(19)
(11)EP 2 429 709 B1

(12)EUROPEAN PATENT SPECIFICATION

(45)Mention of the grant of the patent:
08.08.2018 Bulletin 2018/32

(21)Application number: 10733062.3

(22)Date of filing:  17.05.2010
(51)International Patent Classification (IPC): 
B01L 9/06(2006.01)
(86)International application number:
PCT/US2010/035146
(87)International publication number:
WO 2010/132887 (18.11.2010 Gazette  2010/46)

(54)

CONTAMINATION CONTROL FOR LIQUID HANDLING

KONTROLLE DER KONTAMINATION BEI DER HANDHABUNG VON FLÜSSIGKEITEN

CONTRÔLE DE LA CONTAMINATION POUR LA MANIPULATION DE LIQUIDES


(84)Designated Contracting States:
AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO SE SI SK SM TR

(30)Priority: 15.05.2009 US 178652 P

(43)Date of publication of application:
21.03.2012 Bulletin 2012/12

(60)Divisional application:
18179580.8

(73)Proprietors:
  • Gen-Probe Incorporated
    San Diego, CA 92121 (US)
  • Stratec Biomedical AG
    75217 Birkenfeld-Graefenhausen (DE)

(72)Inventors:
  • RHUBOTTOM, Jason F.
    California 92058 (US)
  • CLARK, Craig B.
    San Diego California 92122 (US)
  • GILKER, John M.
    San Diego California 92127 (US)
  • HAGEN, Norbert D.
    Carlsbad California 92009 (US)
  • HORN, Tom R.
    San Diego California 92131 (US)
  • KNIGHT, Byron J.
    San Diego California 92115 (US)
  • OPALSKY, David
    San Diego California 92130 (US)
  • LUKHAUB, Waldemar
    71665 Vaihingen / Enz (DE)
  • HÖRGER, Olaf
    75305 Neuenbürg (DE)

(74)Representative: Script IP Limited et al
Turnpike House 18 Bridge Street
Frome Somerset BA11 1BB
Frome Somerset BA11 1BB (GB)


(56)References cited: : 
EP-A1- 2 080 553
EP-A2- 1 447 669
WO-A1-2008/044594
WO-A2-03/097240
US-A1- 2004 005 714
US-A1- 2006 266 719
EP-A2- 0 979 999
WO-A1-2007/121324
WO-A2-03/008099
US-A- 5 700 429
US-A1- 2004 195 193
US-A1- 2009 220 379
  
      
    Note: Within nine months from the publication of the mention of the grant of the European patent, any person may give notice to the European Patent Office of opposition to the European patent granted. Notice of opposition shall be filed in a written reasoned statement. It shall not be deemed to have been filed until the opposition fee has been paid. (Art. 99(1) European Patent Convention).


    Description

    BACKGROUND


    Field of the Invention



    [0001] This invention relates to systems, methods, and apparatus for storing and presenting sample materials for access by a sample transfer apparatus and for limiting the incidence of cross-contamination between sample-containing vessels during a sample transfer operation.

    Background of the Invention



    [0002] All documents referred to herein, or the indicated portions, are hereby incorporated by reference herein. No document, however, is admitted to be prior art to the claimed subject matter.

    [0003] Analyzers for performing assays on fluid samples typically include a fluid transfer mechanism for transferring fluid sample material and other fluids between various receptacles or containers. For example, fluid sample material may be introduced into the analyzer via a sample receptacle, such as a test tube, containing an amount of the fluid sample, placed in the analyzer or in operative proximity to the analyzer. The analyzer may include an automated fluid transfer mechanism comprising a robotically-controlled pipetting device having an aspirating probe for accessing the contents of a receptacle. The probe may comprises a barrel with a protective tip (e.g., a pipette tip) mounted (e.g., frictionally) on its distal end.

    [0004] Fluid sample material is transferred from the sample receptacle by positioning the aspirating probe above the sample receptacle and then lowering the probe until a distal end of the probe is submerged in the fluid sample material held in the container. After the probe is submerged, an amount of fluid is drawn into the probe. The probe is then raised and moved to another location within the analyzer and is operatively positioned above another container (or, alternatively, the probe can be held in a fixed position and the sample receptacle and other containers can be moved relative to the probe). The sample material may be transferred to a reaction receptacle (e.g., test tube, cuvette, microtiter plate well, etc.) within which the sample material is combined with reagents and/or other reactants (and, optionally, the container and its contents may be subjected to other conditions or stimuli, such as, incubation at an elevated temperature, mixing, and/or centrifuging) to effect a transformation or chemical, biochemical or biological reaction. After the probe is positioned above the container that is to receive the sample material, some or all of the fluid is dispensed from the probe into one or more containers, moving the probe from receiving container to receiving container as necessary.

    [0005] During such a fluid transfer procedure, care must be taken to avoid cross-contamination due to spilled or misplaced sample material. For example, sample from one sample receptacle should not be mistakenly deposited into another sample receptacle containing a different sample or a sample from a different source. Similarly, no sample material should be deposited into a reaction receptacle in which such sample is not intended, for example in a reaction receptacle within which a different sample had already been dispensed.

    [0006] Fluid sample material may include, for example, urine, blood, plasma, saliva, mucus, seminal fluid, amniotic fluid, cerebrospinal fluid, synovial fluid, and cultures. Such materials may, under certain circumstances or conditions, be characterized as having a viscous consistency. Accordingly, when the probe of a pipetting device is submerged into the sample material and is then withdrawn, the viscous or mucoid nature of the sample material may result in a string of viscous material suspended from a distal end of the probe after the probe is withdrawn from the sample receptacle. Further movement of the sample transfer probe may drag the string of viscous material along with it, thereby potentially causing cross-contamination should the string of viscous material contact or fall into another sample receptacle or reaction vessel or other contamination-sensitive surface or component within the analyzer.

    [0007] WO 03/008099 proposes a sample carrier and a drip shield for use therewith.

    SUMMARY OF THE INVENTION



    [0008] The present invention provides methods, systems, and apparatus for removing a string of viscous material from the probe of a fluid transfer mechanism in a controlled manner so that the string is detached from the probe in a location that is unlikely to cause cross-contamination.

    [0009] Aspects of the invention are embodied in a method for separating a viscous material suspended from a probe of an automated pipettor. The probe is lowered into a receptacle containing a viscous material through an opening formed in a cover disposed over the receptacle. At least a portion of the viscous material is drawn into the probe. The probe from is then removed from the vessel to a position above the cover, whereby a string of the viscous material is suspended from the probe. The probe is then moved laterally with respect to the opening to a position offset from the opening and adjacent a raised structure formed on the cover. Next, the probe is moved laterally along a path comprising movement in first and second directions. The transition from movement in the first direction to movement in the second direction causes the string of viscous material to contact the raised structure, and the continued movement of the probe along the path causes at least a portion of the string of viscous material to be separated from the probe.

    [0010] In one embodiment, the raised structure includes first and second upright, non-coplanar sides defining a corner at a transition therebetween, and the transition from movement in the first direction to movement in the second causes the string of viscous material to contact the corner of the raised structure.

    [0011] In one embodiment, the first and second directions are substantially at right angles to one another, and, in another embodiment, the first and second directions are not at right angles to one another.

    [0012] In one embodiment, after moving the probe laterally with respect to the opening to a position offset from the opening and adjacent the raised structure, the probe is lowered so that the distal end thereof is disposed below the top of the raised structure.

    [0013] In one embodiment, the probe comprises a barrel with a protective tip mounted on a distal end thereof.

    [0014] Further aspects of the invention are embodied in a system for transferring viscous materials. The system comprises a sample holding area, an automated pipettor, and a controller. The sample holding area is configured to receive and position a plurality of receptacles and includes a cover member having a plurality of openings through which the automated pipettor can access the receptacles positioned beneath the cover member. The openings are arranged so that each opening is associated with one of the receptacles, and a top side of the cover member includes a plurality of raised structures. Each raised structure is adjacent to one of the openings. The automated pipettor is operatively associated with the sample holding area and is configured for automated movement with respect to the sample holding area and includes a fluid transfer probe. The controller controls movement of the probe of the pipettor, and is programmed to selectively move the probe into a position aligned with one of the openings, lower the probe through the opening and into the associated receptacle below the opening, raise the probe out of the associated receptacle to a position above the cover member, move the probe laterally to a position offset from the opening and adjacent the raised structure associated with the opening with the distal end of the probe disposed below a top surface of the associated raised structure, and move the probe laterally, relative to the associated raised structure, along a path comprising movement in first and second directions, the transition from the first direction to the second direction causing the string of viscous material suspended from the probe to contact the raised structure. The continued movement of the probe along the path causes at least a portion of the string of viscous material to be separated from the probe.

    [0015] In one embodiment, the probe comprises a pipette with a protective tip mounted on a distal end thereof.

    [0016] In one embodiment, the controller is programmed to move the probe in first and second directions that are substantially at right angles to one another, and, in another embodiment, the controller is programmed to move the probe in first and second directions that are not at right angles to one another.

    [0017] In one embodiment, the controller is programmed to lower the probe after moving the probe to the position offset from the opening so that the distal end thereof is disposed below the top of the raised structure.

    [0018] In one embodiment, the plurality of openings are arranged in an array pattern of aligned rows and columns of openings.

    [0019] In one embodiment, each raised structure comprises two opposed and generally parallel sides and an end wall spanning the ends of the two sides. In another embodiment, each raised structure further comprises a raised ledge spanning ends of the two sides opposite the end wall, and the sides and the end wall are higher than the raised ledge.

    [0020] In one embodiment, each raised structure is a U-shaped structure at least partially surrounding the opening, and movement of the probe laterally with respect to the opening to a position offset from the opening comprises moving the probe through an opening defined between opposed legs of the U-shaped structure.

    [0021] In other embodiments, each raised structure may comprises a square element surrounding the opening, a triangular element surrounding the opening, or a hexagonal element surrounding the opening.

    [0022] In one embodiment, each raised structure comprises a raised surface surrounding the opening and a post projecting above the raised surface adjacent the opening.

    [0023] In one embodiment, the system further includes a cooling system constructed and arranged to maintain the sample holding area a cooler than ambient temperature.

    [0024] In one embodiment, the system further includes a label reading device constructed and arranged to a read machine readable label placed on each of said receptacles.

    [0025] In one embodiment, the label reading device comprises a barcode reader.

    [0026] In one embodiment, the system further includes one or more receptacle holders, each configured to hold a plurality of receptacles, and the sample receiving area is configured to receive said receptacle holders and includes guide structures to ensure the proper position and orientation of the receptacles carried in each rack relative to the openings formed in said cover member.

    [0027] In one embodiment, the guide structures define two or more lanes configured to receive a different one of the receptacle holders.

    [0028] In one embodiment, the raised structure comprises two generally upright, non-coplanar sides defining a corner at a transition therebetween, and the controller is programmed to selectively move the probe laterally, relative to the corner of the associated raised structure, along the path comprising movement in first and second directions, and wherein the transition from the first direction to the second direction causes the string of viscous material suspended from the probe to contact the corner of the associated raised structure

    [0029] In one embodiment, the system further includes indicator elements in communication with said controller and configured to indicate which of two or more lanes is to receive the next receptacle holder to be inserted into the sample receiving area.

    [0030] In one embodiment, the system further includes a rack sensing element configured to detect if a rack is fully inserted into the sample receiving area.

    [0031] In one embodiment, the plurality of openings are arranged in parallel rows with openings in adjacent rows being offset from one another.

    [0032] In one embodiment, the sample holding area comprises a sample bay having first and second side walls and a back wall extending between said first and second side wall, and first and second side walls and said back wall support said cover member.

    [0033] In one embodiment, the first and second side walls and said back wall are insulated.

    [0034] In one embodiment, the system further includes a floor plate with a coolant tube arranged below said floor plate and configured to carry a cooling medium for cooling said sample bay.

    [0035] These and other features, aspects, and advantages of the present invention will become apparent to those skilled in the art after considering the following detailed description, appended claims and accompanying drawings.

    BRIEF DESCRIPTION OF THE DRAWINGS



    [0036] The accompanying drawings, which are incorporated herein and form part of the specification, illustrate various implementations of the present disclosure. In the drawings, like reference numbers indicate identical or functionally similar elements.

    FIGURE 1 is an upper front perspective view of a sample receptacle module.

    FIGURE 2 is an upper rear perspective view of the sample receptacle module.

    FIGURE 3 is a lower front perspective view of a sample bay of the sample receptacle module.

    FIGURE 4 is a perspective view of a sample rack of the sample receptacle module including a receptacle holder and a cover.

    FIGURE 5 is a top view of the receptacle holder with the cover removed.

    FIGURE 6 is a side view of the sample rack, including the receptacle holder and the cover.

    FIGURE 7 is side view of the sample rack, including the receptacle holder and the cover, with a plurality of differently-sized sample receptacles carried in the receptacle holder.

    FIGURE 8 is an enlarged upper front perspective view showing, in isolation, a single viscous string removal element of the sample bay cover of FIGURES 1 and 2.

    FIGURE 9 is a rear upper perspective view showing, in isolation, the viscous string removal element of FIGURE 8.

    FIGURE 10 is a partial top view of the sample bay cover of FIGURES 1 and 2 showing viscous string removal elements and schematically indicating a path traveled by a sample transfer probe while moving from a sample access opening formed in the cover.

    FIGURE 11 is a partial top view of a sample bay cover showing a first alternative configuration of viscous string removal elements and schematically indicating a path traveled by a sample transfer probe while moving from a sample access opening formed in the cover.

    FIGURE 12 is a partial top view of a sample bay cover showing a second alternative configuration of viscous string removal elements and schematically indicating a path traveled by a sample transfer probe while moving from a sample access opening formed in the cover.

    FIGURE 13 is a partial top view of a sample bay cover showing a third alternative configuration of viscous string removal elements and schematically indicating a path traveled by a sample transfer probe while moving from a sample access opening formed in the cover.

    FIGURE 14 is a partial top view of a sample bay cover showing a fourth alternative configuration of viscous string removal elements and schematically indicating a path traveled by a sample transfer probe while moving from a sample access opening formed in the cover.

    FIGURE 15 is a partial top view of a sample bay cover showing a fifth alternative configuration of viscous string removal elements and schematically indicating a path traveled by a sample transfer probe while moving from a sample access opening formed in the cover.

    FIGURE 15A is a cross-section along line A-Ain FIGURE 15.

    FIGURE 16 is a flow chart illustrating a method for separating a string of viscous material from the probe of a fluid transfer mechanism.

    FIGURE 17 is a schematic view of a system including a sample receptacle module, an automated pipettor, and a controller for controlling operation of the pipettor and programmed to execute an algorithm to cause the pipettor to perform the method illustrated in FIGURE 16.


    DETAILED DESCRIPTION OF THE INVENTION



    [0037] As shown in FIGURE 1, a sample receptacle module includes a sample bay 10 within which are disposed a plurality of sample racks 100. In the illustrated embodiment, the sample bay 10 holds up to eight sample racks 100.

    [0038] As shown in FIGURES 1-3, the sample bay 10 is a box-like structure having a first side wall 12, a second side wall 16, a back wall 18, and a floor plate 20. The walls 12, 16, and 18 may be thermally insulated. The sample bay 10 further includes a sample bay cover 40 carried at its edges by the walls 12, 16, and 18. A front end 32 of the sample bay 10 is open to permit the sample racks 100 to be inserted into and removed from the sample bay 10. The floor plate 20 may further include sample rack guides 22 which engage mating guides formed in the bottom of each sample rack 100 for accurately and repeatably positioning each rack. Holes 19 formed in back wall 18 are aligned with each sample rack position.

    [0039] Sample bay 10 further includes a barcode bracket 34 mounted to the first side wall 12 and configured to carry a barcode reader 15 in an operative position with respect to a barcode window 14 formed in the first side wall 12. The barcode reader 15 carried in the barcode bracket 34 is configured to read barcodes placed on individual sample receptacles carried in each of the sample racks 100 as well as barcodes on the sample racks 100 themselves. The barcodes are read through the barcode window 14 as the sample rack is pushed into or removed from the sample bay 10. A procedure for reading the barcodes on sample receptacles s will be described below.

    [0040] The interior of the sample bay 10 is preferably kept at a cooler than ambient temperature by means of a coolant medium flowing through a coolant tube 30 arranged beneath the floor plate 20, as shown in FIGURE 3. The coolant medium, which may comprise chilled water, is passed through the coolant tube 30 via a coolant inlet connector 28 and a coolant outlet connector 26 mounted behind the back wall 18, as shown in FIGURE 2.

    [0041] The chilled interior of the sample bay 10 can cause an accumulation of condensation inside the sample bay 10. To convey accumulated water away from the sample bay 10, a condensation tube 36 is provided along the lower front edge of the front opening 32. The condensation tube 36 includes a top longitudinal slot 38, and a front edge 24 of the floor plate 20 is bent into the slot 38 to direct excess condensation collected on the floor plate 20 into the condensation tube 36. Condensation tube 36 conveys the collected condensation to a remote container or drain (not shown).

    [0042] The sample bay cover 40 has formed therein a plurality of sample receptacle access openings 42, which can be arranged in a rectangular array of rows and columns, each column of openings aligning with the position of a sample rack 100. A raised element, referred to as a viscous string removal element 44, is provided adjacent each access opening 42. The function of the viscous string removal
    elements 44 will be described below.

    [0043] The sample rack 100 is shown in further detail in FIGURES 4-7. Sample rack 100 is adapted to receive and hold a plurality of receptacles, which may comprise tubular containers, such as test tubes. Sample rack 100 includes a receptacle holder 102 and a cover 130. The receptacle holder 102 includes a handle 104 for grasping and carrying the sample rack 102 and for inserting the receptacle holder 102 into or removing the receptacle holder 102 from the sample bay 10. A machine-readable label, such as a barcode 103, can be provided on the receptacle holder 102, such as near the handle 104 as shown.

    [0044] The receptacle holder 102 may be made from a suitable, non-reactive material, such as plastic or Delrin® acetyl resin, and includes a base 106 extending longitudinally from the handle 104. A guide track 108 is formed in the base 106 for engaging the sample rack guides 22 provided in the floor plate 20 of the sample bay 10 to ensure proper positioning of the sample rack 100 within the sample bay 10. An alignment slot 118 is formed in a top edge above the handle 104. Alignment slot 118 engages one of the alignment projections 60 formed along the bottom of a front edge of the sample bay cover 40 (See FIGURE 3). A plurality of vertically oriented divider walls 110 extend upwardly, at spaced intervals, from the base 106. The upper portions of the divider walls 110 are held in fixed relative positions by a side panel 122 extending longitudinally from the handle 104 to an end wall 120 along one side of the receptacle holder 102. The gap between each pair of adjacent divider walls 110 defines a sample receptacle pocket 124, or receptacle-receiving area, for receiving an individual receptacle. Pocket-identifying indicia, such as barcode 125, can be provided on the divider walls 110 adjacent each pocket 124. The indicia, which may also include an alphanumeric identifier, "A", "B", "C", etc., uniquely identifies each pocket 124. A machine readable label, such as "empty pocket" barcode 123, may be provided within each pocket 124, on the inner side of surface panel 122 to uniquely identify each pocket and to indicate when a receptacle is not present in the pocket 124.

    [0045] A resilient element, such as a spring clip 116, is provided in each sample receptacle pocket 124. Spring clip 116 comprises a bent element (made of, e.g., spring stainless steel) with one portion attached to one divider wall 110 defining a receptacle pocket 124 and another portion extending at an acute angle into the pocket. Each sample receptacle pocket 124 can accommodate receptacles of varying sizes. The receptacle is held in a relatively secure, fixed position within the pocket 124 by means of the spring clip 116 which urges the receptacle toward a divider wall 110 forming one side of the sample receptacle pocket 124. As shown in FIGURE 5, each divider wall 110 incorporates a positioning feature, such as a shallow V-shaped notch 126, which assists in positioning (e.g., centering) a receptacle urged against the divider wall 110 by the spring clip 116. FIGURES 4 and 7 show the receptacle holder 102 carrying a plurality of large receptacles 160, small receptacles 162, and medium-sized, capped receptacles 164. The receptacles can be test tubes ranging in size from 12 mm to 16 mm in diameter.

    [0046] Cover 130 fits over the top ends of the sample receptacles projecting above the receptacle holder 102, and is preferably made from a transparent or translucent plastic material so that the contents of the receptacle holder 102 can be observed without removing the cover 130. The cover 130 includes first and second longitudinal side walls 132, 134 and end walls 136, 138. The cover 130 may include structural elements for realeasably securing the cover 130 to the receptacle holder 102. The cover may include locking forks 140, 142 at opposite ends of the cover 130 (See FIGURE 4) which engage mating elements (not shown) formed in the receptacle holder 102 for realeasably securing the cover 130 to the receptacle holder 102. Cover 130 may include a machine - readable label, such as barcode 131.

    [0047] A horizontal transverse wall 144 extends between the side and end walls 132, 134, 136, 138 below the topmost edges of the side and end walls, thereby defining a trough 156 in the upper portion of the cover 130. A plurality of longitudinally- spaced access openings 146 are formed in the transverse wall 144 and upper divider walls 148 extend laterally between the side walls 132, 134 between each of the access openings 146. Each upper divider wall 148 includes a rectangular notch 150 formed in an upper, central portion thereof. Lower divider walls 152 extend laterally between the side walls 132, 134 below the transverse wall 144 at positions between the access openings 146. The space between consecutive lower divider walls 152 is large enough to accommodate the width (e.g., diameter) of the largest receptacle that can be carried in a sample receptacle pocket 124 (see large tubes 160 in FIGURE 7). The cover 130 further includes a receptacle-retaining element configured to engage a portion of the top of certain-sized receptacles urged into a centered, or other predetermined, position within each receptacle pocket 124 by the spring clip 116 and the V-shaped notch 126. More specifically, each lower divider wall 152 can include a cap notch 154 extending across the divider wall 152 at a lower end thereof. The cap notch 154 accommodates a receptacle cap when the cover 130 is placed over a receptacle holder 102 carrying one or more capped receptacles 164 (see FIGURE 7).

    [0048] Capped receptacles 164 may comprise receptacles provided with a cap that is penetrable by the probe of a fluid transfer mechanism, such as described in U.S. Patent Nos. 6,893,612 or 7,435,389. The probe penetrates the cap by puncturing one or more piercable members of the cap as the probe is moved into the receptacle. The cap may also include a filter element through which the probe must pass before reaching a fluid contained within the receptacle 164. After the probe penetrates the cap, friction between the penetrated portions of the cap and/or the filter element and the probe can cause the receptacle 164 to lift out of its pocket when the probe is withdrawn from the receptacle 164. The cap notch 154 of the cover 130 applies a downward holding force on the capped receptacle 164 to prevent the receptacle 164 from being lifted out of the receptacle pocket 124 when a probe that has penetrated the cap is withdrawn from the receptacle 164.

    [0049] A home pin 114 extends from the end wall 120. Home pin 114 lets the instrument know that the sample rack has been fully inserted into the sample bay 10, or when it is being removed, for example by extending through holes 19 formed in back wall 18 and engaging a sensor, such as a slotted optical sensor (not shown) mounted to the back wall 18. Home pin 114 may also function as a positioning element to assure the rack is absolutely vertical.

    [0050] The sample rack 100 is placed within the sample bay 10 by positioning the sample rack 100 in an aligned orientation with respect to the sample rack guides 22 provided on the floor plate 20 of the sample bay 10. As noted, sensors may be provided for detecting the presence of a sample rack 100 and to indicate whether the sample rack 100 is fully inserted into the sample bay 10.

    [0051] Receptacles are placed in the sample rack so that machine-readable labels (e.g., barcodes 163, see FIGURE 7) as well as human-readable labels are visible through the side opening of each pocket 124 between adjacent divider walls 110. As a sample rack 100 is inserted into the sample bay 10, the barcode reader 15 reads each barcode 163 sequentially as the receptacles 160, 162, and/or 164 carried in the receptacle holder 102 pass the barcode window 14. If a pocket 124 is empty, the barcode 123 is read, indicating the absence of a receptacle in the pocket 124. Each pocket-identifying barcode 125 is also read by the barcode reader 15 to provide pocket identification data with which to associate the receptacle (or absence of a receptacle) carried in the corresponding pocket 124. Preferably only one barcode reader is provided and, therefore, as can be appreciated from FIGURE 1, it will be necessary to fill sample rack lanes (defined by the sample rack guides 22) moving from left to right so that there is no carrier between the carrier being inserted and the barcode window 14 and barcode reader 15. Indicator lights at each of the lanes may illuminate sequentially as an indication to the operator as to which lane should be loaded next. The barcode information for each receptacle is stored (e.g., in the memory of an instrument computer controller (not shown)), and that information is correlated with the carrier position (i.e., lane) within the sample bay 10. The barcode reader also reads the sample holder barcode 103 to identify the holder 102 and the cover bar code 131 to ensure that the cover 130 is in place.

    [0052] Occasionally, receptacles are labeled with barcodes of relatively poor quality that can be read only by a barcode reader that is in relatively close proximity to the barcodes. For such situations, the sample bay 10 and instrument controller preferable provide a "high resolution reading mode" ("HRM"), referred to as the high resolution reading mode because it is in this mode in which the barcode reader 15 can read in the highest resolution (i.e., smallest line size). HRM is preferably operator-selectable. After HRM is selected, the sample rack 100 loaded with receptacles 160, 162, and/or 164 with barcodes 163 is first inserted in the far right-hand sample rack lane, closest to the barcode reader 15 and window 14 (this will be referred to as the high resolution reading lane). An audible and/or visible indicator may be provided to identify the high resolution reading lane. As the sample rack 100 is inserted into the high resolution reading lane, each receptacle barcode 163 is read and receptacle data obtained by reading the barcode 163 is stored. Pocket-identifier barcodes 125 and a rack identifier barcode 102 are read and stored as well. The pocket-identifier data and the rack-identifier data are associated with the receptacle data obtained for each of the receptacles in the rack, for example in a relational database. The close proximity of the high resolution reading lane to the barcode reader 15 will increase the likelihood of an accurate read. After the sample rack 100 has been fully inserted into the high resolution reading lane, the sample rack 100 is then withdrawn. A sensor may be provided to sense when the sample rack 100 has been fully inserted, and an indicator light and/or audible tone may signal to the operator that the sample rack 100 may be removed. After the sample rack 100 is removed, it is then re-inserted into one of the other, available lanes. An indicator light may be provided to identify the lane into which the sample rack 100 is to be inserted. As the sample rack 100 is inserted into the available lane, the barcodes 163 on the receptacles are not re-read, but the sample rack identifier barcode 103 is read to confirm that the sample rack 100 that was just scanned in the high resolution reading lane is being inserted. The cover barcode 131 may also be read to ensure the positioning of the cover 130. The receptacle data associated in the database with that rack identification then becomes associated with that lane. The controller may be configured to erase or otherwise disable the barcodes if the sample rack 100 is not re-inserted into an available lane within a specified period of time (e.g., 5 seconds). Thus, if the sample rack 100 is not re-inserted into the sample bay 10 within the specified period of time, the controller will not recognize the sample rack 100 as having been previously scanned in the high resolution reading lane, and the sample rack 100 will have to be scanned in the high resolution reading lane again. This control feature will minimize the ability to switch one or more un-scanned receptacles for scanned receptacles in the time between withdrawing the sample rack 100 from the high resolution reading lane and reinserting the sample rack 100 into another available lane.

    [0053] After the sample rack 100 is inserted into the sample bay 10, sample material contained in receptacles carried in the sample rack 100 can be accessed via a fluid transfer mechanism - such as the probe (e.g., a barrel with a protective tip, such as a pipette tip, mounted thereon) of an automated, robotically operated pipetting device - through the access openings 42 formed in the sample bay cover 40 and the access openings 146 formed in the cover 130. Sample material may include, for example, urine, blood, plasma, saliva, mucus, seminal fluid, amniotic fluid, cerebrospinal fluid, synovial fluid, cultures, and the like. When a probe of a pipetting device is submerged in a viscous sample material carried in a receptacle and then withdrawn, a viscous string of the sample material may result in a string of viscous material being suspended from a distal end of the probe after the probe is withdrawn from the sample receptacle. Further movement of the sample transfer probe may drag the string of viscous material along with it, thereby potentially causing cross-contamination should a portion of the string of viscous material fall into another sample receptacle or a reaction receptacle or contact a contamination sensitive surface or component. Accordingly, the sample bay cover 40 includes viscous string removal elements 44 adjacent to each sample receptacle access opening 42, and relative movement of the sample transfer probe in a prescribed manner with respect to the viscous string removal element will remove the string of viscous material in a controlled manner at a known location and in such a way as to prevent the string of viscous material from falling into another sample receptacle.

    [0054] Details of the viscous string removal element 44 are shown in FIGURES 8 and 9. According to one embodiment, the viscous string removal element 44 comprises a generally square, U-shaped raised element at least partially surrounding each sample receptacle access opening 42. The element 44 includes side surfaces 48, 50 and a back surface 46 that surround the access opening 42 on three sides. End surfaces 52, 54 are located on either side of the open end of the U-shaped element, and a corner 56 defines a transition, or edge, between the side surface 48 and one of the end surfaces 52. A raised ledge 58 extends adjacent to the access opening 42 across the open end of the U-shaped element 44. Corner 56 is set back from the edge of raised ledge 58 to allow more room for the pipettor to travel between adjacent U-shaped elements. In one embodiment the removal element 44 is 17 mm wide, 17 mm long, 8 mm high, with the raised ledge 58 that is 1 mm high. The opening 42 is 13.8 mm in diameter. The gap width between side-by-side adjacent removal elements 44 is 8 mm, while the gap between lengthwise adjacent removal elements 44 is 5 mm. The raised edge 58 has a length (or depth) of 2 mm, so the distance between the back surface 46 of one element 44 and the end surfaces 52, 54 is 7 mm.

    [0055] The manner in which the viscous string removal elements 44 are used to remove a string of viscous material suspended from a probe will be described with reference to FIGURE 10. As shown in FIGURE 10, which shows a portion of the sample bay cover 40, the probe is at position 200 when it is first withdrawn from the sample receptacle access opening 42. The probe is then moved with respect to the access opening 42 and the element 44 along a path that includes a first segment 202 to a position 204 that is offset from (i.e., not aligned with) the access opening 42. The path of the probe next includes a second leg 206 to a third position 208 and then a third leg 210 between adjacent rows of removal elements 44. Note that after moving from position 200 to position 204 offset from the access opening 42, the probe does not again move over any other access opening in the cover 40.

    [0056] While the probe moves along the path encompassing segments 202, 206, and 210, any string of viscous material suspended from the probe will be dragged behind the probe (relative to the direction of probe movement) and extend in a direction generally opposite the direction of movement of the probe. A change in direction of the probe caused by the transition from second leg 206 to third leg 210 will cause the string suspended from the probe to contact the corner 56 of the element 44. Corner 56 preferably defines a relatively sharp edge that will create friction between corner 56 and the string of viscous material as the probe continues to move relative to the corner 56. Thus, further movement of the probe along the third leg 210 of the path, combined with the friction between the string of viscous material and the corner 56, will cause the string of viscous material to be separated from the probe. The raised ledge 58 provides an obstruction that will impede any material falling from the probe onto the cover 40 from flowing back into an access opening 42.

    [0057] Details of a first alternative embodiment of a viscous string removal element are shown in FIGURE 11, which shows part of alternative embodiment of a sample bay cover 40a. The viscous string removal element, designated by reference number 220, comprises a generally square raised element surrounding each sample receptacle access opening 224. The element 220 includes four side surfaces 222 that surround the access opening 224 on four sides. Corners 226 define transitions, or edges, between side surfaces 222.

    [0058] Referring to FIGURE 11, the probe is at position 228 when it is first withdrawn from the sample receptacle access opening 224. The probe is then moved with respect to the access opening 224 and the element 220 along a path that includes a first segment 230 to a position 232 that is offset from the access opening 224. At position 232, the probe may be lowered so that the lowest end of the probe (the distal end of the probe) is below the top of the element 220. The path of the probe movement next includes a second leg 234 to a third position 236, and then a third leg 238 between adjacent rows of removal elements 220. The path of the probe avoids taking the probe over any other access opening 224 in the cover 40a.

    [0059] Again, as the probe moves, any string of viscous material suspended from the probe will be dragged behind the probe (relative to the direction of probe movement) and extend in a direction generally opposite the direction of movement of the probe. A change in direction of the probe caused by the transition from second leg 234 to third leg 238 will cause the string suspended from the probe to contact the corner 226 of the element 220. Corner 226 preferably defines a relatively sharp edge that will create friction between corner 226 and the string of viscous material as the probe continues to move relative to the corner 226. Thus, further movement of the probe along the third leg 238 of the path, combined with the friction between the string of viscous material and the corner 226, will cause the string of viscous material to be separated from the probe. As can be appreciated from FIGURE 11, the aligned viscous string removal elements 44 form a lane (corresponding to the direction of leg 238) with nearly-continuous walls on opposite sides thereof defined by the facing sides 222 of adjacent removal elements 44. The probe can move through this lane, with its distal tip located below the tops of the elements 44, and any material released from a distal end of the probe would be prevented from entering into the other openings. Thus, the walls 222 provide an edge 226 to break strings of viscous material and also provide a shield against drips or flinging droplets.

    [0060] Details of a second alternative embodiment of a viscous string removal element are shown in FIGURE 12, which shows part of alternative embodiment of a sample bay cover 40b. The viscous string removal element, designated by reference number 240, comprises a generally triangular raised element surrounding each sample receptacle access opening 244. Removal element 240 includes three side surfaces 242 that surround the access opening 244. Corners 246 define transitions, or edges, between side surfaces 242.

    [0061] Referring to FIGURE 12, the probe is at position 248 when it is first withdrawn from the sample receptacle access opening 244. The probe is then moved with respect to the access opening 244 and removal element 240 along a path that includes a first segment 250 to a position 252 that is offset from the access opening 244. At position 252, the probe may be lowered so that the lowest end of the probe is below the top of removal element 240. The path of the probe next includes a second leg 254 to a third position 256, and then a third leg 258 between adjacent rows of removal elements 240. The path of the probe avoids taking the probe over any other access opening 244 in the cover 40b.

    [0062] Again, as the probe moves, any string of viscous material suspended from the probe will be dragged behind the probe (relative to the direction of probe movement) and extend in a direction generally opposite the direction of movement of the probe. A change in direction of the probe caused by the transition from second leg 254 to third leg 258 will cause the string suspended from the probe to contact the corner 246 of removal element 240. Corner 246 preferably defines a relatively sharp edge that will create friction between corner 246 and the string of viscous material as the probe continues to move relative to the corner 246. Thus, further movement of the probe along the third leg 258 of the path, combined with the friction between the string of viscous material and the corner 246, will cause the string of viscous material to be separated from the probe.

    [0063] Details of a third alternative embodiment of a viscous string removal element are shown in FIGURE 13, which shows part of alternative embodiment of a sample bay cover 40c. The viscous string removal element, designated by reference number 260, comprises a raised element in the shape of a hexagon surrounding each sample receptacle access opening 264. Removal element 260 includes six side surfaces 262 that surround the access opening 264. Corners 266 define transitions, or edges, between the side surfaces 262.

    [0064] Referring to FIGURE 13, the probe is at position 268 when it is first withdrawn from the sample receptacle access opening 264. The probe is then moved with respect to the access opening 264 and removal element 260 along a path that includes a first segment 270 to a position 272 that is offset from the access opening 264. At position 272, the probe may be lowered so that the lowest end of the probe is below the top of removal element 260. The path of the probe next includes a second leg 274 to a third position 276, and then a third leg 278 between adjacent rows of removal elements 260. The path of the probe avoids taking the probe over any other access opening 264 in the cover 40c.

    [0065] Again, as the probe moves, any string of viscous material suspended from the probe will be dragged behind the probe (relative to the direction of probe movement) and extend in a direction generally opposite the direction of movement of the probe. A change in direction of the probe caused by the transition from second leg 274 to third leg 278 will cause the string suspended from the probe to contact the corner 266 of removal element 260. Corner 266 preferably defines a relatively sharp edge that will create friction between corner 266 and the string of viscous material as the probe continues to move relative to the corner 266. Thus, further movement of the probe along the third leg 278 of the path, combined with the friction between the string of viscous material and the corner 266, will cause the string of viscous material to be separated from the probe.

    [0066] Details of a fourth alternative embodiment of a viscous string removal element are shown in FIGURE 14, which shows part of alternative embodiment of a sample bay cover 40d. The viscous string removal element, designated by reference number 280, comprises a generally square raised element surrounding each sample receptacle access opening 284. Removal element 280 includes four side surfaces 282 that surround the access opening 284 on four sides. Corners 286 define transitions, or edges, between the side surfaces 282. Sample bay cover 40d differs from sample bay cover 40a, which also includes square viscous string removal elements 220 (See FIGURE 11), in that the adjacent rows of removal elements 280 of sample bay cover 40d are offset from each other.

    [0067] Referring to FIGURE 14, the probe is at position 288 when it is first withdrawn from the sample receptacle access opening 284. The probe is then moved with respect to the access opening 284 and removal element 280 along a path that includes a first segment 290 to a position 292 that is offset from the access opening 284. At position 292, the probe may be lowered so that the lowest end of the probe is below the top of removal element 280. The path of the probe next includes a second leg 294 to a third position 296, and then a third leg 298 in a diagonal direction between diagonally adjacent removal elements 280. The path of the probe avoids taking the probe over any other access opening 284 in the cover 40d.

    [0068] Again, as the probe moves, any string of viscous material suspended from the probe will be dragged behind the probe (relative to the direction of probe movement) and extend in a direction generally opposite the direction of movement of the probe. A change in direction of the probe caused by the transition from second leg 294 to third leg 298 can cause the string suspended from the probe to contact the corner 286 of removal element 280, even if that transition does not encompass a 90 degree change in direction as shown in FIGURES 10-13. Thus, further movement of the probe along the third leg 298 of the path, combined with the friction between the string of viscous material and the corner 286, will cause the string of viscous material to be separated from the probe.

    [0069] Details of a fifth alternative embodiment of a viscous string removal element are shown in FIGURES 15 and 15A, which show part of alternative embodiment of a sample bay cover 40e. The viscous string removal element, designated by reference number 300, comprises a raised surface 302 surrounding each sample receptacle access opening 304 and a post 306 projecting above the raised surface 302. Post 306 includes side surfaces 310 (four sides 310 in the illustrated embodiment) and corners 312 which define transitions, or edges, between the side surfaces 310. Post 306 may have any other shape that will provide an edge between non-coplanar sides of the post, such as triangular or hexagonal, in addition to square or rectangular. The post 306 may be positioned on the raised surface 302 so that one corner edge 312 of post 306 coincides with a corner edge of the raised surface 302 (not shown). On the other hand, raised surface 302 may have any shape, including shapes, such as circular, not defining corner edges.

    [0070] Referring to FIGURE 15, the probe is at position 314 when it is first withdrawn from the sample receptacle access opening 304. The probe is then moved with respect to the access opening 304 and removal element 300 along a path that includes a first segment 316 to a position 318 that is offset from the access opening 304. As can be appreciated from FIGURE 15A, raised surface 302 is a shorter structure than post 306, and thus, it is not necessary to lower the probe at position 318, as the lower end of the probe will already be below the top of post 306. The path of the probe next includes a second leg 320 to a third position 322, and then a third leg 324 between adjacent rows of removal elements 300. The path of the probe avoids taking the probe over any other access opening 304 in the cover 40e.

    [0071] Again, as the probe moves, any string of viscous material suspended from the probe will be dragged behind the probe (relative to the direction of probe movement) and extend in a direction generally opposite the direction of movement of the probe. A change in direction of the probe caused by the transition from second leg 320 to third leg 324 will cause the string suspended from the probe to contact the corner edge 312 of the post 306. Corner 312 preferably defines a relatively sharp edge that will create friction between corner 312 and the string of viscous material as the probe continues to move relative to the corner 312. Alternatively, post 306 may be of a shape that is devoid of corner edges, such as cylindrical, in which case, the necessary friction - should the cylindrical surface itself not provide sufficient friction - can be created by knurling, flutes or other surface modifications that will increase the friction of the exterior surface of the post. Thus, further movement of the probe along the third leg 324 of the path, combined with the friction between the string of viscous material and the post 306, will cause the string of viscous material to be separated from the probe. The raised surface 302 provides an obstruction that will impede any material falling from the probe onto the cover 40e from flowing back into an access opening 304.

    [0072] FIGURE 16 is a flow chart showing a method 330 for removing a string of viscous material from the probe of a fluid transfer mechanism. Method 330 is generally applicable to any of the embodiments shown in FIGURES 10-15. In step 332, the probe is moved into a position aligned with a receptacle access opening formed in the cover member. In step 334, the probe is lowered through the opening and into the associated receptacle located below the opening so that at least the distal end of the probe is submerged below the surface of the fluid contents of the receptacle. In step 336, the probe is raised out of the associated receptacle to a position above the cover member. In step 338, the probe is moved laterally to a position offset from the opening and adjacent the raised structure associated with the opening with the distal end of the probe disposed below a top surface of the associated raised structure. In step 340, the probe is moved laterally, relative to a corner of the associated raised structure, along a path comprising movement in a first direction. And in step 342, lateral movement of the probe, relative to a corner of the associated raised structure, is continued along the path in a second direction to thereby cause a string of viscous material connected to the probe to contact the corner.

    [0073] FIGURE 17 is a schematic view of a system including a sample receptacle module 10, an automated pipettor 350, and a controller 360 for controlling operation of the pipettor 350. The automated pipettor includes a probe comprising a barrel 352 on which is mounted (e.g., frictionally) a protective tip 354 and is constructed and arranged to effect movement of the protective tip 354, for example, X-Y-Z movement (and, optionally, rotational movement about one or more axes). Automated pipettor 350 may include, or be connected to, a pump or other vacuum source (not shown), such as a syringe pump (e.g., the Cavro XP 3000), for effecting suction at the protective tip 354 for drawing fluid material into the protective tip 354. A suitable pipettor is disclosed in U.S. Patent Application Publication No. US 2008-0019878 A1. Suitable protective tips include pipette tips manufactured and sold by TECAN (TECAN U.S. Inc., Research Triangle Park, North Carolina) under the trade name "Disposable Tips for GENESIS Series". In one embodiment, each tip has a 1000 µl capacity and is conductive. Controller 360 communicates with the automated pipettor via communication link 370 and may comprise a computer processor programmed to execute an algorithm (e.g., the algorithm represented by method 330 shown in FIGURE 16 and described above) to control movement and operation of the pipettor.

    [0074] The automated pipettor 350 may include a "self-teach" positioning capability. Position locator elements may be provided on the sample bay 10. During a self-teach procedure, the pipettor moves until it locates the position locator elements, and the coordinates of the position locator elements are stored in the controller 360. The positions of each of the access openings 42 and viscous string removal elements (e.g., removal elements 44) of the sample bay cover 40 relative to the positions of the position locator elements are known. Therefore, one the coordinates of the position locator elements are known, the coordinates of each of the access openings 42 and removal elements 44 are known as well.

    [0075] The position locator elements may comprises locator pins (not shown) or other projections extending upwardly from the cover 40. Contact of the protective tip 354 with the locator pins can be detected by capacitive sensing or by force detection. Preferably two position locator elements are provided at separated positions on the sample bay 10 to facilitate determination of the location of the sample bay 10 and whether the sample bay 10 is skewed with respect to the orientation of the automated pipettor 350. Alternative position locator elements may comprise hall effect sensors or slotted optical detectors.

    [0076] While the present invention has been described and shown in considerable detail with reference to certain illustrative embodiments, those skilled in the art will readily appreciate other embodiments of the present invention.


    Claims

    1. A method for separating a viscous material suspended from a probe of an automated pipettor (350), said method comprising the steps of:

    (a) lowering the probe into a receptacle (160, 162, 164) through an opening (42, 224, 244, 264, 284, 304) formed in a cover (40) disposed over the receptacle, the receptacle containing a viscous material;

    (b) drawing at least a portion of the viscous material into the probe;

    (c) removing the probe from the receptacle to a position above the cover, whereby a string of the viscous material is suspended from the probe;

    (d) moving the probe laterally with respect to the opening to a position offset from the opening and adjacent a raised structure (44, 220, 240, 260, 280, 300) formed on the cover; and

    (e) moving the probe laterally along a path comprising movement in first and second directions, wherein the transition from movement in the first direction to movement in the second direction causes the string of viscous material to contact the raised structure, and wherein the continued movement of the probe along the path causes at least a portion of the string of viscous material to be separated from the probe.


     
    2. The method of claim 1, wherein the raised structure includes first and second upright, non-coplanar sides (50, 52, 48, 54, 222, 242, 262, 282) defining a corner (56, 226, 246, 266, 286) at a transition therebetween, and wherein the transition from movement in the first direction to movement in the second direction in step (e) causes the string of viscous material to contact the corner of the raised structure.
     
    3. The method of either of claims 1 or 2, wherein the first and second directions of step (e) are substantially at right angles to one another, or the first and second directions of step (e) are not at right angles to one another.
     
    4. The method of any of claims 1-3, further comprising, after step (d), lowering the probe so that the distal end thereof is disposed below the top of the raised structure.
     
    5. The method of any of claims 1-4, wherein said probe comprises a barrel (352) with a protective tip (354) mounted on a distal end thereof.
     
    6. A system for transferring viscous materials, said system comprising:

    a sample holding area (10) for receiving and positioning a plurality of receptacles (160, 162, 164) and comprising a cover member (40) having a plurality of openings (42, 224, 244, 264, 284, 304) through which an automated pipettor (350) can access the receptacles positioned beneath the cover member, the openings being arranged so that each opening is associated with one of the receptacles, wherein a top side of the cover member includes a plurality of raised structures (44, 220, 240, 260, 280, 300), each raised structure being adjacent to one of the openings;

    an automated pipettor operatively associated with the sample holding area, the pipettor being configured for automated movement with respect to the sample holding area and including a fluid transfer probe; and

    a controller for controlling movement of the probe of the pipettor, the controller being programmed to selectively:

    move the probe into a position aligned with one of the openings;

    lower the probe through the opening and into the associated receptacle below the opening;

    raise the probe out of the associated receptacle to a position above the cover member;

    move the probe laterally to a position offset from the opening and adjacent the raised structure associated with the opening with the distal end of the probe disposed below a top surface of the associated raised structure; and

    move the probe laterally, relative to the associated raised structure, along a path comprising movement in first and second directions, the transition from the first direction to the second direction causing a string of viscous material suspended from the probe to contact the raised structure, and wherein the continued movement of the probe along the path causes at least a portion of the string of viscous material to be separated from the probe.


     
    7. The system of claim 6, wherein said probe comprises a barrel (352) with a protective tip (354) mounted on a distal end thereof.
     
    8. The system of either of claims 6 or 7, wherein said controller is programmed to move the probe in first and second directions that are substantially at right angles to one another, or said controller is programmed to move the probe in first and second directions that are not at right angles to one another.
     
    9. The system of any of claims 6-8, wherein said controller is further programmed to lower the probe after moving the probe to the position offset from the opening so that the distal end thereof is disposed below the top of the raised structure.
     
    10. The system of any of claims 6-9, wherein the plurality of openings are arranged in an array pattern of aligned rows and columns of openings.
     
    11. The system of any of claims 6-10, wherein each raised structure comprises two opposed and generally parallel sides (48, 50, 222, 282, 302) and an end wall (46, 222, 282, 302) spanning the ends of the two sides.
     
    12. The system of any of claims 6-11, wherein each raised structure is a U-shaped structure (44) at least partially surrounding the opening, and movement of the probe laterally with respect to the opening to a position offset from the opening comprises moving the probe through an opening defined between opposed legs of the U-shaped structure.
     
    13. The system of claim 11, wherein each raised structure further comprises a raised ledge (58) spanning ends of the two sides opposite the end wall, wherein the sides and the end wall are higher than the raised ledge.
     
    14. The system of any of claims 6-10, wherein each raised structure comprises a configuration selected from the group consisting of a square element surrounding the opening (220, 280, 300), a triangular element surrounding the opening (240), and a hexagonal element surrounding the opening (260).
     
    15. The system of any of claims 6-10, wherein each raised structure comprises a raised surface surrounding the opening and a post (306) projecting above the raised surface adjacent the opening.
     
    16. The system of any of claims 6-15, further comprising one or more receptacle holders (102), each configured to hold a plurality of receptacles, and wherein said sample receiving area is configured to receive said receptacle holders and includes guide structures (22, 60) to ensure the proper position and orientation of the receptacles carried in each receptacle holder relative to the openings formed in said cover member.
     
    17. The system of claim 16, wherein said guide structures define two or more lanes configured to receive a different one of the receptacle holders; and
    optionally wherein the system further comprises indicator elements in communication with said controller and configured to indicate which of two or more lanes is to receive the next receptacle holder to be inserted into the sample receiving area.
     
    18. The system of claim 6-14, wherein said raised structure comprises two generally upright, non-coplanar sides (50, 52, 48, 54, 222, 242, 262, 282) defining a corner (56, 226, 246, 266, 286) at a transition therebetween, and wherein the controller is programmed to selectively move the probe laterally, relative to the corner of the associated raised structure, along the path comprising movement in first and second directions, and wherein the transition from the first direction to the second direction causes the string of viscous material suspended from the probe to contact the corner of the associated raised structure
     
    19. The system of any of claims 16-18, further including a sensing element configured to detect if a receptacle holder is fully inserted into the sample receiving area.
     
    20. The system of any of claims 6-9, wherein the plurality of openings are arranged in parallel rows with openings in adjacent rows being offset from one another.
     
    21. The system of any of claims 6-20, wherein said sample holding area comprises a sample bay having first (12) and second (16) side walls and a back wall extending between said first and second side wall, wherein said first and second side walls and said back wall support said cover member.
     


    Ansprüche

    1. Verfahren zum Abtrennen eines dickflüssigen Materials, das aus einer Sonde eines automatischen Pipettierers (350) suspendiert wurde, wobei das Verfahren die folgenden Schritte umfasst:

    a) Absenken der Sonde in einen Behälter (160, 162, 164) durch eine in einer Abdeckung (40), die über dem Behälter angeordnet ist, ausgebildete Öffnung (42, 224, 244, 264, 284, 304), wobei der Behälter ein dickflüssiges Material enthält;

    b) Ziehen von mindestens einer Portion des dickflüssigen Materials in die Sonde;

    c) Herausbewegen der Sonde aus dem Behälter in eine Position oberhalb der Abdeckung, wodurch ein Strang des dickflüssigen Materials aus der Sonde suspendiert wird;

    d) Bewegen der Sonde seitlich in Bezug auf die Öffnung zu einer Position, die von der Öffnung versetzt und angrenzend an eine auf der Abdeckung ausgebildete erhabene Struktur (44, 220, 240, 260, 280, 300); und

    e) Bewegen der Sonde seitlich entlang eines Pfades, umfassend die Bewegung in ersten und zweiten Richtungen, wobei der Übergang von der Bewegung in der ersten Richtung zu einer Bewegung in die zweite Richtung bewirkt, dass der Strang des dickflüssigen Materials mit der erhabenen Struktur in Kontakt tritt, und wobei die fortgesetzte Bewegung der Sonde entlang des Pfades bewirkt, dass mindestens eine Portion des Stranges des dickflüssigen Materials von der Sonde abgetrennt wird.


     
    2. Verfahren nach Anspruch 1, wobei die erhabene Struktur erste und zweite aufrechte, nicht-koplanare Seiten (50, 52, 48, 54, 222, 242, 262, 282) umfasst, die eine Ecke (56, 226, 246, 266, 286) an einem Übergang dazwischen definieren, und wobei der Übergang von der Bewegung in die erste Richtung zu einer Bewegung in die zweite Richtung in Schritt (e) bewirkt, dass der Strang des dickflüssigen Materials mit der Ecke der erhabenen Struktur in Kontakt tritt.
     
    3. Verfahren nach einem der Ansprüche 1 oder 2, wobei die ersten und zweiten Richtungen in Schritt (e) im Wesentlichen im rechten Winkel zueinander sind oder die ersten und zweiten Richtungen in Schritt (e) nicht im rechten Winkel zueinander sind.
     
    4. Verfahren nach einem der Ansprüche 1 bis 3, ferner umfassend nach Schritt (d) das Absenken der Sonde, sodass das distale Ende davon unterhalb der Oberseite der erhabenen Struktur angeordnet ist.
     
    5. Verfahren nach einem der Ansprüche 1 bis 4, wobei die Sonde einen Zylinder (352) mit einer schützenden Spitze (354), die an einem distalen Ende davon angebracht ist, aufweist.
     
    6. System zum Übertragen von dickflüssigen Materialien, wobei das System umfasst:

    einen Probenhaltebereich (10) für das Aufnehmen und das Positionieren einer Vielzahl von Behältern (160, 162, 164) und umfassend ein Abdeckelement (40), das eine Vielzahl von Öffnungen (42, 224, 244, 264, 284, 304) aufweist, durch die ein automatischer Pipettierer (350) auf die Behälter, die unterhalb des Abdeckelements positioniert sind, zugreifen kann, wobei die Öffnungen so angeordnet sind, dass jede Öffnung einem der Behälter zugeordnet ist, wobei eine Oberseite des Abdeckelements eine Vielzahl von erhabenen Strukturen (44, 220, 240, 260, 280, 300) aufweist, wobei jede erhabene Struktur benachbart zu einer der Öffnungen ist;

    einen automatischen Pipettierer, der betriebsmäßig mit dem Probenhaltebereich verbunden ist, wobei der Pipettierer für eine automatisierte Bewegung in Bezug auf den Probenhaltebereich konfiguriert ist und eine Fluidübertragungssonde aufweist; und

    eine Steuereinrichtung zum Steuern der Bewegung der Sonde des Pipettierers, wobei die Steuereinrichtung programmiert ist, um selektiv:

    die Sonde in eine Position zu bewegen, die mit einer der Öffnungen ausgerichtet ist;

    die Sonde durch die Öffnung und in den zugeordneten Behälter unterhalb der Öffnung abzusenken;

    die Sonde aus dem zugeordneten Behälter in eine Position oberhalb des Abdeckelements hochzuziehen;

    die Sonde seitlich zu einer Position zu bewegen, die von der Öffnung versetzt und angrenzend an die mit der Öffnung zugehörigen erhabenen Struktur ist, wobei das distale Ende der Sonde unterhalb einer oberen Oberfläche der zugehörigen erhabenen Struktur angeordnet ist; und

    die Sonde seitlich zu bewegen, relativ zu der zugehörigen erhabenen Struktur, entlang einer Bahn, welche die Bewegung in ersten und zweiten Richtungen umfasst, wobei der Übergang von der ersten Richtung in die zweite Richtung bewirkt, dass ein Strang des dickflüssigen Materials, das von der Sonde suspendiert wurde, mit der erhabenen Struktur in Kontakt zu treten, und wobei die fortgesetzte Bewegung der Sonde entlang des Pfades bewirkt, das mindestens eine Portion des Stranges des dickflüssigen Materials von der Sonde abgetrennt wird.


     
    7. System nach Anspruch 6, wobei die Sonde einen Zylinder (352) mit einer schützenden Spitze (354), die an einem distalen Ende davon angebracht ist, aufweist.
     
    8. System entweder nach einem der Ansprüche 6 oder 7, wobei die Steuereinrichtung programmiert ist, die Sonde in erste und zweite Richtungen zu bewegen, die im Wesentlichen im rechten Winkel zueinander sind, oder die Steuereinrichtung ist programmiert, die Sonde in ersten und zweiten Richtungen zu bewegen, die nicht im rechten Winkel zueinander sind.
     
    9. System nach einem der Ansprüche 6 bis 8, wobei die Steuereinrichtung ferner programmiert ist, die Sonde nach dem Bewegen der Sonde in die Position, die von der Öffnung versetzt ist, abzusenken, sodass das distale Ende davon unterhalb der Oberseite der erhabenen Struktur angeordnet ist.
     
    10. System nach einem der Ansprüche 6 bis 9, wobei die Vielzahl der Öffnungen in einem Array-Muster von ausgerichteten Zeilen und Spalten von Öffnungen angeordnet sind.
     
    11. System nach einem der Ansprüche 6 bis 10, wobei jede erhabene Struktur zwei gegenüberliegende und im Allgemeinen parallele Seiten (48, 50, 222, 282, 302) und eine Stirnwand (46, 222, 282, 302) umfasst, welche die Enden der beiden Seiten miteinander verbindet.
     
    12. System nach einem der Ansprüche 6 bis 11, wobei jede erhabene Struktur eine U-förmige Struktur (44), ist, die mindestens teilweise die Öffnung umgibt, und die Bewegung der Sonde seitlich in Bezug auf die Öffnung zu einer Position, die von der Öffnung versetzt ist, das Bewegen der Sonde durch eine Öffnung umfasst, die zwischen gegenüberliegenden Schenkeln der U-förmigen Struktur definiert ist.
     
    13. System nach Anspruch 11, wobei jede erhabene Struktur ferner einen erhabenen Absatz (58) aufweist, welcher die Enden der beiden Seiten miteinander verbindet, die der Stirnwand gegenüberliegen, wobei die Seiten und die Stirnwand höher ist als der erhabene Absatz sind.
     
    14. System nach einem der Ansprüche 6 bis 10, wobei jede erhabene Struktur eine Konfiguration umfasst, die ausgewählt ist aus der Gruppe bestehend aus einem quadratischen Element, das die Öffnung (220, 280, 300) umgibt, einem dreieckförmigen Element, das die Öffnung (240) umgibt, und einem hexagonalen Element, das die Öffnung (260) umgibt.
     
    15. System nach einem der Ansprüche 6 bis 10, wobei jede erhabene Struktur eine erhöhte Fläche, welche die Öffnung umgibt, und einen Pfosten (306) aufweist, der über der erhöhten Fläche benachbart zu der Öffnung hervorsteht.
     
    16. System nach einem der Ansprüche 6 bis 15, ferner eine oder mehrere Behälterhalterungen (102) umfassend, wobei jede konfiguriert ist, eine Vielzahl von Behältern zu halten, und wobei die Probenaufnahmefläche konfiguriert ist, die Behälterhalterungen aufzunehmen und Führungsstrukturen (22, 60) aufweist, um die richtige Position und Ausrichtung der Behälter, die in jeder Behälterhalterung getragen werden, relativ zu den Öffnungen, die in dem Abdeckungselement ausgebildet sind, sicherzustellen.
     
    17. System nach Anspruch 16, wobei die Führungsstrukturen zwei oder mehr Spuren definieren, die konfiguriert sind, eine andere der Behälterhalterungen aufzunehmen; und
    wobei gegebenenfalls das System ferner Indikatorelemente in Kommunikation mit der Steuereinrichtung aufweist und die konfiguriert sind, anzuzeigen, welche der zwei oder mehr Spuren die nächste Behälterhalterung aufnehmen wird, welche in den Probenaufnahmebereich eingesetzt wird.
     
    18. System nach Anspruch 6 bis 14, wobei die erhabene Struktur zwei im Wesentlichen aufrechte, nicht-koplanare Seiten (50, 52, 48, 54, 222, 242, 262, 282) aufweist, die eine Ecke (56, 226, 246, 266, 286) an einem Übergang dazwischen definieren, und wobei die Steuereinrichtung programmiert ist, um selektiv die Sonde seitlich zu bewegen, relativ zu der Ecke der zugehörigen erhabenen Struktur, entlang von dem Pfad, umfassend die Bewegung in ersten und zweiten Richtungen, und wobei der Übergang von der ersten Richtung in die zweite Richtung bewirkt, dass der Strang des dickflüssigen Materials, der von der Sonde suspendiert wurde, mit der Ecke der zugehörigen erhabenen Struktur in Kontakt tritt.
     
    19. System nach einem der Ansprüche 16 bis 18, ferner umfassend ein Sensorelement, das konfiguriert ist, festzustellen, ob eine Behälterhalterung vollständig in den Probeaufnahmebereich eingesetzt wurde.
     
    20. System nach einem der Ansprüche 6 bis 9, wobei die Vielzahl von Öffnungen in parallelen Reihen mit Öffnungen in benachbarten Reihen angeordnet sind, die zueinander versetzt sind.
     
    21. System nach einem der Ansprüche 6 bis 20, wobei der Probenhaltebereich eine Probeneinführöffnung mit ersten (12) und zweiten (16) Seitenwänden und eine Rückwand aufweist, die sich zwischen der ersten und zweiten Seitenwand erstreckt, wobei die ersten und zweiten Seitenwände und die Rückwand das Abdeckelement stützen.
     


    Revendications

    1. Procédé pour séparer une matière visqueuse en suspension d'une sonde d'une pipette automatisée (350), ledit procédé comprenant les étapes de :

    (a) abaissement de la sonde dans un réceptacle (160, 162, 164) à travers une ouverture (42, 224, 244, 264, 284, 304) formée dans un couvercle (40) disposé sur le réceptacle, le réceptacle contenant une matière visqueuse ;

    (b) attraction d'au moins une partie de la matière visqueuse dans la sonde ;

    (c) enlèvement de la sonde du réceptacle jusqu'à une position au-dessus du couvercle, de sorte qu'une chaîne de la matière visqueuse est en suspension depuis la sonde ;

    (d) déplacement de la sonde latéralement par rapport à l'ouverture jusqu'à une position décalée par rapport à l'ouverture et adjacente à une structure élevée (44, 220, 240, 260, 280, 300) formée sur le couvercle ; et

    (e) déplacement de la sonde latéralement le long d'un chemin comprenant le déplacement dans des première et seconde directions, dans lequel la transition d'un déplacement dans la première direction à un déplacement dans la seconde direction amène la chaîne de matière visqueuse à entrer en contact avec la structure élevée, et dans lequel le déplacement continu de la sonde le long du chemin amène au moins une partie de la chaîne de matière visqueuse à être séparée de la sonde.


     
    2. Procédé selon la revendication 1, dans lequel la structure élevée inclut des premier et second côtés verticaux, non coplanaires (50, 52, 48, 54, 222, 242, 262, 282) définissant un angle (56, 226, 246, 266, 286) à une transition entre ces derniers, et dans lequel la transition d'un déplacement dans la première direction à un déplacement dans la seconde direction dans l'étape (e) amène la chaîne de matière visqueuse à entrer en contact avec l'angle de la structure élevée.
     
    3. Procédé selon l'une ou l'autre des revendications 1 ou 2, dans lequel les première et seconde directions de l'étape (e) sont sensiblement à angle droit l'une par rapport à l'autre, ou les première et seconde directions de l'étape (e) ne sont pas à angle droit l'une par rapport à l'autre.
     
    4. Procédé selon l'une quelconque des revendications 1 à 3, comprenant en outre, après l'étape (d), l'abaissement de la sonde de sorte que son extrémité distale est disposée au-dessous du sommet de la structure élevée.
     
    5. Procédé selon l'une quelconque des revendications 1 à 4, dans lequel ladite sonde comprend un barillet (352) avec un embout protecteur (354) monté sur son extrémité distale.
     
    6. Système pour transférer des matières visqueuses, ledit système comprenant :

    une zone de maintien d'échantillon (10) pour recevoir et positionner une pluralité de réceptacles (160, 162, 164) et comprenant un élément formant couvercle (40) ayant une pluralité d'ouvertures (42, 224, 244, 264, 284, 304) à travers lesquelles une pipette automatisée (350) peut accéder aux réceptacles positionnés au-dessous de l'élément formant couvercle, les ouvertures étant agencées de sorte que chaque ouverture est associée à un des réceptacles, dans lequel un côté supérieur de l'élément formant couvercle inclut une pluralité de structures élevées (44, 220, 240, 260, 280, 300), chaque structure élevée étant adjacente à une des ouvertures ;

    une pipette automatisée associée de manière opérationnelle à la zone de maintien d'échantillon, la pipette étant configurée pour un déplacement automatisé par rapport à la zone de maintien d'échantillon et incluant une sonde de transfert de fluide ; et

    une unité de commande pour commander le déplacement de la sonde de la pipette, l'unité de commande étant programmée pour de manière sélective :

    déplacer la sonde dans une position alignée sur une des ouvertures ;

    abaisser la sonde à travers l'ouverture et dans le réceptacle associé au-dessous de l'ouverture ;

    élever la sonde hors du réceptacle associé jusqu'à une position au-dessus de l'élément formant couvercle ;

    déplacer la sonde latéralement jusqu'à une position décalée par rapport à l'ouverture et adjacente à la structure élevée associée à l'ouverture, l'extrémité distale de la sonde étant disposée au-dessous d'une surface supérieure de la structure élevée associée ; et

    déplacer la sonde latéralement, par rapport à la structure élevée associée, le long d'un chemin comprenant le déplacement dans des première et seconde directions, la transition de la première direction à la seconde direction amenant une chaîne de matière visqueuse suspendue à la sonde à entrer en contact avec la structure élevée, et dans lequel le déplacement continu de la sonde le long du chemin amène au moins une partie de la chaîne de matière visqueuse à être séparée de la sonde.


     
    7. Système selon la revendication 6, dans lequel ladite sonde comprend un barillet (352) avec un embout protecteur (354) monté sur son extrémité distale.
     
    8. Système selon l'une ou l'autre des revendications 6 ou 7, dans lequel ladite unité de commande est programmée pour déplacer la sonde dans des première et seconde directions qui sont sensiblement à angle droit l'une par rapport à l'autre, ou ladite unité de commande est programmée pour déplacer la sonde dans des première et seconde directions qui ne sont pas à angle droit l'une par rapport à l'autre.
     
    9. Système selon l'une quelconque des revendications 6 à 8, dans lequel ladite unité de commande est en outre programmée pour abaisser la sonde après le déplacement de la sonde jusqu'à la position décalée par rapport à l'ouverture de sorte que son extrémité distale est disposée au-dessous du sommet de la structure élevée.
     
    10. Système selon l'une quelconque des revendications 6 à 9, dans lequel la pluralité d'ouvertures est agencée en un motif de groupement de rangées et de colonnes alignées d'ouvertures.
     
    11. Système selon l'une quelconque des revendications 6 à 10, dans lequel chaque structure élevée comprend deux côtés opposés et globalement parallèles (48, 50, 222, 282, 302) et une paroi d'extrémité (46, 222, 282, 302) enjambant les extrémités des deux côtés.
     
    12. Système selon l'une quelconque des revendications 6 à 11, dans lequel chaque structure élevée est une structure en forme de U (44) entourant au moins partiellement l'ouverture, et le déplacement de la sonde latéralement par rapport à l'ouverture jusqu'à une position décalée par rapport à l'ouverture comprend le déplacement de la sonde à travers une ouverture définie entre les montants opposés de la structure en forme de U.
     
    13. Système selon la revendication 11, dans lequel chaque structure élevée comprend en outre un rebord élevé (58) enjambant les extrémités des deux côtés opposés de la paroi d'extrémité, dans lesquels les côtés et la paroi d'extrémité sont plus hauts que le rebord élevé.
     
    14. Système selon l'une quelconque des revendications 6 à 10, dans lequel chaque structure élevée comprend une configuration sélectionnée à partir du groupe constitué par un élément carré entourant l'ouverture (220, 280, 300), un élément triangulaire entourant l'ouverture (240) et un élément hexagonal entourant l'ouverture (260).
     
    15. Système selon l'une quelconque des revendications 6 à 10, dans lequel chaque structure élevée comprend une surface élevée entourant l'ouverture et un montant (306) en saillie au-dessus de la surface élevée adjacente à l'ouverture.
     
    16. Système selon l'une quelconque des revendications 6 à 15, comprenant en outre un ou plusieurs supports de réceptacle (102), chacun configuré pour maintenir une pluralité de réceptacles, et dans lequel ladite zone de réception d'échantillon est configurée pour recevoir lesdits supports de réceptacle et inclut des structures de guidage (22, 60) pour assurer la position et l'orientation appropriées des réceptacles portés dans chaque support de réceptacle par rapport aux ouvertures formées dans ledit élément formant couvercle.
     
    17. Système selon la revendication 16, dans lequel lesdites structures de guidage définissent deux ou plusieurs voies configurées pour recevoir un support différent des supports de réceptacle ; et
    de manière facultative dans lequel le système comprend en outre des éléments indicateurs en communication avec ladite unité de commande et configurés pour indiquer laquelle des deux ou plusieurs voies doit recevoir le support de réceptacle suivant à insérer dans la zone de réception d'échantillon.
     
    18. Système selon les revendications 6 à 14, dans lequel ladite structure élevée comprend deux côtés globalement verticaux, non coplanaires (50, 52, 48, 54, 222, 242, 262, 282) définissant un angle (56, 226, 246, 266, 286) au niveau d'une transition entre ces derniers, et dans lequel l'unité de commande est programmée pour déplacer de manière sélective la sonde latéralement, par rapport à l'angle de la structure élevée associée, le long du chemin comprenant un déplacement dans des première et seconde directions, et dans lequel la transition de la première direction à la seconde direction amène la chaîne de matière visqueuse suspendue à la sonde à entrer en contact avec l'angle de la structure élevée associée
     
    19. Système selon l'une quelconque des revendications 16 à 18, incluant en outre un élément de détection configuré pour détecter si un support de réceptacle est entièrement inséré dans la zone de réception d'échantillon.
     
    20. Système selon l'une quelconque des revendications 6 à 9, dans lequel la pluralité d'ouvertures est agencée dans des rangées parallèles, les ouvertures dans des rangées adjacentes étant décalées les unes par rapport aux autres.
     
    21. Système selon l'une quelconque des revendications 6 à 20, dans lequel ladite zone de maintien d'échantillon comprend une baie d'échantillons ayant des première (12) et seconde (16) parois latérales et une paroi arrière s'étendant entre ladite première et ladite seconde paroi latérale, dans lequel lesdites première et seconde parois latérales et ladite paroi arrière supportent ledit élément formant couvercle.
     




    Drawing















































    Cited references

    REFERENCES CITED IN THE DESCRIPTION



    This list of references cited by the applicant is for the reader's convenience only. It does not form part of the European patent document. Even though great care has been taken in compiling the references, errors or omissions cannot be excluded and the EPO disclaims all liability in this regard.

    Patent documents cited in the description