(19)
(11)EP 2 415 894 B1

(12)EUROPEAN PATENT SPECIFICATION

(45)Mention of the grant of the patent:
19.12.2018 Bulletin 2018/51

(21)Application number: 11186515.0

(22)Date of filing:  27.06.2002
(51)Int. Cl.: 
C22C 38/00  (2006.01)
C22C 38/38  (2006.01)
C21D 9/48  (2006.01)
C22C 38/04  (2006.01)
C23C 2/02  (2006.01)
C22C 38/06  (2006.01)
C22C 38/58  (2006.01)
C22C 38/02  (2006.01)
C21D 8/04  (2006.01)
C25D 5/24  (2006.01)

(54)

Steel sheet excellent in workability and method for producing the same

Stahlplatte mit herausragender Umformbarkeit und Verfahren zu deren Herstellung

Feuille d'acier excellente en termes de maniabilité et son procédé de production


(84)Designated Contracting States:
DE FR GB

(30)Priority: 24.08.2001 JP 2001255384
24.08.2001 JP 2001255385
27.05.2002 JP 2002153030

(43)Date of publication of application:
08.02.2012 Bulletin 2012/06

(62)Application number of the earlier application in accordance with Art. 76 EPC:
02736196.3 / 1431407

(73)Proprietor: Nippon Steel & Sumitomo Metal Corporation
Tokyo 100-8071 (JP)

(72)Inventors:
  • Yoshinaga, Naoki
    Chiba, 293-8511 (JP)
  • Fujita, Nobuhiro
    Chiba, 293-8511 (JP)
  • Takahashi, Manabu
    Chiba, 293-8511 (JP)
  • Hashimoto, Koji
    Chiba, 293-8511 (JP)
  • Sakamoto, Shinya
    Chiba, 299-1193 (JP)
  • Kawasaki, Kaoru
    Hyogo, 671-1188 (JP)
  • Shinohara, Yasuhiro
    Chiba, 293-8511 (JP)
  • Senuma, Takehide
    Chiba, 293-8511 (JP)

(74)Representative: Vossius & Partner Patentanwälte Rechtsanwälte mbB 
Siebertstrasse 3
81675 München
81675 München (DE)


(56)References cited: : 
EP-A1- 0 475 096
EP-A1- 1 006 203
JP-A- 11 279 688
JP-A- 55 158 217
US-A- 4 313 770
EP-A1- 0 945 522
DE-A1- 19 936 151
JP-A- 55 110 734
US-A- 3 988 173
US-A- 4 426 235
  
  • HUCHTEMANN B ET AL: "BEGLEITELEMENTE IN EDELBAUSTAEHLEN UND IHR EINFLUSS AUF DIE VERARBEITUNGSEIGENSCHAFTEN", STAHL UND EISEN, VERLAG STAHLEISEN, DUSSELDORF, DE, vol. 118, no. 11, 9 November 1998 (1998-11-09), pages 129-135, XP000784992, ISSN: 0340-4803
  • SPIEKERMANN P: "LEGIERUNGEN - EIN BESONDERES PATENTRECHTLICHES PROBLEM? - LEGIERUNGSPRÜFUNG IM EUROPÄISCHEN PATENTAMT", MITTEILUNGEN DER DEUTSCHEN PATENTANWÄLTE, HEYMANN, KÖLN, DE, 1 January 1993 (1993-01-01), pages 178-190, XP000961882, ISSN: 0026-6884
  • "Effects of tramp elements in flat and long products", EUR (LUXEMBOURG), COMMISSION OF THE EUROPEAN COMMUNITIES, LUXEMBURG, UX, vol. 16672, 1 January 1995 (1995-01-01), pages 86-87, XP009177494, ISSN: 1018-5593
  
Note: Within nine months from the publication of the mention of the grant of the European patent, any person may give notice to the European Patent Office of opposition to the European patent granted. Notice of opposition shall be filed in a written reasoned statement. It shall not be deemed to have been filed until the opposition fee has been paid. (Art. 99(1) European Patent Convention).


Description


[0001] The present invention relates to: a steel sheet used for, for instance, panels, undercarriage components, structural members and the like of an automobile; and a method for producing the same.

[0002] The steel sheets according to the present invention include both those not subjected to surface treatment and those subjected to surface treatment such as hot-dip galvanizing, electrolytic plating or other plating for rust prevention. The plating includes the plating of pure zinc, an alloy containing zinc as the main component and further an alloy consisting mainly of Al or Al-Mg. Those steel sheets are also suitable as the materials for steel pipes for hydroforming applications.

[0003] With increasing needs for the reduction of an automobile weight, a steel sheet having a higher strength is increasingly desired. Strengthening of a steel sheet makes it possible to reduce an automobile weight through material thickness reduction and to promote collision safety. Meanwhile, attempts have been made recently to form components of complicated shapes by applying the hydroforming method to high strength steel pipes. The attempts aim at the reduction of the number of components, the number of welded flanges and the like with the increasing needs for automobile weight reduction and cost reduction.

[0004] Actual application of such new forming technologies as the hydroforming method is expected to bring about significant advantages such as the reduction of a cost and the expansion of design freedom. In order to fully enjoy the advantages of the hydroforming method, new materials suitable for such a new forming method are required.

[0005] However, if it is attempted to obtain a steel sheet having a high strength and being excellent in formability, particularly deep drawability, it has been essentially required to use an ultra-low-carbon steel containing a very small amount of C and to strengthen it by adding elements such as Si, Mn and P, as disclosed in Japanese Unexamined Patent Publication No. S56-139654, for example.

[0006] The reduction of a C amount requires to adopt vacuum degassing in a steelmaking process, that causes CO2 gas to emit in quantity during the production process, and therefore it is hard to say that the reduction of a C amount is the most appropriate measure from the viewpoint of the conservation of the global environment.

[0007] Meanwhile, steel sheets that have comparatively high C amounts and yet exhibit good deep drawability have been disclosed. Such steel sheets have been disclosed in Japanese Examined Patent Publication Nos. S57-47746, H2-20695, S58-49623, S61-12983 and H1-37456, Japanese Unexamined Patent Publication No. S59-13030 and others. However, even in these steel sheets, the C amounts are 0.07% or less and substantially low. Further, Japanese Examined Patent Publication No. S61-10012 discloses that a comparatively good r-value is obtained even with a C amount of 0.14%. However, the disclosed steel contains P in quantity and there arise the deterioration of secondary workability and the problems with weldability and fatigue strength after welding in some cases. The present inventors have applied a technology to solve these problems in Japanese Patent Application No. 2000-403447.

[0008] Further, the present inventors have made another patent application, Japanese Patent Application No. 2000-52574, regarding a steel pipe that has a controlled texture and is excellent in formability. However, such a steel pipe finished through high-temperature processing often contains solute C and solute N in quantity, and the solute elements sometimes cause cracks to be generated during hydroforming or surface defects such as stretcher strain to be induced. Other problems with such a steel pipe are that high-temperature thermomechanical treatment applied after a steel sheet has been formed into a tubular shape deteriorates productivity, burdens the global environment and raises a cost.

[0009] EP 0 945 522 A discloses a hot rolled steel sheet with improved formability and producing method therefor, which can be easily produced with general hot strip mills, having less anisotropy of mechanical properties and final ferrite grain diameter of less than 2µm, the hot rolled steel sheet comprising a ferrite phase as a primary phase, and having an average ferrite grain diameter of less than 2µm, with the ferrite grains having an aspect ratio of less than 1.5. The hot rolled steel sheet is obtained by carried out a reduction process under a dynamic recrystallization conditions through reduction passes of not less than 5 stands in the hot finish rolling.

[0010] DE 199 36 151 A discloses a high resistance steel band or sheet having a substantially ferritic or martensitic structure, with a martensitic part comprised between 4 and 20 %. said steel band or sheet contains (in mass %) C: 0.05 - 0.2%, Si: ≤ 1.0%, Mn: 0.8 - 2.0%, P: ≤ 0.1%, S: ≤ 0.015%, Al: 0.02 - 0.4%, N: ≤ 0.005%, Cr: 0.25 - 1.0%, B: 0.002 - 0.01% with a balance of iron and impurities.

[0011] An object of the present invention is to provide a steel sheet and a steel pipe having good r-values and methods for producing them without incurring a high cost and burdening the global environment excessively, the steel sheet being a high strength steel sheet having good formability while containing a large amount of C.

[0012] In parallel, another object of the present invention is to provide a steel sheet having yet better formability and a method for producing the steel sheet without incurring a high cost.

[0013] The present invention has been established on the basis of the finding that to make the metallographic structure of a hot-rolled steel sheet before cold rolling composed mainly of a bainite or martensite phase makes it possible to improve deep drawability of the steel sheet after cold rolling and annealing.

[0014] The present invention provides a high strength steel sheet, while containing a large amount of C, having good deep drawability and containing bainite, martensite, austenite and the like, as required, other than ferrite.

[0015] The present invention also provides a high strength steel sheet, while containing comparatively large amounts of C and Mn, having good deep drawability without incurring a high cost and burdening the global environment excessively.

[0016] In general, in the case of a steel having a comparatively large amount of C, coarse hard carbides exist in the steel after hot rolled. When the hot-rolled steel sheet is cold rolled, complicated deformation takes place in the vicinity of the carbides, and as a result, when the cold-rolled steel sheet is annealed, crystal grains -having orientations unfavorable for deep drawability nucleate and grow from the vicinity of the carbides. This is considered to be the reason why the r-value is 1.0 or less in the case of a steel containing a large amount of C. It is presumed that, if a hot-rolled steel sheet is composed mainly of a bainite phase or a martensite phase, the amount of carbides is small or, even if the amount is not very small, they are extremely fine and for that reason the harmful effects of the carbides are lessened.

[0017] The present inventors conducted studies intensively to solve the above problems and reached an unprecedented finding that, in the case of a steel containing large amounts of C and Mn, it was effective for the improvement of deep drawability to disperse carbides in a hot-rolled steel sheet evenly and finely and to make the metallographic microstructure of the hot-rolled steel sheet uniform.

[0018] The present invention has been established on the basis of the above findings.

[0019] Thus, the object above can be achieved by the features defined in the claims.

[0020] The chemical components of a steel sheet or a steel pipe according to the second present invention are explained hereunder.

[0021] C is effective for strengthening a steel and the reduction of a C amount causes a cost to increase. Besides, by increasing a C amount, it becomes easy to make the metallographic microstructure of a hot-rolled steel sheet composed mainly of bainite and/or martensite. For these reasons, C is added proactively. An addition amount of C is set at 0.03 mass % or more. However, an excessive addition of C is undesirable for securing a good r-value and weldability and therefore the upper limit of a C amount is set at 0.25 mass %. A desirable range of a C amount is from 0.05 to 0.17 mass %, and more desirably 0.08 to 0.16 mass %.

[0022] Si raises the mechanical strength of a steel economically and thus it may be added in accordance with a required strength level. Further, Si also has an effect of improving an r-value by reducing the amount of carbides existing in a hot-rolled steel sheet and making the size of the carbides fine. On the other hand, an excessive addition of Si causes not only the wettability of plating and workability but also an r-value to deteriorate. For this reason, the upper limit of an Si amount is set at 3.0 mass %. The lower limit of an Si amount is set at 0.001%, because an Si amount lower than the figure is hardly obtainable by the current steelmaking technology. A preferable range of an Si amount is from 0.4 to 2.3 mass % from the viewpoint of improving an r-value.

[0023] Mn is an element that is effective not only for strengthening a steel but also for making the metallographic microstructure of a hot-rolled steel sheet composed mainly of bainite and/or martensite. On the other hand, an excessive addition of Mn deteriorates an r-value and therefore the upper limit of an Mn amount is set at 3.0 mass %. The lower limit of an Mn amount is set at 0.01 mass %, because an Mn amount lower than the figure causes a steelmaking cost to increase and S-induced hot-rolling cracks to be induced. An upper limit of an Mn amount desirable for obtaining good deep drawability is 2.4 mass %. In addition, in order to control the metallographic microstructure of a hot-rolled steel sheet adequately, it is desirable that the expression Mn% + 11C% > 1.5 is satisfied.

[0024] P is an element effective for strengthening a steel and hence P is added by 0.001 mass % or more. However, when P is added in excess of 0.06 mass %, weldability, the fatigue strength of a weld and resistance to brittleness in secondary working are deteriorated. For this reason, the upper limit of a P amount is set at 0.06 mass %. A preferable P amount is less than 0.04 mass %.

[0025] S is an impurity element and the lower the amount, the better. An S amount is set at 0.05 mass % or less in order to prevent hot cracking. A preferable S mount is 0.015 mass % or less. Further, in relation to the amount of Mn, it is preferable to satisfy the expression Mn/S > 10.

[0026] N is of importance in the present invention. N forms clusters and/or precipitates with Al during slow heating after coldrolling, by so doing accelerates the development of a texture, and resultantly improves deep drawability. In order to secure a good r-value, an addition of N by 0.001 mass % or more is indispensable. However, when an N amount is excessive, aging properties are deteriorated and it becomes necessary to add a large amount of Al. For this reason, the upper limit of an N amount is set at 0.03 mass %. A preferable range of an N amount is from 0.002 to 0.007 mass %.

[0027] Al is also of importance in the present invention. Al forms clusters and/or precipitates with N during slow heating after cold rolling, by so doing accelerates the development of a texture, and resultantly improves deep drawability. It is also an element effective for deoxidation. For these reasons, Al is added by 0.005 mass % or more. However, an excessive addition of Al causes a cost to increase, surface defects to be induced and an r-value to be deteriorated. For this reason, the upper limit of an Al amount is set at 0.3 mass %. A preferable range of an Al amount is from 0.01 to 0.10 mass %.

[0028] The metallographic microstructure of a steel sheet according to the present invention is explained hereunder. The metallographic microstructure contains one or more of bainite, austenite and martensite by at least 3% in total, preferably 5% or more. It is desirable that the balance consists of ferrite. This is because bainite, austenite and martensite are effective for enhancing the mechanical strength of a steel. As is well known, bainite has the effect of improving burring workability and hole expansibility, austenite that of improving an n-value and elongation, and martensite that of lowering YR (yield strength/tensile strength). For these reasons, the volume percentage of each of the above phases may be changed appropriately in accordance with the required properties of a product steel sheet. It should be noted, however, that a volume percentage less than 3% does not bring about a tangible effect. For example, in order to improve burring workability, a structure consisting of bainite of 90 to 100% and ferrite of 0 to 10% is desirable, and in order to improve elongation, a structure consisting of retained austenite of 3 to 30% and ferrite of 70 to 97% is desirable. Note that the bainite mentioned here includes acicular ferrite and bainitic ferrite in addition to upper and lower bainite.

[0029] Further, in order to secure good ductility and burring workability, it is desirable to regulate the volume percentage of martensite to 30% or less and that of pearlite to 15% or less.

[0030] The volume percentage of any of these structures is defined as the value obtained by observing 5 to 20 visual fields at an arbitrary portion in the region from 1/4 to 3/4 of the thickness of a steel sheet on a section perpendicular to the width direction of the steel sheet under a magnification of 200 to 500 with a light optical microscope and using the point counting method. The EBSP method is also effectively adopted instead of a light optical microscope.

[0031] In a steel sheet produced according to the present invention, the average r-value of the steel sheet is 1.3 or more. In addition, the r-value in the rolling direction (rL) is 1.1 or more, the r-value in the direction of 45 degrees to the rolling direction (rD) is 0.9 or more, and the r-value in the direction of a right angle to the rolling direction (rC) is 1.2 or more. Preferably, the average r-value is 1.4 or more and the values of rL, rD and rC are 1.2 or more, 1.0 or more and 1.3 or more, respectively. An average r-value is given as (rL + 2rD + rC)/4. An r-value may be obtained by conducting a tensile test using a JIS #13B or JIS #5B test piece and calculating the r-value from the changes of the gauge length and the width of the test piece after the application of 10 or 15% tension in accordance with the definition of an r-value. If a uniform elongation is less than 10%, the r-values may be evaluated by imposing a tensile deformation in the range from 3% to the uniform elongation.

[0032] In a steel sheet produced according to the present invention, the ratios of the X-ray diffraction intensities in the orientation components of {111} and {100} to the random X-ray diffraction intensities at least on a reflection plane at the thickness center are 4.0 or more and 3.0 or less, respectively, preferably 6.0 or more and 1.5 or less, respectively. The ratio of the X-ray diffraction intensities in an orientation component to the random X-ray diffraction intensities is an X-ray diffraction intensities relative to the X-ray diffraction intensities of a random sample. The thickness center means a region from 3/8 to 5/8 of the thickness of a steel sheet, and the measurement may be taken on any plane within the region. It is desirable that the ratios of the X-ray diffraction intensities in the orientation components (111)[1-10], (111)[1-21] and (554)[-2-25] to the random X-ray diffraction intensities on a φ2 = 45° section in the three-dimensional texture calculated by the series expansion method are 3.0 or more, 4.0 or more and 4.0 or more, respectively. In the present invention, there are cases where the ratio of the X-ray diffraction intensities in the orientation component of {110} to the random X-ray diffraction intensities is 0.1 or more and the ratios of the X-ray diffraction "intensities in both the orientation components of (110)[1-10] and (110)[001] to the random X-ray diffraction intensities on a φ2 = 45° section exceed 1.0. In such a case, the values of rL and rC improve.

[0033] It is desirable that the value of Al/N is in the range from 3 to 25. If a value is outside the above range, a good r-value is hardly obtained. A more desirable range is from 5 to 15.

[0034] B is effective for improving an r-value and resistance to brittleness in secondary working and therefore it is added as required. However, when a B amount is less than 0.0001 mass %, these effects are too small. On the other hand, even when a B amount exceeds 0.01 mass %, no further effects are obtained. A preferable range of a B amount is from 0.0002 to 0.0030 mass %.

[0035] Mg is an element effective for deoxidation. However, an excessive addition of Mg causes oxides, sulfides and nitrides to crystallize and precipitate in quantity and thus the cleanliness, ductility, r-value and plating properties of a steel to deteriorate. For this reason, an Mg amount is regulated in the range from 0.0001 to 0.50 mass %.

[0036] Ti, Nb, V and Zr are added as required. Since these elements enhance the strength and workability of a steel material by forming carbides, nitrides and/or carbohitrides, one or more of them may be added by 0.001 mass % or more in total. When a total addition amount of the elements exceeds 0.2 mass %, they precipitate as carbides, nitrides and/or carbonitrides in quantity in the interior or at the grain boundaries of ferrite grains which are the mother phase and deteriorate ductility. Further, when a large amount of these elements are added, solute N is depleted in a hot-rolled steel sheet, resultantly the reaction- between solute Al and solute N during slow heating after cold rolling is not secured, and an r-value is deteriorated as a result. For these reasons, an addition amount of those elements is regulated in the range from 0.001 to 0.2 mass %. A desirable range is from 0.001 to 0.08 mass % and more desirably from 0.001 to 0.04 mass %.

[0037] Sn, Cu, Ni, Co, W and Mo are strengthening elements and one or more of them may be added as required by 0.001 mass % or more in total. An excessive addition of these elements causes a cost to increase and ductility to deteriorate. For this reason, a total addition amount of the elements is set at 2.5 mass % or less.

[0038] Ca is an element effective for deoxidation in addition to the control of inclusions and an appropriate addition amount of Ca improves hot workability. However, an excessive addition of Ca accelerates hot shortness adversely. For these reasons, Ca is added in the range from 0.0001 to 0.01 mass %, as required.

[0039] Note that, even if a steel contains O, Zn, Pb, As, Sb, etc. by 0.02 mass % or less each as unavoidable impurities, the effects of the present invention are not adversely affected.

[0040] In the production of a steel product according to the present invention, a steel is melted and refined in a blast furnace, an electric arc furnace and the like, successively subjected to various secondary refining processes, and cast by ingot casting or continuous casting. In the case of continuous casting, a CC-DR process or the like wherein a steel is hot rolled without cooled to a temperature near room temperature may be employed in combination. Needless to say, a cast ingot or a cast slab may be reheated and then hot rolled. The present invention does not particularly specify a reheating temperature at hot rolling. However, in order to keep AlN in a solid solution state, it is desirable that a reheating temperature is 1,100°C or higher. A finishing temperature at hot rolling is controlled to the Ar3 transformation temperature - 50°C or higher. A preferable finishing temperature is the Ar3 transformation temperature or higher. In the temperature range from the Ar3 transformation temperature to the Ar3 transformation temperature - 100°C, the present invention does not particularly specify a cooling rate after hot rolling, but it is desirable that an average cooling rate down to a coiling temperature is 10°C/sec. or more in order to prevent AlN from precipitating. A coiling temperature is controlled in the temperature range from the room temperature to 700°C. The purpose is to suppress the coarsening of AlN and thus to secure a good r-value. A desirable coiling temperature is 620°C or lower and more desirably 580°C or lower. Roll lubrication may be applied at one or more of hot rolling passes. It is also permitted to join two or more rough hot-rolled bars with each other and to apply finish hot rolling continuously. A rough hot-rolled bar may be once wound into a coil and then unwound for finish hot rolling. It is preferable to apply pickling after hot rolling.

[0041] A reduction ratio at cold rolling after hot rolling is regulated in the range from 25 to 95%. When a cold-rolling reduction ratio is less than 25% or more than 95%, an r-value lowers. For this reason, a cold-rolling reduction ratio is regulated in the range from 25 to 95%. A preferable range thereof is 40 to 80%.

[0042] After cold rolling, a steel sheet is subjected to annealing to obtain a good r-value and then heat treatment to produce a desired metallographic microstructure. The preceding annealing and the succeeding heat treatment may be applied in a continuous line if possible or otherwise off-line separately. Another cold rolling at a reduction ratio of 10% or less may be applied after the annealing. In an annealing process, box annealing is adopted basically, but another annealing may be adopted as long as the following conditions are satisfied. In order to obtain a good r-value, it is necessary that an average heating rate is 4 to 200°C/h. A more desirable range of an average heating rate is from 10 to 40°C/h. It is desirable that a maximum arrival temperature is 600°C to 800°C also from the viewpoint of securing a good r-value. When a maximum arrival temperature is lower than 600°C, recrystallization is not completed and workability is deteriorated. On the other hand, when a maximum arrival temperature exceeds 800°C, since the thermal history of a steel passes through a region where the ratio of a γ phase is high in the α + γ zone, deep drawability may sometimes be deteriorated. Here, the present invention does not particularly specify a retention time at a maximum arrival temperature, but it is desirable that a retention time is 1 h. or more in the temperature range of a maximum arrival temperature - 20°C or higher from the viewpoint of improving an r-value. The present invention does not particularly specify a cooling rate, but, when a steel sheet is cooled in a furnace of box annealing, a cooling rate is in the range from 5 to 100°C/h. In this case, it is desirable that a cooling end temperature is 100°C or lower from the viewpoint of handling for conveying a coil. Successively, heat treatment is applied to obtain any of the phases of bainite, martensite and austenite. In any of these cases, it is indispensable to apply heating at a temperature of the Ac1 transformation temperature or higher, namely a temperature corresponding to the α + γ dual phase zone or higher. When a heating temperature is lower than the Ac1 transformation temperature, any of the above phases cannot be obtained. A preferable lower limit of a heating temperature is the Ac1 transformation temperature + 30°C. On the other hand, even when a heating temperature is 1,050°C or higher, no further effects are obtained and, what is worse, sheet traveling troubles such as heat buckles are induced. For this reason, the upper limit of a heating temperature is set at 1,050°C. A preferable upper limit is 950°C.

[0043] Better deep drawability can be obtained by controlling the metallographic microstructure of a hot-rolled steel sheet before cold rolling. It is desirable that, in the structure of a hot-rolled steel sheet, the total volume percentage of a bainite phase and/or a martensite phase is 70% or more at least in a region from 1/4 to 3/4 of the thickness. A more desirable total volume percentage is 80% or more, and still more desirably 90% or more. Needless to say, it is far better if such a structure is formed all over the steel sheet thickness. The reason why to make the metallographic microstructure of a hot-rolled steel sheet composed of bainite and/or martensite improves deep drawability after cold rolling and annealing is not altogether obvious, but it is estimated that the effect of fractionizing carbides and further crystal grains in a hot-rolled steel sheet as stated earlier plays the role. Note that the bainite mentioned here includes acicular ferrite and bainitic ferrite in addition to upper and lower bainite. It goes without saying that lower bainite is preferable to upper bainite from the viewpoint of fractionizing carbides.

[0044] In this case, an annealing temperature is regulated in the range from the recrystallization temperature to 1,000°C. A recrystallization temperature is the temperature at which recrystallization commences. When an annealing temperature is lower than the recrystallization temperature, a good texture does not develop, the condition that the ratios of the X-ray diffraction strengths in the orientation components of {111} and {100} to the random X-ray diffraction intensities on a reflection plane at the thickness center are 3.0 or more and 3.0 or less, respectively, cannot be satisfied, and an r-value is likely to deteriorate. In the case where annealing is applied in a continuous annealing process or a continuous hot-dip galvanizing process, when an annealing temperature is raised to 1,000°C or higher, heat buckles or the like are induced and cause problems such as strip break. For this reason, the upper limit of an annealing temperature is set at 1,000°C. When it is intended to secure a second phase of bainite, austenite, martensite and/or pearlite after annealing, needless to say, it is necessary to heat a steel sheet to the extent that an annealing temperature is in the α + γ dual phase zone or the γ single phase zone and to select a cooling rate and overaging conditions suitable for obtaining a desired phase, and, if hot-dip galvanizing is applied, to select a plating bath temperature and the succeeding alloying temperature suitably. Naturally, box annealing can also be employed in the present invention. In this case, in order to obtain a good r-value, it is desirable that a heating rate is 4 to 200°C/h. A more necessary heating rate is 10 to 40°C/h. As stated earlier, whereas the average r-value thus obtained is 1.3 or more, bainite, austenite and/or martensite is/are hardly obtainable.

[0045] In the present invention, plating may be applied to a steel sheet after annealed as described above. The plating includes the plating of pure zinc, an alloy containing zinc as the main component and further an alloy consisting mainly of Al or Al-Mg. It is desirable that the zinc plating is applied continuously together with annealing in a continuous hot-dip galvanizing line. After immersed in a hot-dip galvanizing bath, a steel sheet may be subjected to treatment to heat and accelerate alloying of the zinc plating and the base iron. It goes without saying that, other than hot-dip galvanizing, various kinds of electrolytic plating composed mainly of zinc are also applicable.

[0046] After annealing or zinc plating, skin pass rolling is applied as required from the viewpoint of correcting shape, controlling strength and securing non-aging properties at room temperature. A desirable reduction ratio of the skin pass rolling is 0.5 to 5.0%. Here, the tensile strength of a steel sheet produced according to the present invention is 340 MPa or more.

[0047] By forming a steel sheet produced as described above into a steel pipe by electric resistance welding or another suitable welding method, for example, a steel pipe excellent in formability at hydroforming can be obtained.

(Example 1)



[0048] Steels having the chemical components shown in Table 1 were melted, heated to 1,250°C, thereafter hot rolled at a finishing temperature of the Ar3 transformation temperature or higher, cooled under the conditions shown in Table 2, and coiled. Further, the hot-rolled steel sheets were cold rolled at the reduction ratios shown in Table 2, thereafter annealed at a heating rate of 20°C /h. and a maximum arrival temperature of 700°C, retained for 5 h., and then cooled at a cooling rate of 15°C/h. Further, the cold-rolled steel sheets were subjected to heat treatment at a heat treatment time of 60 sec. and an overaging time of 180 sec. The heat treatment temperatures and overaging temperatures are shown in Table 2. Here, some of the steel sheets as comparative examples were subjected to only the heat treatment without subjected to aforementioned annealing at 700°C. Further, skin-pass rolling was applied to the steel sheets at a reduction ratio of 1.0%.

[0049] The r-values and the other mechanical, properties of the produced steel sheets were evaluated through tensile tests using JIS #13B test pieces and JIS #5B test pieces, respectively. Further, some test pieces were ground nearly to the thickness center by mechanical polishing, then finished by chemical polishing and subjected to X-ray measurements.

[0050] As is obvious from Table 2, the steel sheets having good r-values are obtained in all of the invention examples. Further, by making the metallographic microstructure of a hot-rolled steel sheet before cold rolling composed mainly of bainite and/or martensite, better r-values are obtained.
Table 1
Steel codeCSiMnPSAlNAl/NOthers
A 0.11 0.01 0.44 0.011 0.002 0.042 0.0021 20 -
B 0.16 0.03 0.62 0.015 0.005 0.018 0.0024 8 -
C 0.12 0.01 1.55 0.007 0.001 0.050 0.0018 28 -
D 0.08 0.01 1.32 0.004 0.003 0.033 0.0045 7 Nb=0.013
E 0.05 1.21 1.11 0.003 0.004 0.044 0.0027 16 -
F 0.05 0.01 1.77 0.006 0.003 0.047 0.0023 20 Mo=0.12
G 0.11 1.20 1.54 0.004 0.004 0.035 0.0022 16 -
H 0.09 0.03 2.14 0.003 0.002 0.050 0.0038 13 B=0.0004
I 0.15 1.98 1.66 0.007 0.005 0.039 0.0020 20 -
J 0.14 1.18 2.30 0.003 0.001 0.040 0.0025 16 -
K 0.15 0.63 2.55 0.004 0.002 0.045 0.0022 20 -






[0051] The present invention provides a high strength steel sheet excellent in deep drawability and a method for producing the steel sheet, and contributes to the conservation of the global environment and the like.


Claims

1. A high strength steel sheet excellent in deep drawability, consisting of, in mass,
0.03 to 0.25% C,
0.001 to 3.0% Si,
0.01 to 3.0% Mn,
0.001 to 0.06% P,
0.05% or less S,
0.0005 to 0.030% N,
0.005 to 0.3% Al, and
optionally one or more selected from 0.0001 to 0.01 mass % B, Zr and/or Mg by 0.0001 to 0.5 mass % in total, further optionally one or more of Ti, Nb and V by 0.001 to 0.2 mass % in total, optionally one or more of Sn, Cu, Ni, Co, W and Mo by 0.001 to 2.5 mass % in total and optionally 0.0001 to 0.01 mass % Ca,
with the balance consisting of Fe and unavoidable impurities, having an average r-value of 1.3 or more, and containing one or more of bainite, martensite and austenite by 3 to 100% in total in the metallographic microstructure of said steel sheet characterized by containing Mn and C so as to satisfy the expression Mn + 11C > 1.5, wherein the steel sheet has an r-value in the rolling direction (rL) of 1.1 or more, an r-value in the direction of 45 degrees to the rolling direction (rD) of 0.9 or more, and an r-value in the direction of a right angle to the rolling direction (rC) of 1.2 or more.
 
2. A steel sheet excellent in deep drawability according to claim 1, characterized in that the ratios of the X-ray diffraction intensities in the orientation components of {111} and {100} to the random X-ray diffraction intensities on a reflection plane at the thickness center of said steel sheet are 3.0 or more and 3.0 or less, respectively.
 
3. A steel sheet excellent in deep drawability according to claim 1 or 2, characterized in that an average ferrite grain size of composing said steel sheet is 15 µm or more.
 
4. A steel sheet excellent in deep drawability according to any one of claims 1 to 3, characterized in that the average aspect ratio of the ferrite grains composing said steel sheet is in the range from 1.0 to less than 5.0.
 
5. A steel sheet excellent in deep drawability according to any one of claims 1 to 4, characterized in that the yield ratio defined by the ratio of 0.2% proof stress to the maximum tensile strength of said steel sheet is less than 0.7.
 
6. A steel sheet excellent in deep drawability according to any one of claims 1 to 4, characterized in that the value of Al/N in said steel sheet is in the range from 3 to 25.
 
7. A method for producing a high strength cold-rolled steel sheet excellent in deep drawability according to any one of claims 1 to 6, characterized by subjecting a hot-rolled steel sheet having chemical components according to any one of claims 1 to 6 and a metallographic microstructure with a volume percentage of a bainite phase and/or a martensite phase being 70 to 100% at least in the region from 1/4 to 3/4 of the thickness of said steel sheet to the processes of: cold rolling at a reduction ratio of 30 to less than 95%; heating at an average heating rate of 4 to 200°C/h; annealing at a mximum arrival temperature of 600°C to 800°C; and heating to a temperature in the range from the AC1 transformation temperature to 1,050°C.
 
8. A method for producing a high strength steel sheet excellent in deep drawability according to any one of claims 1 to 6, characterized by subjecting a steel having chemical components according to any one of claims 1 to 6 to the processes of: hot rolling at a finishing temperature of the Ar3 transformation temperature - 50°C or higher; coiling in the temperature range from the room temperature to 700°C; cold rolling at a reduction ratio of 30 to less than 95%; annealing with an average heating rate of 4 to 200°C/h and at a maximum arrival temperature of 600°C to 800°C; and further heating to a temperature in the range from the AC1 transformation temperature to 1,050°C.
 
9. A steel sheet excellent in deep drawability according to any one of claims 1 to 6, characterized by having a plating layer on each of the surfaces of said steel sheet.
 
10. A method for producing a plated steel sheet excellent in deep drawability according to any one of claims 7 to 8, characterized by applying hot-dip or electrolytic plating to the surfaces of said steel sheet after annealing and cooling in the method for producing a steel sheet according to claim 9.
 


Ansprüche

1. Hochfestes Stahlblech mit ausgezeichneter Tiefziehbarkeit, das massebezogen enthält:

0,03 bis 0,25 % C,

0,001 bis 3,0% Si,

0,01 bis 3,0 % Mn,

0,001 bis 0,06 % P,

höchstens 0,05 % S,

0,0005 bis 0,030 % N,

0,005 bis 0,3 % Al und

optional eine oder mehrere Komponenten, die ausgewählt sind aus 0,0001 bis 0,01 Masse-% B, Zr und/oder Mg mit insgesamt 0,0001 bis 0,5 Masse-%, ferner optional eine oder mehrere Komponenten aus Ti, Nb und V mit insgesamt 0,001 bis 0,2 Masse-%, optional eine oder mehrere Komponenten aus Sn, Cu, Ni, Co, W und Mo mit insgesamt 0,001 bis 2,5 Masse-% sowie optional 0,0001 bis 0,01 Masse-% Ca, wobei der Rest aus Fe und unvermeidlichen Verunreinigungen besteht, das einen mittleren r-Wert von mindestens 1,3 hat und eine oder mehrere Komponenten aus Bainit, Martensit und Austenit mit insgesamt 3 bis 100% in der metallografischen Mikrostruktur des Stahlblechs enthält, dadurch gekennzeichnet, dass es Mn und C so enthält, dass der Ausdruck Mn + 11C > 1,5 erfüllt ist, wobei das Stahlblech einen r-Wert in Walzrichtung (rL) von mindestens 1,1, einen r-Wert in 45-Grad-Richtung zur Walzrichtung (rD) von mindestens 0,9 und einen r-Wert im rechten Winkel zur Walzrichtung (rC) von mindestens 1,2 hat.
 
2. Stahlblech mit ausgezeichneter Tiefziehbarkeit nach Anspruch 1, dadurch gekennzeichnet, dass die Verhältnisse der Röntgenbeugungsintensitäten in den Orientierungskomponenten {111} bzw. {100} zu den stochastischen Röntgenbeugungsintensitäten auf einer Reflexionsebene in der Dickenmitte des Stahlblechs mindestens 3,0 bzw. höchstens 3,0 betragen.
 
3. Stahlblech mit ausgezeichneter Tiefziehbarkeit nach einem der Ansprüche 1 bis 2, dadurch gekennzeichnet, dass die mittlere Ferritkorngröße in der Zusammensetzung des Stahlblechs mindestens 15 µm beträgt.
 
4. Stahlblech mit ausgezeichneter Tiefziehbarkeit nach einem der Ansprüche 1 bis 3, dadurch gekennzeichnet, dass das mittlere Aspektverhältnis der Ferritkörner in der Zusammensetzung des Stahlblechs im Bereich von 1,0 bis unter 5,0 liegt.
 
5. Stahlblech mit ausgezeichneter Tiefziehbarkeit nach einem der Ansprüche 1 bis 4, dadurch gekennzeichnet, dass das Streckgrenzenverhältnis, definiert durch das Verhältnis der 0,2-%-Dehngrenze zur maximalen Zugfestigkeit des Stahlblechs, unter 0,7 liegt.
 
6. Stahlblech mit ausgezeichneter Tiefziehbarkeit nach einem der Ansprüche 1 bis 4, dadurch gekennzeichnet, dass der Wert von Al/N im Stahlblech im Bereich von 3 bis 25 liegt.
 
7. Verfahren zur Herstellung eines hochfesten kaltgewalzten Stahlblechs mit ausgezeichneter Tiefziehbarkeit nach einem der Ansprüche 1 bis 6, gekennzeichnet durch auf ein warmgewalztes Stahlblech mit chemischen Komponenten nach einem der Ansprüche 1 bis 6 und mit einer metallografischen Mikrostruktur mit einem Volumenanteil einer Bainitphase und/oder einer Martensitphase von 70 bis 100 % mindestens im Bereich von 1/4 bis 3/4 der Dicke des Stahlblechs erfolgendes Einwirkenlassen von folgenden Verfahrensabläufen: Kaltwalzen mit einem Umformgrad von 30 bis unter 95 %; Erwärmen mit einer mittleren Erwärmungsgeschwindigkeit von 4 bis 200 °C/h; Glühen mit einer maximalen Ankunftstemperatur von 600°C bis 800 °C; und Erwärmen auf eine Temperatur im Bereich von der Ac1-Umwandlungstemperatur bis 1.050 °C.
 
8. Verfahren zur Herstellung eines hochfesten Stahlblechs mit ausgezeichneter Tiefziehbarkeit nach einem der Ansprüche 1 bis 6, gekennzeichnet durch auf einen Stahl mit chemischen Komponenten nach einem der Ansprüche 1 bis 6 erfolgendes Einwirkenlassen von folgenden Verfahrensabläufen: Warmwalzen mit mindestens einer Endtemperatur der Ar3-Umwandlungstemperatur von mindestens -50°C; Wickeln im Temperaturbereich von Raumtemperatur bis 700 °C; Kaltwalzen mit einem Umformgrad von 30 bis unter 95 %; Glühen mit einer mittleren Erwärmungsgeschwindigkeit von 4 bis 200 °C/h und einer maximalen Ankunftstemperatur von 600 °C bis 800 °C; und ferner Erwärmen auf eine Temperatur im Bereich von der Ac1-Umwandlungstemperatur bis 1.050 °C.
 
9. Stahlblech mit ausgezeichneter Tiefziehbarkeit nach einem der Ansprüche 1 bis 6, dadurch gekennzeichnet, dass es eine Plattierungsschicht auf jeder der Oberflächen des Stahlblechs hat.
 
10. Verfahren zur Herstellung eines plattierten Stahlblechs mit ausgezeichneter Tiefziehbarkeit nach einem der Ansprüche 7 bis 8, gekennzeichnet durch Anwenden von Feuer- oder elektrolytischem Plattieren auf die Oberflächen des Stahlblechs nach Glühen und Abkühlen im Verfahren zur Herstellung eines Stahlblechs nach Anspruch 9.
 


Revendications

1. Tôle d'acier haute résistance présentant une excellente aptitude à l'emboutissage en profondeur, consistant en, en masse,
0,03 à 0,25 % de C,
0,001 à 3,0 % de Si,
0,01 à 3,0 % de Mn,
0,001 à 0,06 % de P,
0,05 % ou moins de S,
0,0005 à 0,030 % de N,
0,005 à 0,3 % d'Al, et
optionnellement un ou plusieurs éléments choisis parmi 0,0001 à 0,01 % en masse de B, du Zr et/ou du Mg en une quantité de 0,0001 à 0,5 % en masse au total, en outre optionnellement un ou plusieurs de Ti, Nb et V en une quantité de 0,001 à 0,2 % en masse au total, optionnellement un ou plusieurs de Sn, Cu, Ni, Co, W et Mo en une quantité de 0,001 à 2,5 % en masse au total et optionnellement de 0,0001 à 0,01 % en masse de Ca,
le reste étant constitué de Fe et d'impuretés inévitables, ayant une valeur r moyenne de 1,3 ou plus, et contenant une ou plusieurs parmi une bainite, une martensite et une austénite à raison de 3 à 100 % au total dans la microstructure métallographique de ladite tôle d'acier caractérisée en ce qu'elle contient Mn et C de façon que l'expression Mn + 11C > 1,5 soit satisfaite, laquelle tôle d'acier a une valeur r dans la direction de laminage (rL) de 1,1 ou plus, une valeur r dans une direction faisant un angle de 45 degrés avec la direction de laminage (rD) de 0,9 ou plus, et une valeur r dans une direction faisant un angle droit avec la direction de laminage (rC) de 1,2 ou plus.
 
2. Tôle d'acier présentant une excellente aptitude à l'emboutissage en profondeur selon la revendication 1, caractérisée en ce que les rapports des intensités de diffraction des rayons X dans les composantes d'orientation de {111} et {100} aux intensités de diffraction des rayons X aléatoires sur un plan de réflexion au centre de l'épaisseur de ladite tôle d'acier sont de 3,0 ou plus et de 3,0 ou moins, respectivement.
 
3. Tôle d'acier présentant une excellente aptitude à l'emboutissage en profondeur selon la revendication 1 ou 2, caractérisée en ce que la granulométrie moyenne de la ferrite composant ladite tôle d'acier est de 15 µm ou plus.
 
4. Tôle d'acier présentant une excellente aptitude à l'emboutissage en profondeur selon l'une quelconque des revendications 1 à 3, caractérisée en ce que le rapport de forme moyen des grains de ferrite constituant ladite tôle d'acier se situe dans la plage de 1,0 à moins de 5,0.
 
5. Tôle d'acier présentant une excellente aptitude à l'emboutissage en profondeur selon l'une quelconque des revendications 1 à 4, caractérisée en ce que le rapport de rendement défini par le rapport entre la limite d'élasticité conventionnelle à 0,2 % et la résistance à la traction maximale de ladite tôle d'acier est inférieur à 0,7.
 
6. Tôle d'acier présentant une excellente aptitude à l'emboutissage en profondeur selon l'une quelconque des revendications 1 à 4, caractérisée en ce que la valeur de Al/N de ladite tôle d'acier se situe dans la plage de 3 à 25.
 
7. Procédé de production d'une tôle d'acier haute résistance laminée à froid présentant une excellente aptitude à l'emboutissage en profondeur selon l'une quelconque des revendications 1 à 6, caractérisé par le fait qu'une tôle acier ayant les composants chimiques selon l'une quelconque des revendications 1 à 6 et ayant une microstructure métallographique avec un pourcentage en volume de phase de bainite et/ou de phase de martensite de 70 à 100 % au moins dans la région allant du 1/4 aux 3/4 de l'épaisseur de ladite tôle d'acier est soumise aux procédés de : laminage à froid avec un rapport de réduction de 30 à moins de 95 % ; chauffage à une vitesse moyenne de chauffage de 4 à 200°C/h ; recuit à une température d'arrivée maximale de 600°C à 800°C ; et chauffage à une température située dans la plage allant de la température de transformation Ac1 à 1 050°C.
 
8. Procédé de production d'une tôle d'acier haute résistance présentant une excellente aptitude à l'emboutissage en profondeur selon l'une quelconque des revendications 1 à 6, caractérisé par le fait qu'un acier ayant les composants chimiques selon l'une quelconque des revendications 1 à 6 est soumis aux procédés de : laminage à chaud à une température de finissage de la température de transformation Ar3 - 50°C ou supérieure ; bobinage à une température située dans la plage allant de la température ambiante à 700°C ; laminage à froid à un rapport de réduction de 30 à moins de 95 % ; recuit à une vitesse moyenne de chauffage de 4 à 200°C/h et à une température d'arrivée maximale de 600°C à 800°C ; et encore chauffage à une température située dans la plage allant de la température de transformation Ac1 à 1 050°C.
 
9. Tôle d'acier présentant une excellente aptitude à l'emboutissage en profondeur selon l'une quelconque des revendications 1 à 6, caractérisée en ce qu'elle a une couche de placage sur chacune des surfaces de ladite tôle d'acier.
 
10. Procédé de production d'une tôle d'acier plaquée présentant une excellente aptitude à l'emboutissage en profondeur selon l'une quelconque des revendications 7 à 8, caractérisé par l'application d'un placage par immersion à chaud ou électrolytique sur les surfaces de ladite tôle d'acier après recuit et refroidissement dans le procédé de production d'une tôle d'acier selon la revendication 9.
 




REFERENCES CITED IN THE DESCRIPTION



This list of references cited by the applicant is for the reader's convenience only. It does not form part of the European patent document. Even though great care has been taken in compiling the references, errors or omissions cannot be excluded and the EPO disclaims all liability in this regard.

Patent documents cited in the description