(19)
(11)EP 2 406 560 B1

(12)EUROPEAN PATENT SPECIFICATION

(45)Mention of the grant of the patent:
29.04.2020 Bulletin 2020/18

(21)Application number: 10751362.4

(22)Date of filing:  10.03.2010
(51)International Patent Classification (IPC): 
B60H 1/00(2006.01)
H02M 1/10(2006.01)
H02M 3/158(2006.01)
F25B 49/02(2006.01)
H02M 1/12(2006.01)
H02M 7/219(2006.01)
(86)International application number:
PCT/US2010/026840
(87)International publication number:
WO 2010/104960 (16.09.2010 Gazette  2010/37)

(54)

SYSTEMS AND METHODS OF POWERING A REFRIGERATION UNIT OF A HYBRID VEHICLE

SYSTEME UND VERFAHREN ZUM ANTREIBEN EINER KÜHLEINHEIT EINES HYBRIDFAHRZEUGS

SYSTÈMES ET PROCÉDÉS D'ALIMENTATION D'UNE UNITÉ DE RÉFRIGÉRATION D'UN VÉHICULE HYBRIDE


(84)Designated Contracting States:
AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO SE SI SK SM TR

(30)Priority: 10.03.2009 US 158964 P

(43)Date of publication of application:
18.01.2012 Bulletin 2012/03

(73)Proprietor: THERMO KING CORPORATION
Minnepolis, MN 55420 (US)

(72)Inventors:
  • TRUCKENBROD, Gregory, Robert
    Fridley MN 55421 (US)
  • HURYCH, Arnost
    CZ 198 00 Prague 9 (CZ)
  • KRANZ, Bruce
    Farmington MN 55024 (US)
  • KIRBY, Eric
    Bloomington MN 55438 (US)
  • GILMAN, Michael, D.
    Rogers MN 55374 (US)
  • SCHMIDT, Richard, W.
    Plymouth MN 55447 (US)

(74)Representative: Haseltine Lake Kempner LLP 
Redcliff Quay 120 Redcliff Street
Bristol BS1 6HU
Bristol BS1 6HU (GB)


(56)References cited: : 
EP-A1- 1 504 227
US-A- 4 152 661
US-A1- 2006 214 637
US-A1- 2009 056 354
US-B2- 6 889 762
WO-A1-2008/094148
US-A- 5 056 330
US-A1- 2007 221 370
US-B1- 6 196 009
US-B2- 7 005 829
  
      
    Note: Within nine months from the publication of the mention of the grant of the European patent, any person may give notice to the European Patent Office of opposition to the European patent granted. Notice of opposition shall be filed in a written reasoned statement. It shall not be deemed to have been filed until the opposition fee has been paid. (Art. 99(1) European Patent Convention).


    Description

    BACKGROUND



    [0001] Refrigeration units, e.g., for refrigerated trucks or rail cars, typically include an internal combustion engine which drives a compressor of the refrigeration unit via a belt. Some refrigeration units also include means for plugging the unit into electrical mains (shore power) for powering the unit when the unit is not in transit. The shore power powers an electric motor which drives the compressor via a belt.

    [0002] EP1504227A1 discloses an air conditioning system for use in an over-the-road or off road vehicle that allows operation during both engine on and engine off conditions.

    SUMMARY



    [0003] The invention is defined in the attached independent claims to which reference should now be made. Further, optional features may be found in the sub-claims appended thereto.

    [0004] According to claim 1, the invention provides a power system for powering a refrigeration unit of a hybrid vehicle. The power system includes a first connection, a second connection, a third connection, and a power converter. The first connection is configured to receive power from a first power source. Where the first power source is a first high-voltage alternating current (AC) power source between 150 and 600 VAC. The second connection is configured to receive power from a second power source. Where the second power source is a high-voltage direct current (DC) power source between 263 to 408 VDC volts. The third connection is configured to receive power from a third power source. Where the third power source is a second high-voltage AC power source between 150 and 600 VAC. The power converter is configured to supply power to the refrigeration unit. The power system couples the first power source to the power converter when power is received at the first connection, couples the second power source to the power converter when power is received at the second connection but not the first connection, and couples the third power source to the power converter when power is not available from both the first and second connections. A switch is configured to allow only one of the first power source, the second power source, and the third power source to be coupled to the power converter at any one time. The power converter includes an accumulation choke that includes a plurality of inductors, a PWM rectifier configured to convert the received power to a second DC power, and a frequency inverter that are connected in series. The switch connects one of the first power source and the second power source to the accumulator choke and connects the third power source to the PWM rectifier.

    [0005] In another embodiment, the invention provides a method of powering a refrigeration unit according to claim 10.

    [0006] Other aspects of the invention will become apparent by consideration of the detailed description and accompanying drawings.

    BRIEF DESCRIPTION OF THE DRAWINGS



    [0007] 

    Fig. 1A is a block diagram of a construction of a power system for a hybrid vehicle with a refrigeration unit that does not embody the invention.

    Fig. 1B is a block diagram of an alternative construction of a power system for a hybrid vehicle with a refrigeration unit.

    Fig. 2A is a schematic diagram of a construction of an accumulation choke and a full-control PWM rectifier for use with three-phase AC power.

    Fig. 2B is a schematic diagram of a construction of an accumulation choke and a half-control PWM rectifier for use with three-phase AC power.

    Fig. 3A is a schematic diagram of a construction of an accumulation choke and a full-control PWM rectifier for use with DC power.

    Fig. 3B is a schematic diagram of a construction of an accumulation choke and a half-control PWM rectifier for use with DC power.

    Fig. 4 is a block diagram of a construction of a system for powering a refrigeration unit of a hybrid vehicle.

    Fig. 5 is a schematic diagram of a construction of a circuit of a power system for using AC or DC power to generate three-phase AC power.

    Fig. 6 is a schematic diagram of a construction of a circuit for controlling the operation of the circuit of Fig. 5.

    Fig. 7 is an alternative construction of a power system for powering multiple systems.

    Figs. 8A and 8B are a schematic diagram of another construction of a power system.

    Figs. 9A, 9B, 9C, and 9D are a schematic diagram of another construction of a power system.

    Fig. 10 is a block diagram of another construction of a system for powering a refrigeration unit of a hybrid vehicle.

    Fig. 11 is a schematic diagram of another construction of a circuit of a power system for using AC or DC power to generate three-phase AC power.

    Fig. 12 is a schematic diagram of a construction of a full-control PWM rectifier, incorporating a pre-charge circuit, for use with three-phase AC power.


    DETAILED DESCRIPTION



    [0008] Before any embodiments of the invention are explained in detail, it is to be understood that the invention is not limited in its application to the details of construction and the arrangement of components set forth in the following description or illustrated in the following drawings. The invention is capable of other embodiments and of being practiced or of being carried out in various ways. Also, it is to be understood that the phraseology and terminology used herein is for the purpose of description and should not be regarded as limiting. The use of "including," "comprising," or "having" and variations thereof herein is meant to encompass the items listed thereafter and equivalents thereof as well as additional items. Unless specified or limited otherwise, the terms "mounted," "connected," "supported," and "coupled" and variations thereof encompass direct and indirect mountings, connections, supports, and couplings. Further, "connected" and "coupled" are not restricted to physical or mechanical connections or couplings.

    [0009] Fig. 1A shows a block diagram of a construction of a system 100, which is not according to the invention, for powering a refrigeration unit 105 using power from a belt driven alternator 110, from high-voltage batteries 115 of a hybrid vehicle, and from shore power 120. A switch 125 selects which of the three power sources 110, 115, and 120 is used. In some constructions, the switch 125 is a manual switch, where a user selects which power source 110, 115, and 120 to use. In other constructions, the switch 125 is automatic, where a controller senses which power source(s) are providing sufficient power to operate the refrigeration unit 105 and selects the most appropriate power source to use. For example, in some embodiments, shore power 120 is used whenever it is available, followed by power from the high-voltage batteries 115, and finally by power from the belt driven alternator 110. In addition, the controller may control operation of an internal combustion engine used to drive the alternator, turning on the engine when there is insufficient power available from the shore power 120 or the high-voltage batteries 115, and turning off the engine when there is sufficient power available from either the shore power 120 or the high-voltage batteries 115, thus saving energy (i.e., fuel).

    [0010] According to the invention, the power available from the belt driven alternator 110 is about 150 to 600 volts AC (VAC), the power available from the high-voltage batteries 115 is about 263 to 408 volts DC (VDC), and the power available from shore power 120 is about 150 to 600 VAC. In the construction shown, AC power is assumed to be three-phase, however the invention contemplates the use of single-phase AC power as well.

    [0011] Depending on the position of the switch 125, set either manually or automatically, the power from one of the power sources 110, 115, and 120 is applied a power converter 130 including an accumulation choke 135, a pulse-width-modulated (PWM) rectifier 140, and a frequency inverter 145. The accumulation choke 135 is coupled to the PWM rectifier 140. The accumulation choke 135 operates with the PWM rectifier 140 to convert/modify the power received from the belt driven alternator 110, the high-voltage batteries 115, or the share power 120 to a DC voltage having a maximum amplitude of about 750 VDC. The DC voltage is provided to the frequency inverter 145 which converts the DC voltage to a variable voltage of 0 to 525 VAC having a frequency of about 0 to 100 Hz, which is provided to the refrigeration unit 105. In some constructions, the DC power from the PWM rectifier 140 is also used to supply a DC chopper for an electric heater. The DC chopper provides DC power having a variable voltage of about 0 to 750 V DC.

    [0012] Fig. 1B shows a block diagram of a construction according to the invention of a system 100' for powering a refrigeration unit 105 using power from a belt driven alternator 110, from high-voltage batteries 115 of a hybrid vehicle, and from shore power 120. Again a switch 125' selects which of the three power sources 110, 115, and 120 is used. However, in the construction shown, the switch 125' has multiple throws such that when power from the belt driven alternator 110 is selected, the alternator 110 is connected directly to the PWM rectifier 140, bypassing the accumulation choke 135. Except for the alternator 110 being connected directly to the PWM rectifier 140, the operation of the system 100' is the same as the operation of system 100 described above. The construction shown in Fig. 1B can be used when the inductance of the belt driven alternator 110 is great enough that the accumulation choke 135 is not necessary.

    [0013] Fig. 2A shows a schematic diagram of a construction of the accumulation choke 135 and a full-controlled PWM rectifier 140'. The accumulation choke 135 includes a plurality of inductors 150. The full-controlled PWM rectifier 140' includes six insulated gate bipolar transistors (IGBT) 155-160, each IGBT 155-160 having a diode 165-170 connected across its collector and emitter, and a capacitor 175.

    [0014] Fig. 2B shows a schematic diagram of a construction of the accumulation choke 135 and a half-controlled PWM rectifier 140". The accumulation choke 135 includes a plurality of inductors 150. The half-controlled PWM rectifier 140" includes three insulated gate bipolar transistors (IGBT) 158-160, each IGBT 158-160 having a diode 168-170 connected across its collector and emitter, three diodes 155-157 connected in an upper branch of the half-controller PWM rectifier 140", and a capacitor 175.

    [0015] Fig. 3A shows a schematic representation of the accumulation choke 135 and a full-controlled PWM rectifier 140' for use with DC input power from the high-voltage batteries 115. The accumulation choke 135 and the full-controlled PWM rectifier 140' include all the same components as described above with respect to Fig. 2A; however, the DC input voltage is applied to each inductor 150 and the upper IGBTs 155-157 are not used (i.e., they remain open).

    [0016] Fig. 3B shows a schematic diagram of a construction of the accumulation choke 135 and a half-controlled PWM rectifier 140" for use with DC input power from the high-voltage batteries 115. The accumulation choke 135 includes a plurality of inductors 150. The half-controlled PWM rectifier 140" includes three insulated gate bipolar transistors (IGBT) 158-160, each IGBT 158-160 having a diode 168-170 connected across its collector and emitter, three diodes 155-157 connected in an upper branch of the half-controller PWM rectifier 140", and a capacitor 175.

    [0017] Fig. 4 shows a block diagram of a construction of a hybrid vehicle system 200 including a refrigeration unit 205. The system 200 includes, among other things, a 12 VDC battery 210, a set of high-voltage batteries 215, a vehicle controller 220, a refrigeration unit controller 225, a refrigeration power system 230 including a connection to shore power 240, a refrigeration unit power switch 245, and a generator set including an internal combustion engine 250 driving an alternator 255. In some constructions, an internal combustion engine 250 drives a compressor and fans of the refrigeration unit 205 directly by one or more belts. In some constructions, an electric motor is powered by the shore power 240 and drives a compressor and fans of the refrigeration unit 205 directly by one or more belts.

    [0018] A master switch 260 enables the entire system 200. The power system 230 receives power from the shore power connection 240 and the high-voltage batteries 215, and provides power, if available, from either the shore power connection 240 or the high-voltage batteries 215 to the refrigeration unit power switch 245.

    [0019] The vehicle controller 220 provides an indication to the power system 230, via line 265, that power is available from the high-voltage batteries 215. The power system 230 provides to the refrigeration unit controller 225, via line 270, an indication that power is available from either the shore power connection 240 or the high-voltage batteries 215, and is being provided to the refrigeration unit power switch 245. The refrigeration unit controller 225 provides to the power unit 230, via line 275, an indication that the refrigeration unit 205 is on or off. The refrigeration unit controller 225 controls the refrigeration unit power switch 245, switching between power provided by the power system 230 or, if power is not available from the power system 230, power provided by the belt driven alternator 255. If the refrigeration unit 205 is on, power is provided to the refrigeration unit 205 by the power system 230 if power is available from either the shore power connection 240 or the high-voltage batteries 215. If power is not available from the power system 230 and the refrigeration unit 205 is on, the refrigeration unit controller 225 turns on the internal combustion engine 250 which drives, via a belt, the alternator 255. The alternator 255 then provides power to the refrigeration unit power switch 245, which is set, by the refrigeration unit controller 225, to provide the power from the alternator 255 to the refrigeration unit 205. In alternative constructions, there may be no alternator present in the system 200, instead the internal combustion engine 250 drives a compressor and fans of the refrigeration unit 205 directly.

    [0020] Fig. 5 shows a construction of a portion of the power system 230. The system 230 includes an AC power connector 300 and a DC power connector 305. The AC connector 300 includes three connections L1, L2, and L3 for connecting three-phase shore power (if available) to the system 230. The DC connector 305 includes a positive 310 and a negative 315 connection for connecting to the high-voltage batteries 115. Each input line L1, L2, L3, 310, and 315 is connected to the rest of the system 230 through a fuse FSUP1-FSUP5 sized appropriately for the voltage and current received on its respective input line L1, L2, L3, 310, and 315. Each input line L1, L2, L3, 310, and 315 is also connected to the power converter 130 through a normally-open relay 320-326. As discussed below, when shore power is available, the.normally-open relays 320-322 are closed to provide the AC shore power to the power converter 130, and when shore power is not available and DC power from the high-voltage batteries 115 is available, the normally-open relays 323-326 are closed to provide the DC power to the power converter 130. When the AC normally-open relays 320-322 are closed, the DC normally-open relays 323-326 are open, and when the DC normally-open relays 323-326 are closed, the AC normally-open relays 320-322 are open. In some constructions, an interlock module monitors relays 320-322 and 323-326 to ensure that only one of the relay groups 320-322 or 323-326 is closed at any time.

    [0021] The system 230 also includes AC pre-charging circuits having normally-open relays 330 and 331 and resistors 332 and 333, and a DC pre-charging circuit including a normally-open relay 334 and resistor 335. The pre-charging circuits are used when power is initially applied to the power system 230, and during a transition from AC power to DC power or from DC power to AC power. During a transition, the pre-charging circuits maintain power to the power converter 130, and allow the AC or DC power to be completely removed before the DC or AC power, being transitioned to, is connected.

    [0022] As discussed above with respect to Figs. 1-3, if available, AC or DC power is provided to the accumulation choke 135 and the PWM rectifier 140 of the power converter 130. The accumulation choke 135 and the PWM rectifier 140 convert the AC or DC power to DC power having a maximum voltage of about 750 volts. The DC power is the provided to the inverter 145 which converts the DC power to three-phase AC power having a variable voltage of 0 to 525 volts and frequency of about 0 to 100 Hz. In the construction shown in Fig. 4, this AC power is then provided to the refrigeration unit 205 via the refrigeration unit power switch 245. In some constructions, the DC power from the PWM rectifier 140 is also used to supply a DC chopper for an electric heater. The DC chopper provides DC power having a variable voltage of about 0 to 750 V DC.

    [0023] Fig. 6 shows a circuit 350 for controlling the application of AC or DC power to the power converter 130 for the system 230 shown in Fig. 5. The circuit 350 includes an AC delay 355 having a normally-closed switch 360 and a normally-open switch 365, a DC delay 370 having a normally-closed switch 375 and a normally-open switch 380, and a plurality of coils 390-396 for closing corresponding normally-open relays 320-326 shown in Fig. 5. A switch 400 selects either AC or DC power. In the construction shown, the switch 400 is a manual switch requiring an operator to select the AC or DC power. In some embodiments, the switch 400 is an automatic switch where AC power is automatically chosen if available, and if AC power is not available but DC power is available, DC power is automatically chosen. In examples which are not part of the invention, DC power is automatically chosen if available and AC power is chosen if available when DC power is not available. In some embodiments, if the switch 400 is off, and neither AC nor DC power is available, an internal combustion engine drives the refrigeration unit directly when the refrigeration unit is on.

    [0024] When the switch 400 is put into the AC position, power is provided to the AC delay 355 and to the AC pre-charge coil 395. The power provided to the AC pre-charge coil 395 closes the AC pre-charge normally-open relays 330-331 (Fig. 5) applying AC power through resistors 332 and 333 to the power converter 130. After a delay period (e.g., five seconds), the AC delay 355 opens the AC normally-closed switch 360 and closes the AC normally-open switch 365. When the AC normally-closed switch 360 opens, power is removed from the AC pre-charge coil 395 and the AC pre-charge normally-open relays 330-331 open. When the AC normally-open switch 365 closes, power is applied to the AC coil 396 and the AC normally-open relays 320-322 close providing three-phase AC power to the power converter 130.

    [0025] When the switch 400 is put into the DC position, power is provided to the DC delay 370 and to the DC pre-charge coil 391, and to DC negative coil 390. The power provided to the DC pre-charge coil 391 closes the DC pre-charge normally-open relay 334 (Fig. 5) applying DC power through resistor 335 to the power converter 130. The power provided to the DC negative coil 390 closes the normally-open relay 326 connecting the negative connection 315 from the high-voltage batteries 215 to the power converter 130. After a delay period (e.g., five seconds), the DC delay 370 opens the DC normally-closed switch 375 and closes the DC normally-open switch 380. When the DC normally-closed switch 375 opens, power is removed from the DC pre-charge coil 391 and the DC pre-charge normally-open relay 324 opens. When the DC normally-open switch 380 closes, power is applied to the DC coils 392-394 and the DC normally-open relays 323-325 close providing DC power to the power converter 130.

    [0026] Fig. 7 shows an alternative construction of a power converter 405 where multiple power converters 410-425 are employed for powering various devices such as a compressor motor 430, an electric heater 435, an evaporator fan 440, and a condenser fan 445.

    [0027] Figs. 8A and 8B show a schematic diagram of a construction of the power system 230 (Fig. 4). When system power is turned on (switch 260 in Fig. 4 is closed), normally-open relay K7 closes. If shore power is available, i.e., three-phase AC power is provided to L1, L2, L3, and a phase select module 450 receives power from normally-open relay K7 and the AC power lines L1, L2, L3. The phase select module 450 then provides power to line 8EA. The power on line 8EA initiates a five second delay timer 455 and simultaneously powers coil P. The power to coil P closes normally-open relays P1 and P2, and opens normally-closed relay P2. After five seconds, the five second delay timer 455 provides power to output MPT which is provided to the refrigeration unit controller 225 to indicate that power is available from the power system 230 (Fig. 4). If the refrigeration unit controller 225 indicates that the refrigeration unit 205 is on, normally-open relay K13 is closed providing power to coil MCA. The power to coil MCA causes normally-open relays MCA to close, supplying the AC shore power to the power converter 130, which in turn supplies power to a condenser motor 460 (providing normally-open relays K14 are closed).

    [0028] If AC shore power is not available, normally-closed relay P2 is closed. If the vehicle controller 220 (Fig. 4) indicates that vehicle power is available, the vehicle controller 220 provides power to a five second delay timer 465. After a five second delay, the timer 465 allows power to be applied to a coil T closing normally-open relay T1 and providing power to output MPT, which is provided to the refrigeration unit controller 225 to indicate that power is available from the power system 230 (Fig. 4). If the refrigeration unit controller 225 indicates that the refrigeration unit 205 is on, normally-open relay K13 is closed, providing power to coil MCB. The power to coil MCB causes normally-open relays MCB to close, supplying the DC power from the high-voltage batteries 215 to the power converter 130, which in turn supplies power to the condenser motor 460 (providing normally-open relays K14 are closed).

    [0029] If neither AC shore power nor DC power from the high-voltage batteries 215 is available, the output MPT to the refrigeration unit controller 225 is low and the refrigeration unit controller 225 starts the engine 250 which drives the refrigeration unit 205 directly.

    [0030] Figs. 9A, 9B, 9C, and 9D show a schematic diagram of an alternative construction of a power system 500.

    [0031] Fig. 10 shows an alternate construction of a power system 505. The system 505 includes a first AC power connector 510, a second AC power connector 515, and a DC power connector 520. The first AC connector 510 includes three connections L1, L2, and L3 for connecting three-phase power from the belt driven alternator 255 to the system 505. The second AC connector 515 includes three connections L1', L2', and L3' for connecting three-phase shore power (if available) to the system 505. The DC connector 520 includes a positive connection 525 and a negative 530 connection for connecting to the high-voltage batteries 215 to the system 505. Each input line L1, L2, L3, L1', L2', L3', 525, and 530 is connected to the rest of the system 505 through a fuse FSUP1-FSUP8 sized appropriately for the voltage and current received on its respective input line L1, L2, L3, L1', L2', L3', 525, and 530. Each input line L1, L2, L3, L1', L2', L3', 525, and 530 is also connected to the power converter 130 through a normally-open relay 535-544. As discussed below, when shore power is available, the normally-open relays 538-540 are closed to provide the AC shore power to the power converter 130, and when shore power is not available and DC power from the high-voltage batteries 215 is available, the normally-open relays 541-544 are closed to provide the DC power to the power converter 130. When neither shore power nor DC power is available, the normally-open relays 535-537 are closed to provide AC power from the alternator 255 to the power converter 130. Only one set of normally-open relays 535-537, 538-540, or 541-544 are closed at any time.

    [0032] The system 505 also includes first AC pre-charging circuits having normally-open relays 550 and 551 and resistors 552 and 553, second AC pre-charging circuits having normally-open relays 555 and 556 and resistors 557 and 558, and a DC pre-charging circuit having a normally-open relay 560 and a resistor 561. The pre-charging circuits are used when power is initially applied to the power system 505, and during a transition between one input power to another to maintain power to the power converter 130 during the transition, and allowing the power being transitioned from to be completely removed before the power being transitioned to is connected.

    [0033] As discussed above with respect to Figs. 1-3, if available, AC or DC power is provided to the accumulation choke 135 and the PWM rectifier 140 of the power converter 130 convert the AC or DC power to DC power having a maximum voltage of about 750 volts. The DC power is then provided to the inverter 145, which converts the DC power to three-phase AC power having a voltage of 0 to 525 volts. In the construction shown in Fig. 4, this AC power is then provided to the refrigeration unit 205 via the refrigeration unit power switch 245.

    [0034] Fig. 11 shows a circuit 600 for controlling the application of the first AC power, the second AC power, or the DC power to the power converter 130 for the system 505 shown in Fig. 10. The circuit 600 includes a first AC delay 605 having a normally-closed switch 610 and a normally-open switch 615, a second AC delay 620 having a normally-closed switch 625 and a normally-open switch 630, a DC delay 635 having a normally-closed switch 640 and a normally-open switch 645, and a plurality of coils 650-658 for closing corresponding normally-open relays 534-544, 550-551, 555, 556, and 560 shown in Fig. 10. A switch 660 selects either the first AC power, the second AC power, or the DC power. In the construction shown, the switch 660 is a manual switch requiring an operator to select the power. In some constructions, the switch 660 is an automatic switch where the second AC power (shore power) is automatically chosen if available, and if the first AC power is not available but DC power is available, the DC power is automatically chosen. If neither the second AC power nor the DC power is available, the switch automatically chooses the first AC power. The circuit 600 operates similar to the operation of circuit 350 of Fig. 6 with the addition of a second AC power.

    [0035] In some constructions, a liquid cooling system of the hybrid vehicle is used to cool one or more components of the power system 230 (e.g., the power converter 130) and/or one or more components of the alternator 255 (e.g., the belt driven alternator 110). In other constructions, a liquid cooling system of the refrigeration unit 205 is used to cool one or more components of the power system 230 and/or one or more components of the alternator 255.

    [0036] In some constructions, shore power is provided to a charging circuit, in addition to the power system 230, for charging the high-voltage batteries 215. In some constructions, the refrigeration unit 205 is operated exclusively using either DC power from the high-voltage batteries 215 or AC shore power 240.

    [0037] Fig. 12 shows a schematic diagram of an alternative construction of a full-controlled PWM rectifier 700 incorporating a pre-charging circuit 705. The full-controlled PWM rectifier 700 includes six insulated gate bipolar transistors (IGBT) 155-160, each IGBT 155-160 having a diode 165-170 connected across its collector and emitter, and operates the same as system 100 described above. The pre-charging circuit 705 includes a capacitor 715, a resistor 720, a diode 725, and an IGBT 730. The pre-charging circuit 705 operates to buffer a current surge encountered when switching from one power source to a second power source, and eliminates the need for the pre-charging and delay circuits described for the controllers above. The pre-charging circuit 705 operates by opening the IGBT 730 prior to transitioning the power source. Applying the second power source and removing the first power source while the IGBT 730 is open. The IGBT 730 is held open until the capacitor 715 is fully charged forcing current to travel through the resistor 720. Once the capacitor 715 is fully charged, the IGBT 730 is closed.

    [0038] Systems according to the invention are capable of being used in non-hybrid vehicles, receiving AC power from an alternator of the vehicle during operation of the vehicle and having a shore power connection for use when the vehicle is not operating.

    [0039] Thus, the invention provides a system and method for powering a refrigeration unit of a hybrid vehicle.


    Claims

    1. A power system (100) for powering a refrigeration unit (105) of a hybrid vehicle, the power system comprising:

    a first connection configured to receive power from a first power source (120), the first power source (120) being a first high-voltage alternating current (AC) power source between 150 and 600 VAC;

    a second connection configured to receive power from a second power source (115), the second power source (115) being a high-voltage direct current (DC) power source between 263 to 408 VDC;

    a third connection configured to receive power from a third power source (110), the third power source (110) being a second high-voltage AC power source between 150 and 600 VAC; and

    a power converter (130) configured to supply power to the refrigeration unit (105);

    wherein the power system (100) couples the first power source (120) to the power converter (130) when power is received at the first connection, couples the second power source (115) to the power converter (130) when power is received at the second connection but not the first connection, and couples the third power source (110) to the power converter (130) when power is not available from both the first and second connections;

    a switch (125) configured to allow only one of the first power source (120), the second power source (115), and the third power source (110) to be coupled to the power converter (130) at any one time,

    the power system (100) being characterized in that the power converter (130) includes an accumulation choke (135) that includes a plurality of inductors (150), a PWM rectifier (140) configured to convert the received power to a second DC power, and a frequency inverter (145) that are connected in series,

    wherein the switch (125) connects one of the first power source (120) and the second power source (115) to the accumulator choke (135) and connects the third power source (110) to the PWM rectifier (140).


     
    2. The system of claim 1, wherein the second DC power is between about 0 and 750 volts.
     
    3. The system of claim 1, wherein the inverter is a frequency inverter (145) configured to receive the second DC power from the PWM rectifier (140) and convert the second DC power to a third AC voltage, the third AC voltage supplied to the refrigeration unit (105).
     
    4. The system of claim 3, wherein the third AC voltage has a voltage of between about 0 and 525 volts and a frequency between about 0 and 100 Hz.
     
    5. The system of claim 1, comprising the second power source being a plurality of high-voltage batteries (115) and the first power source being a shore power source (120).
     
    6. The system of claim 1, comprising the third power source (110) being an alternator (110) driven by an engine (250) and providing a high-voltage AC power to the refrigeration unit (105).
     
    7. The system of claim 1, comprising the first high-voltage AC power source which includes a shore power (120).
     
    8. The system of claim 1, wherein the high-voltage DC power source includes a plurality of high-voltage batteries (115) used to power a hybrid vehicle.
     
    9. The system of claim 1, comprising the second high-voltage AC power source which includes a belt-driven alternator (110).
     
    10. The system of claim 1, comprising the first high-voltage AC power source which includes a shore power (120), the high-voltage DC power source which includes a plurality of high-voltage batteries (115) used to power a hybrid vehicle, and the second high-voltage AC power source which includes a belt-driven alternator (110).
     
    11. A method of powering a refrigeration unit (105) of a hybrid vehicle, the method comprising:

    receiving at a first connection a high-voltage AC power between 150 and 600 VAC from an electric mains (120);

    receiving at a second connection a high-voltage DC power between 263 to 408 VDC from a plurality of batteries (115) of a hybrid vehicle;

    receiving at a third connection another high-voltage AC power between 150 and 600 VAC from a belt driven alternator (110);

    connecting one of the first connection, the second connection, and the third connection to a power converter (130) based on a position of a switch (125), the connecting act coupling one of the high-voltage DC power and the high-voltage AC power to the power converter (130) thereby resulting in a coupled power;

    disconnecting the coupled power from the power converter (130) when the position of the switch (125) has changed;

    allowing only one of the first connection, the second connection, and the third connection to be coupled to the power converter (130) at any one time;

    directing the high-voltage AC power from the first connection first through a plurality of inductors (150) of an accumulation choke (135) of the power converter (130), then through a PWM rectifier (140) and then through a frequency inverter (145) when the switch (125) connects the first connection to the power converter (130);

    directing the high-voltage DC power from the second connection first through the plurality of inductors (150) of the accumulation choke (135), then through the PWM rectifier (140) and then through the frequency inverter (145) when the switch (125) connects the second connection to the power converter (130);

    directing the other high-voltage AC power from the third connection first through the PWM rectifier (140) of the power converter (130) and then through the frequency inverter (145) when the switch (125) connects the third connection to the power converter (130);

    converting the high-voltage power into a second high-voltage AC power when the high-voltage DC power is coupled to the power converter (130), converting the high-voltage AC power into the second high-voltage AC power when the high-voltage AC power is coupled to the power converter (130), and converting the other high-voltage AC power into the second high-voltage AC power when the other high-voltage AC power is coupled to the power converter (130); and

    providing the second high-voltage AC power to the refrigeration unit (105).


     
    12. The method of claim 11, wherein the disconnecting act further comprises transitioning from one of the high-voltage AC power and the high-voltage DC power to the other of the high-voltage AC power and the high-voltage DC power by coupling both the high-voltage AC power and the high-voltage DC power to power converter (130) for a period of time; or further comprising recharging the plurality of batteries (115) using the high-voltage AC power.
     


    Ansprüche

    1. Energiesystem (100) zum Antreiben einer Kühleinheit (105) eines Hybridfahrzeugs, wobei das Energiesystem aufweist:

    eine erste Verbindung, die dazu ausgebildet ist, Energie von einer ersten Energiequelle (120) zu erhalten, wobei die erste Energiequelle (120) eine erste Hochspannungswechselstrom- (AC) -energiequelle zwischen 150 und 600 V Wechselspannung ist;

    eine zweite Verbindung, die dazu ausgebildet ist, Energie von einer zweiten Energiequelle (115) zu erhalten, wobei die zweite Energiequelle (115) eine Hochspannungsgleichstrom- (DC) -energiequelle zwischen 263 bis 408 V Gleichspannung ist;

    eine dritte Verbindung, die dazu ausgebildet ist, Energie von einer dritten Energiequelle (110) zu erhalten, wobei die dritte Energiequelle (110) eine zweite Hochspannungswechselstromenergiequelle zwischen 150 und 600 V Wechselspannung ist; und

    einen Stromrichter (130), der dazu ausgebildet ist, der Kühleinheit (105) Energie zuzuführen;

    wobei das Energiesystem (100) die erste Energiequelle (120) mit dem Stromrichter (130) koppelt, wenn Energie an der ersten Verbindung erhalten wird, die zweite Energiequelle (115) mit dem Stromrichter (130) koppelt, wenn Energie an der zweiten Verbindung, aber nicht der ersten Verbindung erhalten wird, und die dritte Energiequelle (110) mit dem Stromrichter (130) koppelt, wenn Energie weder von der ersten noch der zweiten Verbindung zur Verfügung steht;

    einen Schalter (125), der dazu ausgebildet ist, es nur einer der ersten Energiequelle (120), der zweiten Energiequelle (115) und der dritten Energiequelle (110) zu ermöglichen, zu einer gegebenen Zeit mit dem Stromrichter (130) gekoppelt zu werden,

    wobei das Energiesystem (100) dadurch gekennzeichnet ist, dass der Stromrichter (130) eine Akkumulationsdrossel (135), die eine Vielzahl von Induktivitäten (150) enthält, einen PWM-Gleichrichter (140), der dazu ausgebildet ist, die erhaltene Energie in einen zweiten Gleichstrom umzuwandeln, und einen Frequenzumrichter (145) aufweist, die in Reihe geschaltet sind,

    wobei der Schalter (125) eine der ersten Energiequelle (120) und der zweiten Energiequelle (115) mit der Akkumulatordrossel (135) verbindet und die dritte Energiequelle (110) mit dem PWM-Gleichrichter (140) verbindet.


     
    2. System nach Anspruch 1, wobei der zweite Gleichstrom eine Spannung zwischen ca. 0 und 750 Volt aufweist.
     
    3. System nach Anspruch 1, wobei der Umrichter ein Frequenzumrichter (145) ist, der dazu ausgebildet ist, den zweiten Gleichstrom von dem PWM-Gleichrichter (140) zu erhalten und den zweiten Gleichstrom in eine dritte Wechselspannung umzuwandeln, wobei die dritte Wechselspannung der Kühleinheit (105) zugeführt wird.
     
    4. System nach Anspruch 3, wobei die dritte Wechselspannung einen Spannungswert zwischen ca. 0 und 525 Volt und eine Frequenz zwischen ca. 0 und 100 Hz aufweist.
     
    5. System nach Anspruch 1, das die zweite Energiequelle aufweist, die eine Vielzahl von Hochspannungsbatterien (115) ist, sowie die erste Energiequelle, die eine Landstromquelle (120) ist.
     
    6. System nach Anspruch 1, das die dritte Energiequelle (110) aufweist, die ein Generator (110) ist, der von einem Motor (250) angetrieben wird, und die der Kühleinheit (105) einen Hochspannungswechselstrom bereitstellt.
     
    7. System nach Anspruch 1, das die erste Hochspannungswechselstromenergiequelle aufweist, die Landstrom (120) umfasst.
     
    8. System nach Anspruch 1, wobei die Hochspannungsgleichstromenergiequelle eine Vielzahl von Hochspannungsbatterien (115) umfasst, die zum Antreiben eines Hybridfahrzeugs verwendet werden.
     
    9. System nach Anspruch 1, das die zweite Hochspannungswechselstromenergiequelle aufweist, die einen riemengetriebenen Generator (110) umfasst.
     
    10. System nach Anspruch 1, das die erste Hochspannungswechselstromenergiequelle, die Landstrom (120) umfasst, die Hochspannungsgleichstromenergiequelle, die eine Vielzahl von Hochspannungsbatterien (115) umfasst, die zum Antreiben eines Hybridfahrzeugs verwendet werden, und die zweite Hochspannungswechselstromenergiequelle, die einen riemengetriebenen Generator (110) umfasst, aufweist.
     
    11. Verfahren zum Antreiben einer Kühleinheit (105) eines Hybridfahrzeugs, wobei das Verfahren umfasst:

    das Erhalten eines Hochspannungswechselstroms zwischen 150 und 600 V Wechselspannung von einem elektrischen Netz (120) an einer ersten Verbindung;

    das Erhalten eines Hochspannungsgleichstroms zwischen 263 bis 408 V Gleichspannung von einer Vielzahl von Batterien (115) eines Hybridfahrzeugs an einer zweiten Verbindung;

    das Erhalten eines anderen Hochspannungswechselstroms zwischen 150 und 600 V Wechselspannung von einem riemengetriebenen Generator (110) an einer dritten Verbindung;

    das Verbinden einer der ersten Verbindung, der zweiten Verbindung und der dritten Verbindung mit einem Stromrichter (130) auf Grundlage einer Stellung eines Schalters (125), wobei der Vorgang des Verbindens einen des Hochspannungsgleichstroms und des Hochspannungswechselstroms mit dem Stromrichter (130) koppelt und dadurch in gekoppelter Energie resultiert;

    das Trennen der gekoppelten Energie von dem Stromrichter (130), wenn sich die Stellung des Schalters (125) geändert hat;

    das Ermöglichen nur einer der ersten Verbindung, der zweiten Verbindung und der dritten Verbindung zu einer gegebenen Zeit, mit dem Stromrichter (130) gekoppelt zu werden;

    das Leiten des Hochspannungswechselstroms von der ersten Verbindung zuerst durch eine Vielzahl von Induktivitäten (150) einer Akkumulationsdrossel (135) des Stromrichters (130), dann durch einen PWM-Gleichrichter (140) und dann durch einen Frequenzumrichter (145), wenn der Schalter (125) die erste Verbindung mit dem Stromrichter (130) verbindet;

    das Leiten des Hochspannungsgleichstroms von der zweiten Verbindung zuerst durch die Vielzahl von Induktivitäten (150) der Akkumulationsdrossel (135), dann durch den PWM-Gleichrichter (140) und dann durch den Frequenzumrichter (145), wenn der Schalter (125) die zweite Verbindung mit dem Stromrichter (130) verbindet;

    das Leiten des anderen Hochspannungswechselstroms von der dritten Verbindung zuerst durch den PWM-Gleichrichter (140) des Stromrichters (130) und dann durch den Frequenzumrichter (145), wenn der Schalter (125) die dritte Verbindung mit dem Stromrichter (130) verbindet;

    das Umwandeln der Hochspannungsenergie in einen zweiten Hochspannungswechselstrom, wenn der Hochspannungsgleichstrom mit dem Stromrichter (130) gekoppelt ist, das Umwandeln des Hochspannungswechselstroms in den zweiten Hochspannungswechselstrom, wenn der Hochspannungswechselstrom mit dem Stromrichter (130) gekoppelt ist, und das Umwandeln des anderen Hochspannungswechselstroms in den zweiten Hochspannungswechselstrom, wenn der andere Hochspannungswechselstrom mit dem Stromrichter (130) gekoppelt ist; und

    das Bereitstellen des zweiten Hochspannungswechselstroms an die Kühleinheit (105).


     
    12. Verfahren nach Anspruch 11, wobei der Vorgang des Trennens ferner das Übergehen von einem des Hochspannungswechselstroms und des Hochspannungsgleichstroms zu dem anderen des Hochspannungswechselstroms und des Hochspannungsgleichstroms durch das Koppeln sowohl des Hochspannungswechselstroms als auch des Hochspannungsgleichstroms mit Stromrichter (130) für einen Zeitraum umfasst; oder ferner das Aufladen der Vielzahl von Batterien (115) unter Verwendung des Hochspannungswechselstroms umfasst.
     


    Revendications

    1. Système d'alimentation (100) pour alimenter une unité de réfrigération (105) d'un véhicule hybride, le système d'alimentation comprenant :

    une première connexion configurée pour recevoir un courant en provenance d'une première source d'alimentation (120), la première source d'alimentation (120) étant une première source de courant alternatif (c.a.) haute tension entre 150 et 600 VCA ;

    une deuxième connexion configurée pour recevoir un courant en provenance d'une deuxième source d'alimentation (115), la deuxième source d'alimentation (115) étant une source de courant continu (c.c.) haute tension entre 263 et 408 VCC ;

    une troisième connexion configurée pour recevoir un courant en provenance d'une troisième source d'alimentation (110), la troisième source d'alimentation (110) étant une seconde source de courant alternatif haute tension entre 150 et 600 VCA ; et

    un convertisseur de puissance (130) conçu pour alimenter l'unité de réfrigération (105) ;

    le système d'alimentation (100) couplant la première source d'alimentation (120) au convertisseur de puissance (130) lorsque le courant est reçu au niveau de la première connexion, couplant la deuxième source d'alimentation (115) au convertisseur de puissance (130) lorsque le courant est reçu au niveau de la deuxième connexion, mais pas de la première connexion, et couplant la troisième source d'alimentation (110) au convertisseur de puissance (130) lorsque le courant n'est pas disponible depuis à la fois les première et deuxième connexions ;

    un commutateur (125) configuré pour permettre qu'une seule parmi la première source d'alimentation (120), la deuxième source d'alimentation (115) et la troisième source d'alimentation (110) soit couplée au convertisseur de puissance (130) à n'importe quel moment,

    le système d'alimentation (100) étant caractérisé en ce que le convertisseur de puissance (130) comprend une bobine d'accumulation (135) qui comprend une pluralité d'inducteurs (150), un redresseur MID (140) conçu pour convertir le courant reçu en un second courant continu, et un inverseur de fréquence (145) qui sont connectés en série,

    dans lequel le commutateur (125) connecte une parmi la première source d'alimentation (120) et la deuxième source d'alimentation (115) à la bobine d'accumulation (135) et connecte la troisième source d'alimentation (110) au redresseur MID (140).


     
    2. Système selon la revendication 1, dans lequel le second courant continu est entre environ 0 et 750 volts.
     
    3. Système selon la revendication 1, dans lequel l'inverseur est un inverseur de fréquence (145) configuré pour recevoir le second courant continu en provenance du redresseur MID (140) et pour convertir le second courant continu en une troisième tension alternative, la troisième tension alternative étant fournie à l'unité de réfrigération (105).
     
    4. Système selon la revendication 3, dans lequel la troisième tension alternative a une tension entre environ 0 et 525 volts et une fréquence entre environ 0 et 100 Hz.
     
    5. Système selon la revendication 1, comprenant la deuxième source d'alimentation qui est une pluralité de batteries haute tension (115) et la première source d'alimentation qui est une source d'alimentation secteur (120).
     
    6. Système selon la revendication 1, comprenant la troisième source d'alimentation (110) qui est un alternateur (110) entraîné par un moteur (250) et fournissant un courant alternatif haute tension à l'unité de réfrigération (105).
     
    7. Système selon la revendication 1, comprenant la première source de courant alternatif haute tension qui comprend une alimentation secteur (120).
     
    8. Système selon la revendication 1, dans lequel la source de courant continu haute tension comprend une pluralité de batteries haute tension (115) utilisées pour alimenter un véhicule hybride.
     
    9. Système selon la revendication 1, comprenant la deuxième source de courant alternatif haute tension qui comprend un alternateur (110) entraîné par courroie.
     
    10. Système selon la revendication 1, comprenant la première source de courant alternatif haute tension qui comprend une alimentation secteur (120), la source de courant continu haute tension qui comprend une pluralité de batteries haute tension (115) utilisées pour alimenter un véhicule hybride, et la deuxième source de courant alternatif haute tension qui comprend un alternateur (110) entraîné par courroie.
     
    11. Procédé permettant d'alimenter une unité de réfrigération (105) d'un véhicule hybride, le procédé consistant à :

    recevoir au niveau d'une première connexion un courant alternatif haute tension entre 150 et 600 VCA à partir d'un secteur électrique (120) ;

    recevoir au niveau d'une deuxième connexion un courant continu haute tension entre 263 et 408 VCC à partir d'une pluralité de batteries (115) d'un véhicule hybride ;

    recevoir au niveau d'une troisième connexion un autre courant alternatif haute tension entre 150 et 600 VCA en provenance d'un alternateur (110) entraîné par courroie ;

    connecter une parmi la première connexion, la deuxième connexion et la troisième connexion à un convertisseur de puissance (130) sur la base d'une position d'un commutateur (125), l'acte de connexion couplant un parmi le courant continu haute tension et le courant alternatif haute tension au convertisseur de puissance (130), ce qui permet d'obtenir une puissance couplée ;

    déconnecter la puissance couplée du convertisseur de puissance (130) lorsque la position du commutateur (125) a changé ;

    permettre qu'une seule parmi la première connexion, la deuxième connexion et la troisième connexion soit couplée au convertisseur de puissance (130) à n'importe quel moment ;

    orienter le courant alternatif haute tension depuis la première connexion tout d'abord à travers une pluralité d'inducteurs (150) d'une bobine d'accumulation (135) du convertisseur de puissance (130), puis à travers un redresseur MID (140), puis à travers un inverseur de fréquence (145) lorsque le commutateur (125) connecte la première connexion au convertisseur de puissance (130) ;

    orienter le courant continu haute tension depuis la deuxième connexion tout d'abord à travers la pluralité d'inducteurs (150) de la bobine d'accumulation (135), puis à travers le redresseur MID (140), puis à travers l'inverseur de fréquence (145) lorsque le commutateur (125) connecte la deuxième connexion au convertisseur de puissance (130) ;

    orienter l'autre courant alternatif haute tension depuis la troisième connexion tout d'abord à travers le redresseur MID (140) du convertisseur de puissance (130) puis à travers l'inverseur de fréquence (145) lorsque le commutateur (125) connecte la troisième connexion au convertisseur de puissance (130) ;

    convertir le courant haute tension en un second courant alternatif haute tension lorsque le courant continu haute tension est couplé au convertisseur de puissance (130), convertir le courant alternatif haute tension en le second courant alternatif haute tension lorsque le courant alternatif haute tension est couplé au convertisseur de puissance (130), et convertir l'autre courant alternatif haute tension en le second courant alternatif haute tension lorsque l'autre courant alternatif haute tension est couplé au convertisseur de puissance (130) ; et

    fournir le second courant alternatif haute tension à l'unité de réfrigération (105).


     
    12. Procédé selon la revendication 11, dans lequel l'acte de déconnexion consiste en outre à passer d'un parmi le courant alternatif haute tension et le courant continu haute tension à l'autre parmi le courant alternatif haute tension et le courant continu haute tension en couplant à la fois le courant alternatif haute tension et le courant continu haute tension au convertisseur de puissance (130) pendant une période temporelle ; ou consistant en outre à recharger la pluralité de batteries (115) à l'aide du courant alternatif haute tension.
     




    Drawing






























































    Cited references

    REFERENCES CITED IN THE DESCRIPTION



    This list of references cited by the applicant is for the reader's convenience only. It does not form part of the European patent document. Even though great care has been taken in compiling the references, errors or omissions cannot be excluded and the EPO disclaims all liability in this regard.

    Patent documents cited in the description