(19)
(11)EP 2 417 767 B1

(12)EUROPEAN PATENT SPECIFICATION

(45)Mention of the grant of the patent:
04.11.2020 Bulletin 2020/45

(21)Application number: 10761874.6

(22)Date of filing:  07.04.2010
(51)International Patent Classification (IPC): 
G11B 27/11(2006.01)
H04N 7/173(2011.01)
H04N 21/462(2011.01)
G11B 27/28(2006.01)
H04N 5/445(2011.01)
(86)International application number:
PCT/KR2010/002144
(87)International publication number:
WO 2010/117213 (14.10.2010 Gazette  2010/41)

(54)

APPARATUS AND METHOD FOR PROVIDING INFORMATION RELATED TO BROADCASTING PROGRAMS

VORRICHTUNG UND VERFAHREN ZUR BEREITSTELLUNG VON INFORMATIONEN IM ZUSAMMENHANG MIT RUNDFUNKPROGRAMMEN

APPAREIL ET PROCÉDÉ DESTINÉS À FOURNIR DES INFORMATIONS EN LIEN AVEC DES PROGRAMMES DE RADIODIFFUSION


(84)Designated Contracting States:
AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO SE SI SK SM TR

(30)Priority: 10.04.2009 KR 20090031471
03.03.2010 KR 20100019153

(43)Date of publication of application:
15.02.2012 Bulletin 2012/07

(73)Proprietor: Samsung Electronics Co., Ltd.
Suwon-si, Gyeonggi-do, 16677 (KR)

(72)Inventors:
  • RYU, Won-Ho
    Suwon-si Gyeonggi-do 443-751 (KR)
  • PARK, Hee-Seon
    Seoul 137-796 (KR)
  • CHOI, Il-Hwan
    Yongin-si Gyeonggi-do 448-524 (KR)
  • CHOI, Yoon-Hee
    Suwon-si Gyeonggi-do 443-370 (KR)
  • CHOI, Chang-Hwan
    Seoul 134-060 (KR)
  • KANG, Sang-Wook
    Anyang-si Gyeonggi-do 431-725 (KR)

(74)Representative: Walaski, Jan Filip 
Venner Shipley LLP 200 Aldersgate
London EC1A 4HD
London EC1A 4HD (GB)


(56)References cited: : 
EP-A1- 1 089 560
EP-A2- 1 079 387
WO-A1-2009/044818
US-A1- 2005 044 112
US-A1- 2007 274 596
US-A1- 2008 212 932
US-B1- 8 037 496
EP-A2- 1 016 991
EP-A2- 1 684 517
US-A- 5 905 981
US-A1- 2006 059 120
US-A1- 2008 066 107
US-A1- 2009 199 098
  
      
    Note: Within nine months from the publication of the mention of the grant of the European patent, any person may give notice to the European Patent Office of opposition to the European patent granted. Notice of opposition shall be filed in a written reasoned statement. It shall not be deemed to have been filed until the opposition fee has been paid. (Art. 99(1) European Patent Convention).


    Description

    Technical Field



    [0001] The following description relates to a technique for providing a user who is watching television with related information through web searching.

    Background Art



    [0002] Recently, with the introduction of Internet or web supported TV services, various services have been developed to promote the convenience of users. An example of such TV is Internet Protocol Television (IPTV).

    [0003] Since broadcasting signals for IPTV are able to contain various kinds of additional information, users can get various kinds of information through IPTV, including scheduled times of broadcasting programs, captions, and so on.

    [0004] Furthermore, IPTV allows users to search for desired information through a network connected thereto. For example, when there is an animal documentary online, users can search for information about the related animals by manipulating the IPTV or a set-top box connected thereto.

    [0005] The published patent application EP1684517 A2, SHARP KK [JP], 26 July 2006, shows indexing video broadcast contents by indexing objects in video frames, these having associated additional information stored in a descriptive stream, or linked in an URL. During reproduction, when the user selects an object, the additional information is reproduced, synchronized. Also searching by keywords is possible. The keywords describe an object in the video, i.e. they are "textual description related to the object", but not a category of the object name.

    Disclosure of Invention


    Technical Problem



    [0006] However, conventional methods of searching for information in digital TV or the like are inconvenient in use since they require a user's direct manipulations.

    Brief Description of Drawings



    [0007] 

    FIG. 1 is a diagram illustrating an example of an apparatus of providing information related to broadcast programs.

    FIG. 2 illustrates examples of objects.

    FIG. 3 illustrates an example of a keyword table.

    FIG. 4 illustrates examples of scene sections.

    FIG. 5 illustrates an example of a mapping relationship between scene sections and related information.

    FIG. 6 illustrates an example of a related information display screen.

    FIG. 7 illustrates another example of a related information display screen.

    FIG. 8 is a flowchart illustrating an example of a method of providing information related to a broadcast program.



    [0008] Throughout the drawings and the detailed description, unless otherwise described, the same drawing reference numerals will be understood to refer to the same elements, features, and structures. The relative size and depiction of these elements may be exaggerated for clarity, illustration, and convenience.

    Best Mode



    [0009] According to an aspect of the invention, there is provided an apparatus as set out in claim 1. According to another aspect of the invention, there is provided a method of providing information related to a broadcast program as set out in claim 9. Optional features are set out in the dependent claims

    [0010] Other features and aspects will be apparent from the following detailed description, the drawings, and the claims.

    Mode for Invention



    [0011] The following description is provided to assist the reader in gaining a comprehensive understanding of the methods, apparatuses, and/or systems described herein. Accordingly, various changes, modifications, and equivalents of the methods, apparatuses, and/or systems described herein will be suggested to those of ordinary skill in the art. Also, descriptions of well-known functions and constructions may be omitted for increased clarity and conciseness.

    [0012] FIG. 1 is a diagram illustrating an example of an apparatus 100 of providing information related to broadcasting programs.

    [0013] The broadcasting program-related information providing apparatus 100 may be installed in any of various wired/wireless terminals connected to a network, including digital TV, IPTV, a computer, a mobile phone, a smart phone, a set-top box and the like, which are capable of providing users with broadcasting programs.

    [0014] Referring to FIG. 1, the broadcasting program-related information providing apparatus 100 includes a broadcast stream receiver 101, a stream processor 102, a display 103, an object detector 104, a keyword generator 105, a section setting unit 106, a related information searching unit 107 and a related information providing unit 108.

    [0015] The broadcast stream receiver 101 receives broadcast streams. The broadcast streams are broadcast data transmitted from a broadcasting station. The broadcast streams may contain video signals, audio signals, caption signals, Electronic Program Guide (EPG) signals, etc.

    [0016] The stream processor 102 processes the broadcast streams to cause scenes to be displayed on the display 103. For example, the stream processor 102 may perform various kinds of image processing and sound processing.

    [0017] The display 103 displays the scenes. The display 103 may be a display such as a LCD monitor or an input/output device such as a touch screen.

    [0018] The object detector 104 detects objects or object names from the scenes displayed on the display 103. The term objects refers to characters, items, regions, etc. that are associated with or appear in the scenes. Detection of an object includes identifying the object and extracting a name of the identified object. For example, the object detector 104 may identify objects displayed on a current screen and detect the names of the objects.

    [0019] The object detector 104 may detect objects using the following methods.

    [0020] According to an example, the object detector 104 extracts character strings (or characters) from captions or telop character information of broadcast streams and analyzes the extracted character strings to detect objects. For example, the object detector 104 applies morphological analysis and part-of-speech tagging based on natural language processing to the character strings to detect nouns having meaningful information as objects.

    [0021] According to another example, the object detector 104 converts sound of broadcast streams into text and analyzes the text to detect objects. For example, the object detector 104 converts sound of broadcast streams into text to generate character strings (or characters) and analyzes the character strings to detect nouns having meaningful information as objects.

    [0022] According to another example, the object detector 104 analyzes pictures of broadcast streams to detect objects. For example, the object detector 104 may apply a character recognition algorithm to pictures extracted from broadcast streams to extract predetermined characters and detect objects from the extracted characters. Alternatively, the object detector 104 may apply an object recognition algorithm to the pictures of broadcast streams to identify predetermined portions of the pictures and then detect the names of objects corresponding to the identified portions. However, methods in which the object detector 104 detects objects are not limited to the above-described examples.

    [0023] Then, the keyword generator 105 generates keywords corresponding to the objects detected by the object detector 104. The keywords include the names and meaning information of the objects. The meaning information of the objects is to eliminate any ambiguity of the object names and may be category information for the objects. For example, when an object name "BAT" which may mean both a flying animal "Bat" and sports equipment "Bat" is detected, the keyword generator 105 may assign category information such as "animal" or "sports equipment" to the object name "BAT" to eliminate the ambiguity of the object name "BAT" thus generating a keyword "BAT/ Animal" or "BAT/Sports equipment".

    [0024] The keyword generator 105 assigns meaning information to an object name to eliminate ambiguity from the object name in various ways, as follows.

    [0025] According to an example, the keyword generator 105 may assign meaning information to an object name with reference to an object name dictionary. The object name dictionary is a word list in which object names are individually mapped to categories. For example, the object name dictionary may include mapped words such as "BAT-animal" and "BAT-sports equipment". The keyword generator 105 estimates a probability at which an object name belongs to which category and determines a category suitable for the object name based on the estimated probability. The probability at which an object name belongs to which category may be estimated based on a disambiguation model of the natural language processing.

    [0026] According to another example, the keyword generator 105 may analyze the context of an object name to assign appropriate meaning information to the object name. For example, when words "cave" and "night" appear before and/or after an object name "BAT" the keyword generator 105 may assign an "animal" category to the object name "BAT". At this time, the keyword generator 105 may use machine learning, such as Bayesian, Conditional Random Field, Support Vector Machines or the like, for disambiguation.

    [0027] According to another example, the keyword generator 105 may assign meaning information to an object name using genre information. For example, when an object name "BAT" is detected while a program whose program genre is "documentary" is being broadcasted, an "animal" category is assigned to the object name "BAT". On the other hand, if the program genre is "Sports" the object name "BAT" is assigned a "Sports equipment" category. The genre information may also be acquired in various ways, for example, from EPG information of broadcast streams or by analyzing the name of the program. Further, the genre information may be acquired through a third party service from any other place than a broadcasting station. However, a method of determining the genre of a broadcasting program is not limited to these examples, and any other appropriate method may be used.

    [0028] Then, the section setting unit 106 sets a scene section using the keyword generated by the keyword generator 105. The scene section means a group of scenes that can be considered to deal with the substantially same subject. The section setting unit 106 may set a scene section based on the amount of preserved keywords between scenes. Here, the amount of preserved keywords may be defined by the number of keywords extracted in common from successive scenes. The section setting unit 106 may set a scene section by determining a group of scenes between which the number of preserved keywords is equal to or greater than a threshold value. In other words, the section setting unit 106 may identify scenes that are considered to deal with substantially the same content and determines a group of the scenes as a scene section.

    [0029] For example, it is assumed that there are 6 keywords in common among 10 keywords extracted from a first scene and 10 keywords extracted from a second scene. In this case, the amount of preserved keywords is calculated to be 60% ((26)/(10+10)=0.6), and if a threshold value has been set as 50%, the first and second scenes are determined to be included in a scene section.

    [0030] Meanwhile, when there are 3 keywords in common among 10 keywords extracted from a first scene and 15 keywords extracted from a second scene, the amount of preserved keywords is calculated to be 24% ((23)/(10+15)=0.24). In this case, if a threshold value has been set as 50%, the first and second scenes are not included in a scene section.

    [0031] However, the section setting unit 106 may decide, instead of using the amount of preserved keywords to set a scene section, a time of scene conversion based on scene or based on scene/text to determine scene sections.

    [0032] Thereafter, the related information searching unit 107 requests searching of information related to the objects using the keywords generated by the keyword generator 105. For example, the related information searching unit 107 may transmit an inquiry generated based on a keyword to a search server and receive the result of searching from the search server. Additionally, the related information searching unit 107 may request an advertisement item related to a keyword to a search server. The related information searching unit 107 may collect many kinds of related information from various web sites depending on the category of a keyword. For example, if the category of a keyword is a movie title, the related information searching unit 107 collects various information about a movie such as theaters, actors, and synopsis from the movie introductory website. If the category of a keyword is an animal name, the related information searching unit 107 searches wikipedia or cyber encyclopedia. In the current example, the related information may include the results of such searching and advertisement items.

    [0033] Further, the related information searching unit 107 may generate an extended inquiry by adding additional information to a keyword. For example, the related information searching unit 107 may use a keyword including an object name and a category as an inquiry or may generate an extended inquiry by adding a detailed category to a keyword including an object name and a category.

    [0034] The related information searching unit 107 may also search for related information including an advertisement from its own database, instead of from a separate search server. Furthermore, the related information searching unit 107 may receive related information from a third information providing site on the web, instead of from a search sever, in order to provide information (for example, the names of stores, restaurants, etc.) that is not explicitly shown on the screen of a broadcasting program.

    [0035] The related information 108 synchronizes the received related information to the corresponding scene section and provides the related information synchronized to the scene section to the display 103. Here, the synchronization means matching the received related information to a time at which the corresponding object appears on the screen.

    [0036] For example, the related information providing unit 108 may display representative pictures of scene sections in association with related information corresponding to keywords for the scene sections, on a portion of the display on which a broadcast screen is displayed. In other words, it is possible to show, only while scenes considered to deal with the substantially same subject continue, the corresponding related information, and to stop, when scene conversion to a substantially different subject occurs, displaying of the related information.

    [0037] Additionally, the related information providing unit 108 may rank received related information based on a user profile and primarily display highly ranked related information. The user profile may store personal information, such as the user's age and sex distinction, and the user s preference information about broadcast programs.

    [0038] FIG. 2 illustrates examples of objects.

    [0039] Referring to FIGS. 1 and 2, the object detector 104 analyzes a caption 202, a sound 203 and a specific portion on a current screen 201 to detect main objects 211, 212 and 213 with which the screen 201 is dealing.

    [0040] In detail, the object detector 104 extracts a caption 202 written as The museum Louve in France has a collection of an enormous volume of art works and performs morpheme analysis and part-of-speech tagging on the extracted caption 202 according to a natural language processing algorithm. The morpheme analysis may be a process of segmenting a caption in units of meaning and the part-of-speech tagging may be a process of tagging part-of-speech information to each meaning unit. Thus, the object detector 104 detects objects 211 from the caption 202 subjected to the morpheme analysis and part-of-speech tagging. The objects 211 may correspond to nouns having meaningful information. For example, objects "France", "Louve" and "Art Work" may be detected from the caption 202.

    [0041] Then, the object detector 104 may extract a sound 203, for example, a narration, and converts the extracted sound 203 into text. The text is analyzed to detect another object 212. For example, an object "Seine River" 212 may be detected from a narration which can be heard to say "I went to the Louve along the Seine River".

    [0042] Additionally, the object detector 104 may detect another object 213 from a specific portion on the screen 201. For example, the object detector 104 may detect another object "pyramid" by applying an object recognition algorithm to the screen 201.

    [0043] FIG. 3 shows an example of a keyword table 301.

    [0044] Referring to FIG. 3, the keyword table 301 includes object names 302 and meaning information 303. The object names 302 may be representative names indicating objects. The meaning information 303 may be category information to eliminate any ambiguities of the object names. For example, since it is ambiguous which one of the "Louve Palace" and the "Louve Museum" indicates the "Louve", a keyword "Louve/ Museum" may be generated in which a category "Museum" is added as meaning information to the "Louve".

    [0045] In the current example, the keyword generator 105 may assign meaning information 303 to the object names 302 using an object name dictionary 305 stored in object name database 304. The object name dictionary 305 may be a words list in which object names are individually mapped to categories. The keyword generator 105 analyzes the context of an object name to probabilistically determine to which category in the object name dictionary the object name belongs. The probabilistic determination may depend on Equations 1 below.



    [0046] In Equations 1,Wn represents a n-th word of an identified character string, WM-nn-1 represents n-1 words positioned in the left of Wn and M-n words positioned in the right of Wn among M words and Wm represents a m-th word of the M words. Here, M represents the number of words included in the identified character string, n represents where the identified character string is positioned in the M words, P represents a probability with which the corresponding word belongs to which category, and is the amount of mutual information between two words and represents a probability with which the two words will appear together.

    [0047] Also, the keyword generator 105 may determine a category of the "Louve" using the object name dictionary 305 and context of the word "Louve". For example, if an object name "Art Work" or "Pyramid" often appears in the context of the word "Louve", a word "Museum" having high relevancy to the "Art Work" or "Pyramid" may be determined as a category of the "Louve".

    [0048] Additionally, the keyword generator 105 may determine a category based on genre information. The genre information may be acquired from EPG information of broadcast streams, from a third party service received through the web, by analyzing a program name or program content, or the like.

    [0049] FIG. 4 is a view for explaining an example of scene sections.

    [0050] In FIG. 4, reference numbers 401 through 405 represent broadcast scenes and letters of each scene represent keywords extracted from the scene.

    [0051] Referring to FIGS. 1 and 4, the section setting unit 106 identifies keywords for each scene. For example, the section setting unit 106 identifies keywords A, B, C, D and E from the first scene 401 and identifies keywords A, B, C, D and F from the second scene 402 following the first scene 401.

    [0052] Then, the section setting unit 106 calculates the amount of preserved keywords between the scenes 401 through 405. The amount of preserved keywords may be defined by the number of keywords preserved despite scene conversion.

    [0053] The amount of preserved keywords may be calculated by Equation 2 below



    [0054] In Equation 2, 4 keywords A, B, C and D are maintained between the first and second scenes 401 and 402 and accordingly the amount of preserved keywords calculated by Equation 2 is 80% (24/(5+5)=0.8). Likewise, in the third and fourth scenes 403 and 404, only a keyword F is maintained and accordingly the amount of preserved keywords is calculated as about 18.1% (21/(6+5)=0.181).

    [0055] Then, the section setting unit 106 compares the calculated amounts of preserved keywords to a threshold value to set scene sections. If the threshold value is 50%, the first and second scenes 401 and 402 between which the amount of preserved keywords is 80% are set to belong to the same scene section, and the third and fourth scenes 403 and 404 between which the amount of preserved keywords is 18.1% are set to belong to different scene sections.

    [0056] In this way, the section setting unit 106 may set the first to third scenes 401, 402 and 403 as a first scene section 410 and set the fourth and fifth scenes 404 and 405 as a second scene section 420. That is, the section setting unit 106 groups scenes considered to deal with the substantially same subject regardless of the individual displays of scenes.

    [0057] However, the scene section setting method described above with reference to FIGS. 1 and 4 is exemplary, and it is also possible to set scene sections based on the picture statistics of scenes or the text statistics of scenes instead of using the amounts of preserved keywords between scenes.

    [0058] FIG. 5 illustrates an example of a mapping relation between scene sections and related information 501.

    [0059] The related information 501 may be various kinds of information related to keywords. For example, the related information 501 may include the results of searching by inquiries generated based on keywords and various advertisement items associated with the keywords. In FIG. 5, related information A may be a group of information associated with a keyword A and may include the results (for example, A1 and A2) of searching and advertisement information (for example, A3).

    [0060] In the current example, the related information 501 is synchronized with scene sections 502. That is, related information for a certain keyword is mapped to a scene section to which the keyword belongs. For example, referring to FIGS. 4 and 5, related information A is synchronized with and provided in a scene section 1 since the corresponding keyword A appears in the scene section 1, and related information F may be synchronized with and provided in the scene sections 1 and 2 since the corresponding keyword F appears in both the scene sections 1 and 2.

    [0061] Also, when the related information A is related information for a keyword Louve/ museum , A1 may be information about a history of the Louve Museum, A2 may be information about the opening hour of the Louve Museum and A3 may be an advertisement for a travel product containing a tour of the Louve Museum. In this case, the related information provider 108 (see FIG. 1) may prioritize the related information A1, A2 and A3 with reference to a user profile and provide them in the order of priority.

    [0062] FIG. 6 illustrates an example of a related information display screen.

    [0063] Referring to FIG. 6, related information 602 may be synchronized with a scene section corresponding to a screen currently being broadcasted and displayed on the lower portion of the screen. Accordingly, if a scene section changes due to scene conversion, the related information 602 may be accordingly changed to a different one.

    [0064] Also, it is possible for a user to select one piece of the related information 602 and display detailed information 603. Additionally, when new related information 602 is created, an icon 601 notifying the creation of new related information may be displayed on the upper portion of the screen. When the icon 601 is displayed, a user may manipulate a remote control to select the icon 601 and display the related information 602 on the screen.

    [0065] FIG. 7 illustrates another example of a related information display screen.

    [0066] Referring to FIG. 7, representative scenes 701-a through 701-f may be displayed on the lower portion of the screen. Each representative scene, for example, the scene 701-a may be a representative frame of a scene section. The representative scene 701-a includes keywords corresponding to the scene section. When a user selects one of the representative scenes 701-a through 701-f, related information 703 corresponding to the selected representative scene may be displayed on the right portion of the screen. If a representative scene is selected, the screen may move to a scene section to which the selected representative scene belongs.

    [0067] The related information display screens illustrated in FIGS. 6 and 7 are examples for explaining synchronization of related information with scene sections, and the related information may be displayed using any other method. For example, it is possible to display all keywords that have appeared in a program being currently broadcasted and allow a user to select any one of the keywords so as to reproduce the program from a scene section in which the selected keyword has appeared.

    [0068] FIG. 8 is a flowchart illustrating an example of a method 800 of providing information related to broadcast programs.

    [0069] Referring to FIGS. 1 and 8, objects are detected from a scene (801). For example, the object detector 104 may identify objects with which a current broadcasting program deals using at least one of video information, sound information, caption information, electronic program guide (EPG) information, telop character information and the like, and then detect the names of the objects.

    [0070] Then, keywords including the names and meaning information of the objects are generated (802). For example, the keyword generator 105 may determine the name of each object and a category to which the object name belongs to eliminate ambiguity of the object name, thus generating a keyword including the object name and the corresponding category. Here, a category of each object may be determined by utilizing an object name dictionary in which a plurality of object names are stored for each category, by analyzing context of a part where the object name appears or by using genre information. The genre information may be acquired from additional information included in broadcasting streams, from a third party service that provides genre information through the web or by analyzing the generated keyword.

    [0071] Then, a scene section is set using the keyword (803). For example, the section setting unit 106 may set a scene section using the amount of preserved keywords defined by the number of keywords that appear in common between scenes.

    [0072] Then, information related to the keyword is searched using the keyword (804). For example, the related information searching unit 107 may generate an inquiry based on the keyword, transfers the inquiry to a search server and receive related information including an advertisement associated with the keyword from the search server.

    [0073] Thereafter, the found related information is synchronized with the scene section and provided to a user (805). For example, the related information providing unit 108 may display representative scenes for scene sections in association with received related information on a portion of a screen on which scenes are displayed. Also, the related information provider 108 may prioritize the received related information according to a use profile and provide the related information in the order of priorities.

    [0074] The processes, functions, methods and/or software described above may be recorded, stored, or fixed in one or more computer-readable storage media that includes program instructions to be implemented by a computer to cause a processor to execute or perform the program instructions. The media may also include, alone or in combination with the program instructions, data files, data structures, and the like. The media and program instructions may be those specially designed and constructed, or they may be of the kind well-known and available to those having skill in the computer software arts. Examples of computer-readable media include magnetic media, such as hard disks, floppy disks, and magnetic tape; optical media such as CD ROM disks and DVDs; magneto-optical media, such as optical disks; and hardware devices that are specially configured to store and perform program instructions, such as read-only memory (ROM), random access memory (RAM), flash memory, and the like. Examples of program instructions include machine code, such as produced by a compiler, and files containing higher level code that may be executed by the computer using an interpreter. The described hardware devices may be configured to act as one or more software modules in order to perform the operations and methods described above, or vice versa. In addition, a computer-readable storage medium may be distributed among computer systems connected through a network and computer-readable codes or program instructions may be stored and executed in a decentralized manner.

    [0075] A number of examples have been described above. Nevertheless, it will be understood that various modifications may be made. For example, suitable results may be achieved if the described techniques are performed in a different order and/or if components in a described system, architecture, device, or circuit are combined in a different manner and/or replaced or supplemented by other components or their equivalents. Accordingly, other implementations are within the scope of the following claims.


    Claims

    1. An apparatus (100) for providing information related to a broadcast program, comprising:

    a display (103) to display a plurality of scenes of the broadcast program;

    an object detector (104) to, for each of the plurality of scenes, detect at least one object from said scene;

    a keyword generator (105) to, for each detected object, generate a keyword including an object name which corresponds to the object and a category to which the object name belongs;

    a section setting unit (106) to set a scene section containing a group of scenes from the plurality of scenes which each include a first object from the plurality of objects, using the generated keyword for the first object;

    a related information searching unit (107) to request searching of related information associated with the first object using the keyword including the object name and the category to which the object name belongs, associated with the first object and receive the searched related information; and

    a related information provider (108) to synchronize the received related information with the scene section and provide the related information synchronized with the scene section for display.


     
    2. The apparatus (100) of claim 1, wherein the section setting unit (106) is arranged to set as the scene section a group of scenes between which an amount of preserved keywords is equal to or greater than a threshold value.
     
    3. The apparatus (100) of claim 2, wherein the section setting unit (106) is arranged to set the scene section using preserved keywords, the preserved keywords defined by a number of keywords that exist in common between keywords generated from a first scene and keywords generated from a second scene.
     
    4. The apparatus (100) of claim 1, wherein the keyword generator (105) is arranged to determine the category by using an object name dictionary in which a plurality of object names are individually mapped to categories or wherein the keyword generator is arranged to determine the category by analyzing the context of a part where the keyword appears or wherein the keyword generator is arranged to determine the category for each detected object by acquiring genre information of the plurality of scenes in which the object is detected, wherein the genre information may be acquired from additional information included in broadcast streams, from a third party service that provides genre information through the internet or by analyzing the generated keyword.
     
    5. The apparatus (100) of claim 1, wherein the object detector (104) is arranged to detect the plurality of objects using at least one of video information, sound information, caption information, Electronic Program Guide EPG information and telop character information, which are included in received broadcast streams.
     
    6. The apparatus of claim 1, wherein the display (103) is arranged to display the related information.
     
    7. The apparatus (100) of claim 6, wherein the related information provider (108) controls the display to provide the related information to a user.
     
    8. The apparatus (100) of claim 7, wherein the related information provider (108) is arranged to control the display (103) to display information regarding the scene section in association with the related information on a portion of the display, or wherein the related information provider prioritizes the related information according to a user profile and provides the related information in the order of priority.
     
    9. A method of providing information related to a broadcast program, comprising:

    displaying a plurality of scenes of the broadcast program;

    detecting a plurality of objects from the plurality of scenes;

    generating, for each detected object, a keyword by determining an object name corresponding to the object and a category to which the object name belongs;

    setting a scene section containing a group of scenes, from the plurality of scenes, which include a first object from the plurality of objects, using the generated keyword for the first object;

    requesting searching of related information associated with the first object using the keyword including the object name and the category to which the object name belongs, and receiving the searched related information; and

    synchronizing the received related information with the scene section and providing the related information synchronized with the scene section.


     
    10. The method of claim 9, wherein the setting of the scene section comprises setting as the scene section a group of scenes between which the number of preserved keywords is equal to or greater than a threshold value.
     
    11. The method of claim 10, wherein the number of preserved keywords is defined by a number of keywords that exist in common between keywords generated from a first scene and keywords generated from a second scene.
     
    12. The method of claim 9, wherein the generating of the keyword comprises determining the category by using an object name dictionary in which a plurality of object names are individually mapped to categories or by analyzing context of a part where the keyword appears or determining the category for each detected object by acquiring genre information of the plurality of scenes in which the object is detected, wherein the genre information may be acquired from additional information included in broadcast streams, from a third party service that provides genre information through a web or by analyzing the generated keyword.
     
    13. The method of claim 9, wherein the detecting of the plurality of objects comprises detecting the object using at least one of video information, sound information, caption information, Electronic Program Guide EPG information and telop character information, which are included in received broadcast streams.
     


    Ansprüche

    1. Vorrichtung (100) zur Bereitstellung von Informationen in Bezug auf ein Rundfunkprogramm, die Folgendes umfasst:

    ein Display (103) zum Anzeigen mehrerer Szenen des Rundfunkprogramms;

    einen Objektdetektor (104), um für jede der mehreren Szenen mindestens ein Objekt aus der genannten Szene zu erkennen;

    einen Schlüsselwortgenerator (105), um für jedes erkannte Objekt ein Schlüsselwort zu erzeugen, das einen Objektnamen, der dem Objekt entspricht, und eine Kategorie enthält, zu der der Objektname gehört;

    eine Abschnitteinstelleinheit (106) zum Einstellen eines Szenenabschnitts, der eine Gruppe von Szenen der mehreren Szenen enthält, die jeweils ein erstes Objekt der mehreren Objekte enthalten, anhand des erzeugten Schlüsselworts für das erste Objekt;

    eine Zugehörige-Informationen-Sucheinheit (107) zum Anfordern einer Suche nach mit dem ersten Objekt assoziierten zugehörigen Informationen anhand des mit dem ersten Objekt assoziierten Schlüsselworts, das den Objektnamen und die Kategorie enthält, zu der der Objektname gehört, und zum Empfangen der gesuchten zugehörigen Informationen; und

    einen Zugehörige-Informationen-Anbieter (108) zum Synchronisieren der empfangenen zugehörigen Informationen mit dem Szenenabschnitt und zum Bereitstellen der mit dem Szenenabschnitt synchronisierten zugehörigen Informationen zur Anzeige.


     
    2. Vorrichtung (100) nach Anspruch 1, wobei die Abschnitteinstelleinheit (106) zum Einstellen einer Gruppe von Szenen als den Szenenabschnitt ausgelegt ist, zwischen denen eine Menge an konservierten Schlüsselwörtern genauso groß wie oder größer als ein Schwellenwert ist.
     
    3. Vorrichtung (100) nach Anspruch 2, wobei die Abschnitteinstelleinheit (106) zum Einstellen des Szenenabschnitts anhand von konservierten Schlüsselwörtern ausgelegt ist, wobei die konservierten Schlüsselwörter durch eine Anzahl von Schlüsselwörtern definiert werden, die zwischen von einer ersten Szene erzeugten Schlüsselwörtern und von einer zweiten Szene erzeugten Schlüsselwörtern gemeinsam existieren.
     
    4. Vorrichtung (100) nach Anspruch 1, wobei der Schlüsselwortgenerator (105) zum Bestimmen der Kategorie anhand eines Objektnamenwörterbuchs ausgelegt ist, in dem mehrere Objektnamen individuell Kategorien zugeordnet sind; oder wobei der Schlüsselwortgenerator zum Bestimmen der Kategorie durch Analysieren des Kontexts eines Teils ausgelegt ist, in dem das Schlüsselwort vorkommt, oder wobei der Schlüsselwortgenerator zum Bestimmen der Kategorie für jedes erkannte Objekt durch Erfassen von Genre-Informationen der mehreren Szenen ausgelegt ist, in denen das Objekt erkannt wird, wobei die Genre-Informationen aus in Rundfunk-Streams enthaltenen zusätzlichen Informationen von einem Drittanbieterdienst, der Genre-Informationen über das Internet bereitstellt, oder durch Analysieren des erzeugten Schlüsselworts erfasst werden können.
     
    5. Vorrichtung (100) nach Anspruch 1, wobei der Objektdetektor (104) zum Erkennen der mehreren Objekte anhand von mindestens einem aus Videoinformationen, Toninformationen, Untertitelinformationen, EPG-(Electronic Program Guide)-Informationen und Telop-Zeicheninformationen, die in empfangenen Rundfunk-Streams enthalten sind, ausgelegt ist.
     
    6. Vorrichtung nach Anspruch 1, wobei das Display (103) zum Anzeigen der zugehörigen Informationen ausgelegt ist.
     
    7. Vorrichtung (100) nach Anspruch 6, wobei der Zugehörige-Informationen-Anbieter (108) das Display zum Bereitstellen der zugehörigen Informationen einem Benutzer steuert.
     
    8. Vorrichtung (100) nach Anspruch 7, wobei der Zugehörige-Informationen-Anbieter (108) zum Steuern des Display (103) zum Anzeigen von Informationen über den Szenenabschnitt in Assoziation mit den zugehörigen Informationen auf einem Teil des Display ausgelegt ist oder wobei der Zugehörige-Informationen-Anbieter die zugehörigen Informationen gemäß einem Benutzerprofil priorisiert und die zugehörigen Informationen in der Reihenfolge ihrer Priorität bereitstellt.
     
    9. Verfahren zur Bereitstellung von Informationen in Bezug auf ein Rundfunkprogramm, das Folgendes beinhaltet:

    Anzeigen mehrerer Szenen des Rundfunkprogramms;

    Erkennen mehrerer Objekte aus den mehreren Szenen;

    Erzeugen, für jedes erkannte Objekt, eines Schlüsselwortes durch Bestimmen eines Objektnamens, der dem Objekt entspricht, und einer Kategorie, zu der der Objektname gehört;

    Einstellen eines Szenenabschnitts, der eine Gruppe von Szenen der mehreren Szenen enthält, die ein erstes Objekt der mehreren Objekte enthalten, anhand des erzeugten Schlüsselworts für das erste Objekt;

    Anfordern einer Suche nach mit dem ersten Objekt assoziierten zugehörigen Informationen anhand des Schlüsselworts einschließlich des Objektnamens und der Kategorie, zu der der Objektname gehört, und Empfangen der gesuchten zugehörigen Informationen; und

    Synchronisieren der empfangenen zugehörigen Informationen mit dem Szenenabschnitt und Bereitstellen der mit dem Szenenabschnitt synchronisierten zugehörigen Informationen.


     
    10. Verfahren nach Anspruch 9, wobei das Einstellen des Szenenabschnitts das Einstellen einer Gruppe von Szenen als Szenenabschnitt umfasst, zwischen denen die Anzahl von konservierten Schlüsselwörter genauso groß wie oder größer als ein Schwellenwert ist.
     
    11. Verfahren nach Anspruch 10, wobei die Anzahl von konservierten Schlüsselwörtern durch eine Anzahl von Schlüsselwörtern definiert wird, die zwischen aus einer ersten Szene erzeugten Schlüsselwörtern und aus einer zweiten Szene erzeugten Schlüsselwörtern gemeinsam existieren.
     
    12. Verfahren nach Anspruch 9, wobei das Erzeugen des Schlüsselworts das Bestimmen der Kategorie anhand eines Objektnamenwörterbuchs, in dem mehrere Objektnamen individuell Kategorien zugeordnet sind, oder durch Analysieren des Kontexts eines Teils, in dem das Schlüsselwort vorkommt, oder das Bestimmen der Kategorie für jedes erkannte Objekt durch Erfassen von Genre-Informationen der mehreren Szenen beinhaltet, in denen das Objekt erkannt wird, wobei die Genre-Informationen aus zusätzlichen in Rundfunk-Streams enthaltenen Informationen von einem Drittanbieterdienst, der Genre-Informationen über ein Web bereitstellt, oder durch Analysieren des erzeugten Schlüsselworts erfasst werden können.
     
    13. Verfahren nach Anspruch 9, wobei das Erkennen der mehreren Objekte das Erkennen des Objekts anhand von mindestens einem aus Videoinformationen, Toninformationen, Untertitelinformationen, EPG-(Electronic Program Guide)-Informationen und Telop-Zeicheninformationen, die in empfangenen Rundfunkt-Streams enthalten sind, beinhaltet.
     


    Revendications

    1. Appareil (100) servant à fournir des informations connexes à un programme de diffusion, comportant :

    un écran (103) servant à afficher une pluralité de scènes du programme de diffusion ;

    un détecteur d'objets (104) servant, pour chacune de la pluralité de scènes, à détecter au moins un objet en provenance de ladite scène ;

    un générateur de mots-clés (105) servant, pour chaque objet détecté, à générer un mot-clé comprenant un nom d'objet qui correspond à l'objet et une catégorie à laquelle le nom d'objet appartient ;

    une unité de réglage de section (106) servant à régler une section de scène contenant un groupe de scènes en provenance de la pluralité de scènes qui comprennent chacune un premier objet en provenance de la pluralité d'objets, en utilisant le mot-clé généré pour le premier objet ;

    une unité de recherche d'informations connexes (107) servant à demander une recherche d'informations connexes associées au premier objet en utilisant le mot-clé comprenant le nom d'objet et la catégorie à laquelle le nom d'objet appartient, associé au premier objet et servant à recevoir les informations connexes recherchées ; et

    un fournisseur d'informations connexes (108) servant à synchroniser les informations connexes reçues par rapport à la section de scène et servant à fournir les informations connexes synchronisées avec la section de scène à des fins d'affichage.


     
    2. Appareil (100) selon la revendication 1, dans lequel l'unité de réglage de section (106) est agencée pour régler comme section de scène un groupe de scènes entre lesquelles une quantité de mots-clés préservés est égale ou supérieure à une valeur de seuil.
     
    3. Appareil (100) selon la revendication 2, dans lequel l'unité de réglage de section (106) est agencée pour régler la section de scène en utilisant des mots-clés préservés, les mots-clés préservés étant définis par un nombre de mots-clés qui existent en commun entre des mots-clés générés en provenance d'une première scène et des mots-clés générés en provenance d'une deuxième scène.
     
    4. Appareil (100) selon la revendication 1, dans lequel le générateur de mots-clés (105) est agencé pour déterminer la catégorie en utilisant un dictionnaire de noms d'objets dans lequel une pluralité de noms d'objets sont mappés individuellement par rapport à des catégories ou dans lequel le générateur de mots-clés est agencé pour déterminer la catégorie en analysant le contexte d'une partie où le mot-clé apparaît ou dans lequel le générateur de mots-clés est agencé pour déterminer la catégorie pour chaque objet détecté par l'acquisition d'informations de genre de la pluralité de scènes dans lesquelles l'objet est détecté, dans lequel les informations de genre peuvent être acquises à partir d'informations supplémentaires comprises dans des flux de diffusion, en provenance d'un service tiers qui fournit des informations de genre par le biais de l'Internet ou par l'analyse du mot-clé généré.
     
    5. Appareil (100) selon la revendication 1, dans lequel le détecteur d'objets (104) est agencé pour détecter la pluralité d'objets en utilisant au moins des informations parmi des informations vidéo, des informations sonores, des informations de légendes, des informations EPG (Electronic Program Guide - guide électronique de programme) et des informations de caractères telop, qui sont comprises dans les flux de diffusion reçus.
     
    6. Appareil selon la revendication 1, dans lequel l'écran (103) est agencé pour afficher les informations connexes.
     
    7. Appareil (100) selon la revendication 6, dans lequel le fournisseur d'informations connexes (108) commande l'écran pour fournir les informations connexes à un utilisateur.
     
    8. Appareil (100) selon la revendication 7, dans lequel le fournisseur d'informations connexes (108) est agencé pour commander l'écran (103) pour afficher des informations se rapportant à la section de scène en association avec les informations connexes sur une partie de l'écran, ou dans lequel le fournisseur d'informations connexes hiérarchise par priorité les informations connexes en fonction d'un profil d'utilisateur et fournit les informations connexes dans l'ordre de priorité.
     
    9. Procédé servant à fournir des informations connexes à un programme de diffusion, comportant les étapes consistant à :

    afficher une pluralité de scènes du programme de diffusion ;

    détecter une pluralité d'objets en provenance de la pluralité de scènes ;

    générer, pour chaque objet détecté, un mot-clé en déterminant un nom d'objet qui correspond à l'objet et une catégorie à laquelle le nom d'objet appartient ;

    régler une section de scène contenant un groupe de scènes, en provenance de la pluralité de scènes, qui comprennent un premier objet en provenance de la pluralité d'objets, en utilisant le mot-clé généré pour le premier objet ;

    demander une recherche d'informations connexes associées au premier objet en utilisant le mot-clé comprenant le nom d'objet et la catégorie à laquelle le nom d'objet appartient, et recevoir les informations connexes recherchées ; et

    synchroniser les informations connexes reçues par rapport à la section de scène et fournir les informations connexes synchronisées avec la section de scène.


     
    10. Procédé selon la revendication 9, dans lequel l'étape consistant à régler la section de scène comporte l'étape consistant à régler comme section de scène un groupe de scènes entre lesquelles le nombre de mots-clés préservés est égal ou supérieur à une valeur de seuil.
     
    11. Procédé selon la revendication 10, dans lequel le nombre de mots-clés préservés est définis par un nombre de mots-clés qui existent en commun entre des mots-clés générés en provenance d'une première scène et des mots-clés générés en provenance d'une deuxième scène.
     
    12. Procédé selon la revendication 9, dans lequel l'étape consistant à générer le mot-clé comporte l'étape consistant à déterminer la catégorie en utilisant un dictionnaire de noms d'objets dans lequel une pluralité de noms d'objets sont mappés individuellement par rapport à des catégories ou en analysant le contexte d'une partie où le mot-clé apparaît ou l'étape consistant à déterminer la catégorie pour chaque objet détecté par l'acquisition d'informations de genre de la pluralité de scènes dans lesquelles l'objet est détecté, dans lequel les informations de genre peuvent être acquises à partir d'informations supplémentaires comprises dans des flux de diffusion, en provenance d'un service tiers qui fournit des informations de genre par le biais d'un Web ou par l'analyse du mot-clé généré.
     
    13. Procédé selon la revendication 9, dans lequel l'étape consistant à détecter la pluralité d'objets comporte l'étape consistant à détecter l'objet en utilisant au moins des informations parmi des informations vidéo, des informations sonores, des informations de légendes, des informations EPG (Electronic Program Guide - guide électronique de programme) et des informations de caractères telop, qui sont comprises dans les flux de diffusion reçus.
     




    Drawing


























    Cited references

    REFERENCES CITED IN THE DESCRIPTION



    This list of references cited by the applicant is for the reader's convenience only. It does not form part of the European patent document. Even though great care has been taken in compiling the references, errors or omissions cannot be excluded and the EPO disclaims all liability in this regard.

    Patent documents cited in the description