wird, Ausführen von Impulsladen zu der Batterie, bis eine Leerlaufspannung der Batterie größer als oder gleich wie ein voreingestellter Spannungsschwellenwert (503) ist;

    wobei das Ausführen des Impulsladens zu der Batterie, bis die Leerlaufspannung der Batterie größer als oder gleich wie der voreingestellte Spannungsschwellenwert (503) ist, folgendes umfasst:

    C1, Stoppen des Ladens der Batterie (S5);

    C2, wenn eine Ausschaltzeit, während der das Laden gestoppt ist, eine voreingestellte Ausschaltzeit (S6) erreicht, Bestimmen, ob die Leerlaufspannung der Batterie größer als oder gleich wie der voreingestellte Spannungsschwellenwert (S8) ist; wenn die Leerlaufspannung der Batterie größer als oder gleich wie der voreingestellte Spannungsschwellenwert ist, Beenden des Ladens (S12); sonst, Ausführen des Konstantspannungsladens zu der Batterie (S9) und Rückkehr zu Schritt C1, wenn eine Ladezeit eine Impulsladen-Einschaltzeit (S10) erreicht.


     
    8. Verfahren nach Anspruch 7, wobei das Ausführen des Konstantspannungsladens zu der Batterie umfasst:
    Ausführen des Konstantspannungsladens zu der Batterie mit der begrenzten Ladespannung.
     
    9. Verfahren nach Anspruch 7, wobei die voreingestellte Ausschaltzeit 1 ms bis 10 s ist.
     
    10. Verfahren nach Anspruch 7, wobei die Impulsladen-Einschaltzeit mit Zunahme der Anzahl von Malen, die das Laden während des Impulsladens gestoppt wird, abnimmt.
     
    11. Verfahren nach Anspruch 7, wobei die begrenzte Ladespannung 4,2 V ist.
     
    12. Verfahren nach Anspruch 11, wobei die Impulsladen-Einschaltzeit nicht weniger als 1 Sekunde ist.
     


    Revendications

    1. Appareil de chargement d'une batterie, caractérisé en ce qu'il comprend :

    un circuit de courant constant (403, 603),

    un circuit de tension constante (404, 604) et

    un circuit de commande (405, 607) ; dans lequel le circuit de commande (405, 607) est à même de :

    commander le circuit de courant constant (403, 603) pour effectuer un chargement à courant constant de la batterie (402, 602) ;

    une fois qu'une tension de batterie au cours du chargement à courant constant a atteint une tension limitée de chargement préétablie, commander le circuit de tension constante (404, 604) pour effectuer un chargement à tension constante de la batterie (402, 602) ;

    une fois qu'un courant de chargement au cours du chargement à tension constante est devenu plus petit ou égal à un seuil prédéterminé, commander la batterie (402, 602) pour la charger par chargement pulsé jusqu'à ce qu'une tension en circuit ouvert de la batterie (402, 602) soit supérieure ou égale à un seuil de tension préétabli ;

    l'appareil comprenant en outre un circuit d'horloge (608) ;

    dans lequel le circuit de commande (405, 607) comprend en outre :

    une première unité qui est adaptée pour arrêter le chargement de la batterie (402, 602) et déclencher le circuit d'horloge (608) pour démarrer une synchronisation ;

    une seconde unité qui est adaptée, lorsqu'une période de synchronisation atteint un temps d'arrêt préétabli, pour supprimer la synchronisation du circuit d'horloge (608) et déterminer si une tension en circuit ouvert de la batterie (402, 602) est supérieure ou égale à la tension préétablie ; si la tension en circuit ouvert est supérieure ou égale à la tension préétablie, terminer le chargement; autrement, commander le circuit de tension constante (404, 604) pour effectuer le chargement à tension constante de la batterie (402, 602) et, dans l'intervalle, déclencher le circuit d'horloge (608) pour lancer la synchronisation et, lorsqu'un temps de chargement atteint un temps de chargement pulsé prédéterminé, supprimer la synchronisation du circuit d'horloge (608) et déclencher la première unité pour arrêter le chargement de la batterie (402, 602) et déclencher le circuit d'horloge (608) pour lancer la synchronisation.


     
    2. Appareil selon la revendication 1, comprenant en outre :

    un circuit de commutation (609) ; dans lequel

    un port d'entrée du circuit de commutation (609) est connecté à un port de source,

    un port de commande du circuit de commutation (609) est connecté au circuit de commande (607),

    un premier port de sortie du circuit de commutation (609) est connecté au circuit de courant constant (603) et

    un second port de sortie du circuit de commutation (609) est connecté au circuit de tension constante (604) ;

    le circuit de commande (607) est adapté pour commander le port d'entrée du circuit de commutation (609) pour qu'il soit uniquement connecté au premier port de sortie afin de commander le circuit de courant constant (603) afin d'effectuer le chargement à courant constant de la batterie (602) ; commander le port d'entrée du circuit de commutation (609) pour qu'il soit uniquement connecté au second port de sortie afin de commander le circuit de tension constante (604) afin d'effectuer le chargement à tension constante de la batterie (602).


     
    3. Appareil selon la revendication 2, comprenant en outre une source de chargement (609) (601) connectée au port de source.
     
    4. Appareil selon la revendication 1, dans lequel une tension utilisée lorsque le circuit de tension constante (403, 603) effectue le chargement à tension constante de la batterie (402, 602) est la tension limitée de chargement.
     
    5. Appareil selon la revendication 1, dans lequel la tension limitée de chargement est de 4,2 V.
     
    6. Appareil selon la revendication 1, dans lequel le temps de chargement pulsé diminue avec l'augmentation du nombre de fois que le chargement est arrêté au cours du chargement pulsé.
     
    7. Procédé de chargement d'une batterie, caractérisé en ce qu'il comprend :

    A, la réalisation d'un chargement à courant constant de la batterie (501, S1) ;

    B, la réalisation d'un chargement à tension constante une fois qu'une tension de batterie au cours du chargement à courant constant a atteint une tension limitée de chargement de la batterie (502, S3) ;

    C, une fois qu'un courant de chargement au cours du chargement à tension constante est devenu inférieur ou égal à un seuil prédéterminé, la réalisation d'un chargement pulsé de la batterie jusqu'à ce qu'une tension en circuit ouvert de la batterie soit supérieure ou égale à un seuil de tension préétabli (503) ;

    dans lequel la réalisation du chargement pulsé de la batterie jusqu'à ce que la tension en circuit ouvert de la batterie soit supérieure ou égale au seuil de tension préétabli (503) comprend :

    C1, l'arrêt du chargement de la batterie (S5) ;

    C2, lorsqu'un temps d'arrêt où le chargement est arrêté atteint un temps d'arrêt préétabli (S6), la détermination que la tension en circuit ouvert de la batterie est ou non supérieure ou égale au seuil de tension préétabli (S8) ; si la tension en circuit ouvert de la batterie est supérieure ou égale au seuil de tension préétabli, l'achèvement du chargement (S12) ; autrement, la réalisation du chargement à tension constante de la batterie (S9) et le retour à l'étape C1 lorsqu'un temps de chargement atteint un temps de chargement pulsé (S10).


     
    8. Procédé selon la revendication 7, dans lequel la réalisation du chargement à tension constante de la batterie comprend :
    la réalisation du chargement à tension constante de la batterie avec la tension limitée de chargement.
     
    9. Procédé selon la revendication 7, dans lequel le temps d'arrêt préétabli est de 1 ms à 10 s.
     
    10. Procédé selon la revendication 7, dans lequel le temps de chargement pulsé diminue avec l'augmentation du nombre de fois que le chargement est arrêté au cours du chargement pulsé.
     
    11. Procédé selon la revendication 7, dans lequel la tension limitée de chargement est de 4,2 V.
     
    12. Procédé selon la revendication 11, dans lequel le temps de chargement pulsé n'est pas inférieur à 1 seconde.
     




    Drawing























    Cited references

    REFERENCES CITED IN THE DESCRIPTION



    This list of references cited by the applicant is for the reader's convenience only. It does not form part of the European patent document. Even though great care has been taken in compiling the references, errors or omissions cannot be excluded and the EPO disclaims all liability in this regard.

    Patent documents cited in the description