(19)
(11)EP 2 385 606 B1

(12)EUROPEAN PATENT SPECIFICATION

(45)Mention of the grant of the patent:
25.12.2019 Bulletin 2019/52

(21)Application number: 10161747.0

(22)Date of filing:  03.05.2010
(51)Int. Cl.: 
H02J 3/18  (2006.01)
H02J 7/34  (2006.01)
H02J 3/32  (2006.01)

(54)

System for interchanging electric energy between a battery and an electric grid and respective method.

System zum Austausch elektrischer Energie zwischen einer Batterie und einem elektrischen Netz und zugehöriges Verfahren.

Système pour échange d'énergie entre une batterie et un réseau électrique et procédé correspondant.


(84)Designated Contracting States:
AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO SE SI SK SM TR

(43)Date of publication of application:
09.11.2011 Bulletin 2011/45

(73)Proprietor: Siemens Gamesa Renewable Energy A/S
7330 Brande (DK)

(72)Inventor:
  • Thisted, Jan
    8830 Tjele (DK)

(74)Representative: Aspacher, Karl-Georg et al
Siemens Aktiengesellschaft Postfach 22 16 34
80506 München
80506 München (DE)


(56)References cited: : 
WO-A2-2009/052451
US-A1- 2007 282 495
  
      
    Note: Within nine months from the publication of the mention of the grant of the European patent, any person may give notice to the European Patent Office of opposition to the European patent granted. Notice of opposition shall be filed in a written reasoned statement. It shall not be deemed to have been filed until the opposition fee has been paid. (Art. 99(1) European Patent Convention).


    Description

    BACKGROUND OF THE INVENTION


    1. Field of the Invention



    [0001] This invention relates to a power interchange system for interchanging electric energy between a battery and an electric grid, a method for interchanging electric energy between a battery and an electric grid and an application of the power interchange system.

    2. Description of the Related Art



    [0002] For example, the power interchange system for interchanging electric energy between a battery and an electric grid is a battery charger for electrical cars.

    [0003] A car battery charger for electrical cars generally includes a single or three phase grid transformer, a rectifier unit for converting alternating current into direct current for charging the battery and an electronic control for controlling the direct current for the charging the battery.

    [0004] A battery charger for an electric vehicle which controls the charging power depending on the grid conditions is disclosed in WO 2009/ 052451 A2 by V2GREEN.

    SUMMARY OF THE INVENTION



    [0005] It is an object of the invention to provide a high efficient and reliable power interchange system for interchanging electric energy between a battery and an electric grid.

    [0006] Another object of the invention is the providing of a highly efficient and highly reliable method for interchanging electric energy between a battery and an electric grid.

    [0007] These objects are achieved by the invention specified in the claims.

    [0008] The idea behind the invention is a control of the charging current of a battery as a function of an electrical status of the electrical grid providing the charging current.

    [0009] The present invention provides a power interchange system for interchanging electric energy between a battery and an electric grid. The interchange system comprises: A rectifier unit for converting alternating current of the electric grid into direct current for charging the battery; a grid measurement device for measuring an electric parameter of the electric grid; and a controller unit for adjusting the direct current for the charging the battery as a function of the electric parameter of the electric grid.

    [0010] Additionally the present invention provides a method for interchanging electric energy between a battery and an electric grid by operating the power interchange system. The method comprises: a) Providing the power interchange system, the battery and an electric grid, wherein the battery and the electric grid are interconnected such, that electric energy can be interchanged between the battery and the electric grid; b) Measuring the electric parameter of the electric grid by the grid measurement device of the power interchange system; c) Adjusting the direct current for charging the battery as a function of the parameter of the electric grid by the controller unit of the power interchange system; d) Converting alternating current of the electric grid into the direct current for charging the battery; and d) Charging the battery by the direct current.

    [0011] Moreover an application of the power interchange system for charging a battery is disclosed. All kind of rechargeable batteries are possible. Preferably the battery is selected from the group consisting of battery for a vehicle, flow battery and electrochemical battery. With the aid of the power interchange system these kinds of batteries can be charged.

    [0012] The measuring of the electric parameter of the electric grid can be executed before the charging the battery. But a simultaneously measuring and charging is preferred. Simultaneously measuring and charging mean, that the measuring occurs while the charging. This has the advantage, that the charging current can be immediately adjusted to changes of the status of the electric grid. This is related to the adjusting and to the converting, too. Therefore, in a preferred embodiment the measuring, the adjusting, the converting and/or the charging are executed simultaneously.

    [0013] At least one kind of electric parameter of the grid is determined. Two or more electric parameters of the grid can be detected, too. Based on the electric parameter or parameters the charging of the battery is carried out. The electric parameter of the electric grid is selected from the group consisting of current, voltage and frequency of the electric grid.

    [0014] In a preferred embodiment of the invention the controller unit is configured such, that a predefined (predetermined) direct current for charging or discharging the battery is provided as a function of the electric parameter. For example, the electric parameter is a voltage of the electric grid. The controller unit is configured to provide a predefined response (predefined adjusting the direct current for the charging the battery) in the case of a voltage drop of the electric grid.

    [0015] Preferably the controller unit is configured such, that a local power grid disturbance within the electric grid can be detected and/or power grid support can be provided. The disturbance can be repaired. Alternatively the adjustment of the charging the battery is accomplished.

    [0016] The power interchange system comprises a main current circuit, which is selected from the group consisting of single phase circuit, two phase circuit and three phase circuit. The main circuit is a main part of the power interchange system.

    [0017] In an additional preferred embodiment the power interchange system comprises an inverter unit for converting direct current of the battery into alternating current for supplying the electric grid with the alternating current. Direct current originated from the battery can be inverted and transmitted to the electric grid. A discharging of the battery occurs. The battery has the function of a power source for the electric grid.

    [0018] The measuring and/or the adjusting can be executed by wire-bound communication. Preferably wireless communication between the electric grid operator and the controller unit is executed. Therefore, in a further preferred embodiment power interchange system can be monitored and/or controlled from a remote location e.g. a grid operator control center.

    [0019] There can be just one interchange system. As to an amount of interchanged electric power a plurality of the described power interchange systems operable in parallel are advantageous. Therefore concerning an additional facet of the invention an arrangement of at least two of the power interchange systems is provided, wherein the power interchange systems can be operated in parallel.

    [0020] A combined car battery charger and grid inverter generally includes a single or three phase grid transformer, a power electric device with four quadrant operation capability, which includes active power import/export and reactive power import/export between the car battery and the power grid. A combined car battery charger and grid inverter also includes electronic control of charging and discharging of the car battery.

    [0021] In the future the whole structure and control of the power grid is likely to change. A significant amount of the generation capacity based on central power stations with large synchronous generators is likely to be replaced by distributed generating units like wind power, wave power, solar power and small generating units based on biomass. The frequency balance and voltage control on the grid has traditionally been carried out by the large central generating units that have been fitted with control systems to ensure a stable power frequency and voltage.

    [0022] Traditionally central power stations have been based on fossil fuel like coal, gas or oil. As the available sources of fossil fuel is limited and the emission of C02 from the fossil fuel based power production is of serious concern for the impact on the global climate, more sustainable power generation systems are going to be connected to the utility grid systems in the future. This change in the power generation systems will require a re-thinking of the way the whole power grid is kept in balance.

    [0023] So called "Smart Grid" solutions are being developed as a way of securing the active and reactive power balance on the utility grid when many distributed renewable energy generating units have replaced the big central units.

    [0024] In a Smart Grid not only the generating units but also some power consumers shall act to maintain the balance on the power grid. Furthermore an electrical energy storage capacity is very important in order to store energy when the power generation exceeds the power consumption and in order to release energy when the power consumption exceeds the power generation.

    [0025] In a Smart Grid both generating units and at least apart of the electricity consuming units shall participate in keeping the power grid stable and in balance. The most important features for the generating units are frequency control, voltage or reactive power control and the capability to stay connected to the grid even during short voltage dips (fault ride through capability) .

    [0026] A very important element in an advanced Smart Grid solution other than smart power generating units and power consuming units are energy storage units. Here the electrical car with its large battery e.g. at 20-50 kWh is very interesting. The electrical car is likely to gain more and more popularity because of its excellent efficiency, zero emission and possible use of renewable energy sources.

    [0027] Most cars are only used a few hours a day and an electrical car can often be connected to the power grid via the battery charger when not in use. At least the car can be connected during the night if there are no access to charging facilities e.g. at the owners work place during the day. But it is very important, that charging of a high number of car batteries is coordinated in relation to the generation/load situation on the grid.

    [0028] In particular at the end of the day the battery can be connected to the battery charger and the only requirement is often that the battery is either fully or partly (to a defined level) charged at a certain time in the following morning. By means of different methods it can be ensured that the charging is done at least at a time when the general load on the power grid is low.

    [0029] However as an advanced Smart Grid solution more advanced control methods is likely to be required for control of the interaction between the power grid and the electrical car batteries. Data communication and control of the battery chargers by the power grid operator is an option, that would allow the power grid operator to control the battery charging time as long as the battery is charged at a time selected by the car owner.

    [0030] The use of a combined car battery charger and grid inverter including electronic control of charging and discharging of the car battery in combination with a data communication and control link to the power grid operator could give a lot of new opportunities for maintaining the power grid balance on a Smart Grid when a large amount of electrical cars with this equipment is connected to the power grid. The car battery charger can become a key element in balancing the grid in a smart and economic way. A relative large number of such advanced battery chargers and electrical vehicles would add a very attractive energy storage facility to the power grid.

    [0031] The use of battery chargers and electric car batteries as a reversible energy storage facility in relation to the power grid has already been described in various papers. However the invention relates to more specific features that could be of importance for the overall grid performance of the car battery charging systems as their connected capacity potentially could be significant compared to the total grid capacity.

    BIEF DESCRIPTION OF THE DRAWING



    [0032] Further features and advantages of the invention are produced from the description of exemplary embodiments with reference to the drawing. Figure 1 shows an example of the power interchange system.

    BRIEF DESCRIPTION OF THE INVENTION



    [0033] An exemplary embodiment of the invention includes a single or three phase grid transformer, a power electronic device for conversion of AC grid current to DC current. The current flow is reversible meaning that the power electronic device can act as a rectifier when active power is consumed from the grid to charge the battery. Alternatively the electronic power device can act as an inverter when active power is released by discharging the battery, inverted into AC current and fed into the grid.

    [0034] The exemplary embodiment of the invention also includes electronic control device for control of charging and discharging of the car battery and electronic control device for phase angle control on the current and voltage at the grid side of the power electronic device. The phase angle control may work in both directions of power flow to allow so called four quadrant operation of the system.

    [0035] A grid measuring device measures the current, voltage, frequency and phase angle between the power electronic device and the grid. As a response to a change in the power grid frequency from the nominal frequency, the unit may modulate the actual active power flow in order to contribute to counteracting a frequency deviation similar to frequency governors on conventional power plants.

    [0036] As a response to deviation from a predefined target voltage the unit may modulate the actual reactive power in order to contribute to voltage control for maintenance of the local voltage. Alternatively the unit may be set up to operate at a certain power factor or with a certain reactive power exchange.

    [0037] When the unit is operating in inverter mode the control device may be set up to maintain operation during a short dip in the power grid voltage e.g. up to 3 seconds. This so called fault ride through capability is often required by larger generation systems in order to maintain the system balance after fault clearance in the power grid.

    [0038] A data communication link for exchange of data and remote control of the unit may be included.

    DETAILED DESCRIPTION OF THE INVENTION



    [0039] Referring generally to FIG. 1 an exemplary embodiment of the invention includes a power interchange system in form of a battery charging system comprising of at least one power electronic unit or power converter unit 5, operable to supply electrical power from a utility power grid 1 to an electrical rechargeable DC battery 7. In a preferred embodiment of the invention the power electronic unit or power converter unit 5 is also operable to supply electrical power from the electrical battery 7 to the utility power grid 1 in a reversed power flow. The power converter unit 5 may be interfaced to the power grid 1 using a power transformer 3 for AC-AC voltage transformation.

    [0040] A grid measurement device 11 is connected between the reversible power converter 5 and the grid 1 in order to measure the current and power exchanged between the power converter and the grid. The grid measurement device 11 may also measure voltage, frequency and phase angle between current and voltage. The output of the grid measurement device 20 is connected to a grid response controller 21 that is arranged for adjusting the active and reactive power flow between the power converter 5 and the power grid 1. The grid response controller 21 is in one embodiment of the invention an integrated part of an internal controller for the reversible battery charger and such as an internal unit controller or the like. In another embodiment the controller is an external grid response controller using means of communication between the grid response controller and the battery charger unit. The battery charger unit is configured to provide active and reactive current and power to the power grid 1 as a function of the output of the grid measurement device 20 and in this way contributing to the stabilization of the grid frequency and voltage in case of imbalance.

    [0041] In an embodiment of the invention a battery measurement device 14 is connected between the reversible power converter 5 and the electrical battery 7 in order to measure the battery 7 voltage and the current between the power converter 5 and the battery 7. The output of the battery measurement device 25 is connected to a battery charging/discharging controller 26, that is arranged for control of the battery 7 charging and discharging current.

    [0042] The battery charging/discharging controller 26 shall ensure, that the battery 7 charging and discharging is limited as a function of the battery 7 voltage in order to protect the battery 7 against over and under voltage.

    [0043] A power converter controller 23 is controlling the active and reactive power flow and direction of the power electronic unit 5 by means of active and reactive current or power reference set points 12 sent to the power electronic unit 5.

    [0044] In an embodiment of the invention the output 24 of the battery charging/discharging controller 26 is connected to the power converter controller 23. The battery charging/discharging controller 26 is via the battery measurement device 14 monitoring the battery 7 condition in charging mode and/or in discharging mode. The purpose of the battery 7 charging/discharging controller 26 is to provide a charging and/or discharging limit i.e. a reference set point reduction to the converter controller 23 depending on the condition of the battery 7. This control feature shall protect the battery 7 against being over charged and/or being discharged below a certain level.

    [0045] In an embodiment of the invention the grid response controller 21 connected to the grid measurement device 20 is set up to monitor the grid parameters via the grid measurement device 11 and in particular react to deviations in voltage and frequency on the power grid 1 from preset or nominal values.

    [0046] As a response to a change in the power grid 1 frequency from the nominal or preset frequency, the grid response controller 21 may modulate the actual active power flow e.g. by sending a delta power reference via the output 22 to the power converter controller 23 in order to contribute to counteracting a frequency deviation similar to frequency governors on conventional power plants.

    [0047] As a response to deviation from a predefined target voltage on the power grid 1 voltage the grid response controller 21 may modulate the actual reactive power e.g. by sending a delta voltage or reactive current or power reference via the output 22 to the power converter controller 23 in order to contribute to voltage control for maintenance of the power grid 1 voltage.

    [0048] Alternatively the grid response controller 21 may be set up to control a certain power factor or a certain reactive power exchange e.g. by sending a delta voltage or reactive current or power reference via the output 22 to the power converter controller 23.

    [0049] When the battery charging unit is operating in inverter mode it acts on the power grid as a generating unit. In inverter mode the grid response controller 21 may be set up to maintain operation during a short dip in the power grid 1 voltage e.g. up to 3 seconds. In this mode the grid response controller 21 may send active and/or reactive current or power reference set points via the output 22 to the power converter controller 23. The grid response controller 21 calculates the active and/or reactive current or power reference set points during the voltage dip as a function of the power grid 1 voltage continuously measured by the grid measurement device 11 e.g. by means of a predefined look up table for the relation between power grid 1 voltage and active and/or reactive current or power flow between the power electronic unit 5 and the grid 1 for dips in the power grid 1 voltage below a certain threshold level. This so called fault ride through capability is often required by larger generation systems in order to maintain the system balance after fault clearance in the power grid.

    [0050] In an embodiment of the invention a data communication link 30 for remote monitoring and control of the battery 7 charging unit is connected to the power converter controller 23. The data communication link may use telephone, internet or other types of communication systems for communication between the battery charging unit and the remote control center 31 e.g. the power grid operator. The data communication link 30 may make certain information on the battery 7 charging unit available for the remote control center 31. An example of data information from the battery 7 charging unit to the remote control center 31 is:
    • Maximum charging power [kW];
    • Maximum discharging power [kW];
    • Maximum charging capacity [kWh;
    • Actual charging level [0-100%];
    • Time and date for charging complete [time and date];
    • At what charging level shall charging be completed? [0-100%]
    • Frequency response settings (dead band, droop, etc.);
    • Voltage/reactive power control settings (target, dead band, droop etc.).


    [0051] The data communication link 30 may also facilitate remote control by the remote control center 31. An example of control commands from the remote control center 31 to the battery 7 charging unit are:
    • Remote control enable/disable;
    • Charging power reference [kW];
    • Discharging power reference [kW];
    • Frequency response settings (dead band, droop, etc.);
    • Voltage/reactive power control settings (target, dead band, droop etc.).


    [0052] Based on the data information available by the data communication link 30 for the remote control center 31 e.g. the power grid operator, the remote control center 31 is able to utilize the battery 7 charging unit for participation in the power grid 1 balancing within certain limits, mainly the specified time and date for completing the charging.

    [0053] The data communication link 30 for remote monitoring and control by the remote control center 31 may be utilized for manual or automatic monitoring and control by the remote control center 31.

    [0054] In a preferred embodiment of the invention the remote control center 31, e.g. the power grid operator can monitor and alter the frequency response settings and/or the voltage/reactive power control settings of the battery 7 charging unit in order to ensure that adequate power grid 1 response settings are active.

    [0055] In an embodiment of the invention the power converter controller 23 is connected to the power electronic unit 5, the battery 7 charging/discharging controller 26, the grid response controller 21 and the data communication link 30. The power converter controller 23 calculates the active and reactive current or power reference set points to the power electronic unit 5. The inputs from the battery 7 charging/discharging controller 26, the grid response controller 21 and the data communication link 30 may in a preferred embodiment of the invention be processed in an order of priority by the power converter controller 23 in order to provide power grid 1 disturbance response as requested by the grid response controller 21, provide protection of the battery 7 as requested by battery charging/discharging controller 26 and control the battery 7 charging/discharging as requested by the remote control center 31. The order of priority can be set up in different ways but a typical order may be:
    1. 1. Provision of power grid 1 disturbance response;
    2. 2. Protection of the battery 7;
    3. 3. Execute battery 7 charging/discharging as requested by the operator.



    Claims

    1. Power interchange system for interchanging electric energy between a battery (7) and an electric grid (1), the interchange system comprising:

    a power converter unit (5) for converting alternating current of the electric grid (1) into direct current for charging the battery (7);

    a grid measurement device (11) for measuring an electric parameter of the electric grid;

    a controller unit (23) for adjusting the direct current for charging the battery as a function of the electric parameter of the electric grid; and

    a grid response controller (21) adapted to maintain the local voltage and further adapted to, during dips in the electric grid voltage, calculate active and/or reactive current or power set points and send the set points to the controller unit (23) in order to maintain operation of the power converter unit (5) in an inverter mode as a generating unit during the electric grid voltage dips,

    wherein the grid response controller (21) is adapted to calculate the set points as a function of a predefined look up table for the relation between the electric grid voltage and the active and/or reactive current or power flow between the power converter unit (5) and the electric grid (1) when the electric grid voltage dips below a predetermined threshold level, and

    wherein the controller unit (23) is adapted to process inputs from a battery charging/discharging controller (26), the grid response controller (21), and a data communication link (30) in an order of priority in order to provide electric grid disturbance response as requested by the grid response controller (21), to provide protection of the battery (7) as requested by the battery charging/discharging controller (26), and to control the battery charging/discharging.


     
    2. Power interchange system according to claim 1, wherein the parameter of the electric grid (1) is selected from the group consisting of current, voltage and frequency of the electric grid.
     
    3. Power interchange system according to claim 1 or 2, wherein the controller unit (23) is configured such that a predefined direct current for charging or discharging the battery (7) is provided as a function of the electric parameter.
     
    4. Power interchange system according to one of the previous claims, wherein the controller unit (23) is configured such that a local power grid disturbance within the electric grid can be detected and/or power grid support can be provided.
     
    5. Power interchange system according to one of the previous claims, wherein the power interchange system comprises a main current circuit, which is selected from the group consisting of single phase circuit, two phase circuit and three phase circuit.
     
    6. Power interchange system according to one of the previous claims, wherein the power interchange system comprises the power converter unit (5) for converting direct current of the battery (7) into alternating current for supplying the electric grid (1) with the alternating current.
     
    7. Power interchange system according to one of the previous claims, wherein the grid measurement device (11) and/or the controller unit (23) are physically separated from the electric grid (1) and/or from the battery (7).
     
    8. Power interchange system according to one of the previous claims, wherein the power interchange system can be monitored and/or controlled from a remote location.
     
    9. Arrangement of at least two power interchange systems according to one of claims 1 to 8, wherein the power interchange systems can be operated in parallel.
     
    10. Method for interchanging electric energy between a battery and an electric grid by operating a power interchange system according to one of claims 1 to 8, the method comprising:

    providing the power interchange system, the battery (7) and an electric grid (1), wherein the battery (7) and the electric grid (1) are interconnected such that electric energy can be interchanged between the battery (7) and the electric grid (1);measuring the electric parameter of the electric grid (1) by the grid measurement device (11) of the power interchange system;adjusting the direct current for charging the battery (7) as a function of the parameter of the electric grid (1) by the controller unit (23) of the power interchange system;converting alternating current of the electric grid (1) into direct current for charging the battery (7); charging the battery (7) by the direct current, and

    calculating active and/or reactive current or power set points for maintaining the local voltage during dips in the electric grid voltage and sending the set points to the controller unit (23) in order to maintain operation of a power converter unit (5) in an inverter mode as a generating unit during the electric grid voltage dips,

    wherein the set points are calculated as a function of a predefined look up table for the relation between the electric grid voltage and the active and/or reactive current or power flow between the power converter unit (5) and the electric grid (1) when the electric grid voltage dips below a predetermined threshold level, and

    processing inputs from a battery charging/discharging controller (26), the grid response controller (21), and a data communication link (30) in an order of priority in order to provide electric grid disturbance response as requested by the grid response controller (21), to provide protection of the battery (7) as requested by the battery charging/discharging controller (26), and to control the battery charging/discharging.


     
    11. Application of the power interchange system according to any of claims 1 to 8 for charging a battery.
     
    12. Application of the power interchange system according to claim 11, wherein the battery is selected from the group consisting of battery for a vehicle, flow battery and electrochemical battery.
     


    Ansprüche

    1. Stromaustauschsystem zum Austauschen von elektrischer Energie zwischen einem Akkumulator (7) und einem Stromnetz (1), wobei das Austauschsystem Folgendes umfasst:

    eine Stromrichtereinheit (5) zum Umrichten von Wechselstrom aus dem Stromnetz (1) in Gleichstrom zum Laden des Akkumulators (7),

    eine Netzmessvorrichtung (11) zum Messen eines elektrischen Parameters des Stromnetzes,

    eine Steuereinheit (23) zum Einstellen des Gleichstroms zum Laden des Akkumulators in Abhängigkeit von dem elektrischen Parameter des Stromnetzes und

    eine Netzverhaltenssteuerung (21), die so ausgelegt ist, dass sie die lokale Spannung aufrechterhält, und ferner so ausgelegt ist, dass sie bei Spannungsabfällen im Stromnetz Wirk- und/oder Blindstrom- oder -leistungssollwerte berechnet und die Sollwerte zur Steuereinheit (23) sendet, um den Betrieb der Stromrichtereinheit (5) in einem Wechselrichtermodus als Erzeugungseinheit im Verlauf der Spannungsabfälle im Stromnetz aufrechtzuerhalten,

    wobei die Netzverhaltenssteuerung (21) so ausgelegt ist, dass sie die Sollwerte in Abhängigkeit von einer vorgegebenen Nachschlagetabelle für das Verhältnis zwischen der Stromnetzspannung und dem Wirk- und/oder Blindstrom- oder -leistungsfluss zwischen der Stromrichtereinheit (5) und dem Stromnetz (1) berechnet, wenn die Stromnetzspannung unter einen vorgegebenen Schwellenwert abfällt, und

    wobei die Steuereinheit (23) so ausgelegt ist, dass sie Eingaben aus einer Akkumulatorlade-/-entladesteuerung (26), der Netzverhaltenssteuerung (21) und einer Datenübertragungsverbindung (30) nach Priorität verarbeitet und so für die von der Netzverhaltenssteuerung (21) angeforderte Reaktion auf die Stromnetzstörung sorgt, für den von der Akkumulatorlade-/-entladesteuerung (26) angeforderten Schutz des Akkumulators (7) sorgt und das Laden beziehungsweise Entladen des Akkumulators steuert.


     
    2. Stromaustauschsystem nach Anspruch 1, wobei der Parameter des Stromnetzes (1) aus der Gruppe ausgewählt ist, die aus Strom, Spannung und Frequenz des Stromnetzes besteht.
     
    3. Stromaustauschsystem nach Anspruch 1 oder 2, wobei die Steuereinheit (23) so konfiguriert ist, dass in Abhängigkeit von dem elektrischen Parameter ein vorgegebener Gleichstrom zum Laden oder Entladen des Akkumulators (7) bereitgestellt wird.
     
    4. Stromaustauschsystem nach einem der vorhergehenden Ansprüche, wobei die Steuereinheit (23) so konfiguriert ist, dass eine lokale Stromnetzstörung im Stromnetz erkannt und/oder Stromnetzstützung gewährt werden kann.
     
    5. Stromaustauschsystem nach einem der vorhergehenden Ansprüche, wobei das Stromaustauschsystem einen Hauptstromkreis umfasst, der aus der Gruppe ausgewählt ist, die aus einem einphasigen, einem zweiphasigen und einem dreiphasigen Stromkreis besteht.
     
    6. Stromaustauschsystem nach einem der vorhergehenden Ansprüche, wobei das Stromaustauschsystem die Stromrichtereinheit (5) zum Umrichten von Gleichstrom aus dem Akkumulator (7) in Wechselstrom zum Versorgen des Stromnetzes (1) mit dem Wechselstrom umfasst.
     
    7. Stromaustauschsystem nach einem der vorhergehenden Ansprüche, wobei die Netzmessvorrichtung (11) und/oder die Steuereinheit (23) von dem Stromnetz (1) und/oder von dem Akkumulator (7) physisch getrennt ist.
     
    8. Stromaustauschsystem nach einem der vorhergehenden Ansprüche, wobei das Stromaustauschsystem von einem entfernt gelegenen Standort aus überwacht und/oder gesteuert werden kann.
     
    9. Anordnung aus mindestens zwei Stromaustauschsystemen nach einem der Ansprüche 1 bis 8, wobei die Stromaustauschsysteme parallel betrieben werden können.
     
    10. Verfahren zum Austauschen von elektrischer Energie zwischen einem Akkumulator und einem Stromnetz durch Betreiben eines Stromaustauschsystems nach einem der Ansprüche 1 bis 8, wobei das Verfahren Folgendes umfasst:

    Bereitstellen des Stromaustauschsystems, des Akkumulators (7) und eines Stromnetzes (1), wobei der Akkumulator (7) und das Stromnetz (1) so miteinander verbunden sind, dass zwischen dem Akkumulator (7) und dem Stromnetz (1) elektrische Energie ausgetauscht werden kann,

    Messen des elektrischen Parameters des Stromnetzes (1) durch die Netzmessvorrichtung (11) des Stromaustauschsystems, Einstellen des Gleichstroms zum Laden des Akkumulators (7) in Abhängigkeit von dem Parameter des Stromnetzes (1) durch die Steuereinheit (23) des Stromaustauschsystems,

    Umrichten von Wechselstrom aus dem Stromnetz (1) in Gleichstrom zum Laden des Akkumulators (7),

    Laden des Akkumulators (7) mit dem Gleichstrom und

    Berechnen von Wirk- und/oder Blindstrom- oder -leistungssollwerten zum Aufrechterhalten der lokalen Spannung bei Spannungsabfällen im Stromnetz und Senden der Sollwerte zur Steuereinheit (23), um den Betrieb einer Stromrichtereinheit (5) in einem Wechselrichtermodus als Erzeugungseinheit im Verlauf der Spannungsabfälle im Stromnetz aufrechtzuerhalten,

    wobei die Sollwerte in Abhängigkeit von einer vorgegebenen Nachschlagetabelle für das Verhältnis zwischen der Stromnetzspannung und dem Wirk- und/oder Blindstrom- oder dem -leistungsfluss zwischen der Stromrichtereinheit (5) und dem Stromnetz (1) berechnet werden, wenn die Stromnetzspannung unter einen vorgegebenen Schwellenwert abfällt, und

    Verarbeiten von Eingaben aus einer Akkumulatorlade-/-entladesteuerung (26), der Netzverhaltenssteuerung (21) und einer Datenübertragungsverbindung (30) nach Priorität, um für die von der Netzverhaltenssteuerung (21) angeforderte Reaktion auf die Stromnetzstörung zu sorgen, für den von der Akkumulatorlade-/-entladesteuerung (26) angeforderten Schutz des Akkumulators (7) zu sorgen und das Laden beziehungsweise Entladen des Akkumulators zu steuern.


     
    11. Anwendung des Stromaustauschsystems nach einem der Ansprüche 1 bis 8 zum Laden eines Akkumulators.
     
    12. Anwendung des Stromaustauschsystems nach Anspruch 11, wobei der Akkumulator aus der Gruppe ausgewählt ist, die aus einer Batterie für ein Fahrzeug, einer Flow-Batterie und einer elektrochemischen Batterie besteht.
     


    Revendications

    1. Système d'échange de puissance pour échanger de l'énergie électrique entre une batterie (7) et un réseau électrique (1), le système d'échange comprenant :

    une unité de conversion de puissance (5) pour convertir un courant alternatif du réseau électrique (1) en courant continu pour charger la batterie (7) ;

    un dispositif de mesure de réseau (11) pour mesurer un paramètre électrique du réseau électrique ;

    une unité de commande (23) pour ajuster le courant continu pour charger la batterie en fonction du paramètre électrique du réseau électrique ; et

    un dispositif de commande de réponse de réseau (21) adapté pour maintenir la tension locale et en outre adapté, pendant des chutes de la tension de réseau électrique, pour calculer des points de consigne de courant ou de puissance actif et/ou réactif et envoyer les points de consigne à l'unité de commande (23) afin de maintenir le fonctionnement de l'unité de conversion de puissance (5) dans un mode onduleur en tant qu'unité de génération pendant les chutes de tension de réseau électrique,

    dans lequel le dispositif de commande de réponse de réseau (21) est adapté pour calculer les points de consigne en fonction d'une table de consultation prédéfinie pour la relation entre la tension de réseau électrique et le flux de courant ou de puissance actif et/ou réactif entre l'unité de conversion de puissance (5) et le réseau électrique (1) lorsque la tension de réseau électrique descend en dessous d'un niveau seuil prédéterminé, et

    dans lequel l'unité de commande (23) est adaptée pour traiter des entrées provenant d'un dispositif de commande de charge/décharge de batterie (26), du dispositif de commande de réponse de réseau (21) et d'une liaison de communication de données (30) dans un ordre de priorité afin de fournir une réponse de perturbation de réseau électrique telle que demandée par le dispositif de commande de réponse de réseau (21), d'assurer la protection de la batterie (7) telle que demandée par le dispositif de commande de charge/décharge de batterie (26), et de commander la charge/décharge de la batterie.


     
    2. Système d'échange de puissance selon la revendication 1, dans lequel le paramètre du réseau électrique (1) est choisi dans le groupe constitué par le courant, la tension et la fréquence du réseau électrique.
     
    3. Système d'échange de puissance selon la revendication 1 ou 2, dans lequel l'unité de commande (23) est configurée de sorte qu'un courant continu prédéfini pour charger ou décharger la batterie (7) soit fourni en fonction du paramètre électrique.
     
    4. Système d'échange de puissance selon l'une des revendications précédentes, dans lequel l'unité de commande (23) est configurée de sorte qu'une perturbation de réseau électrique local dans le réseau électrique puisse être détectée et/ou un support de réseau électrique puisse être fourni.
     
    5. Système d'échange de puissance selon l'une des revendications précédentes, dans lequel le système d'échange de puissance comprend un circuit de courant principal, qui est choisi dans le groupe constitué par un circuit monophasé, un circuit biphasé et un circuit triphasé.
     
    6. Système d'échange de puissance selon l'une des revendications précédentes, dans lequel le système d'échange de puissance comprend l'unité de conversion de puissance (5) pour convertir le courant continu de la batterie (7) en courant alternatif pour alimenter le réseau électrique (1) en courant alternatif.
     
    7. Système d'échange de puissance selon l'une des revendications précédentes, dans lequel le dispositif de mesure de réseau (11) et/ou l'unité de commande (23) sont physiquement séparées du réseau électrique (1) et/ou de la batterie (7).
     
    8. Système d'échange de puissance selon l'une des revendications précédentes, dans lequel le système d'échange d'énergie peut être surveillé et/ou commandé à partir d'un emplacement distant.
     
    9. Agencement d'au moins deux systèmes d'échange de puissance selon l'une des revendications 1 à 8, dans lequel les systèmes d'échange de puissance peuvent fonctionner en parallèle.
     
    10. Procédé d'échange d'énergie électrique entre une batterie et un réseau électrique par fonctionnement d'un système d'échange de puissance selon l'une des revendications 1 à 8, le procédé comprenant le fait :

    de fournir le système d'échange de puissance, la batterie (7) et un réseau électrique (1), dans lequel la batterie (7) et le réseau électrique (1) sont interconnectés de sorte que l'énergie électrique puisse être échangée entre la batterie (7) et le réseau électrique (1) ; de mesurer le paramètre électrique du réseau électrique (1) par le dispositif de mesure de réseau (11) du système d'échange de puissance ; d'ajuster le courant continu pour charger la batterie (7) en fonction du paramètre du réseau électrique (1) par l'unité de commande (23) du système d'échange de puissance ; de convertir le courant alternatif du réseau électrique (1) en courant continu pour charger la batterie (7) ; de charger la batterie (7) par le courant continu, et

    de calculer les points de consigne de courant ou de puissance actif et/ou réactif pour maintenir la tension locale pendant des chutes de la tension de réseau électrique et d'envoyer les points de consigne à l'unité de commande (23) afin de maintenir le fonctionnement d'une unité de conversion de puissance (5) dans un mode onduleur en tant qu'unité de génération pendant les chutes de tension de réseau électrique,

    dans lequel les points de consigne sont calculés en fonction d'une table de consultation prédéfinie pour la relation entre la tension de réseau électrique et le flux de courant ou de puissance actif et/ou réactif entre l'unité de conversion de puissance (5) et le réseau électrique (1) lorsque la tension de réseau électrique descend en dessous d'un niveau seuil prédéterminé, et

    de traiter des entrées provenant d'un dispositif de commande de charge/décharge de batterie (26), du dispositif de commande de réponse de réseau (21) et d'une liaison de communication de données (30) dans un ordre de priorité afin de fournir une réponse de perturbation de réseau électrique telle que demandée par le dispositif de commande de réponse de réseau (21), d'assurer la protection de la batterie (7) telle que demandée par le dispositif de commande de charge/décharge de batterie (26), et de commander la charge/décharge de la batterie.


     
    11. Application du système d'échange de puissance selon l'une des revendications 1 à 8 pour charger une batterie.
     
    12. Application du système d'échange de puissance selon la revendication 11, dans lequel la batterie est choisie dans le groupe constitué par une batterie pour un véhicule, une batterie rédox et une batterie électrochimique.
     




    Drawing






    REFERENCES CITED IN THE DESCRIPTION



    This list of references cited by the applicant is for the reader's convenience only. It does not form part of the European patent document. Even though great care has been taken in compiling the references, errors or omissions cannot be excluded and the EPO disclaims all liability in this regard.

    Patent documents cited in the description