(19)
(11)EP 2 428 092 B1

(12)EUROPEAN PATENT SPECIFICATION

(45)Mention of the grant of the patent:
11.07.2018 Bulletin 2018/28

(21)Application number: 09788539.6

(22)Date of filing:  08.05.2009
(51)International Patent Classification (IPC): 
H04L 5/00(2006.01)
H04W 76/28(2018.01)
H04W 88/06(2009.01)
(86)International application number:
PCT/SE2009/050504
(87)International publication number:
WO 2010/128910 (11.11.2010 Gazette  2010/45)

(54)

METHOD AND ARRANGEMENT IN A RADIO COMMUNICATIONS SYSTEM FOR DYNAMIC CARRIER MODE SWITCHING

VERFAHREN UND ANORDNUNG IN EINEM FUNKKOMMUNIKATIONSSYSTEM ZUR DYNAMISCHEN TRÄGERMODUSUMSCHALTUNG

PROCÉDÉ ET SYSTÈME ADAPTÉS POUR COMMANDER L'EXÉCUTION D'UNE COMMUTATION DE MODE DYNAMIQUE D'UNE PORTEUSE DANS UN SYSTÈME DE COMMUNICATION RADIO


(84)Designated Contracting States:
AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO SE SI SK TR

(43)Date of publication of application:
14.03.2012 Bulletin 2012/11

(73)Proprietor: Telefonaktiebolaget LM Ericsson (publ)
164 83 Stockholm (SE)

(72)Inventors:
  • FRENGER, Pål
    S-582 75 Linköping (SE)
  • BALDEMAIR, Robert
    S-171 70 Solna (SE)
  • PARKVALL, Stefan
    S-113 25 Stockholm (SE)
  • DAHLMAN, Erik
    S-168 68 Bromma (SE)

(74)Representative: Zacco Sweden AB 
P.O. Box 5581
114 85 Stockholm
114 85 Stockholm (SE)


(56)References cited: : 
  
  • TEXAS INSTRUMENTS: "Refinement on Downlink Reference Signal Design" 3GPP DRAFT; R1-091291 TI DLRS, 3RD GENERATION PARTNERSHIP PROJECT (3GPP), MOBILE COMPETENCE CENTRE ; 650, ROUTE DES LUCIOLES ; F-06921 SOPHIA-ANTIPOLIS CEDEX ; FRANCE, no. Seoul, Korea; 20090318, 18 March 2009 (2009-03-18), XP050338898 [retrieved on 2009-03-18]
  • HUAWEI: "Consideration on carrier aggregation for home eNB" 3GPP DRAFT; R1-090817, 3RD GENERATION PARTNERSHIP PROJECT (3GPP), MOBILE COMPETENCE CENTRE ; 650, ROUTE DES LUCIOLES ; F-06921 SOPHIA-ANTIPOLIS CEDEX ; FRANCE, no. Athens, Greece; 20090203, 3 February 2009 (2009-02-03), XP050318674 [retrieved on 2009-02-03]
  • QUALCOMM EUROPE: "Notion of Anchor Carrier in LTE-A" 3GPP DRAFT; R1-091458, 3RD GENERATION PARTNERSHIP PROJECT (3GPP), MOBILE COMPETENCE CENTRE ; 650, ROUTE DES LUCIOLES ; F-06921 SOPHIA-ANTIPOLIS CEDEX ; FRANCE, no. Seoul, Korea; 20090318, 18 March 2009 (2009-03-18), XP050339025 [retrieved on 2009-03-18]
  • MOTOHIRO TANNO ET AL: "Evolved UTRA - physical layer overview" SIGNAL PROCESSING ADVANCES IN WIRELESS COMMUNICATIONS, 2007. SPAWC 200 7. IEEE 8TH WORKSHOP ON, IEEE, PI, 1 June 2007 (2007-06-01), pages 1-8, XP031189507 ISBN: 978-1-4244-0954-9
  • PARKVALL S ET AL: "LTE-Advanced - Evolving LTE towards IMT-Advanced" VEHICULAR TECHNOLOGY CONFERENCE, 2008. VTC 2008-FALL. IEEE 68TH, IEEE, PISCATAWAY, NJ, USA, 21 September 2008 (2008-09-21), pages 1-5, XP031352496 ISBN: 978-1-4244-1721-6
  • 3GPP: "3rd Generation Partnership Project;Technical Specification Group Radio Access Network; Further Advancements for E-UTRA Physical Layer Aspects (Release 9)" 3GPP DRAFT; TR 36.814 V0.4.1, 3RD GENERATION PARTNERSHIP PROJECT (3GPP), MOBILE COMPETENCE CENTRE ; 650, ROUTE DES LUCIOLES ; F-06921 SOPHIA-ANTIPOLIS CEDEX ; FRANCE, no. Athens, Greece; 20090302, 2 March 2009 (2009-03-02), XP050338750 [retrieved on 2009-03-02]
  
Note: Within nine months from the publication of the mention of the grant of the European patent, any person may give notice to the European Patent Office of opposition to the European patent granted. Notice of opposition shall be filed in a written reasoned statement. It shall not be deemed to have been filed until the opposition fee has been paid. (Art. 99(1) European Patent Convention).


Description

TECHNICAL FIELD



[0001] The present invention relates to a method and an arrangement in a radio network node. In particular, it relates to increased energy efficiency by dynamic mode switching.

BACKGROUND



[0002] In a typical cellular system, also referred to as a radio communications system, wireless terminals, also known as mobile stations and/or User Equipment units (UEs) communicate via a Radio Access Network (RAN) to one or more core networks. The wireless terminals can be mobile stations or user equipment units such as mobile telephones also known as "cellular" telephones, and laptops with wireless capability, e.g., mobile termination, and thus can be, for example, portable, pocket, hand-held, computer-included, or car-mounted mobile devices which communicate voice and/or data with radio access network.

[0003] The radio access network covers a geographical area which is divided into cell areas, with each cell area being served by a base station, e.g., a Radio Base Station (RBS), which in some networks is also called "NodeB" or "B node" and which in this document also is referred to as a base station. A cell is a geographical area where radio coverage is provided by the radio base station equipment at a base station site. Each cell is identified by an identity within the local radio area, which is broadcast in the cell. The base stations communicate over the air interface operating on radio frequencies with the user equipment units within range of the base stations.

[0004] In some versions of the radio access network, several base stations are typically connected, e.g., by landlines or microwave, to a Radio Network Controller (RNC). The radio network controller, also sometimes termed a Base Station Controller (BSC), supervises and coordinates various activities of the plural base stations connected thereto. The radio network controllers are typically connected to one or more core networks.

[0005] The Universal Mobile Telecommunications System (UMTS) is a third generation mobile communication system, which evolved from the Global System for Mobile Communications (GSM), and is intended to provide improved mobile communication services based on Wideband Code Division Multiple Access (WCDMA) access technology. UMTS Terrestrial Radio Access Network (UTRAN) is essentially a radio access network using wideband code division multiple access for user equipment units (UEs). The Third Generation Partnership Project (3GPP) has undertaken to evolve further the UTRAN and GSM based radio access network technologies.

[0006] Being "green" has quickly gone from just a marketing hype to a key requirement for customers. This is true today for almost all sectors in society and the telecom market is no exception. The world today is facing a global energy crisis as people start to realize that our carbon based economy is no longer sustainable. Two areas that will become significant parts of a future sustainable economy are energy savings and telecommunications. Energy savings are by far the quickest and cheapest way of reducing carbon dioxide emissions to the atmosphere and telecommunication can significantly reduce the need for physical transportation of people and services. In 3rd Generation Partnership Project (3GPP) the work on the first release of the 3G Long Term Evolution (LTE) system, denoted LTE Rel-8 in 3GPP jargon, was finalized during 2008. The specifications of the next releases (denoted LTE Rel-9 and LTE Rel-10) are expected to be available 2009 and 2010 respectively. In LTE Rel-8 the maximum bandwidth is 20 MHz while in Rel-10 support for aggregation of multiple component carriers resulting in a total bandwidth of up to 100MHz is expected to be specified., which LTE Rel-8 system and later releases of the LTE system all consume power.

[0007] 3GPP DRAFT R1-091291, "Refinement on Downlink Reference Signal Design" discloses the idea of multiplexing LTE (Rel-8) and LTE-A transmissions, either using FDM or TDM. If FDM is used, LTE (Rel-8) and LTE-A transmissions are allowed to co-exist within a subframe. If TDM is used, LTE (Rel-8)-only and LTE-A-only subframes are defined. A signaling mechanism allows the UEs to distinguish the different types of subframes in a manner which is backward compatible with LTE (Rel-8).

SUMMARY



[0008] It is therefore an objective of the present solution to provide a mechanism enabling better power saving base station operation.

[0009] According to a first aspect of the present invention, the object is achieved by a method in a radio network node for dynamic carrier mode switching as defined by independent claim 1. According to a second aspect of the present invention, the object is achieved by an arrangement in a radio network node for dynamic carrier mode switching as defined by independent claim 13. An advantage with the present invention is that power saving base station DTX can be performed when the radio network node is operating in non legacy mode.

[0010] The same switching mechanism may also be used to enable all other enhanced features of the non legacy mode, e.g. better support for advanced antennas and/or coordinated multipoint transmission and reception.

BRIEF DESCRIPTION OF THE DRAWINGS



[0011] The invention is described in more detail with reference to attached drawings illustrating exemplary embodiments of the invention and in which:

Figure 1 is a schematic block diagram illustrating a radio frame according to prior art.

Figure 2 is a schematic block diagram illustrating embodiments of a radio communications system.

Figure 3 is a combined schematic block diagram and flowchart depicting embodiments of a method.

Figure 4 is a combined schematic block diagram and flowchart depicting embodiments of a method.

Figure 5 is a combined schematic block diagram and flowchart depicting embodiments of a method.

Figure 6 is a flowchart depicting embodiments of a method in a radio network node.

Figure 7 is a flowchart depicting embodiments of a method in a radio network node.

Figure 8 is a flowchart depicting embodiments of a method in a radio network node.

Figure 9 is a schematic block diagram illustrating embodiments of a radio network node arrangement.


DETAILED DESCRIPTION



[0012] As part of the present solution a problem will firstly be defined and discussed. To introduce energy saving features, increased support for eNB Discontinuous Transmission (DTX) is required in LTE Rel-10. Several different types of downlink DTX could be considered. In the context of LTE 3 types of Down Link (DL) DTX modes could be defined: Short DTX could be defined as DTX that is fully backwards compatible with LTE Rel-8. Basically short DL DTX is then limited to one or a few OFDM symbols in which no cell specific reference symbols need to be transmitted. Medium DTX could be defined as DTX that is non backwards compatible with Rel-8, e.g. a DTX duration longer than one sub-frame (1 ms) but shorter than a radio frame (10 ms). Finally long DTX could be defined as a DTX duration that makes a carrier invisible also for Rel-10 UEs e.g. a DTX duration equal to one or several radio frames. The long DL DTX might also be denoted eNB sleep.

[0013] At a first glance it seems rather straightforward to introduce support for medium or long eNB DTX in LTE Rel-10. Figure 1 shows a LTE radio frame with 72 center sub carriers, introducing eNB DTX for four ms in subframe no. 1, 2, 3, 4, 6, 7, 8 and 9. For example, the LTE Rel-10 specification may be slightly changed so that when there is little or no user plane data traffic, the eNB does not have to transmit Cell Specific Reference Symbols (CSRS) in every subframe. In this example, CSRS may only be mandatory in sub-frames 0 and 5 where also Primary Synchronization Signals (PSS) and Secondary Synchronization Signals (SSS) and Broadcast CHannel (BCH) are transmitted. CSRS also needs to be transmitted in those sub-frames that carry System Information Blocks, (SIBs). SIB1 is transmitted in the fifth sub-frame of every radio frame, SIBx where x>2 is configurable with very low duty cycle. In order for this to be allowed the UE behavior that the standard specifies may for example be changed so that UEs are only allowed to perform mobility measurements during sub-frames 0 and 5.

[0014] The fact that the CSRS are not transmitted in every sub-frame may also likely affect the Channel Quality Indicator (CQI) measurements. However already in Rel-8 it is possible to specify when in time the CQI measurements are to be performed. In Rel-8 the CQI measurements are performed 4 sub-frames before the UE are scheduled to report the CQI. No time domain filtering of CQI estimates are performed in the UE. It might be necessary to reconsider if this mechanism is sufficient also for Rel-10 or if some more flexibility is required.

[0015] In case UEs measure the CQI in sub-frames other than 0 and 5 then they can not assume that there is any frequency correlation since the eNB may not always transmit CSRS in all resource blocks. Alternatively the UEs could detect an "all zero CQI" measurement as an indication that the eNB does not need any CQI report from the UE.

[0016] UE channel estimation is also affected. A slight degradation in channel estimation accuracy is expected since UEs can not utilize time and frequency correlation between resource blocks (unless they are adjacent to subframe 0 or 5). This however is already the case for TDD, where one cannot do interpolation between all subframes as some subframes are UL subframes. Hence this is not a fundamental problem.

[0017] There are many alternatives to the solution outlined in Figure 1. UE mobility measurements can be limited to
  • the centre 6 resource blocks; and/or
  • a single antenna port (e.g. antenna port 0) and/or
  • the PSS and SSS signals only; and/or
  • subframe 0 only, i.e. not both sub-frame 0 and 5 as in Figure 1.


[0018] It is also possible that a future non legacy LTE release (e.g. Rel-10) defines a new set of reference symbols for non backwards compatible extension carriers. Current discussions in 3GPP mention two new sets of reference symbols: demodulation reference symbols (DM-RS) and channel state information reference symbols (CSI-RS). If new reference symbols are defined (e.g. a new set of mobility measurement reference signals of the DM-RS or CSI RS mentioned above) then it is likely that UE mobility measurements are defined on a sub-set of the new reference symbols.

[0019] To enable DTX periods longer than 4 ms one could imagine that an eNB sleep mode is also defined for LTE Rel-9 or LTE Rel-10. Periodically a sleeping eNB could transmit all signals needed for UEs to measure and attach to the cell, i.e. PSS, SSS, BCH, SIB1, SIB2, CSRS during a short active period duration such as e.g. 50 ms. The active period is then followed by a much longer inactive period such as e.g. 450 ms where nothing is transmitted from the eNB. The active period can be compatible with LTE Rel-8 or a later release, e.g. LTE Rel-10.

[0020] The problem with the energy saving solutions discussed above is that legacy LTE Rel-8 UEs can not access a cell where these new energy saving features are enabled. The reason is that LTE Rel-8 UEs expects the base station to transmit certain signals and if not all these signals are included in the new non legacy format then the legacy UE will not work properly.

[0021] It is therefore a further objective of the present solution to provide the means required to enable power saving in the base station such as e.g. eNB operation based on DTX or sleep, while at the same time ensuring that it is possible for a legacy user equipment to be supported by the network.

[0022] Figure 2 depicts a radio communications system 100, such as e.g. the E-UTRAN, also known as LTE, LTE-Adv, 3rd Generation Partnership Project (3GPP) WCDMA system, Global System for Mobile communications/Enhanced Data rate for GSM Evolution (GSM/EDGE), Wideband Code Division Multiple Access (WCDMA), Worldwide Interoperability for Microwave Access (WiMax), or Ultra Mobile Broadband (UMB). The radio communications system 100 supports different releases of a standardized radio specification such as a standardized LTE specification or a standardized High Speed Packet Access (HSPA) specification. The radio communications system 100 comprises a radio network node 110 and a user equipment 120 adapted to communicate with each other over a radio channel 130 comprising at least one carrier. The radio network node 110 serves a cell 135, and may be a base station such as a NodeB, an eNodeB or any other network unit capable to communicate with the user equipment 120, over the radio channel 130 when the user equipment is present within the cell 135 as shown in Figure 2. The radio network node 110 may further be a radio network controller or base station controller adapted to be connected to a base station such as a NodeB, an eNodeB, or any other network unit capable to communicate with a terminal over the radio channel 130, not shown. The user equipment 120 may be a mobile phone, a Personal Digital Assistant (PDA), or any other network unit capable to communicate with a base station over a radio channel.

[0023] The radio network node 110 is configured to operate in a legacy mode. The legacy mode operation complies with a legacy release of a standardized radio specification, such as a standardized LTE specification, or a standardized High Speed Packet Access (HSPA) specification. The radio network node 110 is further configured to operate in a non legacy mode. The non legacy mode complies with a non legacy release of the standardized radio specification. The non legacy release of the standardized radio specification is a version released subsequent to the legacy release of the standardized radio specification. The non legacy mode supports a service such as e.g. base station DTX, extended support for multiple antennas (transmission and reception), coordinated multipoint transmission and reception, relay nodes with inband wireless self backhauling, enhanced broadcast services, etc.in a way that is non backwards compatible with the legacy mode.

[0024] The user equipment 120 operates in legacy mode, but can not operate in non legacy mode.

[0025] The basic concept of the present solution is to operate at least one carrier in the radio communications system 100 so that it dynamically switches between a legacy mode operation and non-legacy mode operation. The legacy mode operation complies with an early release of a standardized radio specifications such as the 3GPP LTE specifications e.g. Rel-8.

[0026] The non-legacy mode complies with a later release of the standardized radio specifications such as the 3GPP LTE specifications e.g. Rel-10, and may comprise enhanced support for eNB DTX or eNB sleep in a way that is non backwards compatible with the legacy mode.

[0027] Example of embodiments that will be described more in detail below:
In some embodiments a cell comprises several component carriers for which the radio network node 110 ensures that at least one component carrier is operating in a legacy mode. These embodiments will be described relating to Figure 3.

[0028] In some embodiments a geographical area is covered by several cells (e.g. a macro cell and a micro cell) where the radio network node 110 ensures that at least one component carrier from one cell (typically the macro cell) is operating in a legacy mode. Legacy mode operation of a micro cell may be requested by an overlapping macro cell. These embodiments will be described relating to Figure 4.

[0029] In some further embodiments a cell with a single component carrier continuously changes operation between a legacy mode and a non-legacy mode based e.g. on a predefined periodically or pseudo-randomly time pattern. These embodiments will be described relating to Figure 5.

[0030] Figure 3 is a combined schematic block diagram and flowchart depicting first embodiments of the present solution. In these embodiments the radio network node 110 uses multiple component carriers and ensures that at least one component carrier is always operating in a legacy mode. This is achieved by dynamically switching between a legacy mode operation and non-legacy mode operation on the component carriers. In Figure 3, two component carriers are shown, one wide component carrier 140 which as an example may be 15 M Hz, and one first component carrier 150 which as an example may be 5 M Hz. The method may be performed by the following steps that may as well be carried out in another suitable order than described below.

Step 301



[0031] The wide component carrier 140 operates in non legacy mode that e.g. may be used for low energy DTX. The first component carrier 150 operates in legacy mode. The user equipment 120 that only operates in legacy mode enters on the first component carrier 150.

Step 302



[0032] The wide component carrier 140 that operates in non legacy mode switches to legacy mode that e.g. may be used for low energy DTX.

Step 303



[0033] The user equipment 120 that requires a second component carrier performs handover to the wide component carrier 140 that now operates in legacy mode.

Step 304



[0034] The first component carrier 150 switches to non legacy mode. This step is optional. The reason for switching is that the new format may be better, e.g. from an energy efficiency point of view.

Step 305



[0035] The user equipment 120 does not require the second component carrier any more. The first component carrier 150 that operates in non legacy mode switches to legacy mode.

Step 306



[0036] The user equipment 120 performs handover to the first component carrier 150 that now operates in legacy mode.

Step 307



[0037] The wide component carrier 140 that operates in legacy mode switches to non legacy mode that e.g. may be used for low energy DTX.

[0038] In some embodiments where the cell 135 is configured with a first component carrier and a second component carrier as in Figure 3 one of the component carriers (e.g. the first band carrier) may be constantly configured to legacy mode. The first component carrier and the second component carrier may e.g. be a wide bandwidth component carrier and narrow bandwidth component carrier.

[0039] Figure 4 is a combined schematic block diagram and flowchart depicting second embodiments of the present solution. In these embodiments the cell 135 is represented by a micro cell 152 which micro cell 135 is served by the radio network node 110. The radio network node uses a micro cell carrier 153. The micro cell 135 is covered by a macro cell 155 using a macro cell carrier not shown, which macro cell 155 is served by a second network node 160. The micro cell 152 is covered by the macro cell 155 like an umbrella. The radio network node 110 serving the micro cell 152, dynamically switches between a non-legacy mode e. g. being low energy consuming and a legacy mode based on a request from the second network node 160 serving the macro cell 155. The method may be performed by the following steps that may as well be carried out in another suitable order than described below.The steps 402 and 405 are optional.

Step 401



[0040] The micro cell carrier 153 operates in non legacy mode that e.g. may be used for low energy DTX. The macro cell carrier operates in legacy mode. The user equipment 120 that only operates in legacy mode enters the macro cell 155 on the macro cell carrier.

Step 402



[0041] The second network node 160 serving the macro cell 155, requests legacy operation from the radio network node 110 serving the micro cell 152.

Step 403



[0042] The micro cell carrier 153 that operates in non legacy mode switches to legacy mode.

Step 404



[0043] The user equipment 120 performs handover to the micro cell carrier 150 in the micro cell 152, now operating in legacy mode.

Step 405



[0044] The user equipment 120 performs handover to the macro cell carrier in the micro cell 155, operating in legacy mode. This may be performed when the user equipment 120 does not require support from the micro cell 152 any more. This step may also be performed when the micro cell wishes to throw out the user equipment 120 since it is no longer transmitting with a rate above a threshold value.

Step 406



[0045] The micro cell carrier 153 that operates in legacy mode switches back to non legacy mode that e.g. may be used for low energy DTX.

[0046] In some embodiments coverage cells typically need to be operating in a legacy mode while cells that only provides data rate increase where there is already coverage may be allowed to dynamically switch between a legacy mode and a non-backwards compatible non-legacy mode.

[0047] The switch between a legacy mode and non-legacy mode, e.g. with base station DTX may be based on X2 communication between coverage cell and capacity cell as explained in steps 402 and 405 in Figure 4. X2 is the name of the direct logical interface between neighboring base stations as defined in the LTE specifications by 3GPP.

[0048] Coverage cell can be another Radio Access Technology (RAT) cell, e.g. a micro LTE cell may rely on an umbrella GSM cell for notification of when legacy mode operation is required.

[0049] In one specific embodiment in the case of LTE, all cells, also umbrella cells, may run in a non Rel-8 compatible mode when the number of LTE Rel-8 user equipments is sufficiently low. Thus the present solution may only be required e.g. during 10 years or the like, in order to introduce the non-compatible feature into the system. But without the present solution such features can never be introduced.

[0050] Figure 5 is a combined schematic block diagram and flowchart depicting third embodiments of the present solution. In these embodiments the radio network node 110 uses a carrier 165. The radio network node operates the carrier 165 to periodically or with a pseudo-random duration dynamically switch between a non legacy mode and a legacy mode. The method may be performed by the following steps that may as well be carried out in another suitable order than described below.

Step 501



[0051] The carrier 165 operates in non legacy mode. Periodically such as e.g. each 500 ms or in pseudo-random intervals, the radio network node 110 operates the carrier so that it switches to legacy mode.

Step 501



[0052] After a period in legacy mode, such as e.g. 50 ms, the radio network node 110 operates the carrier so that it switches back to non legacy mode.

[0053] By periodically or pseudo-randomly turning on legacy mode as depicted in Figure 5 the legacy user equipment 120 and other legacy user equipments within reach of the cell 135 can find the cell 135. These third embodiments are particularly useful in a capacity cell covered by an umbrella cell as described above.

[0054] In some embodiments, one component carrier of the multiple component carriers is an anchor carrier. The anchor carrier is operated so that it is switched to non legacy mode for 1 ms every second and thereby most of the time is operated in legacy mode.

[0055] "Anchor carrier" is a term commonly used by 3GPP. It is used in the discussion regarding bandwidths larger than 20 MHz for LTE Rel-10. What is meant is that if an LTE Rel-10 system with e.g. 60 MHz bandwidth is required, this is achieved by aggregating three 20 MHz "component carriers". In case only one of the "component carriers" is backwards compatible with e.g. Rel-8 user equipments, then that carrier is called the "anchor carrier" and the other carriers are called "extension carriers".

[0056] The extension carriers may then be operated in non-legacy mode always or most of the time.

[0057] The method steps in the radio network node 110 for dynamic carrier mode switching, according to some general embodiments will now be described with reference to a flowchart depicted in Figure 6. As mentioned above, the radio network node 110 is comprised in a radio communications system. The radio network node 110 is configured to operate in a legacy mode and is further configured to operate in a non legacy mode. The radio network node 110 may be a base station or a controller node such as a radio network controller or base station controller, connected to a base station. The non legacy mode may support the service in a way that is non backwards compatible with the legacy mode. The method comprising the following steps that may as well be carried out in another suitable order than described below:

Step 601



[0058] This is an optional step. The radio network node 110 operates the at least one carrier in the non legacy mode. The radio network node 110 may detect that the user equipment 120 operating in the legacy mode is present in a geographical area being served by the radio network node 110. This step may trigger the next step 602.

Step 602



[0059] The radio network node 110 operates at least one carrier so that it switches from non legacy mode to legacy mode. The switching of the at least one carrier from non legacy mode to legacy mode may be performed periodically or with pseudo-random intervals.

Step 603



[0060] In this step when the carrier operates in the legacy mode, the radio network node 110 signals with the user equipment 120 in accordance to the legacy format. The user equipment 120 operates in legacy mode, but can not operate in non legacy mode. The minimum signalling from the radio network node 110 may be the signals according to the legacy format, e.g. Primary Synchronization Sequences or Secondary Synchronization Sequences (PSS/SSS), CSRS, and Broadcast Channel (BCH) transmissions in case of LTE Rel-8.

Step 604



[0061] The radio network node 110 operates (604,711,808) the at least one carrier so that it switches from legacy mode to non legacy mode.

Step 605



[0062] This is an optional step. In some embodiments, the service is represented by base station DTX for power saving which is performed when operating the at least one carrier in the non legacy mode.

[0063] In some embodiments, the at least on carrier is represented by multiple component carriers. The above steps 602 and 604 may be performed such that at least one component carrier of the multiple component carriers always operate in legacy mode.

[0064] In some specific embodiments, one component carrier of the multiple component carriers may be an anchor carrier. In these embodiments the above steps 602 and 604 may be performed such that the anchor carrier operate in legacy mode and is switched to non legacy mode for 1 ms every second.

[0065] The method steps in the radio network node 110 for dynamic carrier mode switching, according to some first embodiments will now be described with reference to a flowchart depicted in Figure 7. These first embodiments are embodiments of the general embodiments referred to above, and relates to the first embodiments described above with reference to Figure 3. Therefore all the steps 701-711 can be seen as optional steps. In these first embodiments, the radio network node 110 uses multiple component carriers comprising a first bandwidth component carrier and a second component carrier. The first component carrier and the second component carrier may e.g. be a wide bandwidth component carrier and narrow bandwidth component carrier. According to some embodiments, the multiple component carriers comprises several component carriers, all of the same bandwidth, witch may be switched from one component carrier in legacy mode to all component carriers in legacy mode.

[0066] As mentioned above, the radio network node 110 is comprised in a radio communications system. The radio network node 110 is configured to operate in a legacy mode and is further configured to operate in a non legacy mode. The radio network node 110 may be a base station or a controller node such as a radio network controller or base station controller, connected to a base station. The non legacy mode may support the service in a way that is non backwards compatible with the legacy mode. The method comprising the following steps that may as well be carried out in another suitable order than described below:

Step 701



[0067] The radio network node 110 operates the first bandwidth component carrier in legacy mode.

Step 702



[0068] The radio network node 110 operates the second component carrier in non legacy mode.

Step 703



[0069] The radio network node 110 detects that the user equipment 120 enters the first bandwidth component carrier operating in legacy mode. The user equipment 120 operates in legacy mode, but can not operate in non legacy mode.

Step 704



[0070] In these first embodiments this step of operating at least one carrier so that it switches from non legacy mode to legacy mode which step corresponds to step 602, is performed by operating the second component carrier such that it switches to legacy mode.

Step 705



[0071] This is an optional step. The radio network node 110 operates the first bandwidth component carrier such that it switches to a non legacy mode.

Step 706



[0072] The radio network node 110 then serves the user equipment 120 such that it performs a handover from the first component carrier to the second component carrier operating in legacy mode.

Step 707



[0073] In this step when the carrier operates in the legacy mode, the radio network node 110 signals with the user equipment 120 in accordance to the legacy format. This step corresponds to step 603.

Step 708



[0074] The radio network node 110 detects that the user equipment 120 requires not using the second component carrier any more. This may e.g. be performed by the radio network node 110 detecting that the length of the data buffers corresponding to the user equipment 120 have stayed below a threshold for given duration of time.

Step 709



[0075] The radio network node 110 operates the first bandwidth component carrier such that it switches to a legacy mode.

Step 710



[0076] The radio network node 110 then serves the user equipment 120 such that it performs a handover from the second component carrier to the first bandwidth component carrier.

Step 711



[0077] In these first embodiments this step of operating the at least one carrier so that it switches from legacy mode to non legacy mode which step corresponds to step 604, is performed by operating the second component carrier such that it switches to the non legacy mode.

[0078] Also in these first embodiments, the service may be represented by base station DTX for power saving which may be performed when operating the second component carrier and /or first bandwidth component carrier in the non legacy mode.

[0079] The method steps in the radio network node 110 for dynamic carrier mode switching, according to some second embodiments will now be described with reference to a flowchart depicted in Figure 8. These second embodiments are embodiments of the general embodiments referred to above, and relates to the second embodiments described above with reference to Figure 4. Therefore all the steps 801-808 can be seen as optional steps. In these second embodiments, the radio network node 110 serves a micro cell 152, which micro cell 152 is covered by a macro cell 155. As mentioned above, the radio network node 110 is comprised in a radio communications system. The radio network node 110 is configured to operate in a legacy mode and is further configured to operate in a non legacy mode. The radio network node 110 may be a base station or a controller node such as a radio network controller or base station controller, connected to a base station. The non legacy mode may support the service in a way that is non backwards compatible with the legacy mode. The method comprising the following steps that may as well be carried out in another suitable order than described below:

Step 801



[0080] The radio network node 110 operates the at least one component carrier in the micro cell 152 in non legacy mode.

Step 802



[0081] The radio network node 110 may obtain information or detecting that the user equipment 120 enters a carrier in the macro cell 155. The user equipment 120 operates in legacy mode, but can not operate in non legacy mode. This step may be performed by receiving a request from the second network node 160 serving the macro cell 155. The request requests legacy operation from the micro cell 152.

Step 803



[0082] In these second embodiments, this step of operating at least one carrier so that it switches from non legacy mode to legacy mode corresponding to step 602, is performed by operating the at least one component carrier in the micro cell so that it switches from non legacy mode to legacy mode.

[0083] The switching from non legacy mode to legacy mode may be performed periodically or with pseudo-random intervals.

Step 804



[0084] The radio network node 110 serves the user equipment 120 such that it performs a handover from the macro cell 155 to the micro cell 152, which micro cell 152 was switched to legacy mode.

Step 805



[0085] In this step when the micro cell carrier 153 operates in the legacy mode, the radio network node 110 signals with the user equipment 120 in accordance to the legacy format. This step corresponds to step 603.

Step 806



[0086] The radio network node 110 detects that the user equipment 120 requires no more support from the micro cell. This may e.g. be performed by the radio network node 110 controlling the micro cell 152 and detecting that the data buffers corresponding to the user equipment 120 are empty or almost empty most of the time.

Step 807



[0087] The radio network node 110 then serves the user equipment 120 such that it performs a handover from the micro cell 152 to the macro cell 155,

Step 808



[0088] In these second embodiments, this step of operating the at least one carrier so that it switches from legacy mode to non legacy mode corresponding to step 604, is performed by operating the at least one component carrier in the micro cell such that it switches from the legacy mode to the non legacy mode.

[0089] Also in these second embodiments, the service may be represented by base station DTX for power saving which may be performed when operating the micro cell carrier in non legacy mode.

[0090] According to some third embodiments referred to above with reference to Figure 5, by periodically or pseudo-randomly switching the micro cell carrier 153 from non legacy mode to legacy mode, the legacy user equipment 120 and other legacy user equipments within reach of the cell 135 can find the cell 135. These third embodiments are particularly useful in a capacity cell covered by an umbrella cell as described above.

[0091] To perform the method steps above for dynamic carrier mode switching, the radio network node 110 comprises an arrangement 900 depicted in Figure 9. As mentioned above, the radio network node 110 is comprised in a radio communications system. The radio network node 110 is configured to operate in a legacy mode and is further configured to operate in a non legacy mode.

[0092] In some embodiments, the radio network node 110 is a base station or a controller node such as e.g. a radio network controller or base station controller, which controller node is connected to a base station.

[0093] The radio network node arrangement 900 comprises an operating unit 910 configured to operate at least one carrier so that it switches from non legacy mode to legacy mode.

[0094] In some embodiments the non legacy mode supports a service in a way that is non backwards compatible with the legacy mode. The service may comprise base station DTX for power saving, that may be performed by the operating unit 910 when the at least one carrier is operated in the non legacy mode.

[0095] The operating unit 910 is further configured to operate the at least one carrier so that it switches from legacy mode to non legacy mode.

[0096] The switching of the at least one carrier from non legacy mode to legacy mode may be performed periodically or in pseudo-random intervals.

[0097] The radio network node arrangement 900 further comprises a signalling unit 920 configured to signal with the user equipment 120 in accordance to the legacy format, when operating the carrier in the legacy mode. The user equipment 120 operates in legacy mode, but can not operate in non legacy mode.

[0098] The radio network node arrangement 900 may further comprise a detecting unit 930 configured to detect that the user equipment 120, operating in the legacy mode, is present in a geographical area being served by the radio network node 110, when operating the at least one carrier in the non legacy mode. The detection may be a trigger for the operating unit 910 to operate the at least one carrier so that it switches from non legacy mode to legacy mode upon.

[0099] In some embodiments, the at least on carrier is represented by multiple component carriers, and wherein the operating unit 910 further is configured to operate the multiple component carriers so that at least one of them switches from non legacy mode to legacy mode, and to operate each of the multiple component carriers so that at least one of them switches from legacy mode to non legacy mode, such that the anchor carrier operates in legacy mode and is switched to non legacy mode for 1 ms every second.

[0100] In some other embodiments, the at least on carrier is represented by multiple component carriers. In these embodiments, the operating unit 910 may further be configured to operate the multiple component carriers so that at least one of them switches from non legacy mode to legacy mode, and to operate each of the multiple component carriers so that at least one of them switches from legacy mode to non legacy mode, such that at least one component carrier of the multiple component carriers always operate in legacy mode.

[0101] In some embodiments the multiple component carriers comprise a first bandwidth component carrier and a second component carrier, such as e.g. a wide bandwidth component carrier and narrow bandwidth component carrier.

[0102] In these embodiments, the operating unit 910 further is configured to operate the first bandwidth component carrier in legacy mode and to operate the second component carrier in non legacy mode. In these embodiments, the detecting unit 930 may further be configured to detect that the user equipment 120 enters the first bandwidth component carrier, which first bandwidth component carrier operates in legacy mode. In these embodiments, the operating unit 910 may further is configured to perform the operation of at least one carrier so that it switches from non legacy mode to legacy mode, by operate the second component carrier such that it switches to a legacy mode.

[0103] The radio network node arrangement 900 may further comprising a serving unit 940 configured to serve the user equipment 120 such that it performs a handover from the first component carrier to the second component carrier, which second component carrier has been switched to legacy mode. The serving unit 940 may further be configured to serve the user equipment 120 such that it performs a handover from the second component carrier to the first bandwidth component carrier

[0104] The operating unit 910 may further be configured to operate the first bandwidth component carrier such that it switches to a non legacy mode, after serving the user equipment 120 to perform handover.

[0105] The detecting unit 930 may further be configured to detect that the user equipment 120 requires no more second component carrier. The operating unit 910 may further be configured to operate the first bandwidth component carrier such that it switches to a legacy mode.

[0106] The operating unit 910 may further be configured to operate the second component carrier such that it switches to the non legacy mode.

[0107] In some embodiments, the radio network node 110 serves a micro cell 152, which micro cell 152 is covered by a macro cell 155.

[0108] In these embodiments, the operating unit 910 may further be configured to operate the at least one component carrier in the micro cell 152 in non legacy mode, and configured to operate the at least one component carrier in the micro cell so that it switches from non legacy mode to legacy mode. The operating unit 910 may further be configured to operate the at least one component carrier in the micro cell such that it switches from the legacy mode to the non legacy mode.

[0109] The detecting unit 930 may further be configured to obtain information or detect that the user equipment 120 enters a carrier in the macro cell 155. The detecting unit 930 may further be configured to obtain said information that the user equipment 120 enters a carrier in the macro cell 155 by receiving a request from a second network node 160 serving the macro cell 155. The request requests legacy operation from the micro cell 135. The detecting unit 930 may further be configured to detect that the user equipment 120 requires no more support from the micro cell.

[0110] The serving unit 940 may further be configured to serve the user equipment 120 such that it performs a handover from the macro cell 155 to the micro cell 152, which micro cell 152 has been switched to legacy mode. The serving unit 940 may further be configured to serve the user equipment 120 such that it performs a handover from the micro cell 152 to the macro cell 155.

[0111] The present mechanism for above for dynamic carrier mode switching, may be implemented through one or more processors, such as a processor 950 in the radio network arrangement 900 depicted in Figure 9, together with computer program code for performing the functions of the present solution. The program code mentioned above may also be provided as a computer program product, for instance in the form of a data carrier carrying computer program code for performing the present solution when being loaded into the radio network node 110. One such carrier may be in the form of a CD ROM disc. It is however feasible with other data carriers such as a memory stick. The computer program code can furthermore be provided as pure program code on a server and downloaded to the radio network node 110 remotely.

[0112] When using the word "comprise" or "comprising" it shall be interpreted as nonlimiting, i.e. meaning "consist at least of".

[0113] The present invention is not limited to the above described preferred embodiments. Therefore, the above embodiments should not be taken as limiting the scope of the invention, which is defined by the appending claims.


Claims

1. A method in a radio network node (110) for dynamic carrier mode switching,
the radio network node (110) being: comprised in a radio communications system; configured to operate in a legacy mode; and configured to operate in a non legacy mode, said non legacy mode supporting a service in a way that is non backward compatible with the legacy mode with respect to cell specific reference symbols, wherein the service is discontinuous transmission for power saving in the radio network node (110), the method comprising:

operating (602,604,704,711,803,808) at least one carrier to switch between the non legacy mode and the legacy mode,

when operating the at least one carrier in the legacy mode, signalling (603,707,805) with a user equipment (120) only operable on said at least one carrier in the legacy mode,

when operating the at least one carrier in the non legacy mode, performing (605) discontinuous transmission for power saving while using the cell specific reference symbols during an active period of the discontinuous transmission.


 
2. Method according to claim 1, wherein the switching of the at least one carrier from non legacy mode to legacy mode is performed periodically.
 
3. Method according to claim 1, wherein the switching of the at least one carrier from non legacy mode to legacy mode is performed with pseudo-random intervals.
 
4. Method according to any of claims 1-3, further comprising:

when operating the at least one carrier in the non legacy mode, detecting (601) that the user equipment (120) operating in the legacy mode is present in a geographical area being served by the radio network node (110),

and wherein this step of detecting (601) triggers the step of operating (602) the at least one carrier so that it switches from non legacy mode to legacy mode.


 
5. Method according to any of claims 1-3, wherein the at least one carrier is represented by multiple component carriers, and wherein the steps of operating (602) the multiple component carriers so that at least one of them switches from non legacy mode to legacy mode and operating (604) each of the multiple component carriers so that at least one of them switches from legacy mode to non legacy mode, are performed such that at least one component carrier of the multiple component carriers operate in legacy mode.
 
6. Method according to any of the claims 1- 5, wherein one component carrier of the multiple component carriers is an anchor carrier, and
wherein the at least one carrier is represented by multiple component carriers and wherein the steps of operating (602,704,803) the multiple component carriers so that at least one of them switches from non legacy mode to legacy mode and operating (604,711,808) each of the multiple component carriers so that at least one of them switches from legacy mode to non legacy mode, are performed such that the anchor carrier operates in legacy mode and is switched to non legacy mode for 1 ms every second.
 
7. Method according to any of the claims 5-6, wherein multiple component carriers comprise a first bandwidth component carrier and a second component carrier, the method further comprising:

operating (701) the first bandwidth component carrier in legacy mode operating (702) the second component carrier in non legacy mode.

detecting (703) that the user equipment (120) enters the first bandwidth component carrier, which first bandwidth component carrier operates in legacy mode,

wherein the step of operating (602) at least one carrier so that it switches from non legacy mode to legacy mode is performed by operating (704) the second component carrier such that it switches to legacy mode, and

serving (706) the user equipment (120) such that it performs a handover from the first component carrier to the second component carrier, which second component carrier was switched to legacy mode.


 
8. Method according to claim 7, comprising the further step to be performed after serving the user equipment (120) to perform handover:
operating (705) the first bandwidth component carrier such that it switches to a non legacy mode.
 
9. Method according to any of the claims 7-8, comprising the further step to be performed after serving the user equipment (120) to perform handover:

detecting (708) that the user equipment (120) requires no more second component carrier,

operating (709) the first bandwidth component carrier such that it switches to a legacy mode;

serving (710) the user equipment (120) such that it performs a handover from the second component carrier to the first bandwidth component carrier;

wherein the step of operating (604) the at least one carrier so that it switches from legacy mode to non legacy mode is performed by operating (711) the second component carrier such that it switches to the non legacy mode.


 
10. Method according to any of the claims 1-3, wherein the radio network node (110) serves a micro cell (152), which micro cell (152) is covered by a macro cell (155), comprising the further step of:

operating (801) the at least one component carrier in the micro cell (152) in non legacy mode,

obtaining (802) information or detecting that the user equipment (120) enters a carrier in the macro cell (155),

wherein the step of operating (602) at least one carrier so that it switches from non legacy mode to legacy mode is performed by operating (803) the at least one component carrier in the micro cell so that it switches from non legacy mode to legacy mode,

serving (804) the user equipment (120) such that it performs a handover from the macro cell (155) to the micro cell (152), which micro cell (152) was switched to legacy mode.


 
11. Method according to claim 10, wherein the step of obtaining (802) information that the user equipment (120) enters a carrier in the macro cell (155) is performed by receiving a request from a second network node (160) serving the macro cell (155), which request requests legacy operation from the micro cell (152).
 
12. Method according to any of the claims 10-11, comprising the further step to be performed after serving the user equipment (120) to perform handover:

detecting (806) that the user equipment (120) requires no more support from the micro cell,

serving (807) the user equipment (120) such that it performs a handover from the micro cell (152) to the macro cell (155),

wherein the step of operating (604) the at least one carrier so that it switches from the legacy mode to the non legacy mode is performed by operating (808) the at least one component carrier in the micro cell such that it switches from the legacy mode to the non legacy mode.


 
13. Arrangement (900) in a radio network node (110) for dynamic carrier mode switching,
the radio network node (110) being: comprised in a radio communications system; configured to operate in a legacy mode; and configured to operate in a non legacy mode, said non legacy mode supporting a service in a way that is non backward compatible with the legacy mode with respect to cell specific reference symbols, wherein the service is discontinuous transmission for power saving in the radio network node (110), the radio network node arrangement (900) comprising:

an operating unit (910) configured to operate at least one carrier to switch between the non legacy mode and the legacy mode,

a signalling unit (920) configured to signal with a user equipment (120) only operable on said at least one carrier in the legacy mode, when operating the at least one carrier in the legacy mode,

the operating unit (910) further being configured to perform discontinuous transmission for power saving while using the cell specific reference symbols during an active period of the discontinuous transmission, when operating the at least one carrier in the non legacy mode.


 
14. Radio network node arrangement (900) according to claim 13, wherein the switching of the at least one carrier from non legacy mode to legacy mode is performed periodically.
 
15. Radio network node arrangement (900) according to any of the claims 13-14, further comprising:
a detecting unit (930) configured to detect that the user equipment (120) operating in the legacy mode is present in a geographical area being served by the radio network node (110), when operating the at least one carrier in the non legacy mode, and which detection is a trigger for the operating unit (910) operate the at least one carrier so that it switches from non legacy mode to legacy mode upon.
 


Ansprüche

1. Verfahren in einem Funknetzknoten (110) für dynamisches Trägermodusumschalten,
wobei der Funknetzknoten (110): in einem Funkkommunikationssystem enthalten ist; konfiguriert ist, um in einem Legacy-Modus zu arbeiten; und konfiguriert ist, um in einem Nicht-Legacy-Modus zu arbeiten, wobei der Nicht-Legacy-Modus einen Dienst in einer Weise unterstützt, die nicht rückwärtskompatibel mit dem Legacy-Modus in Bezug auf zellenspezifische Referenzsymbole ist, wobei der Dienst diskontinuierliche Übertragung zur Leistungseinsparung im Funknetzknoten (110) ist, wobei das Verfahren Folgendes umfasst:

Betreiben (602, 604, 704, 711, 803, 808) von zumindest einem Träger, um zwischen dem Nicht-Legacy-Modus und dem Legacy-Modus umzuschalten,

beim Betreiben des zumindest einen Trägers in dem Legacy-Modus, Signalisieren (603, 707, 805) mit einem Benutzergerät (120), das nur auf dem zumindest einen Träger im Legacy-Modus betreibbar ist,

beim Betreiben des zumindest einen Trägers in dem Nicht-Legacy-Modus, Durchführen (605) von diskontinuierlicher Übertragung zur Leistungseinsparung, wobei die zellenspezifischen Referenzsymbole während eines aktiven Zeitraums der diskontinuierlichen Übertragung verwendet werden.


 
2. Verfahren nach Anspruch 1, wobei das Umschalten des zumindest einen Trägers vom Nicht-Legacy-Modus in den Legacy-Modus periodisch durchgeführt wird.
 
3. Verfahren nach Anspruch 1, wobei das Umschalten des zumindest einen Trägers vom Nicht-Legacy-Modus in den Legacy-Modus in pseudozufälligen Intervallen durchgeführt wird.
 
4. Verfahren nach einem der Ansprüche 1-3, ferner umfassend:

beim Betreiben des zumindest einen Trägers im Nicht-Legacy-Modus, Erkennen (601), dass das im Legacy-Modus betriebene Benutzergerät (120) in einem geografischen Bereich vorhanden ist, der von dem Funknetzknoten (110) bedient wird,

und wobei dieser Schritt des Erkennens (601) den Schritt des Betreibens (602) des zumindest einen Trägers, so dass er vom Nicht-Legacy-Modus in den Legacy-Modus umschaltet, auslöst.


 
5. Verfahren nach einem der Ansprüche 1-3, wobei der zumindest eine Träger durch mehrere Komponententräger repräsentiert wird, und wobei der Schritt des Betreibens (602) der mehreren Komponententräger, so dass zumindest einer von ihnen vom Nicht-Legacy-Modus in den Legacy-Modus umschaltet, und der Schritt des Betreibens (604) jedes der mehreren Komponententräger, so dass zumindest einer von ihnen vom Legacy-Modus in den Nicht-Legacy-Modus umschaltet, so durchgeführt werden, dass zumindest ein Komponententräger der mehreren Komponententräger im Legacy-Modus arbeitet.
 
6. Verfahren nach einem der Ansprüche 1-5, wobei ein Komponententräger der mehreren Komponententräger ein Ankerträger ist; und
wobei der zumindest eine Träger durch mehrere Komponententräger repräsentiert wird, und wobei der Schritt des Betreibens (602, 704, 803) der mehreren Komponententräger, so dass zumindest einer von ihnen vom Nicht-Legacy-Modus in den Legacy-Modus umschaltet, und der Schritt des Betreibens (604, 711, 808) jedes der mehreren Komponententräger, so dass zumindest einer von ihnen von dem Legacy-Modus in den Nicht-Legacy-Modus umschaltet, so durchgeführt werden, dass der Ankerträger im Legacy-Modus arbeitet und jede Sekunde für 1 ms in den Nicht-Legacy-Modus umgeschaltet wird.
 
7. Verfahren nach einem der Ansprüche 5-6, wobei mehrere Komponententräger einen ersten Bandbreitenkomponententräger und einen zweiten Komponententräger umfassen, wobei das Verfahren ferner umfasst:

Betreiben (701) des ersten Bandbreitenkomponententrägers im Legacy-Modus,

Betreiben (702) des zweiten Komponententrägers im Nicht-Legacy-Modus,

Erkennen (703), dass das Benutzergerät (120) in den ersten Bandbreitenkomponententräger eintritt, wobei der erste Bandbreitenkomponententräger im Legacy-Modus arbeitet,

wobei der Schritt des Betreibens (602) zumindest eines Trägers, so dass er von Nicht-Legacy-Modus in Legacy-Modus umschaltet, durch Betreiben (704) des zweiten Komponententrägers, so dass er in Legacy-Modus umschaltet, durchgeführt wird, und

Bedienen (706) des Benutzergeräts (120), so dass es eine Übergabe vom ersten Komponententräger zum zweiten Komponententräger durchführt, wobei der zweite Komponententräger in den Legacy-Modus umgeschaltet wurde.


 
8. Verfahren nach Anspruch 7, umfassend den weiteren Schritt, der nach dem Bedienen des Benutzergeräts (120), um Übergabe durchzuführen, durchzuführen ist:
Betreiben (705) des ersten Bandbreitenkomponententrägers, so dass er in einen Nicht-Legacy-Modus umschaltet.
 
9. Verfahren nach einem der Ansprüche 7-8, umfassend den weiteren Schritt, der nach dem Bedienen des Benutzergeräts (120), um Übergabe durchzuführen, durchzuführen ist:

Erkennen (708), dass das Benutzergerät (120) keinen weiteren zweiten Komponententräger benötigt,

Betreiben (709) des ersten Bandbreitenkomponententrägers, so dass er in einen Legacy-Modus umschaltet;

Bedienen (710) des Benutzergeräts (120), so dass es eine Übergabe vom zweiten Komponententräger zum ersten Bandbreitenkomponententräger durchführt;

wobei der Schritt des Betreibens (604) des zumindest einen Trägers, so dass er vom Legacy-Modus in den Nicht-Legacy-Modus umschaltet, durch Betreiben (711) des zweiten Komponententrägers, so dass er in den Nicht-Legacy-Modus umschaltet, durchgeführt wird.


 
10. Verfahren nach einem der Ansprüche 1-3, wobei der Funknetzknoten (110) eine Mikrozelle (152) bedient, wobei die Mikrozelle (152) von einer Makrozelle (155) abgedeckt ist, umfassend den weiteren Schritt:

Betreiben (801) des zumindest einen Komponententrägers in der Mikrozelle (152) im Nicht-Legacy-Modus,

Erlangen (802) von Informationen oder Erkennen, dass das Benutzergerät (120) in einen Träger der Makrozelle (155) eintritt,

wobei der Schritt des Betreibens (602) zumindest eines Trägers, so dass er vom Nicht-Legacy-Modus in den Legacy-Modus umschaltet, durch Betreiben (803) des zumindest einen Komponententrägers in der Mikrozelle, so dass er vom Nicht-Legacy-Modus in den Legacy-Modus umschaltet, durchgeführt wird,

Bedienen (804) des Benutzergeräts (120), so dass es eine Übergabe von der Makrozelle (155) zur Mikrozelle (152) durchführt, wobei die Mikrozelle (152) in den Legacy-Modus umschaltet wurde.


 
11. Verfahren nach Anspruch 10, wobei der Schritt des Erlangens (802) von Informationen, dass das Benutzergerät (120) in einen Träger in der Makrozelle (155) eintritt, durch Empfangen einer Aufforderung von einem zweiten Netzknoten (160), der die Makrozelle (155) bedient, durchgeführt wird, wobei die Aufforderung Legacy-Betrieb von der Mikrozelle (152) fordert.
 
12. Verfahren nach einem der Ansprüche 10-11, umfassend den weiteren Schritt, der nach dem Bedienen des Benutzergeräts (120), um Übergabe durchzuführen, durchzuführen ist:

Erkennen (806), dass das Benutzergerät (120) keine weitere Unterstützung von der Mikrozelle benötigt,

Bedienen (807) des Benutzergeräts (120), so dass es eine Übergabe von der Mikrozelle (152) zur Makrozelle (155) durchführt,

wobei der Schritt des Betreibens (604) des zumindest einen Trägers, so dass er vom Legacy-Modus in den Nicht-Legacy-Modus umschaltet, durch Betreiben (808) des zumindest einen Komponententrägers in der Mikrozelle, so dass er vom Legacy-Modus in Nicht-Legacy-Modus umschaltet, durchgeführt wird.


 
13. Anordnung (900) in einem Funknetzknoten (110) zur dynamischen Trägermodusumschaltung,
wobei der Funknetzknoten (110): in einem Funkkommunikationssystem enthalten ist; konfiguriert ist, um in einem Legacy-Modus zu arbeiten; und konfiguriert ist, um in einem Nicht-Legacy-Modus zu arbeiten, wobei der Nicht-Legacy-Modus einen Dienst in einer Weise unterstützt, die nicht rückwärtskompatibel mit dem Legacy-Modus in Bezug auf zellenspezifische Referenzsymbole ist, wobei der Dienst diskontinuierliche Übertragung zur Leistungseinsparung im Funknetzknoten (110) ist, wobei die Funknetzknotenanordnung (900) Folgendes umfasst:

eine Betriebseinheit (910), konfiguriert zum Betreiben von zumindest einem Träger, um zwischen dem Nicht-Legacy-Modus und dem Legacy-Modus umzuschalten,

eine Signalisierungseinheit (920), konfiguriert zum Signalisieren mit einem Benutzergerät (120), das nur auf dem zumindest einen Träger im Legacy-Modus betreibbar ist, wenn der zumindest eine Träger im Legacy-Modus betrieben wird,

wobei die Betriebseinheit (910) ferner dazu konfiguriert ist, diskontinuierliche Übertragung zur Leistungseinsparung durchzuführen, wobei die zellenspezifischen Referenzsymbole während eines aktiven Zeitraums der diskontinuierlichen Übertragung verwendet werden, wenn der zumindest eine Träger im Nicht-Legacy-Modus betrieben wird.


 
14. Funknetzknotenanordnung (900) nach Anspruch 13, wobei das Umschalten des zumindest einen Trägers vom Nicht-Legacy-Modus in den Legacy-Modus periodisch durchgeführt wird.
 
15. Funknetzknotenanordnung (900) nach einem der Ansprüche 13-14, ferner umfassend:
eine Erkennungseinheit (930), konfiguriert zum Erkennen, dass das im Legacy-Modus betriebene Benutzergerät (120) in einem geografischen Bereich vorhanden ist, der von dem Funknetzknoten (110) bedient wird, wenn der zumindest eine Träger im Nicht-Legacy-Modus betrieben wird, und wobei die Erkennung ein Auslöser für die Betriebseinheit (910) ist, um den zumindest einen Träger so zu betreiben, so dass er daraufhin vom Nicht-Legacy-Modus in den Legacy-Modus umschaltet.
 


Revendications

1. Procédé dans un noeud de réseau radio (110) pour une commutation de mode dynamique d'une porteuse,
le noeud de réseau radio (110) étant : compris dans un système de communication radio ; configuré pour fonctionner dans un mode patrimonial ; et configuré pour fonctionner dans un mode non patrimonial, ledit mode non patrimonial prenant en charge un service d'une manière qui n'est pas rétrocompatible avec le mode patrimonial par rapport à des symboles de référence spécifiques de cellules, dans lequel le service est une transmission discontinue pour l'économie d'énergie dans le noeud de réseau radio (110), le procédé comprenant :

le fonctionnement (602, 604, 704, 711, 803, 808) d'au moins une porteuse pour réaliser une commutation entre le mode non patrimonial et le mode patrimonial,

lors du fonctionnement de l'au moins une porteuse dans le mode patrimonial, la signalisation (603, 707, 805) avec un équipement utilisateur (120) pouvant fonctionner uniquement sur ladite au moins une porteuse dans le mode patrimonial,

lors du fonctionnement de l'au moins une porteuse dans le mode non patrimonial, la réalisation (605) d'une transmission discontinue pour l'économie d'énergie tout en utilisant les symboles de référence spécifiques de cellules pendant une période active de la transmission discontinue.


 
2. Procédé selon la revendication 1, dans lequel la commutation de l'au moins une porteuse depuis le mode non patrimonial jusqu'au mode patrimonial est réalisée de manière périodique.
 
3. Procédé selon la revendication 1, dans lequel la commutation de l'au moins une porteuse depuis le mode non patrimonial jusqu'au mode patrimonial est réalisée avec des intervalles pseudo-aléatoires.
 
4. Procédé selon l'une quelconque des revendications 1 à 3, comprenant en outre :

lors du fonctionnement de l'au moins une porteuse dans le mode non patrimonial, la détection (601) du fait que l'équipement utilisateur (120) fonctionnant dans le mode patrimonial est présent dans une zone géographique en train d'être desservie par le noeud de réseau radio (110),

et dans lequel cette étape de détection (601) déclenche l'étape de fonctionnement (602) de l'au moins une porteuse de telle sorte qu'elle réalise une commutation depuis le mode non patrimonial jusqu'au mode patrimonial.


 
5. Procédé selon l'une quelconque des revendications 1 à 3, dans lequel l'au moins une porteuse est représentée par de multiples porteuses composantes, et dans lequel les étapes de fonctionnement (602) des multiples porteuses composantes de telle sorte qu'au moins une d'entre elles réalise une commutation depuis le mode non patrimonial jusqu'au mode patrimonial et de fonctionnement (604) de chacune des multiples porteuses composantes de telle sorte qu'au moins une d'entre elles réalise une commutation depuis le mode patrimonial jusqu'au mode non patrimonial, sont réalisées de telle sorte qu'au moins une porteuse composante des multiples porteuses composantes fonctionnent en mode patrimonial.
 
6. Procédé selon l'une quelconque des revendications 1 à 5, dans lequel une porteuse composante des multiples porteuses composantes est une porteuse d'ancrage, et
dans lequel l'au moins une porteuse est représentée par de multiples porteuses composantes et dans lequel les étapes de fonctionnement (602, 704, 803) des multiples porteuses composantes de telle sorte qu'au moins une d'entre elles réalise une commutation depuis le mode non patrimonial jusqu'au mode patrimonial et de fonctionnement (604, 711, 808) de chacune des multiples porteuses composantes de telle sorte qu'au moins une d'entre elles réalise une commutation depuis le mode patrimonial jusqu'au mode non patrimonial, sont réalisées de telle sorte que la porteuse d'ancrage fonctionne en mode patrimonial et réalise une commutation jusqu'au mode non patrimonial pendant 1 ms toutes les secondes.
 
7. Procédé selon l'une quelconque des revendications 5 et 6, dans lequel de multiples porteuses composantes comprennent une première porteuse composante de bande passante et une seconde porteuse composante, le procédé comprenant en outre :

le fonctionnement (701) de la première porteuse composante de bande passante en mode patrimonial

le fonctionnement (702) de la seconde porteuse composante en mode non patrimonial

la détection (703) du fait que l'équipement utilisateur (120) entre dans la première porteuse composante de bande passante, laquelle première porteuse composante de bande passante fonctionne en mode patrimonial,

dans lequel l'étape de fonctionnement (602) d'au moins une porteuse de telle sorte qu'elle réalise une commutation depuis le mode non patrimonial jusqu'au mode patrimonial est réalisée en faisant fonctionner (704) la seconde porteuse composante de telle sorte qu'elle réalise une commutation jusqu'au mode patrimonial, et

la desserte (706) de l'équipement utilisateur (120) de telle sorte qu'il réalise un transfert depuis la première porteuse composante jusqu'à la seconde porteuse composante, laquelle seconde porteuse composante a été commutée jusqu'au mode patrimonial.


 
8. Procédé selon la revendication 7, comprenant l'étape supplémentaire devant être réalisée après la desserte de l'équipement utilisateur (120) pour réaliser le transfert :
le fonctionnement (705) de la première porteuse composante de bande passante de telle sorte qu'elle réalise une commutation jusqu'à un mode non patrimonial.
 
9. Procédé selon l'une quelconque des revendications 7 et 8, comprenant l'étape supplémentaire devant être réalisée après la desserte de l'équipement utilisateur (120) pour réaliser le transfert :

la détection (708) du fait que l'équipement utilisateur (120) n'exige pas d'autre seconde porteuse composante,

le fonctionnement (709) de la première porteuse composante de bande passante de telle sorte qu'elle réalise une commutation jusqu'à un mode patrimonial ;

la desserte (710) de l'équipement utilisateur (120) de telle sorte qu'il réalise un transfert depuis la seconde porteuse composante jusqu'à la première porteuse composante de bande passante ;

dans lequel l'étape de fonctionnement (604) de l'au moins une porteuse de telle sorte qu'elle réalise une commutation depuis le mode patrimonial jusqu'au mode non patrimonial est réalisée en faisant fonctionner (711) la seconde porteuse composante de telle sorte qu'elle réalise une commutation jusqu'au mode non patrimonial.


 
10. Procédé selon l'une quelconque des revendications 1 à 3, dans lequel le noeud de réseau radio (110) dessert une microcellule (152), laquelle microcellule (152) est couverte par une macrocellule (155), comprenant l'étape supplémentaire de :

fonctionnement (801) de l'au moins une porteuse composante dans la microcellule (152) en mode non patrimonial,

obtention (802) d'informations ou détection du fait que l'équipement utilisateur (120) entre dans une porteuse dans la macrocellule (155),

dans lequel l'étape de fonctionnement (602) d'au moins une porteuse de telle sorte qu'elle réalise une commutation depuis le mode non patrimonial jusqu'au mode patrimonial est réalisée en faisant fonctionner (803) l'au moins une porteuse composante dans la microcellule de telle sorte qu'elle réalise une commutation depuis le mode non patrimonial jusqu'au mode patrimonial,

desserte (804) de l'équipement utilisateur (120) de telle sorte qu'il réalise un transfert depuis la macrocellule (155) jusqu'à la microcellule (152), laquelle microcellule (152) a été commutée jusqu'au mode patrimonial.


 
11. Procédé selon la revendication 10, dans lequel l'étape d'obtention (802) d'informations du fait que l'équipement utilisateur (120) entre dans une porteuse dans la macrocellule (155) est réalisée en recevant une demande provenant d'un second noeud de réseau (160) desservant la macrocellule (155), laquelle demande demande un fonctionnement patrimonial à partir de la microcellule (152).
 
12. Procédé selon l'une quelconque des revendications 10 et 11, comprenant l'étape supplémentaire devant être réalisée après la desserte de l'équipement utilisateur (120) pour réaliser le transfert :

la détection (806) du fait que l'équipement utilisateur (120) n'exige pas d'autre prise en charge à partir de la microcellule,

la desserte (807) de l'équipement utilisateur (120) de telle sorte qu'il réalise un transfert depuis la microcellule (152) jusqu'à la macrocellule (155),

dans lequel l'étape de fonctionnement (604) de l'au moins une porteuse de telle sorte qu'elle réalise une commutation depuis le mode patrimonial jusqu'au mode non patrimonial est réalisée en faisant fonctionner (808) l'au moins une porteuse composante dans la microcellule de telle sorte qu'elle réalise une commutation depuis le mode patrimonial jusqu'au mode non patrimonial.


 
13. Agencement (900) dans un noeud de réseau radio (110) pour une commutation de mode dynamique d'une porteuse,
le noeud de réseau radio (110) étant : compris dans un système de communication radio ; configuré pour fonctionner dans un mode patrimonial ; et configuré pour fonctionner dans un mode non patrimonial, ledit mode non patrimonial prenant en charge un service d'une manière qui n'est pas rétrocompatible avec le mode patrimonial par rapport à des symboles de référence spécifiques de cellules, dans lequel le service est une transmission discontinue pour l'économie d'énergie dans le noeud de réseau radio (110), l'agencement de noeud de réseau radio (900) comprenant :

une unité de fonctionnement (910) configurée pour faire fonctionner au moins au moins une porteuse pour réaliser une commutation entre le mode non patrimonial et le mode patrimonial,

une unité de signalisation (920) configurée pour réaliser une signalisation avec un équipement utilisateur (120) pouvant fonctionner uniquement sur ladite au moins une porteuse dans le mode patrimonial, lors du fonctionnement de l'au moins une porteuse dans le mode patrimonial,

l'unité de fonctionnement (910) étant en outre configurée pour réaliser une transmission discontinue pour l'économie d'énergie tout en utilisant les symboles de référence spécifiques de cellules pendant une période active de la transmission discontinue, lors du fonctionnement de l'au moins une porteuse dans le mode non patrimonial.


 
14. Agencement de noeud de réseau radio (900) selon la revendication 13, dans lequel la commutation de l'au moins une porteuse depuis le mode non patrimonial jusqu'au mode patrimonial est réalisée de manière périodique.
 
15. Agencement de noeud de réseau radio (900) selon l'une quelconque des revendications 13 et 14, comprenant en outre :
une unité de détection (930) configurée pour détecter que l'équipement utilisateur (120) fonctionnant dans le mode patrimonial est présent dans une zone géographique en train d'être desservie par le noeud de réseau radio (110), lors du fonctionnement de l'au moins une porteuse dans le mode non patrimonial, et laquelle détection est un déclencheur pour que l'unité de fonctionnement (910) fasse fonctionner l'au moins une porteuse de telle sorte qu'elle réalise dessus une commutation depuis le mode non patrimonial jusqu'au mode patrimonial.
 




Drawing





























Cited references

REFERENCES CITED IN THE DESCRIPTION



This list of references cited by the applicant is for the reader's convenience only. It does not form part of the European patent document. Even though great care has been taken in compiling the references, errors or omissions cannot be excluded and the EPO disclaims all liability in this regard.

Non-patent literature cited in the description